JP2017022275A - 太陽電池および太陽電池の製造方法 - Google Patents

太陽電池および太陽電池の製造方法 Download PDF

Info

Publication number
JP2017022275A
JP2017022275A JP2015139153A JP2015139153A JP2017022275A JP 2017022275 A JP2017022275 A JP 2017022275A JP 2015139153 A JP2015139153 A JP 2015139153A JP 2015139153 A JP2015139153 A JP 2015139153A JP 2017022275 A JP2017022275 A JP 2017022275A
Authority
JP
Japan
Prior art keywords
solar cell
wire
electrode
grid electrode
paste
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2015139153A
Other languages
English (en)
Inventor
光徳 中谷
Mitsunori Nakatani
光徳 中谷
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Electric Corp
Original Assignee
Mitsubishi Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Electric Corp filed Critical Mitsubishi Electric Corp
Priority to JP2015139153A priority Critical patent/JP2017022275A/ja
Publication of JP2017022275A publication Critical patent/JP2017022275A/ja
Pending legal-status Critical Current

Links

Images

Landscapes

  • Photovoltaic Devices (AREA)

Abstract

【課題】低コストで、線幅の小さいグリッド電極を有する太陽電池を提供する。
【解決手段】太陽電池基板1と、太陽電池基板1の表面に形成された集電電極(グリッド電極4G)とを備える。受光面側に形成されるグリッド電極4Gが、導電性のワイヤー9と、ワイヤー9と受光面1Aとの間に介在する導電性ペースト10の焼結体とで構成される。グリッド電極4Gを形成する工程は、一定の線径をもつ導電性のワイヤー9に導電性ペースト10を塗布する工程と、導電性ペースト10を塗布したワイヤー9を太陽電池基板1に接触させる工程と、ワイヤー9を太陽電池基板1に接触させた状態で導電性ペースト10を焼成する工程とを含む。
【選択図】図3

Description

本発明は、太陽電池および太陽電池の製造方法に係り、特にグリッド電極の形成に関する。
従来、太陽電池セルの変換効率の向上をはかるため、太陽電池基板の太陽光を受光する表面すなわち受光面側の拡散層の不純物濃度を小さくする、あるいは、受光面積を大きくする等種々の方法が採用されている。表面側の電極抵抗を維持したまま受光面積を大きくするためには、受光面に分布して形成される櫛形などのグリッド電極の電極面積、特にグリッド電極幅を小さくする必要がある。一般的な住宅用太陽電池セルの製造方法の一例が、特許文献1に示されている。また、電極形成には、特許文献2に示すスクリーン印刷法が用いられる。
特許第4075410号公報 特許第5148876号公報
しかしながら、上記従来の技術によれば、スクリーン印刷法では、0.2mm以上の大きな開口部を有するパターンの印刷マスクは、ステンレス材のメッシュ数#200から#325で線径20μmφ以上の安価な仕様で十分である。ところが、受光面側グリッド電極の幅を小さくするため、印刷マスクのパターン開口幅を小さく、メッシュのピッチを小さく、メッシュ線径を細くする方策が採用される。しかしながら、開口幅は40μm幅より小さく、メッシュピッチ#300以上、メッシュを構成する線の線径φ20μm以下となると、急激に印刷マスクが高額になるため、太陽電池セルが高価になるという欠点がある。
スクリーン印刷法で表グリッド電極幅を小さくするために、メッシュピッチ70μm以下、メッシュの線径20μm以下で、パターン開口幅を40μm以下とメッシュ線径を細くすると、メッシュを避けて印刷ペーストが吐出できる透過面積率は50%を大きく割り込む。このため、印刷されたグリッドのペーストパターンはメッシュ線の痕が付いてグリッド尾根部つまりグリッド高さの凹凸が大きくなるおそれがある。あるいは、グリッド電極幅が細くなって途中で断線する。あるいはまた、グリッド電極抵抗が大きくなるなど種々の不良が発生し易い。
メッシュ線径を細くすると、印刷時にスキージゴムで押し付けながらセルに印刷ペースト塗布するため、メッシュ線が切れて印刷マスクが裂けるトラブルが発生し易くなる。
また、スクリーン印刷によると、太陽電池セル製造に用いられるグリッド電極の細線化に伴い、ワイヤーとワイヤー間の隙間幅が、ワイヤー径を無視し得ない程度の微細幅となり、透過面積率あるいは空間率と呼ばれるワイヤー間の隙間面積割合は、半分以下となり、グリッド電極が途切れたり、グリッド電極の尾根部の厚みの凹凸が顕在化して、グリッド電極抵抗が高くなり易い。また、メッシュのワイヤー交点部では開口幅と寸法が同程度となり、メッシュワイヤー交点部のグリッド電極厚が薄くなり、細いグリッド電極が断線し易い傾向がある。また、電極ペーストは設計幅より横方向に滲んで実幅は太くなる傾向がある。設計幅より実幅が太くなるのはスクリーン印刷法による印圧を掛けて印刷マスクからペーストを掻き出しながら押し出すので、ペーストが横に広がる特徴があるためである。設計幅より印刷パターンが太くなる程度を抑制するのは、スクリーン印刷法の課題である。
また、印刷パターンを形成するマスク乳剤の厚みを無視した場合、一般的に印刷直後のパターン厚を見積もる指標として透過容積があり、単位は[cm3/m2]=[μm]であり印刷直後の厚みに相当する。微細パターン化に従い、透過容積率が小さくなるため、微細パターンの場合特に、グリッド電極厚に相当する初期ペースト厚みは、乾燥焼結で容積収縮が起こる。
また、上記形状のグリッド電極のペースト材料の一例として、デュポン(Dupont)社製ソーラメットPV18A(登録商標)と指称される電極ペースト材料を用いた場合、Agペースト電極の場合の導電率が小さい。スクリーン印刷法で形成されたグリッド電極では導電率で既に2倍から3倍の抵抗率を示す。このため、セル出力を向上させるためにグリッド電極幅を短縮すると、スクリーン印刷法ではグリッド厚も小さくなり、グリッド電極の抵抗は急激に高くなって、逆にセル出力低下を招く。
また、スクリーン印刷法では使用する表銀ペーストは細く高く低抵抗な銀電極を印刷形成するため銀の重量含有率が80%以上であるが、スクリーン清掃等で印刷に使用しないで捨てられるロス分が10%以上も発生し、不経済である。
本発明は、上記に鑑みてなされたもので、低コストで、線幅の小さいグリッド電極を有する太陽電池を得ることを目的とする。
上述した課題を解決し、目的を達成するために、本発明では、太陽電池基板と、太陽電池基板の表面に形成された集電電極とを備える。集電電極の内、受光面側に形成されるグリッド電極が、導電性のワイヤーと、ワイヤーと受光面との間に介在する導電性ペーストの焼結体とで構成される。
本発明によれば、低コストで、線幅の小さい電極を有する太陽電池を得るという効果を奏する。
実施の形態1の太陽電池の受光面側を示す平面図 実施の形態1の太陽電池の裏面側を示す平面図 実施の形態1の太陽電池の断面図であり、図1および図2のA−A断面を示す図 実施の形態1の太陽電池の製造方法の原理を示す説明図 実施の形態1の太陽電池の製造方法で用いられるワイヤーの拡大断面図 (a)から(c)は、実施の形態1の太陽電池の製造工程を示す要部拡大断面図 実施の形態1の太陽電池の製造工程を示すフローチャート図 実施の形態2の太陽電池の受光面側を示す平面図 実施の形態2の太陽電池の製造工程を示す説明図 (a)および(b)は、実施の形態3の太陽電池の製造工程を示す説明図 (a)および(b)は、実施の形態3の太陽電池の製造工程を示す説明図 実施の形態4の太陽電池の製造方法で用いられる製造装置を示す説明図 実施の形態4の太陽電池の製造方法で用いられる製造装置のワイヤーへのペースト供給部を示す説明図
以下に、本発明の実施の形態にかかる太陽電池の製造方法および太陽電池を図面に基づいて詳細に説明する。なお、この実施の形態によりこの発明が限定されるものではなく、その要旨を逸脱しない範囲において適宜変更可能である。また、以下に示す図面においては、理解の容易のため各層あるいは各部材の縮尺が現実と異なる場合があり、各図面間においても同様である。また、断面図であっても、図面を見易くするためにハッチングを付さない場合がある。
実施の形態1.
以下に、本発明の実施の形態1の太陽電池および太陽電池の製造方法について、図面に基づいて詳細に説明する。図1は、実施の形態1の太陽電池の受光面側を示す平面図、図2は、実施の形態1の太陽電池の裏面側を示す平面図、図3は、実施の形態1の太陽電池の断面図であり、図1および図2のA−A断面を示す図である。図4は、実施の形態1の太陽電池の製造方法の原理を示す説明図、図5は、実施の形態1の太陽電池の製造方法で用いられるワイヤーの拡大断面図である。図6(a)から図6(c)は、実施の形態1の太陽電池の製造工程を示す要部拡大断面図、図7は、同フローチャート図である。実施の形態1では、太陽電池のグリッド電極を細線化するため、従来のスクリーン印刷法に代わり、グリッド本数と同じ本数の細線ワイヤーに電極ペーストを付着させ、太陽電池セル表面に接合する方法である。グリッド電極4Gは、太陽電池基板1上に一定間隔で平行に分布される。ワイヤーにペーストを一様に塗布するには、例えば後述するが、図13に示すように、注射針のような細い中空パイプ118をもつ注射管からなるペースト供給部108aを準備して、ペーストをペースト溜りとなる注射管に充填し、細い管からなるペースト供給用の中空パイプ118を介してワイヤー9を通過させる方法を採る。
太陽電池基板の製造方法に関しては、後述するが、通例の製造フローを用いる。但し、実施の形態1の電極形成工程では、太陽電池基板の裏面に裏面バス電極とアルミニウム電極を印刷乾燥し、引き続いて、電極ペーストが付着されたワイヤを受光面側に配してグリッド電極のパターン形成をし、受光面バス電極を別途印刷塗布乾燥を施し、最後に焼成する工程を用いている。裏面の裏面バス電極およびアルミニウム電極、受光面側のグリッド電極および受光面バス電極の4種類の電極を印刷、転写して各々乾燥する工程の順序は任意に組み合わせることができる。
実施の形態1の太陽電池は、図1に示すように、グリッド電極4Gが太陽電池基板1の周端部1Eつまりセル端まで形成されている。図3に断面図を示すように、太陽電池基板1は、通例の構成をもつもので、例えばp型単結晶シリコン基板1Sで構成され、受光面1A側にn型拡散層2および反射防止膜3が形成され、反射防止膜3の上層に電極ペーストが付着されたワイヤをワイヤーごと転写することで形成されたグリッド電極4Gとスクリーン印刷による受光面バス電極4Bとが形成されている。太陽電池基板1の裏面1B側には、図2に示すように、銀を主成分とする裏面バス電極5と、裏面バス電極5以外の領域に形成されたアルミニウム電極6とを具備し、アルミニウム電極6からのアルミニウム拡散によって形成されたp+型拡散層からなるBSF層7が形成されている。
太陽電池基板1の受光面1A側にグリッド電極4Gが形成されているが、図4に、太陽電池の製造方法における、グリッド電極形成の原理説明図を示す。図5にグリッド電極形成用のワイヤーの要部拡大断面図を示す。図6(a)から(b)は、実施の形態1の太陽電池の製造方法におけるグリッド電極の形成工程を示す要部拡大説明図である。グリッド電極形成用のワイヤーは、銅線からなるワイヤー9の周りに電極ペースト10を塗布した構成となっており、太陽電池基板1上でワイヤー9をおろし、太陽電池基板1の両端でワイヤー9を切断し受光面1Aに電極ペースト10をワイヤと共に転写することで形成される。この例では、外径D2のワイヤー9に一様な厚みで塗布して外径がD1となった電極ペースト10が形成されている。D1は、実施の形態4で後述する中空パイプの内径D1に相当する。グリッド電極幅をw、グリッド電極厚をt1とする。良好なセル特性を得るには、図3に示す、グリッド電極4Gの抵抗を小さく、かつ、太陽光を出来るだけ発電する領域であるn型拡散層2およびp型単結晶シリコン基板1Sに取り込めるようにグリッド電極4Gの面積を小さくする必要がある。グリッド電極4Gはグリッド電極幅wを小さく、グリッド電極厚t1を厚くする必要がある。なお、図6(a)および(b)では、p型単結晶シリコン基板1Sに形成されたn型拡散層2、反射防止膜3、BSF層7を含めて太陽電池基板1とする。なお、電極ペースト付きワイヤを太陽電池基板1に転写したときすなわち、パターン形成時のグリッド電極厚をt0、焼成後のグリッド電極厚をt1とする。
グリッド電極の形成工程について簡単に説明する。まず、pn接合の形成されたp型単結晶シリコン基板1Sからなる太陽電池基板1の裏面に裏面バス電極5およびアルミニウム電極6をスクリーン印刷法で形成した後、受光面1A側に、グリッド電極4Gを形成する。ここでは、pn接合を形成するn型拡散層も裏面側の電極も省略し、太陽電池基板1のみを示している。まず、図6(a)に示すように、太陽電池基板1の受光面1Aに対して垂直な方向である、矢印T1方向に、ペースト10を塗布した多数本のワイヤー9を動かし、太陽電池基板1上に、当接させる。
この後、ワイヤー9を下方に押し付け太陽電池基板1に接触させる。ワイヤー外径すなわちワイヤーの直径をD2とする。電極ペースト10が太陽電池基板1と接触した幅がグリッド電極幅wに相当し、図6(b)ではD2<w<D1の関係がある。ワイヤー9を太陽電池基板1に対して押圧する力が弱いとw<D2<D1となる場合も有り得るが、グリッド電極幅wを安定化するにはD2<w<D1の条件になる。
ワイヤー9を太陽電池基板1に接触させて電極ペースト10を押圧した後、図6(c)に示すように、太陽電池基板1の周端部1Eでワイヤー9を切断する。切断に際しては、ワイヤー9を、太陽電池基板1の周端部1Eに、押圧部材としての楔200を当て、ワイヤー9の一部を太陽電池基板1表面から離間する方向に一括して折り曲げる。この折り曲げた瞬間に、折り曲げた状態でワイヤー9を太陽電池基板1に接触させる。そしてワイヤー9を離間させる瞬間でワイヤー9を切断する。そして図示しないが、受光面バス電極4Bをスクリーン印刷で形成した後、焼成し、グリッド長すなわち長さLgのグリッド電極4Gが形成される。グリッド電極4Gは、周面全体を導電性ペーストの焼結体で覆われる。
以上のようにして、図4に原理を示した、グリッド電極印刷装置で、電極ペースト10の付着されたワイヤー9を太陽電池基板1上に固着し、周端部1Eでワイヤー9を切断すると、図1に示したようにグリッド電極4Gは太陽電池基板1の周端部1Eまでグリッド電極4Gが形成される。
実施の形態1の方法で形成された太陽電池は、グリッド電極4Gの端縁が太陽電池基板1の周端部1Eまで形成されているため、集電性が向上し、光電変換効率の向上をはかることができる。
これに対し、スクリーン印刷法を用いた場合は、印刷マスクと太陽電池基板1を位置決めするため重ね合せ余裕が必要で、太陽電池基板1の外寸より小さくグリッド電極4Gを設計するのが通常であり、一般的な太陽電池では、セル端すなわち周端部1Eとグリッド電極4G先端の隙間は0.5mm以上2mm以下である。
グリッド電極4Gの形成方法の原理について説明したが、以下実施の形態1の太陽電池の製造方法について図7のフローチャートを参照しつつ説明する。工程断面図については図示しないが図3の太陽電池の断面図における参照符号を記載している。
第1に、ステップS100で太陽電池基板1を形成する。まず、シリコン基板を用意する。このシリコン基板は、単結晶又は多結晶からなり、p型であればボロンなどの、n型であればリンなどの半導体不純物を含み、比抵抗は0.1Ω・cm以上6.0Ω・cm以下の特性のものが用いられることが多い。以下、p型単結晶シリコン基板1Sを用いた太陽電池の製造方法を例にとって説明する。なお、p型単結晶シリコン基板準備ステップS101で、太陽電池形成用の基板としてp型単結晶シリコン基板1Sを準備する。その大きさは100mmから160mm角、厚みは0.1mm以上0.3mm以下の板状のものがよく用いられる。
p型単結晶シリコン基板1Sは、一定の厚みに切り出す際に受けた機械的ダメージあるいは汚染層を除去するために水酸化ナトリウムあるいは水酸化カリウムのような高濃度のアルカリ、若しくはフッ化水素酸と硝酸の混合液などで2μm以上20μm以下程度エッチングして、乾燥することで、テクスチャー形成ステップS102を実施し、テクスチャーと呼ばれる凹凸構造を形成する。テクスチャーは、太陽電池の受光面において光の多重反射を生じさせ、光が閉じ込められて効率よく半導体内に導かれていき、戻りにくくなるので反射率が低減し、変換効率向上に寄与する。
その後、熱拡散ステップS103で、例えばPOCl3などのn型不純物含有ガスを含む800℃から1000℃の高温ガス中にp型単結晶シリコン基板1Sを設置し、熱拡散を実施する。熱拡散ステップS103では、p型単結晶シリコン基板1Sの全面にリン等のn型不純物元素を拡散させる熱拡散法により、シート抵抗が30Ω/□以上150Ω/□以下程度のn型拡散層2を受光面1A側に形成する。p型単結晶シリコン基板1Sの両面及び端面にもn型拡散層2が形成されることがあるが、この場合には不要な裏面と端面のn型拡散層2をフッ硝酸溶液中に浸漬することによって除去する。その後、熱拡散で形成されたリンガラスを1%以上15%以下のフッ化水素酸水溶液に数分浸漬して除去し、純水で洗浄する。
更に、反射防止膜形成ステップS104で、上記p型単結晶シリコン基板1Sの受光面1A側に反射防止膜3を形成する。この反射防止膜3は、反射防止膜兼パッシベーション膜として機能する。反射防止膜3は、例えばSiH4とNH4とN2の混合ガスをグロー放電分解でプラズマ化して堆積させるプラズマCVD法などでSi34を形成する。反射防止膜3は、約60nmから100nm程度の厚みをもち、p型単結晶シリコン基板1Sとの屈折率差1.9から2.3程度になるように形成される。反射防止膜3は、p型単結晶シリコン基板1Sの表面で光が反射するのを防止して、光を有効に取り込むために設けられる。また、Si34は、n型拡散層2に対してパッシベーション効果を有し、パッシベーション膜としても機能し、反射防止の機能と併せて太陽電池の電気特性を向上させる効果がある。
次に、裏面電極印刷ステップS110で、まずp型単結晶シリコン基板1Sの裏面には例えばスクリーン印刷機で印刷版を使用して裏面バス電極5を形成する。例えば30wt%以上80wt%以下の銀粉末とガラスフリットと樹脂を含み有機溶剤で混合した導電性ペーストを用いて図2のように裏面バス電極5をスクリーン印刷し150℃以上220℃程度で乾燥させる。そして、その後に例えばアルミニウムとガラスフリットと樹脂などを含み有機溶剤で混合した導電性ペーストを用いて、裏面バス電極5以外の領域にスクリーン印刷し、アルミニウム電極6を形成する。そして再度150℃以上220℃程度で乾燥させる。なお、後述する焼成ステップS140でアルミニウム電極6からp型単結晶シリコン基板1Sにアルミニウムが拡散し、p型拡散層からなるBSF層7が形成される。裏面電極は裏面バス電極5とアルミニウム電極6とを合わせたものとする。
続いて、ステップS120で受光面1Aへのグリッド電極4Gのパターン形成を行う。まず、ステップS121で、ワイヤー9に電極ペースト10を塗布する。次いで、ステップS122で、太陽電池基板1上に電極ペースト10付きのワイヤー9を載置する。図6(a)に示したように、太陽電池基板1の受光面1Aに対して垂直な方向である、矢印T1方向に、電極ペースト10を塗布した多数本のワイヤー9を動かし、太陽電池基板1上に、当接させる。
この後、図6(b)に示したように、ワイヤー9を下方に押し付け太陽電池基板1に接触させたのち、図6(c)に示したように、ワイヤー9を電極ペースト10とともに切断する。
この後、受光面バス電極印刷ステップS130を実施し、スクリーン印刷で受光面バス電極4Bを形成する。
そして焼成ステップS140を実施し、図1および図2に示したように、裏面バス電極5およびグリッド電極4Gおよび受光面バス電極4Bとからなる受光面電極4を焼成する。そして、リード線によって太陽電池を直列接続して太陽電池ストリングを形成し、さらに太陽電池ストリングを接続部材で接続し太陽電池アレイを形成する。
そして最後に、ラミネート処理ステップS150で、受光面側に透光性のガラス基板、裏面側に樹脂製のバックシートを配し、それぞれ封止樹脂を介してリード線の接続された太陽電池アレイを挟み、加熱することで、太陽電池アレイが封止され、太陽電池モジュールが得られる。そして、枠体を形成し、太陽電池パネルとなる。
実施の形態1の方法によれば、グリッド電極4Gの本数に対応する本数分だけ細線からなるワイヤー9を用い、ワイヤー9の全面に電極ペースト10をコートして、ワイヤー9を太陽電池基板1表面に接触させて電極ペースト10によってワイヤー9をグリッド電極状に固着させる方法を用いており、グリッド電極4Gの微細化および高精度化をはかることができる。特にスクリーン印刷の場合に比べて、パターンのとぎれ、あるいは収縮もなく、高精度のパターンを得ることができる。従って実施の形態1の太陽電池によれば、グリッド電極4Gの細線化によるセル出力の向上が容易である。また、グリッド電極4Gの電極ペースト付きワイヤーのワイヤーごと太陽電池基板1表面に接合するのに使用するワイヤー9の長さは、スクリーン印刷メッシュで用いられるワイヤー長の1/20以下に出来て太陽電池セルの製造コストを低減できる。
また、実施の形態1の方法によれば、細いワイヤーをグリッド本数分だけ準備し、ハンドリング部分を入れてもワーク長すなわち太陽電池基板の1辺の長さの2から3倍程度の長さで十分である。細いワイヤーをメッシュ状に編む必要もない。156mm□ワークに100本のグリッド線を形成するには、ワイヤーの総延長距離は50mもあれば十分である。
実施の形態2.
以下に、本発明の実施の形態2の太陽電池および太陽電池の製造方法について、図面に基づいて詳細に説明する。図8は、実施の形態2の太陽電池の受光面側を示す平面図である。
実施の形態2の太陽電池の製造方法では、グリッド電極4Gの端縁が、太陽電池基板1の周端部1Eよりも一定間隔だけ内側に位置するようにしている。
実施の形態2では、グリッド電極4Gの端縁と太陽電池基板1の周端部1Eとの間で距離を設けてグリッド長Lgを決定している。製造に際しては、図9に示すように楔200でワイヤー9を折り曲げワイヤを切断する。この折り曲げ位置で、ワイヤー9が太陽電池基板1表面から離れることで、グリッド長Lgが、規定される。
他の構成については前記実施の形態1と同様であるため、ここでは説明を省略する。
以上のように、実施の形態2では、電極材料を塗布したワイヤー9を、太陽電池基板1に接触させる工程と、ワイヤー9を太陽電池基板1表面から離間させるとともにワイヤーを切断する工程とを含む。そして、接触させる工程に先立ち、ワイヤー9を、太陽電池基板1の端縁から一定距離だけ内側に相当する領域に、押圧部材としての楔200を当て、ワイヤー9の一部を太陽電池基板1表面から離間する方向に一括して折り曲げる。この折り曲げた瞬間に、折り曲げた状態でワイヤー9を太陽電池基板1に接触させることで、太陽電池基板の端縁から一定距離以上内側に相当する領域にワイヤー9を接触させる。そしてワイヤー9を離間させる瞬間でワイヤー9を切断する。
実施の形態2の方法で形成された太陽電池は、太陽電池基板1の周端部1Eとグリッド電極4Gの端縁とが離間しているため、裏面電極との距離を確実にとることができ、リークの発生が抑制され、信頼性の向上をはかることができる。
また、曲げて切断する工程は、太陽電池基板の端縁から一定距離だけ内側に相当する領域で、ワイヤーの配列方向に直交する方向に、先端が楔状の尖端部をもつ押圧部材を当て、配列されたワイヤーを一括して太陽電池基板表面から離間する方向に折り曲げることで、一括して端部の揃ったグリッド電極を形成することができる。
また、1本毎に押圧部材をあてるようにしてもよい。さらに、実施の形態2では先端が楔状の押圧部材を用いたが、板状体をあてるようにしてもよい。板状体の場合には、板状体の角をワイヤーに当てるようにすることで、端部の形状が揃ったグリッド電極を得ることが可能となる。
実施の形態3.
以下に、本発明の実施の形態3の太陽電池および太陽電池の製造方法について、図面に基づいて詳細に説明する。図10および図11は、実施の形態3の太陽電池のグリッド電極の形成方法を示す図である。図10(a)はV溝を有する金型断面図、図10(b)は側面図である。図11(a)は電極ペースト10の塗布されたワイヤーを示す断面図、図11(b)は側面図である。図10および図11において、(a)は(b)のB−B断面図である。
実施の形態3では、ワイヤー9への電極ペーストの供給方法に特徴を有するもので実施の形態1の方法とは、ワイヤー9への電極ペーストの供給方法が異なるのみである。図10(a)および(b)に示すように、金型30のV溝31に電極ペースト10を図示しないスクレイパーで均一な厚みで埋め込み塗布する。図11に示すように図8のグリッド長Lgに対応するようにV溝31を有する金型30の長さLを設計しておく。
次に、図10(a)および(b)に示すようにワイヤー9にV溝31の電極ペースト10を接触転写する。ここで、接触させるだけであれば、図11(a)および(b)に示すようにワイヤー9に対して一部分だけ電極ペースト10が付着した形状になる。
あとは実施の形態1と同様に、太陽電池基板1に接触させ、太陽電池基板1に電極ペースト10をワイヤー9とともに接合するとともに、ワイヤー9を切断し太陽電池基板1上のワイヤー9を電極ペースト10で固定し、焼成のための熱処理を行う。
実施の形態3の方法では、電極ペースト10のワイヤー9への付着面積が実施の形態1および2の場合に比べて半分以下である点で、グリッド電極全体の断面における銅線の専有面積が高く、比抵抗を高めることができる。V溝31の傾斜角によって、形成されるグリッド電極4Gの断面形状を調整することができる。従ってアスペクト比すなわち幅に対する高さ比の高い形状を形成し易い。ただし、上部で銅線が露呈するため、焼成工程で表面に酸化膜が形成され易いため、焼成雰囲気を不活性ガス雰囲気とするなど、表面酸化を防ぐ方策をとるのが望ましい。あるいは、銅線単層ではなく、延伸後にめっき層を形成したワイヤー9を用いることで、表面酸化を抑制することも可能である。
なお、図10(a)および図10(b)に示した、V溝31を有する方式であれば、グリッド電極4Gの電極長さに対応した電極ペースト10の塗布領域を形成することができるため、実施の形態2の太陽電池を形成する際、図9の楔200を用いることなく、レーザなどを用いて電極グリッド長Lgで太陽電池基板1の直上でワイヤー9を切断し、切断直後に接合できる。つまり、V溝の長さおよび断面形状で電極ペーストの塗布領域を規定することができるため、製造作業性が良好である。
また、図10(a)および図10(b)で、V溝31中で電極ペースト10にワイヤー9を接触転写する方法を示したが、ワイヤー9をV溝31中で回転させて転写すると、実施の形態1で図5に示したのと同様に、ワイヤー9に一様に電極ペースト10が塗布された状態を実現できる。さらにまた、V溝31の断面形状については、図10(a)に限定されることなく、U字状の溝、あるいは矩形の溝など適宜変更可能である。
さらにまた、ワイヤー9を加熱することでワイヤー9の周面に、電極ペースト10がワイヤー9に付着し易くするなどの方法も、実施の形態3のみならず実施の形態1および2のグリッド電極の形成に有用である。この時、例えばワイヤーに通電することで、発熱させ、ワイヤー周面の温度を50℃程度に上昇させることで、太陽電池基板1上への電極ペースト付きワイヤー9の付着性を高めることが容易となる。
以上のように、ワイヤー表面に電極ペーストを塗布する際、ワイヤー9を加熱することでワイヤーの表面に、電極ペーストをなじみ易くし、電極材料を塗布したワイヤを、太陽電池基板1表面に押し付けることで、接合が容易となる。つまりワイヤー9を加熱することで、電極ペースト10の付着性を高め、ワイヤー9と太陽電池基板1との接合性を高め、作業性の良好なグリッド電極の形成が可能となる。
また、ワイヤーの加熱はワイヤーへの通電によって容易に実現することができる。つまり、電極ペーストの塗布されたワイヤーを太陽電池基板に接触させたのち、ワイヤーに通電し、ワイヤーを加熱し、この後ワイヤーを太陽電池基板表面から離間させることで、容易に太陽電池基板への電極ペーストの接合が可能となる。
実施の形態4.
以下に、本発明の実施の形態4の太陽電池の製造方法および太陽電池の製造装置について、図面に基づいて詳細に説明する。図12は、実施の形態4の太陽電池の製造方法で用いられる製造装置を示す説明図、図13は、実施の形態4の太陽電池の製造方法で用いられる製造装置のワイヤーへの電極ペースト供給部を示す説明図である。
実施の形態1の方法におけるワイヤー9への電極ペーストの供給方法は、図12および図13に示すように、注射器状のペースト供給部108aの一端に設けられた注射針状の中空パイプ118の内径D1が塗布外形に等しい、ペースト供給部108aを用いている。注射器状のペースト供給部108aにペースト10Sを充填し、注射針状の中空パイプ118の穴に、より小さな外径D2をもつ細いワイヤー9を通して、図5に示した断面形状となる電極ペースト10の塗布されたワイヤー9を実現する。ペースト供給部108aと、下流側にペースト除去部108bとでペースト部108を構成しており、ペースト10Sをワイヤー9に塗布する。そして太陽電池基板1への接触と同時に、太陽電池基板1の両端でワイヤー9を切断する。切断には、矢印方向に回動可能なカッター111a,111bを用いる。切断後、ワイヤー9は、ワイヤボビン102及びワイヤ巻取りボビン104に巻き取られる。
図13に示すペースト容器つまりペースト供給部108aにペースト10Sを充填し、ペースト供給部108aの先端に内径D1の中空パイプ118を取り付け、外径D2のワイヤー9を通過させて電極ペースト10を一様に塗布する。
例えば、スクリーン印刷法の印刷マスクでグリッド電極幅を短縮するため、メッシュ数400、ワイヤー線径23μmφのマスクを用いた場合、デュポン(Dupont)社製ソーラメットPV18A(登録商標)と指称される電極ペースト材料を用いて印刷すると、グリッド電極幅40μm幅が限界で、グリッド電極厚15μm以下である。実施の形態1から3で用いた銅線はD2=外径8μmφと注射針内径D1=20μmφを用いると、グリッド電極幅w=20μm、グリッド電極厚t=20μmとなり、スクリーン印刷法のグリッド電極より細い電極が容易に出来ることが判る。スクリーン印刷法の銀電極は抵抗率が純銀より3/2倍高い。実施の形態1から3の銅線グリッド電極のグリッド断面積が、スクリーン印刷法のグリッド電極の断面積の2/3となるので、実施の形態1から3の銅線を用いたグリッド電極とスクリーン印刷法で形成した銀電極のグリッド電極抵抗は同じレベルとなる。要するに、実施の形態1から3の銅線グリッド電極とスクリーン印刷法の銀電極のセル出力特性において、グリッド電極抵抗は同じで、グリッド電極幅の短い、実施の形態1から3の銅線グリッド電極の方が、セル出力向上の観点で有利である。
更に、実施の形態4のワイヤー転写法では、ワイヤー材質は塑性変形しないSUS製を用いたが、ワイヤー材質が塑性変形する導電性の樹脂製にすればワイヤー加工限界の0.01mmφの線材を寸法監視しながら延伸して塑性変形させると半分以下の線径まで細くすることが出来る。そしてグリッド電極4Gについても細線化が実現され、細いだけでなく厚みも十分確保できる。
図12は、実施の形態4に係る製造装置におけるグリッド電極形成装置の主要部の構成を示す斜視図である。実施の形態4のグリッド電極形成装置は、4本のメインガイドローラ101aから101dと、これらメインガイドローラ101aから101d間に一定のピッチで離間しながら複数回巻回されて一対のメインガイドローラ101c,101d間に並列ワイヤ部PSを形成し、これらメインガイドローラ101aから101dの回転に伴って走行する一本のワイヤー9と、複数の並列ワイヤ部PSにそれぞれ給電する給電子ユニット106aから106dと、並列ワイヤ部PSに接触して、制振する制振ガイドローラ107a,107bと、ともに電極ペースト10を塗布するペースト供給部108aと、転写後のワイヤー9から電極ペースト10を除去するペースト除去部108bと、ワイヤボビン102及びワイヤ巻取りボビン104と、並列ワイヤ部PSに対して太陽電池基板1を、並列ワイヤ部PSを構成するワイヤー9の並列方向、及び、各並列ワイヤ部PSを構成するワイヤー9の並列方向と直角方向に相対的に移動する手段とを備えている。一体成形された複数の給電子が、互いに電気的に接続された2対の給電子ユニット106aから106b,106cから106dを構成しており、各給電子ユニットは、両端に軸端支持部を有する図示しない給電子ホルダを備え、位置制御が可能である。また、加工電源110が複数の給電子ユニット106aから106dとワイヤー9との間に電流を流し、ワイヤー9の温度を一定温度に上昇させ、転写を容易にする。これら複数の給電子ユニット106aから106dは、給電対象とする各並列ワイヤ部PSのワイヤ並列間隔に対応して整列している。そして加工電源110は、並列ワイヤ部PSに対して3本おきに給電するように配置される各給電子ユニット106aから106dに対して給電する。また、同一の給電子ユニット106aから106dにおいて整列する給電子は互いに電気的に接続されている。
メインガイドローラ101aから101dはワイヤ走行系を構成する主要なガイドローラで、このグリッド電極形成装置では、同じ直径の4本のメインガイドローラが互いに平行に間隔をおいて配置されている。ワイヤボビン102から繰り出された一本のワイヤー9は、順次、4本のメインガイドローラ101aから101d間にまたがって、一定のピッチで離間しながら繰り返し巻き掛けられている。ワイヤー9はメインガイドローラ101aから101dの回転に伴って走行し、最後にワイヤ巻取りボビン104に至る。メインガイドローラ101c,101dは被加工物である太陽電池基板1を挟む位置に設置され、ワイヤー9がメインガイドローラ101aから101b間に一定の張力で展張されることにより、メインガイドローラ101dの軸方向に離間した複数の並列ワイヤ部PSを構成する。なお、本明細書においては、並列ワイヤ部PSはメインガイドローラ101cから送り出されてメインガイドローラ101dに巻き掛かるまでの部分を指すことにする。上記並列ワイヤ部PS内で、太陽電池基板1に対向する部分を含む直線的に展張された領域が塗布領域RTとなる。図12は、接合時、ワイヤー9が太陽電池基板1上に接触している状態を示している。
並列ワイヤ部PSに接触して配置される給電子ユニット106aから106dは、ワイヤー9に対して電圧パルスを供給する電極であり、図12では太陽電池基板1の両側に各2列配置されている。また、並列ワイヤ部PS上の、給電子ユニット106aから106dの塗布領域RT寄りの位置に制振ガイドローラ107a,107bが配置され、制振ガイドローラ107a,107bの表面に形成されているワイヤ案内用溝にワイヤー9が常に掛けられた状態が維持されてワイヤー9をガイドする。すなわち、制振ガイドローラ107a,107bは、一対のメインガイドローラ間に設けられ、並列ワイヤ部PSにそれぞれ従動接触する、メインガイドローラに比較して小径のガイドローラである。そして、これら制振ガイドローラ107a,107bは、塗布領域RTのワイヤー9が直線状に展張されるようにワイヤー9を支持し、制振ガイドローラ107a,107b間の並列ワイヤ部PSはワイヤ振動が抑制されて走行位置がほぼ静止状態となっている。さらに、塗布領域RTを挟む位置にペースト供給部108aと、ペースト除去部108bとが配置されており、向かい合わせに配置されたペースト供給部108aの中空パイプ118から、電極ペースト10の塗布されたワイヤー9が繰り出され、太陽電池基板1上に電極ペースト10の塗布されたワイヤー9がくると、ステージ109が上昇し、太陽電池基板1表面に電極ペースト10の塗布されたワイヤー9が接触する。ステージ109は被加工物である太陽電池基板1を載せて上昇、下降を行う台である。
ワイヤー9は図12では、4本のメインガイドローラ101aから101dのそれぞれについて、ローラ外周の一部分(約1/4周)だけ巻き掛かっており、4本のメインガイドローラ101aから101d全体に対して周回している。メインガイドローラ101aから101dは、ワイヤボビン102からワイヤ巻取りボビン104に至る経路を構成し、被加工物である太陽電池基板1が上昇しているとき以外は、並列ワイヤ部PSと太陽電池基板1とが接触しないように、空間が確保されている。メインガイドローラ101c,101dは駆動式ガイドローラであり、その上方に配置されたメインガイドローラ101a,101bは、従動式ガイドローラである場合が多い。駆動式ガイドローラは、回転軸がモータの回転軸と直接ベルトなどで接続されることで回転力が伝達されて駆動する。これに対して、従動式ガイドローラには、モータの回転による駆動力を発生せず、巻き掛けられたワイヤー9の走行に伴って、ワイヤー9の摩擦によって回転するものである。制振ガイドローラ107a,107bは、並列ワイヤ部PSに接触して配置された従動式のガイドローラであり、ワイヤー9の走行に伴い従動することによって回転する。
上記グリッド電極形成装置を用いた場合、ワイヤー9を切断した後、ワイヤー9を再度ワイヤー巻き取りボビン104に残りのワイヤー9を巻き取り、再度、ワイヤーボビン102から新しいワイヤー9を巻きだす必要がある。従って無駄になるワイヤー9が生じるため、多数個の太陽電池基板1をワイヤー9の長さ方向に配列し、多数個の太陽電池基板1に対してグリッド電極4Gとなる電極ペースト付きワイヤーを位置決めし、一括して多数個の太陽電池基板1上に形成する。そして、転写直後つまり形成直後、焼成前あるいは焼成後に、転写する、あるいは同時に切断して複数個の太陽電池に分断するようにするのが望ましい。つまり、多数個を一括形成し、後で分割する構成としてもよい。
実施の形態1から4の方法によれば、スクリーン印刷法に比べて、微細でかつ均一な幅および高さを持つグリッド電極を、寸法精度よく、低コストで形成することができる。スクリーン印刷の場合に比べ、印刷直後と乾燥後の寸法変動もきわめて小さく、寸法精度の高い電極パターンの形成が可能となる。
スクリーン印刷マスクのカタログによると、太陽電池セル製造に用いられるグリッド電極の細線化に良く用いられるメッシュ数♯400、ワイヤー線径23μmφの印刷マスクを使用する場合、ワイヤーピッチは64μmとなるので、ワイヤーとワイヤー間の隙間幅は(64−23)=41μmになり、透過面積率あるいは空間率と呼ばれるワイヤー間の隙間面積割合は(41×41)/(64×64)=41%となり、グリッド電極が途切れたり、グリッド電極の尾根部の厚みの凹凸が顕在化して、グリッド電極抵抗が高くなり易い。この場合のグリッド電極の印刷マスク開口幅は35μm以上50μm以下で設計されることが多く、メッシュのワイヤー交点部では開口幅と寸法が同程度となり、メッシュワイヤー交点部のグリッド電極厚が薄くなり、細いグリッド電極が断線し易い傾向がある。電極ペーストは設計幅より横方向に滲んで実幅は45μm以上80μm以下となり、10μm以上30μm以下と太くなる傾向がある。設計幅より実幅が太くなるのはスクリーン印刷法による印圧を掛けて印刷マスクからペーストを掻き出しながら押し出すので、ペーストが横に広がる特徴があるためである。設計幅より印刷パターンが太くなる程度を抑制するのは、スクリーン印刷法の課題であった。
また、印刷パターンを形成するマスク乳剤の厚みを無視した場合、一般的に印刷直後のパターン厚を見積もる指標として透過容積があり、単位は[cm3/m2]=[μm]であり印刷直後の厚みに相当する。メッシュ数♯400、ワイヤー線径23μmφの場合は、透過容積は22μmであり、グリッド電極厚に相当する初期ペースト厚みであり、乾燥焼結で容積収縮が起こる。例えば電極ペーストが、銀Agを主成分とするAgペーストであれば、乾燥焼結で、ペースト厚みの約7割に収縮するため、グリッド電極厚は16μm程度になる。
また、上記形状のグリッド電極のペースト材料の一例として、デュポン(Dupont)社製ソーラメットPV18A(登録商標)と指称される電極ペースト材料を用いた場合、Agペースト電極の場合の導電率は3×10E-8Ω・m以上5×10E-8Ω・m以下であり、1cm長さ当たりの抵抗は0.3Ω以上0.5Ω以下となる。純銀の導電率1.59×10E-8Ω・mであるので、スクリーン印刷法のグリッド電極では導電率で既に2倍から3倍の抵抗率を示す。セル出力を向上させるためにグリッド電極幅を短縮すると、スクリーン印刷法ではグリッド厚も小さくなり、グリッド電極の抵抗は急激に高くなって、逆にセル出力低下を招く。実施の形態1から4の太陽電池で用いる導電性のワイヤーは、電気抵抗率が3×10E-7Ωcm以下の金属線を用いるのが望ましい。3×10E-7Ωcmを超えると、出力低下を招く場合がある。
一方、実施の形態1から4の太陽電池の製造方法によれば、グリッド電極厚に相当する初期ペースト厚みが、乾燥焼結で容積収縮を生じたりすることも少なく、低抵抗で寸法精度の高いグリッド電極を得ることができる。
また、印刷マスクのように、長いワイヤーを必要とすることなく、低コストでのグリッド電極形成が可能となり、太陽電池の製造費の高騰を招くこともない。
なお、実施の形態1から4では、銅線をグリッド電極の心線となるワイヤー9として用いたが、抵抗が小さい銀等の金属材料あるいは、導電性樹脂などの導電性材料であっても同様な効果が得られる。ワイヤー9を用いる場合、溶融状態で延伸することで、均一で高精度の細線を形成することができる。なお、金属線に限定されることなく、導電性樹脂などを用いても良い。銅線のように延性材料であれば延伸することで更に細い線が得られるので、グリッド細線化は市販の銅線外径に関係なく幾らでも細く出来る。樹脂の場合も延伸加工によって容易に、高精度の細線を形成することが可能である。
また、実施の形態1から4では、太陽電池基板1は、セル製造過程で受光面1A側および裏面1B側にそれぞれn型拡散層2およびp型拡散層からなるBSF層7を形成したが、n層とp層が入れ替わっても良いことはいうまでもない。
また、実施の形態1から4では、太陽電池基板1は、反射防止膜3がSiN等の絶縁膜である、拡散型太陽電池の場合は、前述したように電極ペーストとして、PV18A(登録商標)等の高温焼結ペーストを用い、電極の焼結温度ピークが700℃以上900℃以下程度の焼結が施される。一方、表面にITO膜(Indium Tin Oxide)等の透光性電極を形成した上に集電電極を形成する、ヘテロ接合型太陽電池の場合、異なる低温焼結銀ペーストを用いて焼結温度150℃から250℃で焼結が施される。この場合は、低温焼結でワイヤー9との接合性が高い材料を用いるのが望ましい。
また、実施の形態1から4では受光面側に形成されるグリッド電極について説明したが、上記グリッド電極の形成方法および構造は、裏面側にグリッド電極を形成する場合、特に両面にグリッド電極を形成した照射型の太陽電池にも有効である。
また、実施の形態1から4では、グリッド電極4Gは、太陽電池基板1上に一定間隔で相対向する辺に平行に分布されているが、辺に対して平行である必要はなく、辺に対して角度をなす構成であってもよい。
以上の実施の形態に示した構成は、本発明の内容の一例を示すものであり、別の公知の技術と組み合わせることも可能であるし、本発明の要旨を逸脱しない範囲で、構成の一部を省略、変更することも可能である。
1 太陽電池基板、1S p型単結晶シリコン基板、2 n型拡散層、3 反射防止膜、4G グリッド電極、4B 受光面バス電極、5 裏面バス電極、6 アルミニウム電極、7 BSF層、9 ワイヤー、10 電極ペースト、10S ペースト、101a,101b,101c,101d メインガイドローラ、102 ワイヤボビン、PS 並列ワイヤ部、104 ワイヤ巻取りボビン、106a,106b,106c,106d 給電子ユニット、107a,107b 制振ガイドローラ、108 ペースト部、108a ペースト供給部、108b ペースト除去部、109 ステージ、110 加工電源、111a,111b カッター、118 中空パイプ、200 楔、30 金型、31 V溝、w グリッド電極幅、t0 グリッド電極厚、t1 グリッド電極厚、RT 塗布領域、D1 内径、D2 外径、Lg グリッド長、L 長さ。

Claims (10)

  1. 太陽電池基板と、
    前記太陽電池基板の表面に形成された集電電極とを備え、
    前記集電電極の内、受光面側に形成されるグリッド電極が、
    導電性のワイヤーと、前記ワイヤーと前記受光面との間に介在する導電性ペーストの焼結体とで構成されたことを特徴とする太陽電池。
  2. 前記グリッド電極は、
    周面全体を前記導電性ペーストの焼結体で覆われたことを特徴とする請求項1に記載の太陽電池。
  3. 前記グリッド電極が、
    前記太陽電池基板上に一定間隔で平行に分布されていることを特徴とする請求項1または2に記載の太陽電池。
  4. 前記導電性のワイヤーは、銅、銀、金、アルミ、タングステン、ニッケル、白金、リチウム、鉄、クロム、鉛、もしくは、該金属の何れかの元素の混合金属であることを特徴とする請求項1から3のいずれか1項に記載の太陽電池。
  5. 前記導電性のワイヤーは、電気抵抗率が3×10E-7Ωcm以下の金属線であることを特徴とする請求項4に記載の太陽電池。
  6. 前記グリッド電極が前記太陽電池基板の1端から他端まで伸長することを特徴とする請求項1から5のいずれか1項に記載の太陽電池。
  7. 太陽電池基板上に、集電電極を形成する工程を含む太陽電池の製造方法であって、
    前記集電電極の内、グリッド電極を形成する工程が、
    一定の線径をもつ導電性のワイヤーに導電性ペーストを塗布する工程と、
    前記ワイヤーに塗布された前記導電性ペーストを前記太陽電池基板に接触させる工程と、
    前記ワイヤーを前記太陽電池基板に接触させた状態で前記導電性ペーストを焼成する工程とを含むことを特徴とする太陽電池の製造方法。
  8. 前記接触させる工程は、前記導電性ペーストを塗布した前記ワイヤーを、前記太陽電池基板表面に対して垂直方向に降下させる工程であり、
    前記焼成工程は、
    前記ワイヤーに塗布された前記導電性ぺーストを、前記太陽電池基板表面に当接させた状態で、前記ワイヤーを前記太陽電池基板の周端部で切断する工程後、実施されることを特徴とする請求項7に記載の太陽電池の製造方法。
  9. 前記塗布する工程は、電極材料を含有した導電性ペーストの充填された中空パイプ内を、前記ワイヤーが通過することで、前記ワイヤーの表面全体に前記導電性ペーストを塗布する工程であることを特徴とする請求項7または8に記載の太陽電池の製造方法。
  10. 前記塗布する工程は、電極材料を含有した導電性ペーストの充填された溝を有する導電性ペースト供給部を用いて、前記溝内の前記導電性ペーストに前記ワイヤーを接触させ、前記ワイヤーに前記導電性ペーストを転写する工程を含むことを特徴とする請求項7または8に記載の太陽電池の製造方法。
JP2015139153A 2015-07-10 2015-07-10 太陽電池および太陽電池の製造方法 Pending JP2017022275A (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2015139153A JP2017022275A (ja) 2015-07-10 2015-07-10 太陽電池および太陽電池の製造方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2015139153A JP2017022275A (ja) 2015-07-10 2015-07-10 太陽電池および太陽電池の製造方法

Publications (1)

Publication Number Publication Date
JP2017022275A true JP2017022275A (ja) 2017-01-26

Family

ID=57888611

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2015139153A Pending JP2017022275A (ja) 2015-07-10 2015-07-10 太陽電池および太陽電池の製造方法

Country Status (1)

Country Link
JP (1) JP2017022275A (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2018157136A (ja) * 2017-03-21 2018-10-04 三菱マテリアル株式会社 熱電変換モジュール
WO2019092885A1 (ja) * 2017-11-13 2019-05-16 三菱電機株式会社 太陽電池モジュール

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0918035A (ja) * 1995-06-28 1997-01-17 Canon Inc 集電電極および光起電力素子
JPH0918040A (ja) * 1995-06-30 1997-01-17 Canon Inc 集電電極および光起電力素子
JP2010283275A (ja) * 2009-06-08 2010-12-16 Ulvac Japan Ltd 結晶系太陽電池セル及びその製造方法
JP2011129641A (ja) * 2009-12-16 2011-06-30 Dainippon Screen Mfg Co Ltd 配線形成方法および配線形成装置
WO2013143473A1 (en) * 2012-03-28 2013-10-03 Shenzhen Byd Auto R & D Company Limited Solar battery assembly
WO2014102904A1 (ja) * 2012-12-25 2014-07-03 三菱電機株式会社 印刷方法、印刷装置及びこれを用いた太陽電池の製造方法

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0918035A (ja) * 1995-06-28 1997-01-17 Canon Inc 集電電極および光起電力素子
JPH0918040A (ja) * 1995-06-30 1997-01-17 Canon Inc 集電電極および光起電力素子
JP2010283275A (ja) * 2009-06-08 2010-12-16 Ulvac Japan Ltd 結晶系太陽電池セル及びその製造方法
JP2011129641A (ja) * 2009-12-16 2011-06-30 Dainippon Screen Mfg Co Ltd 配線形成方法および配線形成装置
WO2013143473A1 (en) * 2012-03-28 2013-10-03 Shenzhen Byd Auto R & D Company Limited Solar battery assembly
WO2014102904A1 (ja) * 2012-12-25 2014-07-03 三菱電機株式会社 印刷方法、印刷装置及びこれを用いた太陽電池の製造方法

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2018157136A (ja) * 2017-03-21 2018-10-04 三菱マテリアル株式会社 熱電変換モジュール
WO2019092885A1 (ja) * 2017-11-13 2019-05-16 三菱電機株式会社 太陽電池モジュール
TWI680586B (zh) * 2017-11-13 2019-12-21 日商三菱電機股份有限公司 太陽能電池模組

Similar Documents

Publication Publication Date Title
US9508884B2 (en) Solar cell metallisation and interconnection method
TWI473285B (zh) Manufacture of solar cells and solar cells
JP5726303B2 (ja) 太陽電池およびその製造方法
JP5174817B2 (ja) 太陽電池モジュール
CN106653881B (zh) 一种背接触太阳能电池串及其制备方法和组件、系统
US20200091362A1 (en) Solar cell module and method for producing same
JP2010147107A (ja) 光起電力装置とその製造方法
JP5335140B2 (ja) 印刷版および該印刷版を用いた太陽電池素子の製造方法
JP2001068699A (ja) 太陽電池
JP2017022274A (ja) 太陽電池の製造方法および太陽電池
JP6559244B2 (ja) 太陽電池の製造方法および太陽電池
JP5516063B2 (ja) コンビネーションマスク及び太陽電池の製造方法
JP2017022275A (ja) 太陽電池および太陽電池の製造方法
TW201813113A (zh) 太陽電池及其製造方法
CN105742410A (zh) 背结n型晶体硅太阳能电池及其制备方法和组件、系统
JP5756453B2 (ja) 太陽電池の製造方法
CN206451721U (zh) 一种背接触太阳能电池串和组件、系统
EP2445016A1 (en) Back electrode type solar cell, solar cell provided with wiring sheet, and solar cell module
TWI667806B (zh) Solar cell manufacturing method and solar cell unit
JP5665975B2 (ja) 太陽電池およびその製造方法、太陽電池モジュール
JP2010263015A (ja) 太陽電池の電極形成方法および太陽電池の製造方法
JP2010165944A (ja) 光起電力装置とその製造方法および光起電力装置の製造装置
JP2005136148A (ja) 太陽電池素子および太陽電池素子の製造方法
WO2016052041A1 (ja) 配線シート付き裏面電極型太陽電池セル
JP5851653B2 (ja) スクリーン印刷機

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20170414

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20180221

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20180306

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20180904