JP2017008409A - Vacuum evaporation device, production method of evaporation film and production method of organic electronic device - Google Patents

Vacuum evaporation device, production method of evaporation film and production method of organic electronic device Download PDF

Info

Publication number
JP2017008409A
JP2017008409A JP2016099372A JP2016099372A JP2017008409A JP 2017008409 A JP2017008409 A JP 2017008409A JP 2016099372 A JP2016099372 A JP 2016099372A JP 2016099372 A JP2016099372 A JP 2016099372A JP 2017008409 A JP2017008409 A JP 2017008409A
Authority
JP
Japan
Prior art keywords
evaporation source
mask
substrate
evaporation
vapor deposition
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2016099372A
Other languages
Japanese (ja)
Other versions
JP6243474B2 (en
JP2017008409A5 (en
Inventor
啓太 三澤
Keita Misawa
啓太 三澤
亮太 後藤
Ryota Goto
亮太 後藤
良秋 風間
Yoshiaki Kazama
良秋 風間
浩一 七五三木
Kouichi Shimeki
浩一 七五三木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Canon Tokki Corp
Original Assignee
Canon Tokki Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Canon Tokki Corp filed Critical Canon Tokki Corp
Priority to TW105117204A priority Critical patent/TWI653353B/en
Priority to CN201610416499.3A priority patent/CN106256925B/en
Priority to CN202010902089.6A priority patent/CN112011765B/en
Priority to KR1020160075172A priority patent/KR102046684B1/en
Publication of JP2017008409A publication Critical patent/JP2017008409A/en
Publication of JP2017008409A5 publication Critical patent/JP2017008409A5/ja
Application granted granted Critical
Publication of JP6243474B2 publication Critical patent/JP6243474B2/en
Priority to KR1020190047192A priority patent/KR102360558B1/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K71/00Manufacture or treatment specially adapted for the organic devices covered by this subclass
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/04Coating on selected surface areas, e.g. using masks
    • C23C14/042Coating on selected surface areas, e.g. using masks using masks
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/06Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the coating material
    • C23C14/12Organic material
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/22Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the process of coating
    • C23C14/24Vacuum evaporation
    • C23C14/243Crucibles for source material
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/22Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the process of coating
    • C23C14/50Substrate holders
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/22Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the process of coating
    • C23C14/54Controlling or regulating the coating process
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/22Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the process of coating
    • C23C14/56Apparatus specially adapted for continuous coating; Arrangements for maintaining the vacuum, e.g. vacuum locks
    • C23C14/564Means for minimising impurities in the coating chamber such as dust, moisture, residual gases
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K71/00Manufacture or treatment specially adapted for the organic devices covered by this subclass
    • H10K71/10Deposition of organic active material
    • H10K71/16Deposition of organic active material using physical vapour deposition [PVD], e.g. vacuum deposition or sputtering
    • H10K71/164Deposition of organic active material using physical vapour deposition [PVD], e.g. vacuum deposition or sputtering using vacuum deposition

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Manufacturing & Machinery (AREA)
  • Electroluminescent Light Sources (AREA)
  • Physical Vapour Deposition (AREA)
  • Physical Deposition Of Substances That Are Components Of Semiconductor Devices (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a vacuum evaporation device which enables deposition of a desired pattern in high accuracy by avoiding thermal deformation during evaporation.SOLUTION: The vacuum evaporation device includes, in an evaporation chamber 1: an evaporation source 2 for evaporating a substrate through a mask; and an evaporation source moving mechanism for relatively moving the evaporation source 2 to the substrate when evaporating, or a substrate moving mechanism for relatively moving the substrate to the evaporation source when evaporating. The evaporation source moving mechanism or the substrate moving mechanism are composed so that preheating of the mask is performed by using the evaporation source 2, before starting evaporation to the substrate.SELECTED DRAWING: Figure 1

Description

本発明は、真空蒸着装置、蒸着膜の製造方法および有機電子デバイスの製造方法に関するものである。   The present invention relates to a vacuum deposition apparatus, a method for producing a deposited film, and a method for producing an organic electronic device.

蒸発源から蒸発する成膜材料を、所定のマスクパターンが形成されたマスクを介して基板に堆積させて薄膜を成膜する蒸着装置においては、マスクが、蒸着中(成膜中)に蒸発源から受熱することで熱変形し、このマスクの熱変形によってマスクと基板との位置がずれ、基板上に形成される薄膜のパターンが所望の位置からずれてしまう場合がある。特に、携帯電話やテレビなどの表示パネルなどの有機電子デバイスの製造には、高精細なパターンを有するマスクが用いられるため、熱変形による影響は大きい。   In a vapor deposition apparatus that deposits a film forming material evaporating from an evaporation source on a substrate through a mask on which a predetermined mask pattern is formed to form a thin film, the mask is an evaporation source during vapor deposition (during film formation). The thermal deformation of the mask may cause the mask and the substrate to be displaced from each other, and the thin film pattern formed on the substrate may be displaced from the desired position. In particular, since a mask having a high-definition pattern is used for manufacturing an organic electronic device such as a display panel of a mobile phone or a television, the influence of thermal deformation is large.

そこで、例えば特許文献1に開示されるように、熱変形を抑制するために低熱膨張材料であるインバー材から成るマスクを用いることも提案されているが、マスクに低熱膨張材を使用しても、線膨張係数を0にすることは困難であり、この場合でも熱変形が問題になる場合がある。   Thus, for example, as disclosed in Patent Document 1, it has been proposed to use a mask made of an invar material which is a low thermal expansion material in order to suppress thermal deformation, but even if a low thermal expansion material is used for the mask, It is difficult to set the linear expansion coefficient to 0, and thermal deformation may be a problem even in this case.

特開2004−323888号公報JP 2004-323888 A

本発明は、上述のような現状に鑑みなされたもので、マスクの蒸着中の熱変形を抑制して高精度に所望のパターンで成膜可能な真空蒸着装置を提供することを目的とする。   The present invention has been made in view of the above situation, and an object of the present invention is to provide a vacuum deposition apparatus capable of forming a film with a desired pattern with high accuracy by suppressing thermal deformation during deposition of a mask.

添付図面を参照して本発明の要旨を説明する。   The gist of the present invention will be described with reference to the accompanying drawings.

本発明の第1態様は、蒸着室1に、マスクを介して基板に蒸着を行う蒸発源2と、蒸着を行う際に前記蒸発源2を前記基板に対して相対的に移動させる蒸発源移動機構または蒸着を行う際に前記基板を前記蒸発源に対して相対的に移動させる基板移動機構とを設けた真空蒸着装置であって、前記基板への蒸着を開始する前に、前記蒸発源2を用いて前記マスクの事前加熱を行うように前記蒸発源移動機構または前記基板移動機構を構成したことを特徴とする真空蒸着装置に係るものである。   In the first aspect of the present invention, an evaporation source 2 that performs evaporation on a substrate through a mask and an evaporation source movement that moves the evaporation source 2 relative to the substrate when performing evaporation are provided in the evaporation chamber 1. A vacuum deposition apparatus provided with a mechanism or a substrate moving mechanism for moving the substrate relative to the evaporation source when performing evaporation, before starting evaporation on the substrate, the evaporation source 2 The vacuum evaporation apparatus is characterized in that the evaporation source moving mechanism or the substrate moving mechanism is configured so that the mask is pre-heated using the above-mentioned.

また、前記蒸発源2から蒸発する成膜材料の成膜速度を安定化させるための蒸着前の予備加熱中にこの蒸発源2から発せられる熱を利用して前記マスクの事前加熱を行うことを特徴とする真空蒸着装置に係るものである。   In addition, the preheating of the mask is performed using the heat generated from the evaporation source 2 during the preheating before the deposition for stabilizing the film forming speed of the film forming material evaporated from the evaporation source 2. The present invention relates to a vacuum deposition apparatus.

また、前記蒸発源2にシャッタ7を設け、このシャッタ7を閉じた状態で前記蒸発源と前記マスクとの相対的な位置関係を変化させて前記マスクの事前加熱を行うように構成したことを特徴とする真空蒸着装置に係るものである。   In addition, the evaporation source 2 is provided with a shutter 7, and the mask is preheated by changing the relative positional relationship between the evaporation source and the mask with the shutter 7 closed. The present invention relates to a vacuum deposition apparatus.

また、前記連続蒸着における最初に蒸着が行われる基板とマスクとの位置合わせは、前記マスクの事前加熱と併行して行うように前記蒸発源移動機構を構成したことを特徴とする真空蒸着装置に係るものである。   Further, in the vacuum deposition apparatus, the evaporation source moving mechanism is configured so that the alignment of the substrate and the mask on which deposition is performed first in the continuous deposition is performed in parallel with the preheating of the mask. It is concerned.

また、前記蒸着室1に前記基板に蒸着を行うための蒸着領域3,4を前記蒸発源の移動方向と直交する方向に複数並設し、複数の前記蒸着領域3,4それぞれに対して、前記蒸着領域の外に、蒸発源を退避させる退避領域を設け、前記蒸発源2を前記蒸着領域3,4の並設方向と同方向に移動させて一方の蒸着領域から他方の蒸着領域へと移動し得るように前記蒸発源移動機構を構成し、前記複数の蒸着領域3,4にそれぞれ配置されるマスクを事前加熱する際、一方の蒸着領域に配置されたマスクを加熱した後、前記蒸発源2を前記退避領域には退避させることなく前記蒸着領域3,4の並設方向に移動させて他方の蒸着領域に移動させるように前記蒸発源移動機構が構成されていることを特徴とする真空蒸着装置に係るものである。   Further, a plurality of vapor deposition regions 3 and 4 for performing vapor deposition on the substrate in the vapor deposition chamber 1 are arranged side by side in a direction orthogonal to the moving direction of the evaporation source, and for each of the plurality of vapor deposition regions 3 and 4, A retreat area for retracting the evaporation source is provided outside the vapor deposition area, and the evaporation source 2 is moved in the same direction as the juxtaposition direction of the vapor deposition areas 3 and 4 from one vapor deposition area to the other vapor deposition area. The evaporation source moving mechanism is configured to be movable, and when the masks disposed in the plurality of vapor deposition regions 3 and 4 are preheated, the mask disposed in one vapor deposition region is heated, and then the evaporation is performed. The evaporation source moving mechanism is configured to move the source 2 to the other vapor deposition region by moving the source 2 in the parallel arrangement direction of the vapor deposition regions 3 and 4 without retreating to the retreat region. This relates to a vacuum deposition apparatus.

本発明の第2態様は、蒸着膜の製造方法であって、基板を蒸着室に設置する工程と、蒸発源に収容された成膜材料を加熱して成膜速度を安定させる工程と、マスクを介して前記基板に前記蒸着材料の蒸気を付着させる工程と、を有し、前記成膜速度を安定させる工程の間に前記蒸発源と前記基板との相対的な位置関係を変化させ、前記蒸発源の熱により前記マスクを加熱することを特徴とする蒸着膜の製造方法に係るものである。   A second aspect of the present invention is a method for manufacturing a vapor deposition film, the step of placing a substrate in a vapor deposition chamber, the step of stabilizing a film deposition rate by heating a film deposition material accommodated in an evaporation source, and a mask Adhering the vapor of the vapor deposition material to the substrate via, and changing the relative positional relationship between the evaporation source and the substrate during the step of stabilizing the film formation speed, The present invention relates to a method for manufacturing a deposited film, wherein the mask is heated by heat of an evaporation source.

本発明の第3態様は、基板の上に、一対の電極に挟まれた有機層を備える素子を複数備える有機電子デバイスの製造方法であって、複数の電極が形成された基板を蒸着室に設置する工程と、複数の開口を備えるマスクを、前記基板に対して位置合わせする工程と、蒸発源に収容された成膜材料を加熱して成膜速度を安定させる工程と、前記マスクを介して前記基板上に前記成膜材料の蒸気を付着させ、前記有機層の少なくとも一部を形成する工程と、を有し、前記成膜速度を安定させる工程の間に前記蒸発源と前記基板との相対的な位置関係を変化させ、前記蒸発源の熱により前記マスクを加熱することを特徴とする有機電子デバイスの製造方法に係るものである。   A third aspect of the present invention is a method of manufacturing an organic electronic device having a plurality of elements each having an organic layer sandwiched between a pair of electrodes on a substrate, wherein the substrate on which the plurality of electrodes are formed is used as a deposition chamber. A step of positioning, a step of aligning a mask having a plurality of openings with respect to the substrate, a step of stabilizing a film formation rate by heating a film formation material accommodated in an evaporation source, and the mask. Attaching the vapor of the film forming material onto the substrate to form at least a part of the organic layer, and during the step of stabilizing the film forming rate, the evaporation source and the substrate The relative positional relationship is changed, and the mask is heated by the heat of the evaporation source. This relates to a method of manufacturing an organic electronic device.

本発明によれば、マスクの蒸着中の熱変形を抑制して高精度に所望のパターンで成膜することが可能となる。   ADVANTAGE OF THE INVENTION According to this invention, it becomes possible to form into a desired pattern with high precision, suppressing the thermal deformation during vapor deposition of a mask.

本実施例の概略説明斜視図である。It is a schematic explanatory perspective view of a present Example. 本実施例の概略説明平面図である。It is a schematic explanatory plan view of a present Example. 本実施例の概略説明平面図である。It is a schematic explanatory plan view of a present Example. 本実施例の概略説明平面図である。It is a schematic explanatory plan view of a present Example. (a)は本発明にかかる真空蒸着装置を用いて作製した有機EL表示装置の斜視図、(b)は(a)のA−B線断面図である。(A) is a perspective view of the organic electroluminescence display produced using the vacuum evaporation system concerning this invention, (b) is the AB sectional view taken on the line of (a).

本発明にかかる真空蒸着装置の実施形態について、図面に基づいて具体的に説明する。   An embodiment of a vacuum deposition apparatus according to the present invention will be specifically described with reference to the drawings.

本発明の実施形態にかかる真空蒸着装置は、蒸着室に、マスクを介して基板に蒸着を行う蒸発源(材料収容部)と、蒸着を行う際に前記蒸発源を前記基板に対して相対的に移動させる蒸発源移動機構とを備える真空蒸着装置である。この蒸発源移動機構は、蒸発源と基板との相対的な位置関係、より具体的には、蒸発源と基板との、基板の成膜面と平行な面方向における相対的な位置関係、を変化させる機能を有する。そして、前記蒸着室の真空状態を維持して前記基板に蒸着を開始する前に、前記蒸発源を前記マスクに対して相対的に移動させ、この蒸発源から発せられる熱を利用して前記マスクを事前加熱するように前記蒸発源移動機構を構成する。本実施形態においては、蒸発源移動機構により蒸発源を移動させることで蒸発源と基板との相対的な位置関係を変化させているが、蒸着室に基板移動機構を設け、基板を移動させることによって蒸発源と基板との相対的な位置関係を変化させてもよいし、基板と蒸発源の双方を移動させることによって蒸発源と基板との相対的な位置関係を変化させてもよい。したがって、ここにいう、蒸発源移動機構、基板移動機構は、いずれも、蒸発源と基板との相対位置関係変化機構と呼ぶことも可能である。   A vacuum deposition apparatus according to an embodiment of the present invention includes: an evaporation source (material storage unit) that performs evaporation on a substrate through a mask; and an evaporation source that is relative to the substrate when performing evaporation. It is a vacuum evaporation system provided with the evaporation source moving mechanism to which it moves to. The evaporation source moving mechanism is configured to obtain a relative positional relationship between the evaporation source and the substrate, more specifically, a relative positional relationship between the evaporation source and the substrate in a plane direction parallel to the film formation surface of the substrate. It has a function to change. Then, before starting the deposition on the substrate while maintaining the vacuum state of the deposition chamber, the evaporation source is moved relative to the mask, and the heat generated from the evaporation source is used for the mask. The evaporation source moving mechanism is configured to preheat the liquid. In the present embodiment, the relative positional relationship between the evaporation source and the substrate is changed by moving the evaporation source by the evaporation source moving mechanism, but the substrate moving mechanism is provided in the vapor deposition chamber to move the substrate. The relative positional relationship between the evaporation source and the substrate may be changed by the above, or the relative positional relationship between the evaporation source and the substrate may be changed by moving both the substrate and the evaporation source. Therefore, both the evaporation source moving mechanism and the substrate moving mechanism mentioned here can also be called a relative positional relationship changing mechanism between the evaporation source and the substrate.

図1,2に、本発明にかかる真空蒸着装置の一実施例を示す。図1は真空蒸着装置の内部が見えるように蒸着室1の壁を一部取り払った斜視図、図2は、蒸着室1の上面側からみた平面図である。蒸着室1には、基板に蒸着を行うための蒸着領域3,4が成膜移動方向と直交する方向(蒸着領域移動方向)に複数並設されている。そして、前記蒸着領域3,4それぞれに対して、前記蒸着領域3,4の外に、蒸発源2を退避させる退避領域が設けられている。   1 and 2 show an embodiment of a vacuum deposition apparatus according to the present invention. FIG. 1 is a perspective view in which a part of the wall of the vapor deposition chamber 1 is removed so that the inside of the vacuum vapor deposition apparatus can be seen, and FIG. 2 is a plan view seen from the upper surface side of the vapor deposition chamber 1. In the vapor deposition chamber 1, a plurality of vapor deposition regions 3 and 4 for performing vapor deposition on the substrate are arranged in parallel in a direction orthogonal to the film formation movement direction (vapor deposition region movement direction). Further, a retreat area for retreating the evaporation source 2 is provided outside the vapor deposition areas 3 and 4 for each of the vapor deposition areas 3 and 4.

なお、各蒸着領域3,4には、夫々マスク及び基板を保持するマスク台(図示省略)が設けられている。各蒸着領域3,4に夫々対応する各搬出入口8,9から夫々搬入された基板は、各蒸着領域3,4に設けられるアライメント機構により夫々マスクと位置合わせをした後、マスクと重ね合わせて固定された状態で、夫々マスク台に設置され保持される。   Each of the vapor deposition zones 3 and 4 is provided with a mask base (not shown) for holding the mask and the substrate. The substrates carried in from the respective carry-in / out ports 8 and 9 corresponding to the respective vapor deposition zones 3 and 4 are aligned with the masks by alignment mechanisms provided in the vapor deposition zones 3 and 4, respectively, and then superposed on the masks. In a fixed state, each is installed and held on a mask base.

なお、蒸着領域とは、蒸発源2から蒸発する成膜材料が基板に付着する領域を指す。   The vapor deposition region refers to a region where the film forming material evaporated from the evaporation source 2 adheres to the substrate.

本実施例においては、前記蒸発源2から放出される蒸気によって形成される蒸着膜の成膜速度を安定化させるため、蒸着開始前の予備加熱中に、この蒸発源2から発せられる熱を利用して前記マスクの事前加熱を行うように蒸発源移動機構を構成している。具体的には、蒸着開始前に、蒸発源2を蒸着領域3,4内で基板の長手方向若しくは幅方向のいずれかを成膜移動方向としてこの成膜移動方向に往復移動させて熱的な慣らし運転を行う。この移動は、必ずしも往復運動である必要はなく、円運動等であっても差し支えない。なお、予備加熱を行わなかった場合と比較して成膜速度の変動が抑制されていれば、当該予備加熱は成膜速度を安定化させるためのものである。予備加熱は、成膜速度の変動が予め定められた所定の範囲内に収まるようにすることが好ましい。もっとも、所定の範囲内に収まっているか否かについて、成膜のたびに毎回検証する必要はなく、予備実験などで予備加熱時間を決定してもよい。   In this embodiment, in order to stabilize the deposition rate of the deposited film formed by the vapor released from the evaporation source 2, the heat generated from the evaporation source 2 is used during preheating before starting the deposition. Then, the evaporation source moving mechanism is configured to preheat the mask. Specifically, before vapor deposition is started, the evaporation source 2 is moved back and forth in the film formation movement direction in the vapor deposition regions 3 and 4 with the longitudinal direction or the width direction of the substrate as the film formation movement direction. Run-in. This movement does not necessarily need to be a reciprocating motion, and may be a circular motion or the like. In addition, if the fluctuation | variation of the film-forming speed is suppressed compared with the case where preheating is not performed, the said pre-heating is for stabilizing the film-forming speed. The preheating is preferably performed so that the fluctuation of the film forming speed is within a predetermined range. However, it is not necessary to verify each time whether or not the film is within a predetermined range, and the preliminary heating time may be determined by a preliminary experiment or the like.

この予備加熱は、蒸発源2に収容される成膜材料の脱ガスや成膜速度が安定するように成膜材料の溶融状態を安定化させるために行うものであり、たとえば、蒸発源2を成膜時の加熱温度と同様の温度に昇温して数分程度加熱して行う。なお、本実施例の蒸発源2は、図2に示されるように3つのラインソースで構成されている。   This preheating is performed in order to stabilize the molten state of the film forming material so that the degassing of the film forming material accommodated in the evaporation source 2 and the film forming speed are stabilized. The temperature is raised to a temperature similar to the heating temperature during film formation and heated for several minutes. In addition, the evaporation source 2 of a present Example is comprised by three line sources, as FIG. 2 shows.

また、蒸発源2の予備加熱を行っている間に、最初に蒸着が行われる基板とマスクとの位置合わせも併行して行うとよい。   Further, during the preliminary heating of the evaporation source 2, the alignment of the substrate and the mask on which vapor deposition is performed first may be performed in parallel.

即ち、基板とマスクのアライメント及び蒸発源2の事前加熱等の蒸着準備期間を利用して、マスクの事前加熱を行うのが好ましい。   That is, it is preferable to perform preheating of the mask using a deposition preparation period such as alignment of the substrate and mask and preheating of the evaporation source 2.

成膜開始までに必要な時間をより短縮するためには、基板とマスクのアライメントを終了した時点でマスクの事前加熱を終了するように、蒸発源2の予備加熱温度及び蒸発源移動機構による蒸発源2の移動速度を設定するのが好ましい。これにより、マスクの事前加熱のためだけの待機時間を削減し、蒸着準備期間を利用してマスクの事前加熱を行うことが可能となり、蒸発源2から発せられる熱によって蒸着中にマスクが熱変形することを防止することができる。また、事前加熱のための熱源は、蒸発源2であり、他の熱源を用意する必要がなく、しかも蒸発源2の予備加熱の際に発する熱を利用するため、効率良く予備加熱を行うことができる。   In order to further shorten the time required to start the film formation, the preheating temperature of the evaporation source 2 and the evaporation by the evaporation source moving mechanism are finished so that the preheating of the mask is finished when the alignment between the substrate and the mask is finished. It is preferable to set the moving speed of the source 2. Thereby, it is possible to reduce the waiting time only for the preheating of the mask, and to perform the preheating of the mask using the deposition preparation period, and the mask is thermally deformed during the deposition by the heat generated from the evaporation source 2. Can be prevented. Further, the heat source for preheating is the evaporation source 2, and it is not necessary to prepare another heat source. Further, since the heat generated during the preheating of the evaporation source 2 is used, efficient preheating is performed. Can do.

なお、従来技術において、蒸発源の予備加熱は、蒸着源を退避領域(基板に蒸着材料が付着しない領域)に配置して行われるため、蒸発源の予備加熱はマスクの予備加熱には寄与しない。   In the prior art, the preheating of the evaporation source is performed by placing the evaporation source in the retreat area (the area where the evaporation material does not adhere to the substrate), and therefore the preheating of the evaporation source does not contribute to the preheating of the mask. .

図1のように前記蒸発源2にシャッタ7を設け、このシャッタ7を閉じた状態で前記マスクに対して往復移動させて前記マスクの事前加熱を行うように構成するのが好ましい。具体的には、シャッタ7は開閉スライド移動自在に蒸発源2の上方位置に設けている。なお、シャッタ7を設けた場合でも、シャッタ7が蒸発源2により加熱され、この加熱されたシャッタ7によりマスクが加熱される。本例に代表されるように、蒸発源のシャッタを閉じた状態で、蒸発源と基板との相対位置を変化させながら蒸発源を加熱する構成は、本発明の好適な実施形態である。このような構成とすることで、基板直下に蒸発源が存在する状態で効率よくマスクを事前加熱することができるとともに、事前加熱段階で基板に膜が付着してしまうことも防止することができる。なお、シャッタは、蒸発源から放出される蒸気を、基板に付着しないよう遮蔽できるものであればよく、必ずしも蒸発源に設ける必要はない。   As shown in FIG. 1, it is preferable that the evaporation source 2 is provided with a shutter 7, and the mask is preheated by reciprocating the mask with the shutter 7 closed. Specifically, the shutter 7 is provided above the evaporation source 2 so as to be openable and slidable. Even when the shutter 7 is provided, the shutter 7 is heated by the evaporation source 2 and the mask is heated by the heated shutter 7. As represented by this example, a configuration in which the evaporation source is heated while the relative position between the evaporation source and the substrate is changed while the evaporation source shutter is closed is a preferred embodiment of the present invention. With such a configuration, the mask can be efficiently pre-heated in the state where the evaporation source exists directly under the substrate, and the film can be prevented from adhering to the substrate in the pre-heating stage. . The shutter may be any shutter that can shield the vapor emitted from the evaporation source from adhering to the substrate, and is not necessarily provided in the evaporation source.

また、本実施例においては、前記蒸発源2を前記蒸着領域3,4の並設方向と同方向(蒸着領域移動方向)に移動させて一方の蒸着領域3から他方の蒸着領域4へと移動し得るように前記蒸発源移動機構を構成している。   In the present embodiment, the evaporation source 2 is moved in the same direction as the side-by-side direction of the vapor deposition regions 3 and 4 (deposition region movement direction) and moved from one vapor deposition region 3 to the other vapor deposition region 4. Thus, the evaporation source moving mechanism is configured.

具体的には、本実施例は、蒸着室1の底面に蒸着領域移動方向に延びるレール10を設け、このレール10に対して往復スライド移動可能な枠状の蒸着領域移動用スライダ6を設ける。そして、この蒸着領域移動用スライダ6の上面に成膜移動方向に延びるレール11を設け、このレール11に対して往復スライド移動可能な成膜移動用スライダ5を設け、この成膜移動用スライダ5に蒸発源2及びシャッタ7を設けた構成としている。さらに、成膜移動用スライダ5の底面には、成膜移動用スライダ5を移動させるためのアーム部材12が連結されている。そして、このアーム部材12を駆動して成膜移動用スライダ5(蒸発源2)を成膜移動方向若しくは蒸着領域移動方向に移動させる制御装置が蒸着室1の外部に設けられ、蒸発源移動機構が構成されている。   Specifically, in this embodiment, a rail 10 extending in the direction of movement of the vapor deposition region is provided on the bottom surface of the vapor deposition chamber 1, and a frame-shaped vapor deposition region moving slider 6 capable of reciprocating sliding relative to the rail 10 is provided. Then, a rail 11 extending in the film forming movement direction is provided on the upper surface of the deposition region moving slider 6, and a film forming movement slider 5 capable of reciprocating sliding with respect to the rail 11 is provided. In this configuration, the evaporation source 2 and the shutter 7 are provided. Further, an arm member 12 for moving the film formation moving slider 5 is connected to the bottom surface of the film formation moving slider 5. A control device for driving the arm member 12 to move the film formation movement slider 5 (evaporation source 2) in the film formation movement direction or the vapor deposition region movement direction is provided outside the vapor deposition chamber 1, and the evaporation source movement mechanism. Is configured.

従って、一つの蒸発源2を、一方の蒸着領域3で成膜移動方向に往復移動させて事前加熱若しくは成膜を行った後、蒸着領域移動方向に移動させて他方の蒸着領域4で同様に事前加熱若しくは成膜を行うことができる。   Accordingly, after one evaporation source 2 is reciprocated in the deposition movement direction in one vapor deposition region 3 to perform preheating or film formation, it is moved in the vapor deposition region movement direction and similarly in the other vapor deposition region 4. Preheating or film formation can be performed.

また、本実施例においては、前記複数の蒸着領域3,4に夫々配置されるマスクを事前加熱する際、前記蒸発源2を前記退避領域に退避させることなく前記蒸着領域3,4の並設方向に移動させ、一方の蒸着領域3から他方の蒸着領域4に移動させるように前記蒸発源移動機構を構成している。   Further, in this embodiment, when the masks arranged in the plurality of vapor deposition regions 3 and 4 are preheated, the vapor deposition regions 3 and 4 are arranged in parallel without retreating the evaporation source 2 to the retreat region. The evaporation source moving mechanism is configured to move in one direction and move from one vapor deposition region 3 to the other vapor deposition region 4.

図3に、基板に蒸着開始後の蒸着源2の軌跡を太線で示す。一方の蒸着領域3に設置した基板に成膜する場合、蒸発源2を、レール10が延びる方向に蒸着領域3を挟んで設けられた2つの退避領域のうち一方の退避領域から他方の退避領域まで蒸着領域3を通過するように所定回数だけ往復移動させる。蒸着領域3に設置した基板への成膜の後に他方の蒸着領域4に設置した基板に成膜を行う場合は、蒸着領域3の外の退避領域に位置する蒸発源2が、蒸着領域4の外の退避領域に至るまで蒸着領域移動方向に移動させる。そして、蒸発源2を、レール10が延びる方向に蒸着領域4を挟んで設けられた2つの退避領域のうち一方の退避領域から他方の退避領域まで蒸着領域4を通過するように所定回数だけ往復移動させることを繰り返す。このようにして、各蒸着領域3,4に設置した基板それぞれに成膜を行うことができる。   In FIG. 3, the locus | trajectory of the vapor deposition source 2 after vapor deposition start to a board | substrate is shown with a thick line. When a film is formed on a substrate installed in one vapor deposition region 3, the evaporation source 2 is moved from one retraction region to the other retraction region of two retraction regions provided with the vapor deposition region 3 in the direction in which the rail 10 extends. Until it passes through the vapor deposition zone 3 by a predetermined number of times. When film formation is performed on the substrate installed in the other vapor deposition region 4 after film formation on the substrate disposed in the vapor deposition region 3, the evaporation source 2 located in the retreat region outside the vapor deposition region 3 is connected to the vapor deposition region 4. It moves in the deposition area moving direction until it reaches the outside retreat area. The evaporation source 2 reciprocates a predetermined number of times so as to pass through the vapor deposition region 4 from one retraction region to the other retraction region of the two retraction regions provided with the vapor deposition region 4 sandwiched in the direction in which the rail 10 extends. Repeat moving. In this way, film formation can be performed on each of the substrates installed in the respective vapor deposition regions 3 and 4.

これに対して、蒸着を開始する前にマスクの事前加熱を行う際の蒸着源2の軌跡を、図4に太線で示す。一方の蒸着領域3に設置したマスクを事前加熱する場合、図4に図示したように、蒸発源2を、蒸着領域3においてレール10に沿って成膜移動方向に所定回数だけ往復移動させる。その後、他方の蒸着領域に設置したマスクを事前加熱する場合には、蒸着源2を、蒸着領域3の外方の退避領域には移動させることなく、蒸着領域3の端部から他方の蒸着領域4の対応する端部へと至るまで蒸着領域移動方向に移動させる。そして、蒸発源2を、蒸着領域4を成膜移動方向に所定回数だけ往復させることを繰り返して蒸着領域4に設置したマスクを事前加熱する。このようにして、蒸着領域3、4に設置したマスクが熱的に飽和するまで、マスクを事前加熱することができる。   On the other hand, the locus | trajectory of the vapor deposition source 2 at the time of performing preheating of a mask before starting vapor deposition is shown by a thick line in FIG. In the case of preheating a mask placed in one vapor deposition region 3, as shown in FIG. 4, the evaporation source 2 is reciprocated a predetermined number of times in the film formation movement direction along the rail 10 in the vapor deposition region 3. Then, when pre-heating the mask installed in the other vapor deposition region, the vapor deposition source 2 is not moved to the retreat region outside the vapor deposition region 3 and the other vapor deposition region is moved from the end of the vapor deposition region 3. 4 is moved in the deposition region moving direction until reaching the corresponding end of 4. And the mask installed in the vapor deposition area | region 4 is pre-heated by repeating the evaporation source 2 reciprocating the vapor deposition area | region 4 in the film-formation movement direction predetermined times. In this way, the mask can be preheated until the mask placed in the vapor deposition zones 3 and 4 is thermally saturated.

マスクの事前加熱を行う際には、蒸着の場合と異なり、蒸発源2を退避領域へは移動させないようにすることで、一層効率良くマスクの事前加熱を行えることになる。   When preheating the mask, unlike the case of vapor deposition, the mask can be preheated more efficiently by preventing the evaporation source 2 from moving to the retreat area.

以上説明したように、本実施例は、蒸着を行う際には、蒸着を開始する前に各蒸着領域のマスクをそれぞれ事前加熱し、熱的に飽和させた後、各蒸着領域3,4に順次配置される基板に対して連続して蒸着を行う。このように成膜することで、蒸着中のマスクの熱変形が抑制され、蒸着中に基板上に形成される薄膜のパターンが変化し難くなり、安定して高精度な成膜が可能となる。   As described above, in the present embodiment, when vapor deposition is performed, the masks of the respective vapor deposition regions are preheated and thermally saturated before the vapor deposition is started. Vapor deposition is continuously performed on the substrates arranged sequentially. By forming the film in this way, the thermal deformation of the mask during the vapor deposition is suppressed, the pattern of the thin film formed on the substrate during the vapor deposition is hardly changed, and the film can be stably and highly accurately formed. .

蒸着室1の内部は真空状態が保たれているため、蒸着を開始する前に各マスクを事前加熱した後は、マスクの熱的に飽和した状態を維持することが可能となる。従って、連続して複数の基板への蒸着を行っても、安定して高精度の成膜が可能となる。   Since the inside of the vapor deposition chamber 1 is kept in a vacuum state, after each mask is preheated before the vapor deposition is started, it is possible to maintain the thermally saturated state of the mask. Therefore, even if vapor deposition is continuously performed on a plurality of substrates, stable and highly accurate film formation is possible.

なお、本発明は、本実施例等に限られるものではなく、各構成要件の具体的構成は適宜設計し得るものである。   Note that the present invention is not limited to this embodiment and the like, and the specific configuration of each component can be designed as appropriate.

次に、本発明にかかる真空蒸着装置を用いて有機電子デバイスの例として有機EL表示装置を製造する実施例について説明する。   Next, the Example which manufactures an organic electroluminescence display as an example of an organic electronic device using the vacuum evaporation system concerning this invention is described.

まず、製造する有機EL表示装置について説明する。図5(a)は有機EL表示装置40の全体図、図5(b)は1画素の断面構造を表している。   First, an organic EL display device to be manufactured will be described. FIG. 5A shows an overall view of the organic EL display device 40, and FIG. 5B shows a cross-sectional structure of one pixel.

図5(a)に示すように、表示装置40の表示領域41には、発光素子を複数備える画素42がマトリクス状に複数配置されている。詳細は後で説明するが、発光素子のそれぞれは、一対の電極に挟まれた有機層を備えた構造を有している。なお、ここでいう画素とは、表示領域41において所望の色の表示を可能とする最小単位を指している。本実施例にかかる表示装置の場合、互いに異なる発光を示す第1発光素子42R、第2発光素子42G、第3発光素子42Bの組合せにより画素42が構成されている。画素42は、赤色発光素子と緑色発光素子と青色発光素子の組合せで構成されることが多いが、黄色発光素子とシアン発光素子と白色発光素子の組み合わせでもよく、少なくとも1色以上であれば特に制限されるものではない。   As shown in FIG. 5A, in the display area 41 of the display device 40, a plurality of pixels 42 including a plurality of light emitting elements are arranged in a matrix. Although details will be described later, each of the light-emitting elements has a structure including an organic layer sandwiched between a pair of electrodes. Here, the pixel refers to a minimum unit that enables display of a desired color in the display area 41. In the case of the display device according to this example, the pixel 42 is configured by a combination of the first light emitting element 42R, the second light emitting element 42G, and the third light emitting element 42B that emit different light. The pixel 42 is often composed of a combination of a red light emitting element, a green light emitting element, and a blue light emitting element, but may be a combination of a yellow light emitting element, a cyan light emitting element, and a white light emitting element. It is not limited.

図5(b)は、図5(a)のA−B線における部分断面模式図である。画素42は、基板43上に、第1電極(陽極)44と、正孔輸送層45と、発光層46R,46G,46Bのいずれかと、電子輸送層47と、第2電極(陰極)48と、を備える有機EL素子を有している。これらのうち、正孔輸送層45、発光層46R,46G,46B、電子輸送層47が有機層に当たる。また、本実施形態では、発光層46Rは赤色を発する有機EL層、発光層46Gは緑色を発する有機EL層、発光層46Bは青色を発する有機EL層である。発光層46R,46G,46Bは、それぞれ赤色、緑色、青色を発する発光素子(有機EL素子と記述する場合もある)に対応するパターンに形成されている。また、第1電極44は、発光素子ごとに分離して形成されている。正孔輸送層45と電子輸送層47と第2電極48は、複数の発光素子42と共通で形成されていてもよいし、発光素子毎に形成されていてもよい。なお、第1電極44と第2電極48とが異物によってショートするのを防ぐために、第1電極44間に絶縁層49が設けられている。さらに、有機EL層は水分や酸素によって劣化するため、水分や酸素から有機EL素子を保護するための保護層50が設けられている。   FIG. 5B is a schematic partial cross-sectional view taken along the line AB of FIG. The pixel 42 has a first electrode (anode) 44, a hole transport layer 45, one of the light emitting layers 46R, 46G, and 46B, an electron transport layer 47, and a second electrode (cathode) 48 on a substrate 43. And an organic EL element. Among these, the hole transport layer 45, the light emitting layers 46R, 46G, and 46B, and the electron transport layer 47 correspond to the organic layer. In the present embodiment, the light emitting layer 46R is an organic EL layer that emits red, the light emitting layer 46G is an organic EL layer that emits green, and the light emitting layer 46B is an organic EL layer that emits blue. The light emitting layers 46R, 46G, and 46B are formed in patterns corresponding to light emitting elements that emit red, green, and blue, respectively (sometimes referred to as organic EL elements). The first electrode 44 is formed separately for each light emitting element. The hole transport layer 45, the electron transport layer 47, and the second electrode 48 may be formed in common with the plurality of light emitting elements 42, or may be formed for each light emitting element. Note that an insulating layer 49 is provided between the first electrodes 44 in order to prevent the first electrode 44 and the second electrode 48 from being short-circuited by foreign matter. Furthermore, since the organic EL layer is deteriorated by moisture and oxygen, a protective layer 50 is provided for protecting the organic EL element from moisture and oxygen.

有機EL層を発光素子単位に形成するためには、マスクを介して成膜する方法が用いられる。近年、表示装置の高精細化が進んでおり、有機EL層の形成には開口の幅が数十μmのマスクが用いられる。このようなマスクを用いた成膜の場合、マスクが成膜中に蒸発源から受熱して熱変形するとマスクと基板との位置がずれてしまい、基板上に形成される薄膜のパターンが所望の位置からずれて形成されてしまう。そこで、これら有機EL層の成膜には本発明にかかる真空蒸着装置が好適に用いられる。   In order to form the organic EL layer in units of light emitting elements, a method of forming a film through a mask is used. In recent years, display devices have been improved in definition, and a mask having an opening width of several tens of μm is used for forming an organic EL layer. In the case of film formation using such a mask, if the mask receives heat from the evaporation source during film formation and is thermally deformed, the position of the mask and the substrate is shifted, and the pattern of the thin film formed on the substrate is desired. It will be formed out of position. Therefore, the vacuum evaporation apparatus according to the present invention is suitably used for forming these organic EL layers.

次に、有機EL表示装置の製造方法の例について具体的に説明する。   Next, an example of a method for manufacturing an organic EL display device will be specifically described.

まず、有機EL表示装置を駆動するための回路(不図示)および第1電極44が形成された基板43を準備する。   First, a circuit (not shown) for driving the organic EL display device and a substrate 43 on which the first electrode 44 is formed are prepared.

第1電極44が形成された基板43の上にアクリル樹脂をスピンコートで形成し、アクリル樹脂をリソグラフィ法により、第1電極44が形成された部分に開口が形成されるようにパターニングし絶縁層49を形成する。この開口部が、発光素子が実際に発光する発光領域に相当する。   An acrylic resin is formed on the substrate 43 on which the first electrode 44 is formed by spin coating, and the acrylic resin is patterned by lithography so that an opening is formed in the portion where the first electrode 44 is formed. 49 is formed. This opening corresponds to a light emitting region where the light emitting element actually emits light.

絶縁層49がパターニングされた基板43を真空蒸着装置に搬入し、正孔輸送層45を、表示領域の第1電極44の上に共通する層として成膜する。正孔輸送層45を真空蒸着により成膜した。実際には正孔輸送層45は表示領域41よりも大きなサイズに形成されるため、高精細なマスクは不要である。   The substrate 43 on which the insulating layer 49 is patterned is carried into a vacuum deposition apparatus, and the hole transport layer 45 is formed as a common layer on the first electrode 44 in the display region. A hole transport layer 45 was formed by vacuum deposition. Actually, since the hole transport layer 45 is formed in a size larger than the display region 41, a high-definition mask is unnecessary.

次に、蒸着マスクを用いて、赤色を発する素子を配置する部分に、赤色を発する発光層46Rを成膜する。まず、正孔輸送層45までが形成された基板43を図1の真空蒸着装置の蒸着領域3に搬入し、第1発光素子42Rを形成する領域に対応する開口を有するマスクとの位置合わせ(アライメント)を行う。   Next, using a vapor deposition mask, a light emitting layer 46R that emits red is formed on a portion where an element that emits red is disposed. First, the substrate 43 on which the hole transport layer 45 is formed is carried into the vapor deposition region 3 of the vacuum vapor deposition apparatus of FIG. 1 and aligned with a mask having an opening corresponding to the region where the first light emitting element 42R is formed ( Alignment).

用いるマスクが熱的に飽和した状態でない場合、マスクが成膜中に蒸発源から受熱して熱変形してマスクと基板との位置がずれてしまい、発光層46Rを所望の位置に成膜できなくなるおそれがある。そこで、基板43に蒸着を開始する前に、蒸着源2の熱を利用してマスクが熱的に飽和するまで事前加熱しておくことが望ましい。マスクが熱的に飽和したかどうかは、マスクの温度が安定したかどうか、具体的には、蒸着源2の熱を受けて上昇するマスクの温度の時間変動が所定の範囲内に収まったかどうかを確認するとよい。所定の範囲は、成膜に求められ精度に応じて決めることができる。   When the mask to be used is not thermally saturated, the mask receives heat from the evaporation source during film formation and is thermally deformed to shift the position of the mask and the substrate, so that the light emitting layer 46R can be formed at a desired position. There is a risk of disappearing. Therefore, it is desirable to preheat the mask using the heat of the vapor deposition source 2 until the mask is thermally saturated before vapor deposition on the substrate 43 is started. Whether the mask is thermally saturated is determined whether the temperature of the mask is stabilized, specifically, whether the temporal variation of the temperature of the mask that rises due to the heat of the vapor deposition source 2 falls within a predetermined range. It is good to confirm. The predetermined range can be determined according to the accuracy required for film formation.

一方、蒸着源2には発光層46Rの材料である有機EL材料が収容されており、有機材料を蒸発させて基板上に付着させるための準備として、予備加熱が行われる。予備加熱は、蒸発源2に収容した成膜材料の溶融状態を安定化させるため、成膜時の加熱温度と同様の温度で数分程度、蒸発源2を加熱するものである。成膜材料の溶融状態が安定したかどうかは、不図示の膜厚モニタを用いて得られる成膜速度(蒸着レート)の時間変化を見て判断するとよい。成膜材料の溶融状態が安定すると、蒸発源2から放出される成膜材料の蒸気の量が安定するため、成膜速度の変動が所定の範囲内に収まる。   On the other hand, the vapor deposition source 2 contains an organic EL material which is a material of the light emitting layer 46R, and preheating is performed as preparation for evaporating the organic material and depositing it on the substrate. The preheating heats the evaporation source 2 at a temperature similar to the heating temperature at the time of film formation for about several minutes in order to stabilize the molten state of the film forming material accommodated in the evaporation source 2. Whether or not the melted state of the film forming material is stable may be determined by looking at the change over time in the film forming speed (deposition rate) obtained using a film thickness monitor (not shown). When the melted state of the film forming material is stabilized, the amount of vapor of the film forming material released from the evaporation source 2 is stabilized, so that the fluctuation of the film forming speed falls within a predetermined range.

本例では、蒸発源2の予備加熱で発せられる熱と予備加熱に必要な時間を利用して、マスクの事前加熱を行う。具体的には、シャッタ7を閉じて蒸気が基板に付着しない状態で、蒸着源2を蒸着領域内で往復運動させてマスクを加熱する。予備加熱が完了するまでの間にマスクの温度が安定すると、蒸着源2の予備加熱が完了すると同時に成膜が可能な状態となる。蒸着源2の予備加熱の完了と同時に成膜を開始するために、マスクの事前加熱を行っている間に、基板とマスクとの位置合わせを行っておくとより効率的である。なお、予備加熱が完了してもマスクの温度が安定しない場合は、マスクの温度が安定するまで引き続き蒸着源2でマスクを加熱する。   In this example, the mask is preheated using the heat generated by the preheating of the evaporation source 2 and the time required for the preheating. Specifically, in a state where the shutter 7 is closed and vapor does not adhere to the substrate, the vapor deposition source 2 is reciprocated in the vapor deposition region to heat the mask. When the temperature of the mask is stabilized before the preheating is completed, the deposition source 2 is ready for film formation at the same time as the preheating of the vapor deposition source 2 is completed. In order to start film formation at the same time as the preliminary heating of the vapor deposition source 2 is completed, it is more efficient to align the substrate and the mask during the preheating of the mask. If the mask temperature is not stable even after the preheating is completed, the mask is continuously heated by the vapor deposition source 2 until the mask temperature is stabilized.

マスクが熱的に安定し、基板とマスクとのアライメントが完了したのを確認してから、蒸着源2を、レール10が延びる方向に蒸着領域3を挟んで設けられた2つの退避領域の一方に移動させる。その後、シャッタ7を開いて他方の退避領域に向けて蒸着源2の移動を開始することによって蒸着を開始させ、2つの退避領域の間を往復移動させて発光層46Rを成膜する。   After confirming that the mask is thermally stable and the alignment between the substrate and the mask is completed, the vapor deposition source 2 is connected to one of the two retreat areas provided with the vapor deposition area 3 in the direction in which the rail 10 extends. Move to. Thereafter, the shutter 7 is opened and the evaporation source 2 starts moving toward the other retreat area to start the evaporation, and the light emitting layer 46R is formed by reciprocating between the two retreat areas.

このように、本例によれば、発光層46Rの成膜中にマスクが変形することがないため、発光層46Rを所定のパターンで基板の上に成膜することができる。さらに、別途加熱設備が不要となるだけでなくマスクの事前加熱のためだけに時間を費やす必要もない。即ち、蒸発源2の予備加熱を行いながら、予備加熱中に生じる熱や予備加熱のための待ち時間を利用して、極めて効率的にマスクの事前加熱を行えることになる。   Thus, according to this example, since the mask is not deformed during the formation of the light emitting layer 46R, the light emitting layer 46R can be formed on the substrate in a predetermined pattern. Further, not only is a separate heating facility unnecessary, but there is no need to spend time just for preheating the mask. That is, while pre-heating the evaporation source 2, the mask can be pre-heated very efficiently using heat generated during pre-heating and a waiting time for pre-heating.

続いて、発光層46Rの成膜と同様に、第2発光素子42Gを形成する領域に対応する開口を有するマスクを用い、緑色を発する発光層46Gを成膜する。続いて、第3発光素子42Bを形成する領域に対応する開口を有するマスクを用い、青色を発する発光層46Bを成膜する。発光層46G、46Bそれぞれを成膜する際には、発光層46Rを成膜する前に行ったのと同様に蒸着源2をマスクに対して相対的に移動させ、マスクが熱的に飽和するのを確認してから成膜を開始する。   Subsequently, similarly to the formation of the light emitting layer 46R, the light emitting layer 46G emitting green is formed using a mask having an opening corresponding to the region where the second light emitting element 42G is formed. Subsequently, a light emitting layer 46B emitting blue light is formed using a mask having an opening corresponding to a region where the third light emitting element 42B is formed. When each of the light emitting layers 46G and 46B is formed, the evaporation source 2 is moved relative to the mask in the same manner as before the light emitting layer 46R is formed, and the mask is thermally saturated. After confirming this, film formation is started.

一度、発光層46R、46G、46Bそれぞれの成膜に用いられたマスクは、次の基板が設置されるまで真空の蒸着室で待機している。従って、マスクの熱は真空により保たれるため、マスクの熱的な飽和状態が維持される。従って、次の基板に対して成膜を開始する前のマスクの事前加熱を省略することが可能となる。もし、マスクと基板をアライメントして接触させた際に、マスクの熱が基板へ逃げ、マスクの温度が下がってしまう場合や、蒸着膜の成膜レートを変更する場合には、新たに設置した基板に蒸着を開始する前に、同様にして蒸着源2からの熱を利用してマスクを事前加熱するとよい。   Once the mask used for forming each of the light emitting layers 46R, 46G, and 46B is in a vacuum deposition chamber until the next substrate is installed. Therefore, since the heat of the mask is maintained by the vacuum, the thermal saturation state of the mask is maintained. Therefore, it is possible to omit the preheating of the mask before starting the film formation on the next substrate. If the mask and the substrate are aligned and brought into contact, the mask heat escapes to the substrate and the mask temperature drops, or the deposition rate of the deposited film is changed. Similarly, the mask may be preheated using the heat from the vapor deposition source 2 before vapor deposition is started on the substrate.

発光層46G、46Bの成膜が完了した後、表示領域41の全体に電子輸送層45を成膜する。電子輸送層45は、第1から第3発光層に共通の層として形成される。   After the formation of the light emitting layers 46G and 46B is completed, the electron transport layer 45 is formed over the entire display region 41. The electron transport layer 45 is formed as a layer common to the first to third light emitting layers.

電子輸送層45までが形成された基板をスパッタリング装置に移動し、第2電極46を成膜し、その後プラズマCVD装置に移動して保護層40を成膜して、有機EL表示装置40が完成する。   The substrate on which the electron transport layer 45 is formed is moved to the sputtering device, the second electrode 46 is formed, and then the protective layer 40 is formed by moving to the plasma CVD device, and the organic EL display device 40 is completed. To do.

絶縁層49がパターニングされた基板43を真空蒸着装置に搬入してから保護層40の成膜が完了するまでは、水分や酸素を含む雰囲気にさらしてしまうと、有機EL材料からなる発光層が水分や酸素によって劣化してしまうおそれがある。従って、本例において、成膜装置間の基板の搬入搬出は、真空雰囲気または不活性ガス雰囲気の下で行われる。   From the time when the substrate 43 on which the insulating layer 49 is patterned is carried into the vacuum deposition apparatus until the film formation of the protective layer 40 is completed, if the light emitting layer made of an organic EL material is exposed to an atmosphere containing moisture or oxygen, There is a risk of deterioration due to moisture and oxygen. Therefore, in this example, the carrying-in / out of the substrate between the film forming apparatuses is performed in a vacuum atmosphere or an inert gas atmosphere.

上記例においては、発光層の成膜時に、マスクの事前加熱を行ったが、その他の層を形成する際にも、マスクの事前加熱を行うことが可能である。   In the above example, the mask is preheated when the light emitting layer is formed, but the mask can be preheated when other layers are formed.

このようにして得られた有機EL表示装置は、発光素子ごとに発光層を精度よく形成することができる。従って、上記製造方法を用いれば、発光層の位置ずれに起因する有機EL表示装置の不良の発生を抑制することができる。   The organic EL display device thus obtained can accurately form a light emitting layer for each light emitting element. Therefore, if the manufacturing method is used, it is possible to suppress the occurrence of defects in the organic EL display device due to the displacement of the light emitting layer.

なお、ここでは、有機EL表示装置の製造方法について述べたが、それに限らず、蒸着時にマスクを用いて有機層のパターンを形成するすべての有機電子デバイスの製造方法についても同様に、本発明を適用することができる。また、有機膜に限らず、無機膜の形成についても同様に、本発明を適用することができる。   In addition, although the manufacturing method of the organic EL display device was described here, the present invention is similarly applied to the manufacturing method of all organic electronic devices in which the pattern of the organic layer is formed using a mask at the time of vapor deposition. Can be applied. In addition, the present invention can be applied to the formation of inorganic films as well as organic films.

1 蒸着室
2 蒸発源
3・4 蒸着領域
7 シャッタ
DESCRIPTION OF SYMBOLS 1 Deposition chamber 2 Evaporation source 3.4 Deposition area 7 Shutter

Claims (12)

蒸着室に、マスクを介して基板に蒸着を行う蒸発源と、蒸着を行う際に前記蒸発源を前記基板に対して相対的に移動させる蒸発源移動機構または蒸着を行う際に前記基板を前記蒸発源に対して相対的に移動させる基板移動機構とを設けた真空蒸着装置であって、前記基板への蒸着を開始する前に、前記蒸発源を用いて前記マスクの事前加熱を行うように前記蒸発源移動機構または前記基板移動機構が構成されていることを特徴とする真空蒸着装置。   An evaporation source that performs evaporation on the substrate through a mask, an evaporation source moving mechanism that moves the evaporation source relative to the substrate when performing evaporation, or the substrate when performing evaporation; A vacuum evaporation apparatus provided with a substrate moving mechanism that moves relative to an evaporation source, wherein the mask is preheated using the evaporation source before starting evaporation on the substrate. The vacuum evaporation apparatus, wherein the evaporation source moving mechanism or the substrate moving mechanism is configured. 前記蒸発源から蒸発する成膜材料の成膜速度を安定化させるための蒸着前の予備加熱中にこの蒸発源から発せられる熱を利用して前記マスクの事前加熱を行うことを特徴とする請求項1に記載の真空蒸着装置。   The preheating of the mask is performed using heat generated from the evaporation source during preheating before vapor deposition for stabilizing the film forming rate of the film forming material evaporated from the evaporation source. Item 2. The vacuum evaporation apparatus according to Item 1. 前記蒸発源にシャッタを設け、このシャッタを閉じた状態で前記蒸発源と前記マスクとの相対的な位置関係を変化させて前記マスクの事前加熱を行うように構成したことを特徴とする請求項1,2のいずれか1項に記載の真空蒸着装置。   The shutter is provided in the evaporation source, and the mask is preheated by changing the relative positional relationship between the evaporation source and the mask in a state where the shutter is closed. The vacuum evaporation apparatus of any one of 1 and 2. 最初に蒸着が行われる基板とマスクとの位置合わせは、前記マスクの事前加熱と併行して行うように前記蒸発源移動機構または前記基板移動機構を構成したことを特徴とする請求項1〜3のいずれか1項に記載の真空蒸着装置。   4. The evaporation source moving mechanism or the substrate moving mechanism is configured such that alignment of a substrate and a mask on which vapor deposition is performed first is performed in parallel with preheating of the mask. The vacuum evaporation apparatus of any one of these. 前記蒸着室に前記基板に蒸着を行うための蒸着領域を前記蒸発源の移動方向と直交する方向に複数並設し、
複数の前記蒸着領域それぞれに対して、前記蒸着領域の外に、前記蒸発源を退避させる退避領域を設け、
前記蒸発源を前記蒸着領域の並設方向と同方向に移動させて一方の蒸着領域から他方の蒸着領域へと移動し得るように前記蒸発源移動機構を構成し、
前記複数の蒸着領域にそれぞれ配置されるマスクを事前加熱する際、一方の蒸着領域に配置されたマスクを加熱した後、前記蒸発源を前記退避領域には退避させることなく前記蒸着領域の並設方向に移動させて他方の蒸着領域に移動させるように前記蒸発源移動機構が構成されていることを特徴とする請求項1〜4のいずれか1項に記載の真空蒸着装置。
A plurality of vapor deposition regions for performing vapor deposition on the substrate in the vapor deposition chamber are arranged side by side in a direction perpendicular to the moving direction of the evaporation source,
For each of the plurality of vapor deposition regions, a retreat region for retreating the evaporation source is provided outside the vapor deposition region,
The evaporation source moving mechanism is configured so that the evaporation source can be moved in the same direction as the juxtaposition direction of the evaporation regions and moved from one evaporation region to the other evaporation region,
When preliminarily heating the masks disposed in each of the plurality of vapor deposition regions, the masks disposed in one vapor deposition region are heated, and then the vapor deposition regions are arranged side by side without retracting the evaporation source in the retreat region. The vacuum evaporation apparatus according to any one of claims 1 to 4, wherein the evaporation source moving mechanism is configured to move in the direction and move to the other evaporation region.
蒸着室に、マスクを介して基板に蒸着を行う蒸発源と、蒸着を行う際に前記蒸発源を前記基板の長手方向若しくは幅方向のいずれかを成膜移動方向としてこの成膜移動方向に往復移動させる蒸発源移動機構とを設けた真空蒸着装置であって、前記蒸着室の真空状態を維持したまま複数の前記基板に連続的に蒸着を行う連続蒸着を開始する前に、前記蒸発源を前記マスクに対して移動させることで前記マスクの事前加熱を行うように前記蒸発源移動機構が構成されていることを特徴とする真空蒸着装置。   An evaporation source that deposits on the substrate through a mask in the deposition chamber, and when the deposition is performed, the evaporation source reciprocates in the deposition movement direction in either the longitudinal direction or the width direction of the substrate. A vacuum evaporation apparatus provided with a moving evaporation source moving mechanism, wherein the evaporation source is turned on before starting continuous evaporation in which evaporation is continuously performed on the plurality of substrates while maintaining the vacuum state of the evaporation chamber. The vacuum evaporation apparatus, wherein the evaporation source moving mechanism is configured to perform preheating of the mask by moving the mask. 蒸着膜の製造方法であって、
基板を蒸着室に設置する工程と、
蒸発源に収容された成膜材料を加熱して成膜速度を安定させる工程と、
マスクを介して前記基板に前記蒸着材料の蒸気を付着させる工程と、
を有し、
前記成膜速度を安定させる工程の間に前記蒸発源と前記基板との相対的な位置関係を変化させ、前記蒸発源の熱により前記マスクを加熱することを特徴とする蒸着膜の製造方法。
A method for producing a deposited film, comprising:
Installing the substrate in the vapor deposition chamber;
Heating the film forming material accommodated in the evaporation source to stabilize the film forming speed;
Attaching a vapor of the vapor deposition material to the substrate through a mask;
Have
A method for producing a vapor deposition film, wherein the relative positional relationship between the evaporation source and the substrate is changed during the step of stabilizing the deposition rate, and the mask is heated by heat of the evaporation source.
前記蒸発源の熱により前記マスクを加熱する間、前記蒸着材料の蒸気を、前記基板に付着しないよう遮蔽することを特徴とする請求項7に記載の蒸着膜の製造方法。   The method for producing a vapor deposition film according to claim 7, wherein vapor of the vapor deposition material is shielded from adhering to the substrate while the mask is heated by heat of the evaporation source. 前記マスクを、前記基板に前記成膜材料の蒸気を付着させる工程の前に、前記マスクの温度が安定するまで加熱することを特徴とする請求項8に記載の蒸着膜の製造方法。   9. The method of manufacturing a vapor deposition film according to claim 8, wherein the mask is heated until the temperature of the mask is stabilized before the step of attaching the vapor of the film forming material to the substrate. 基板の上に、一対の電極に挟まれた有機層を備える素子を複数備える有機電子デバイスの製造方法であって、
複数の電極が形成された基板を蒸着室に設置する工程と、
複数の開口を備えるマスクを、前記基板に対して位置合わせする工程と、
蒸発源に収容された成膜材料を加熱して成膜速度を安定させる工程と、
前記マスクを介して前記基板上に前記成膜材料の蒸気を付着させ、前記有機層の少なくとも一部を形成する工程と、
を有し、
前記成膜速度を安定させる工程の間に前記蒸発源と前記基板との相対的な位置関係を変化させ、前記蒸発源の熱により前記マスクを加熱することを特徴とする有機電子デバイスの製造方法。
A method for producing an organic electronic device comprising a plurality of elements comprising an organic layer sandwiched between a pair of electrodes on a substrate,
Installing a substrate on which a plurality of electrodes are formed in a vapor deposition chamber;
Aligning a mask with a plurality of openings with respect to the substrate;
Heating the film forming material accommodated in the evaporation source to stabilize the film forming speed;
Depositing vapor of the film-forming material on the substrate through the mask to form at least a part of the organic layer;
Have
A method of manufacturing an organic electronic device, wherein the relative positional relationship between the evaporation source and the substrate is changed during the step of stabilizing the film formation rate, and the mask is heated by the heat of the evaporation source. .
前記蒸発源の熱により前記マスクを加熱する間、前記蒸着材料の蒸気を、前記基板に付着しないよう遮蔽することを特徴とする請求項10に記載の有機電子デバイスの製造方法。   11. The method of manufacturing an organic electronic device according to claim 10, wherein vapor of the vapor deposition material is shielded from adhering to the substrate while the mask is heated by heat of the evaporation source. 前記マスクを、前記基板に前記蒸着材料の蒸気を付着させる工程の前に、前記マスクの温度が安定するまで加熱することを特徴とする請求項11に記載の有機電子デバイスの製造方法。   12. The method of manufacturing an organic electronic device according to claim 11, wherein the mask is heated until the temperature of the mask is stabilized before the step of attaching the vapor of the vapor deposition material to the substrate.
JP2016099372A 2015-06-18 2016-05-18 Vacuum deposition apparatus, method for producing deposited film, and method for producing organic electronic device Active JP6243474B2 (en)

Priority Applications (5)

Application Number Priority Date Filing Date Title
TW105117204A TWI653353B (en) 2015-06-18 2016-06-01 Vacuum vapor deposition device, method for producing vapor deposition film, and method for manufacturing organic electronic device
CN201610416499.3A CN106256925B (en) 2015-06-18 2016-06-14 Vacuum evaporation apparatus, method for manufacturing evaporated film, and method for manufacturing organic electronic device
CN202010902089.6A CN112011765B (en) 2015-06-18 2016-06-14 Vapor deposition apparatus, control method thereof, and film forming method
KR1020160075172A KR102046684B1 (en) 2015-06-18 2016-06-16 Vacuum deposition apparatus and method for producing vapor deposited film and organic electronic device
KR1020190047192A KR102360558B1 (en) 2015-06-18 2019-04-23 Vacuum deposition apparatus and method for producing vapor deposited film and organic electronic device

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2015122927 2015-06-18
JP2015122927 2015-06-18

Publications (3)

Publication Number Publication Date
JP2017008409A true JP2017008409A (en) 2017-01-12
JP2017008409A5 JP2017008409A5 (en) 2017-09-07
JP6243474B2 JP6243474B2 (en) 2017-12-06

Family

ID=57763340

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2016099372A Active JP6243474B2 (en) 2015-06-18 2016-05-18 Vacuum deposition apparatus, method for producing deposited film, and method for producing organic electronic device

Country Status (2)

Country Link
JP (1) JP6243474B2 (en)
TW (1) TWI653353B (en)

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2018153482A1 (en) * 2017-02-24 2018-08-30 Applied Materials, Inc. Deposition source
JP6401885B1 (en) * 2017-07-27 2018-10-10 キヤノントッキ株式会社 Display manufacturing apparatus and device manufacturing method using the same
KR20190069313A (en) 2017-12-11 2019-06-19 가부시키가이샤 알박 Vapor deposition apparatus
JP2020139227A (en) * 2019-02-27 2020-09-03 キヤノントッキ株式会社 Film deposition apparatus, film deposition method, and manufacturing method of electronic device
WO2020179967A1 (en) * 2019-03-05 2020-09-10 주식회사 넵시스 Multi-vacuum deposition apparatus including plurality of moving crucibles disposed on up-and-down-moving bottom airtight closure part
CN112680696A (en) * 2019-10-17 2021-04-20 佳能特机株式会社 Film forming apparatus, electronic device manufacturing apparatus, film forming method, and electronic device manufacturing method
CN113278926A (en) * 2021-04-16 2021-08-20 布勒莱宝光学设备(北京)有限公司 Coating film shielding device and coating film device comprising same
CN115233161A (en) * 2022-07-13 2022-10-25 昆山国显光电有限公司 Vapor deposition apparatus, vapor deposition system, and vapor deposition method
JP2023006676A (en) * 2021-06-30 2023-01-18 キヤノントッキ株式会社 Film deposition device, film deposition method, and evaporation source unit
JP2023006677A (en) * 2021-06-30 2023-01-18 キヤノントッキ株式会社 Film deposition device, film deposition method, and evaporation source unit

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003313654A (en) * 2001-12-12 2003-11-06 Semiconductor Energy Lab Co Ltd Apparatus and method for forming film, and method for cleaning
JP2009289474A (en) * 2008-05-27 2009-12-10 Casio Comput Co Ltd Light-emitting device, and manufacturing method of light-emitting device
JP2013038320A (en) * 2011-08-10 2013-02-21 Shimadzu Corp Semiconductor film evaporation device and semiconductor film evaporation method
JP2014070239A (en) * 2012-09-28 2014-04-21 Hitachi High-Technologies Corp Vapor deposition device
JP2016130347A (en) * 2015-01-14 2016-07-21 大日本印刷株式会社 Vapor deposition pattern formation method, method of manufacturing organic semiconductor element, and vapor deposition apparatus

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003313654A (en) * 2001-12-12 2003-11-06 Semiconductor Energy Lab Co Ltd Apparatus and method for forming film, and method for cleaning
JP2009289474A (en) * 2008-05-27 2009-12-10 Casio Comput Co Ltd Light-emitting device, and manufacturing method of light-emitting device
JP2013038320A (en) * 2011-08-10 2013-02-21 Shimadzu Corp Semiconductor film evaporation device and semiconductor film evaporation method
JP2014070239A (en) * 2012-09-28 2014-04-21 Hitachi High-Technologies Corp Vapor deposition device
JP2016130347A (en) * 2015-01-14 2016-07-21 大日本印刷株式会社 Vapor deposition pattern formation method, method of manufacturing organic semiconductor element, and vapor deposition apparatus

Cited By (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2018153482A1 (en) * 2017-02-24 2018-08-30 Applied Materials, Inc. Deposition source
JP6401885B1 (en) * 2017-07-27 2018-10-10 キヤノントッキ株式会社 Display manufacturing apparatus and device manufacturing method using the same
JP2019026931A (en) * 2017-07-27 2019-02-21 キヤノントッキ株式会社 Display manufacturing apparatus and device manufacturing method using the same
KR20190069313A (en) 2017-12-11 2019-06-19 가부시키가이샤 알박 Vapor deposition apparatus
CN111621762B (en) * 2019-02-27 2023-06-02 佳能特机株式会社 Film forming apparatus, film forming method, and electronic device manufacturing method
JP2020139227A (en) * 2019-02-27 2020-09-03 キヤノントッキ株式会社 Film deposition apparatus, film deposition method, and manufacturing method of electronic device
CN111621762A (en) * 2019-02-27 2020-09-04 佳能特机株式会社 Film forming apparatus, film forming method, and electronic device manufacturing method
JP7364432B2 (en) 2019-02-27 2023-10-18 キヤノントッキ株式会社 Film forming apparatus, film forming method, and electronic device manufacturing method
WO2020179967A1 (en) * 2019-03-05 2020-09-10 주식회사 넵시스 Multi-vacuum deposition apparatus including plurality of moving crucibles disposed on up-and-down-moving bottom airtight closure part
CN112680696A (en) * 2019-10-17 2021-04-20 佳能特机株式会社 Film forming apparatus, electronic device manufacturing apparatus, film forming method, and electronic device manufacturing method
CN112680696B (en) * 2019-10-17 2023-07-04 佳能特机株式会社 Film forming apparatus, electronic device manufacturing apparatus, film forming method, and electronic device manufacturing method
CN113278926A (en) * 2021-04-16 2021-08-20 布勒莱宝光学设备(北京)有限公司 Coating film shielding device and coating film device comprising same
CN113278926B (en) * 2021-04-16 2022-06-03 布勒莱宝光学设备(北京)有限公司 Coating film shielding device and coating film device comprising same
JP2023006677A (en) * 2021-06-30 2023-01-18 キヤノントッキ株式会社 Film deposition device, film deposition method, and evaporation source unit
JP2023006676A (en) * 2021-06-30 2023-01-18 キヤノントッキ株式会社 Film deposition device, film deposition method, and evaporation source unit
JP7314210B2 (en) 2021-06-30 2023-07-25 キヤノントッキ株式会社 Film forming apparatus, film forming method, and evaporation source unit
JP7314209B2 (en) 2021-06-30 2023-07-25 キヤノントッキ株式会社 Film forming apparatus, film forming method, and evaporation source unit
CN115233161A (en) * 2022-07-13 2022-10-25 昆山国显光电有限公司 Vapor deposition apparatus, vapor deposition system, and vapor deposition method

Also Published As

Publication number Publication date
TW201712135A (en) 2017-04-01
JP6243474B2 (en) 2017-12-06
TWI653353B (en) 2019-03-11

Similar Documents

Publication Publication Date Title
KR102360558B1 (en) Vacuum deposition apparatus and method for producing vapor deposited film and organic electronic device
JP6243474B2 (en) Vacuum deposition apparatus, method for producing deposited film, and method for producing organic electronic device
JP2017008409A5 (en)
KR100696550B1 (en) Deposition apparatus
TWI301904B (en) Method of manufacturing a display by mask alignment
KR101135544B1 (en) Mask Assembly, Fabrication method of the same and Deposition Apparatus using the same for Flat Panel Display device
JP5502092B2 (en) Vapor deposition method and vapor deposition apparatus
JP7429723B2 (en) Film forming apparatus, film forming method, and electronic device manufacturing method
US9039478B2 (en) Apparatus for manufacturing deposition mask assembly for flat panel display
US20110033621A1 (en) Thin film deposition apparatus including deposition blade
US8616930B1 (en) Depositing apparatus and method for manufacturing organic light emitting diode display using the same
JP2013055039A (en) Manufacturing method of el light-emitting device and vapor deposition device
KR20100094802A (en) Mask adhesion means for deposition process and deposition apparatus using the same
WO2012056877A1 (en) Vapor deposition method, vapor deposition apparatus, and organic el display device
US20100316801A1 (en) Thin film deposition apparatus
KR102049668B1 (en) Film formation apparatus
US8709837B2 (en) Deposition apparatus and method for manufacturing organic light emitting diode display using the same
JP2004152705A (en) Manufacturing method of organic electroluminescent element
WO2018092182A1 (en) Vapor deposition mask, vapor deposition apparatus, vapor deposition mask production method, and electroluminescent display apparatus production method
JP4096567B2 (en) Integrated mask, method for manufacturing organic EL element using integrated mask, and manufacturing apparatus therefor
KR20190070239A (en) Evaporation source device and vapor deposition apparatus
KR102206593B1 (en) Apparatus and method for aligning substrate
WO2019049453A1 (en) Deposition mask, method for manufacturing deposition mask, and method for manufacturing display device
KR100670375B1 (en) Mask for thin film evaporation, method for thin film evaporation, and method for manufacturing organic electroluminescent display device
JP2009064740A (en) Deposition method and device

Legal Events

Date Code Title Description
A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20170731

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20170731

A871 Explanation of circumstances concerning accelerated examination

Free format text: JAPANESE INTERMEDIATE CODE: A871

Effective date: 20170731

A975 Report on accelerated examination

Free format text: JAPANESE INTERMEDIATE CODE: A971005

Effective date: 20170829

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20171012

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20171109

R150 Certificate of patent or registration of utility model

Ref document number: 6243474

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250