JP2017017957A - シンクロナスリラクタンスモータ - Google Patents

シンクロナスリラクタンスモータ Download PDF

Info

Publication number
JP2017017957A
JP2017017957A JP2015135435A JP2015135435A JP2017017957A JP 2017017957 A JP2017017957 A JP 2017017957A JP 2015135435 A JP2015135435 A JP 2015135435A JP 2015135435 A JP2015135435 A JP 2015135435A JP 2017017957 A JP2017017957 A JP 2017017957A
Authority
JP
Japan
Prior art keywords
rotor
width
rib
connecting portion
flux barrier
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2015135435A
Other languages
English (en)
Inventor
明宇 トウ
Mingyu Tong
明宇 トウ
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JTEKT Corp
Original Assignee
JTEKT Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by JTEKT Corp filed Critical JTEKT Corp
Priority to JP2015135435A priority Critical patent/JP2017017957A/ja
Publication of JP2017017957A publication Critical patent/JP2017017957A/ja
Pending legal-status Critical Current

Links

Images

Landscapes

  • Synchronous Machinery (AREA)

Abstract

【課題】出力トルクを大きくすることができるシンクロナスリラクタンスモータを提供する。
【解決手段】シンクロナスリラクタンスモータ1は、ステータ10とロータ20とを含む。ロータ20には、外周側から中心に向かって複数層に配置され、前記中心に向かって凸となる円弧状の複数のフラックスバリア23からなるフラックスバリア群が、周方向に間隔をおいて極数分だけ形成されている。ロータ20のうち、互いに隣接するフラックスバリア群に挟まれた領域におけるロータ20の外周寄り部分を連接部25とし、ロータ20のうち、フラックスバリア群内の互いに隣接する2つのフラックスバリア23に挟まれた領域をリブ24とすると、連接部25の幅がリブ24の幅よりも小さい。
【選択図】図2

Description

この発明は、例えば電動パワーステアリング装置に用いられるシンクロナスリラクタンスモータに関する。
電磁エネルギーの位置に対する変化によって発生するリラクタンストルクのみを利用して、ロータを回転させるリラクタンスモータが知られている。リラクタンスモータには、ステータおよびロータが磁気的な突極性を有するスイッチトリラクタンスモータ(SRM:Switched Reluctance Motor)と、ステータがブラシレスモータと同様の構造のシンクロナスリラクタンスモータ(SynRM:Synchronous Reluctance Motor)とがある。
シンクロナスリラクタンスモータは、ステータおよびロータのうち、ロータのみに磁気的な突極性を有している。シンクロナスリラクタンスモータでは、ロータの磁気的な突極性により、磁束の流れやすい突極方向(以下、「d軸方向」という)と磁束が流れにくい非突極方向(以下、「q軸方向」という)とがある。このため、d軸方向のインダクタンス(以下、「d軸インダクタンス」という)とq軸方向のインダクタンス(以下、「q軸インダクタンス」という)の差によりリラクタンストルクが発生し、このリラクタンストルクによってロータが回転する。
特開2011−223713号公報
シンクロナスリラクタンスモータは、永久磁石を使用せずにリラクタンストルクのみを利用してロータを回転させているため、出力トルクが小さいという問題がある。
この発明の目的は、出力トルクを大きくすることができるシンクロナスリラクタンスモータを提供することである。
請求項1に記載の発明は、ステータ(10)とロータ(20)とを含み、前記ロータには、外周から中心に向かって複数層に配置され、前記中心に向かって凸となる円弧状の複数のフラックスバリア(23)からなるフラックスバリア群が、周方向に間隔をおいて極数分だけ形成されている、シンクロナスリラクタンスモータであって、前記ロータのうち、互いに隣接するフラックスバリア群に挟まれた領域における前記ロータの外周寄り部分を連接部(25)とし、前記ロータのうち、前記フラックスバリア群内の互いに隣接する2つのフラックスバリアに挟まれた領域をリブ(24)とすると、前記連接部の幅が前記リブの幅よりも小さい、シンクロナスリラクタンスモータである。なお、括弧内の英数字は、後述の実施形態における対応構成要素等を表すが、むろん、この発明の範囲は当該実施形態に限定されない。以下、この項において同じ。
この構成では、連接部の幅がリブの幅よりも小さいので、連接部の幅がリブの幅以上である場合に比べて、連接部の磁気抵抗を大きくすることができる。これにより、連接部に漏れる磁束が抑制されるから、リブを通過する磁束量が増加する。この結果、d軸インダクタンスが大きくなるから、出力トルクを大きくすることができる。
請求項2に記載の発明は、前記連接部に対する前記リブの幅の比が1よりも大きくかつ3よりも小さい、請求項1に記載のシンクロナスリラクタンスモータである。
請求項3に記載の発明は、前記連接部に対する前記リブの幅の比が1.5以上でかつ2.5以下である、請求項1に記載のシンクロナスリラクタンスモータである。
請求項4に記載の発明は、前記フラックスバリア群内のフラックスバリアの層数が7である、請求項1〜3のいずれか一項に記載のシンクロナスリラクタンスモータである。
図1は、本発明の一実施形態に係るシンクロナスリラクタンスモータの構成を示す断面図である。 図1のシンクロナスリラクタンスモータのロータを示す拡大平面図である。 図3は、図2のIII-III線に沿う断面図である。 図4は、図2のA部の拡大図である。 図5は、フラックスバリアの円弧中心の設定方法を説明するための部分拡大図である。 図6Aは、円弧中心Pの位置(αの値)に対する出力トルクのシミュレーション結果を示すグラフである。 図6Bは、円弧中心Pの位置(αの値)に対するトルクリップルのシミュレーション結果を示すグラフである。 図7Aは、連接部の幅aに対するリブの幅bの比b/aに対する出力トルクのシミュレーション結果を示すグラフである。 図7Bは、連接部の幅aに対するリブの幅bの比b/aに対する出力トルクのシミュレーション結果を示すグラフである。
以下、この発明の実施形態を、添付図面を参照して詳細に説明する。
図1は、本発明の一実施形態に係るシンクロナスリラクタンスモータの構成を示す断面図である。図2は、図1のシンクロナスリラクタンスモータのロータを示す拡大平面図である。図3は、図2のIII-III線に沿う断面図である。図4は、図2のA部の拡大図である。
図1を参照して、シンクロナスリラクタンスモータ1(以下、単に「モータ1」という。)は、回転磁界を発生するステータ(固定子)10と、ステータ10の内側に設けられ、前記回転磁界によって回転されるロータ(回転子)20とを含む。
ステータ10は、円環状のステータコア11とステータコイル12とを含む。ステータコア11は、円環状の鋼板が複数枚積層されることによって構成されている。ステータコア11の内周部にはステータコイル12が挿入される複数のスロット11aが設けられている。ステータコア11には、3個の独立したステータコイル12が巻かれている。この実施形態では、スロット11aの数は、24である。
図1〜図3を参照して、ロータ20の極数は、この実施形態では4極(2極対)である。ロータ20は、ロータコア21と、ロータコア21の中心部を貫通しかつロータコア21に固定されたロータ軸(回転軸)22とを含む。ロータコア21は、中心部に孔を有する円形の電磁鋼板が複数枚積層されることによって構成されている。ロータコア21には、外周側からロータ軸22側に向かって複数層に配置され、ロータ軸22に向かって凸となる円弧状の複数のフラックスバリア(この例ではスリット(空気層))23からなるフラックスバリア群が、周方向に間隔をおいて極数分だけ形成されている。この例では、ロータコア21には、フラックスバリア群が、周方向に間隔をおいて4組形成されている。そして、フラックスバリア23の層数は7である。つまり、1つのフラックスバリア群は、長さの異なる7個のフラックスバリア23から構成されている。フラックスバリアは、スリットではなく、樹脂などの非磁性物質で形成してもよい。
図2および図4を参照して、ロータ軸22に沿う方向から見た平面視において、ロータコア21のうち、同じフラックスバリア群内において互いに隣接する2つのフラックスバリア23に挟まれた領域をリブ24ということする。ロータコア21のうち、互いに隣接するフラックスバリア群によって挟まれた領域におけるロータコア21の外周寄り部分を連接部25ということする。また、ロータコア21の外周縁とフラックスバリア23の端部との間部分を含む、ロータコア21の外周部の環状領域をブリッジ26ということにする。
フラックスバリア群内のフラックスバリア23の周方向中央を通り、ロータコア21の径方向に延びる軸をq軸とし、隣接するフラックスバリア群の間を通り、ロータコア21の径方向に延びる軸をd軸とする。フラックスバリア23は磁束の流れを妨げるものであるため、ステータコア11からの磁束のうち、隣接する2つのq軸のうちの一方のq軸から他方のq軸に向かう磁束は通りにくくなる。これに対して、フラックスバリア23間のリブ24によって、隣接する2つのd軸のうちの一方のd軸から他方のd軸に向かう磁束は通りやすくなる。
ステータ10によって回転磁界がロータ20に与えられると、モータ1からリラクタンストルクTが発生する。リラクタンストルクTは、次式(1)で表される。
T=Pn・(Ld−Lq)・Id・Iq …(1)
前記式(1)において、pnは極対数、Ldはd軸インダクタンス、Lqはq軸インダクタンス、Idはd軸電流、Iqはq軸電流である。
したがって、d軸インダクタンスLdとq軸インダクタンスLqとの差(Ld−Lq)を大きくすればリラクタンストルク(出力トルク)Tが大きくなる。この実施形態では、この差(Ld−Lq)を大きくするために、フラックスバリア23を設けて、q軸方向の磁路の磁気抵抗を大きくする一方、d軸方向の磁路の磁気抵抗を小さくしている。
この実施形態では、さらに、トルクリップルを小さくしながら、リラクタンストルクT(モータ出力)を高めるために、平面視での円弧状のフラックスバリア23の中心位置(以下、「円弧中心」という。)を適切な位置に設定しているとともに、リブ24、連接部25等の幅を適切な幅に設定している。以下、これらについて詳しく説明する。
まず、図5を参照して、フラックスバリア23の円弧中心Pについて説明する。図5に示すように、ロータ軸22の中心に原点をとり、隣接する2つのq軸のうちの一方のd軸に沿ってX座標軸をとり、他方のd軸に沿ってY座標軸とったXY座標系を設定する。ここでは、このXY座標系の第1象限に存在するフラックスバリア23の円弧中心Pの座標位置について説明する。
第1象限に存在する円弧状のフラックスバリア23の円弧中心Pは、第1象限に存在するq軸上の点に設定される。つまり、第1象限に存在するq軸上の点の座標は、αを正の実数とすると、(α,α)に設定される。ロータ20の外径をD[mm]とし、ブリッジ26の幅をe[mm]とする(図4参照)と、αの値は、次式(2)で表される範囲に設定されることが好ましい。
{(D/2)−e}−2≦α≦{(D/2)−e}+2 …(2)
例えば、D=49.6mmとし、e=0.5mmとすると、αは22.3mm以上と26.3mm以下の範囲に設定される。なお、第2象限に存在するフラックスバリア23の円弧中心Pの座標位置は(−α,α)で表され、第3象限に存在する円弧状のフラックスバリア23の円弧中心Pの座標位置は(−α,−α)で表され、第4象限に存在する円弧状のフラックスバリア23の円弧中心Pの座標位置は(α,−α)で表される。
円弧中心Pを前記のように設定している理由について説明する。一般的に面積Sの平面回路を磁束密度B[wb]の磁界内に置くと、面積Sの平面回路を貫く磁束Φは、次式(3)で表される。
Φ=BSsinθ …(3)
θは、平面回路の面と磁束の方向とのなす角である。
この式(3)から、平面回路の面と磁束の方向とのなす角θが90度のときに、磁束Φは最大となることがわかる。
d軸を磁化方向と考えると、前記式(3)により、d軸方向に流れる磁束がリブ24の端面に対して垂直の方向になれば、磁気利用率が高くなる。そこで、q軸上に円弧中心Pの座標を決定することが好ましい。そこで、第1象限に存在するラックスバリア23の円弧中心Pの座標は、(α,α)に設定されている。そして、後述するシミュレーション結果からわかるように、αは前記式(2)で示される範囲内の値に設定されることが好ましい。
次に、各層のフラックスバリア23の外縁(円弧中心Pから遠い方の縁)および内縁(円弧中心Pに近い方の縁)の曲率半径(円弧中心Pからの距離)について説明する。
図4に示すように、連接部25におけるブリッジ26側の端の幅を連接部25の幅ということにする。連接部25の幅をa[mm]とし、リブ24の幅をb[mm]とし、フラックスバリア23の幅をc[mm]とする。
フラックスバリア群に含まれる7つのフラックスバリア23のうち、最もロータ軸22側に近いものを1層目のフラックスバリア23といい、ロータコア21の外周に最も近いものを7層目のフラックスバリア23ということにする。また、それらの間にあるフラックスバリア23を、1層目のフラックスバリア23に近いものから順に2層目、3層目、4層目、5層目、6層目のフラックスバリア23ということにする。n層目のフラックスバリア23の外縁の曲率半径をRn1で表し、当該フラックスバリア23の内縁の曲率半径をRn2で表すことにする。例えば、1層目のフラックスバリア23の外縁の曲率半径はR11で表され、当該フラックスバリア23の内縁の曲率半径はR12で表される。
各半径R11,R12,R21,…,R71,R72は、次式(4)で表される。
R11=(D/2)−e−a/2
R12=R11−c
R21=R12−b
R22=R21−c
R31=R22−b
R32=R31−c
R41=R32−b
R42=R41−c
R51=R42−b
R52=R51−c
R61=R52−b
R62=R61−c
R71=R62−b
R72=R71−c …(4)
次に、連接部25およびリブ24の幅について説明する。この実施形態では、連接部25の幅aはリブ24の幅bよりも小さく設定されている。連接部25の幅aが大きいほど、連接部25の磁気抵抗は小さくなる。このため、連接部25の幅aが大きいと、連接部25に漏れる磁束が多くなり、リブ24を通過する磁束量が低下する。そこで、この実施形態では、連接部25の幅aをリブ24の幅bよりも小さくすることにより、連接部25の幅aがリブ24の幅b以上である場合に比べて、連接部25の磁気抵抗を大きくしている。これにより、連接部25に漏れる磁束が抑制されるから、リブ24を通過する磁束量が増加する。この結果、d軸インダクタンスが大きくなるから、出力トルクを大きくすることができる。
このように、連接部25の幅aをリブ24の幅bよりも小さくすることにより、リブ24を通過する磁束量を増加させることができるが、リブ24を通過する磁束量が多くなると磁束変化量も大きくなるため、トルクリップルが大きくなるおそれがある。そこで、この実施形態では、トルクリップルを抑えながら出力トルクを大きくするために、連接部25の幅aに対するリブの幅bの比b/aが2.0となるように、連接部25の幅aおよびリブの幅bを設定している。具体的には、この実施形態では、連接部25の幅aは0.5mmであり、リブの幅bは1.0mmである。後述するシミュレーション結果からわかるように、連接部25の幅aに対するリブの幅bの比b/aは、1以上3以下であることが好ましく、1.5以上2.5以下であることがさらに好ましい。
モータ1の実施例について説明する。モータ1の実施例における各部の大きさは次の通りである。
ステータ10の内径:50.0mm
ステータ10の外径:90.0mm
ロータ20の外径D:49.6mm
連接部25の幅a:1.0mm
リブ24の幅b:1.0mm
フラックスバリア23の幅c:1.0mm
ブリッジ26の幅e:0.5mm
次に、前記実施例に対して行ったシミュレーションの結果について説明する。
図6Aは、円弧中心Pの位置(αの値)に対する出力トルクのシミュレーション結果を示すグラフである。図6Bは、円弧中心Pの位置(αの値)に対するトルクリップルのシミュレーション結果を示すグラフである。
ロータ20の外径Dが49.6mmであり、ブリッジ26の幅eが0.5mmである場合には、前記式(2)における{(D/2)−e}の値は24.3mmとなる。したがって、前記式(2)に従えば、αは22.3mm以上26.3mm以下の範囲内の値に設定される。
一方、ロータ20の外径Dが49.6mmであり、ブリッジ26の幅eが0.5mmである場合には、図6Aに示されるように、αが23.3mmのときに出力トルクが最大となる。また、図6Bに示されるように、αが24.0mm程度のときにトルクリップルは最小となる。このことから、トルクリップルを抑えながら出力トルクを大きくするためには、αは前記式(2)に示される範囲内に設定されることが好ましいことがわかる。
図7Aは、連接部の幅aに対するリブの幅bの比b/aに対する出力トルクのシミュレーション結果を示すグラフである。図7Bは、連接部の幅aに対するリブの幅bの比b/aに対する出力トルクのシミュレーション結果を示すグラフである。
図7Aに示されるように、比b/aが2.5のときに出力トルクは最大となる。また、図7Bに示されるように、比b/aが1.6程度のときにトルクリップルは最小となる。このことから、トルクリップルを抑えながら出力トルクを大きくするためには、連接部25の幅aに対するリブの幅bの比b/aは、1よりも大きくかつ3よりも小さいことが好ましく、1.5以上2.5以下であることがさらに好ましいことがわかる。
以上、この発明の実施形態について説明したが、この発明はさらに他の形態で実施することもできる。たとえば、前述の実施形態では、フラックスバリア23の層数は7であるが、フラックスバリア23の層数は5層、6層、8層、9層等のように7層以外であってもよい。
また、ステータ10の内径、ステータ10の外径、ロータ20の外径D、連接部25の幅a、リブ24の幅b、フラックスバリア23の幅c、ブリッジ26の幅eは、前述の実施例として示した大きさに限定されない。
この発明は、例えば、電動パワーステアリング装置に使用されるシンクロナスモータに適用することができるが、電動パワーステアリング装置以外に使用されるシンクロナスモータにも適用することができる。
その他、特許請求の範囲に記載された事項の範囲で種々の設計変更を施すことが可能である。
1…シンクロナスリラクタンスモータ、10…ステータ(固定子)、11…ステータコア、12…ステータコイル、11a…スロット、12…ステータコイル、20…ロータ(回転子)、21…ロータコア、22…ロータ軸、23…フラックスバリア(スリット)、24…リブ、25…連接部、26…ブリッジ

Claims (4)

  1. ステータとロータとを含み、前記ロータには、外周から中心に向かって複数層に配置され、前記中心に向かって凸となる円弧状の複数のフラックスバリアからなるフラックスバリア群が、周方向に間隔をおいて極数分だけ形成されている、シンクロナスリラクタンスモータであって、
    前記ロータのうち、互いに隣接するフラックスバリア群に挟まれた領域における前記ロータの外周寄り部分を連接部とし、前記ロータのうち、前記フラックスバリア群内の互いに隣接する2つのフラックスバリアに挟まれた領域をリブとすると、前記連接部の幅が前記リブの幅よりも小さい、シンクロナスリラクタンスモータ。
  2. 前記連接部に対する前記リブの幅の比が1よりも大きくかつ3よりも小さい、請求項1に記載のシンクロナスリラクタンスモータ。
  3. 前記連接部に対する前記リブの幅の比が1.5以上でかつ2.5以下である、請求項1に記載のシンクロナスリラクタンスモータ。
  4. 前記フラックスバリア群内のフラックスバリアの層数が7である、請求項1〜3のいずれか一項に記載のシンクロナスリラクタンスモータ。
JP2015135435A 2015-07-06 2015-07-06 シンクロナスリラクタンスモータ Pending JP2017017957A (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2015135435A JP2017017957A (ja) 2015-07-06 2015-07-06 シンクロナスリラクタンスモータ

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2015135435A JP2017017957A (ja) 2015-07-06 2015-07-06 シンクロナスリラクタンスモータ

Publications (1)

Publication Number Publication Date
JP2017017957A true JP2017017957A (ja) 2017-01-19

Family

ID=57831256

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2015135435A Pending JP2017017957A (ja) 2015-07-06 2015-07-06 シンクロナスリラクタンスモータ

Country Status (1)

Country Link
JP (1) JP2017017957A (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2018159339A1 (ja) * 2017-02-28 2018-09-07 日本電産株式会社 ロータ、当該ロータを含むモータ及び当該モータを含む動力装置
WO2020194363A1 (ja) * 2019-03-22 2020-10-01 三菱電機株式会社 シンクロナスリラクタンスモータ

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2018159339A1 (ja) * 2017-02-28 2018-09-07 日本電産株式会社 ロータ、当該ロータを含むモータ及び当該モータを含む動力装置
CN108512327A (zh) * 2017-02-28 2018-09-07 日本电产株式会社 转子、包含该转子的马达、以及包含该马达的动力装置
CN108512327B (zh) * 2017-02-28 2020-05-22 日本电产株式会社 转子、包含该转子的马达、以及包含该马达的动力装置
US11018534B2 (en) 2017-02-28 2021-05-25 Nidec Corporation Rotor, motor including rotor, and power unit including motor
WO2020194363A1 (ja) * 2019-03-22 2020-10-01 三菱電機株式会社 シンクロナスリラクタンスモータ
CN113597725A (zh) * 2019-03-22 2021-11-02 三菱电机株式会社 同步磁阻马达
JPWO2020194363A1 (ja) * 2019-03-22 2021-12-02 三菱電機株式会社 シンクロナスリラクタンスモータ
CN113597725B (zh) * 2019-03-22 2023-06-02 三菱电机株式会社 同步磁阻马达

Similar Documents

Publication Publication Date Title
US10686341B2 (en) Rotating electric machine
US9853509B2 (en) Composite torque rotating electric machine
US10033234B2 (en) Motor
KR102129348B1 (ko) 회전자 및 자기 저항 모터
US9077224B2 (en) Rotor core, rotor, and rotating electric machine
US10348173B2 (en) Synchronous reluctance motor
JP2012161227A (ja) 回転電機用回転子
WO2018043081A1 (ja) 回転子およびリラクタンスモータ
JP2019062673A (ja) 可変磁束型の永久磁石式回転電機
US10284063B2 (en) Synchronous reluctance motor
JP2009044860A (ja) 回転子及び回転電機
US20140239763A1 (en) Dual magnetic phase stator laminations for stator permanent magnet electric machines
EP3261219A1 (en) Synchronous reluctance motor
JP2016192886A (ja) 磁石レス回転電機
JP2013165601A (ja) 回転電機
JP2018011466A (ja) 永久磁石埋込同期機
CN111082561A (zh) 电机转子和交替极电机
JP6729037B2 (ja) 可変磁束型回転電機及び永久磁石の製造方法
JP2017017957A (ja) シンクロナスリラクタンスモータ
JPWO2017171037A1 (ja) ロータ及びロータの設計方法
JP6990014B2 (ja) 回転電機
JP2014113036A (ja) 磁石埋込型ロータ、モータ、及び磁石埋込型ロータの製造方法
JP2016201960A (ja) 埋込磁石型モータ
JP2011193627A (ja) 回転子鉄心および回転電機
JP2018011450A (ja) 永久磁石埋込同期機