JP2020139227A - Film deposition apparatus, film deposition method, and manufacturing method of electronic device - Google Patents

Film deposition apparatus, film deposition method, and manufacturing method of electronic device Download PDF

Info

Publication number
JP2020139227A
JP2020139227A JP2019203955A JP2019203955A JP2020139227A JP 2020139227 A JP2020139227 A JP 2020139227A JP 2019203955 A JP2019203955 A JP 2019203955A JP 2019203955 A JP2019203955 A JP 2019203955A JP 2020139227 A JP2020139227 A JP 2020139227A
Authority
JP
Japan
Prior art keywords
film
film forming
evaporation source
film formation
rate measuring
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2019203955A
Other languages
Japanese (ja)
Other versions
JP7364432B2 (en
JP2020139227A5 (en
Inventor
佐藤 昌明
Masaaki Sato
昌明 佐藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Canon Tokki Corp
Original Assignee
Canon Tokki Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Canon Tokki Corp filed Critical Canon Tokki Corp
Publication of JP2020139227A publication Critical patent/JP2020139227A/en
Publication of JP2020139227A5 publication Critical patent/JP2020139227A5/ja
Application granted granted Critical
Publication of JP7364432B2 publication Critical patent/JP7364432B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/22Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the process of coating
    • C23C14/54Controlling or regulating the coating process
    • C23C14/542Controlling the film thickness or evaporation rate
    • C23C14/543Controlling the film thickness or evaporation rate using measurement on the vapor source
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/22Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the process of coating
    • C23C14/56Apparatus specially adapted for continuous coating; Arrangements for maintaining the vacuum, e.g. vacuum locks
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/04Coating on selected surface areas, e.g. using masks
    • C23C14/042Coating on selected surface areas, e.g. using masks using masks
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/06Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the coating material
    • C23C14/12Organic material
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/22Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the process of coating
    • C23C14/24Vacuum evaporation
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/22Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the process of coating
    • C23C14/24Vacuum evaporation
    • C23C14/243Crucibles for source material
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/22Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the process of coating
    • C23C14/54Controlling or regulating the coating process
    • C23C14/542Controlling the film thickness or evaporation rate
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/22Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the process of coating
    • C23C14/54Controlling or regulating the coating process
    • C23C14/542Controlling the film thickness or evaporation rate
    • C23C14/545Controlling the film thickness or evaporation rate using measurement on deposited material
    • C23C14/546Controlling the film thickness or evaporation rate using measurement on deposited material using crystal oscillators
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/67Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere
    • H01L21/68Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere for positioning, orientation or alignment
    • H01L21/682Mask-wafer alignment
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K71/00Manufacture or treatment specially adapted for the organic devices covered by this subclass
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K71/00Manufacture or treatment specially adapted for the organic devices covered by this subclass
    • H10K71/10Deposition of organic active material
    • H10K71/16Deposition of organic active material using physical vapour deposition [PVD], e.g. vacuum deposition or sputtering
    • H10K71/164Deposition of organic active material using physical vapour deposition [PVD], e.g. vacuum deposition or sputtering using vacuum deposition

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Manufacturing & Machinery (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Physical Vapour Deposition (AREA)
  • Electroluminescent Light Sources (AREA)

Abstract

To provide a technique for suppressing reduction of an exchange cycle of a film deposition rate measurement part for monitoring a vapor deposition position.SOLUTION: A film deposition apparatus 11 according to the invention includes: a vessel 20; a first evaporation source 23 which is arranged in the vessel 20 and includes a plurality of crucibles 231; a first film deposition rate measurement part 271a which is arranged toward a first position 232a of the first evaporation source 23; a second film deposition rate measurement part 272a which is arranged toward a second position 237a of the first evaporation source 23; first opening-closing means 26a which is arranged in a position corresponding to the first position 232a; and first cover means 25a which is arranged in a position corresponding to the second position 237a and arranged to be fixed in the vessel 20. A first distance A between the first position 232a and the first film deposition rate measurement part 271a is larger than a second distance B between the second position 237a and the second film deposition rate measurement part 272a.SELECTED DRAWING: Figure 6

Description

本発明は、成膜装置、成膜方法、及び電子デバイス製造方法に関するものであり、特に、成膜レート測定手段の配置構造に関するものである。 The present invention relates to a film forming apparatus, a film forming method, and an electronic device manufacturing method, and more particularly to an arrangement structure of a film forming rate measuring means.

最近、フラットパネル表示装置として有機EL表示装置(有機ELディスプレイ)が脚光を浴びている。有機EL表示装置は、自発光ディスプレイであり、応答速度、視野角、薄型化などの特性が液晶パネルディスプレイより優れており、モニタ、テレビ、スマートフォンに代表される各種の携帯端末などで既存の液晶パネルディスプレイを早いスピードで代替している。また、自動車用ディスプレイ等にも、その応用分野を広げている。 Recently, an organic EL display device (organic EL display) has been in the limelight as a flat panel display device. The organic EL display device is a self-luminous display, which is superior to the liquid crystal panel display in characteristics such as response speed, viewing angle, and thinning, and is an existing liquid crystal in various mobile terminals such as monitors, televisions, and smartphones. It replaces the panel display at a high speed. It is also expanding its application fields to automobile displays and the like.

有機EL表示装置を構成する有機発光素子(有機EL素子:OLED)は、2つの向かい合う電極(カソード電極、アノード電極)の間に発光を起こす有機物層が形成された基本構造を持つ。有機発光素子の有機物層と金属電極層は、成膜装置において、成膜材料が収容された蒸発源を加熱し、成膜材料を蒸発させて、成膜材料の蒸発粒子を画素パターンが形成されたマスクを介して基板に堆積させることで製造される。 The organic light emitting element (organic EL element: OLED) constituting the organic EL display device has a basic structure in which an organic substance layer that emits light is formed between two facing electrodes (cathode electrode and anode electrode). In the film forming apparatus, the organic substance layer and the metal electrode layer of the organic light emitting element heat the evaporation source containing the film forming material to evaporate the film forming material, and a pixel pattern is formed on the evaporated particles of the film forming material. It is manufactured by depositing it on a substrate through a mask.

特に、金属電極層を基板に成膜するための成膜装置の蒸溌源700は、図8に示すように、複数のるつぼ710〜770が円周上に配置され、複数のるつぼのうち蒸着位置にあるるつぼ710から電極材料が蒸発し、基板に成膜が行われる。蒸着位置のるつぼ710内の成膜材料が消耗すると、蒸発源700が回転して、予熱位置にあったるつぼ760が蒸着位置に移動することで、持続的に成膜が行われる(特許文献1)。 In particular, in the steaming source 700 of the film forming apparatus for forming the metal electrode layer on the substrate, as shown in FIG. 8, a plurality of crucibles 710 to 770 are arranged on the circumference, and the film is deposited among the plurality of crucibles. The electrode material evaporates from the crucible 710 at the position, and a film is formed on the substrate. When the film-forming material in the crucible 710 at the vapor deposition position is consumed, the evaporation source 700 rotates and the crucible 760 at the preheating position moves to the vapor deposition position, so that film formation is continuously performed (Patent Document 1). ).

成膜装置では、基板に成膜された成膜材料の厚さ及び成膜レートを測定及び制御するために、水晶振動子モニタを使う。すなわち、成膜装置においては、水晶振動子の共振周波数と水晶振動子の電極上に堆積される成膜材料の厚さとの関係を利用して、基板上に成膜される成膜材料の厚さ及び成膜レートを算出する。
ところが、水晶振動子の電極上に所定の厚さ以上に成膜材料が堆積すると、水晶振動子の共振振動が不安定となり、水晶振動子の共振周波数から膜厚を測定するのが不可能になる。このような現象が生じれば、水晶振動子の寿命が来たと判定して、水晶振動子を切り替える。
In the film forming apparatus, a crystal oscillator monitor is used to measure and control the thickness and the film forming rate of the film forming material deposited on the substrate. That is, in the film forming apparatus, the thickness of the film forming material formed on the substrate is utilized by utilizing the relationship between the resonance frequency of the crystal oscillator and the thickness of the film forming material deposited on the electrode of the crystal oscillator. And the film formation rate is calculated.
However, if the film-forming material is deposited on the electrodes of the crystal oscillator to a thickness greater than a predetermined thickness, the resonance vibration of the crystal oscillator becomes unstable, making it impossible to measure the film thickness from the resonance frequency of the crystal oscillator. Become. If such a phenomenon occurs, it is determined that the life of the crystal oscillator has expired, and the crystal oscillator is switched.

特開2006−249575号公報Japanese Unexamined Patent Publication No. 2006-249575

金属電極層を基板に成膜するための成膜装置では、蒸着位置にあるるつぼ710と予熱位置にあるるつぼ760のそれぞれに対して、蒸発レートあるいは成膜レートを監視するために、蒸着位置監視用の水晶振動子モニタと予熱位置監視用の水晶振動子モニタを設置する。 In the film forming apparatus for depositing the metal electrode layer on the substrate, the vapor deposition position is monitored in order to monitor the evaporation rate or the film formation rate for each of the crucible 710 at the vapor deposition position and the crucible 760 at the preheating position. Install a crystal oscillator monitor for the purpose and a crystal oscillator monitor for preheating position monitoring.

ところで、蒸着位置監視用の水晶振動子モニタが予熱位置監視用の水晶振動子モニタより蒸発源のるつぼの成膜レートを監視する時間が長いので、蒸着位置監視用の水晶振動子の電極上に堆積される成膜材料の厚さが所定の厚さに達する時間が予熱位置監視用の水晶振動子の場合より短い。そのため、蒸着位置監視用の水晶振動子モニタが予熱位置監視用
の水晶振動子モニタより早く寿命が来ることとなる。これにより、蒸着位置監視用の水晶振動子モニタの交換周期が相対的に短くなる課題があった。
By the way, since the crystal oscillator monitor for vapor deposition position monitoring takes longer to monitor the film formation rate of the evaporation source pot than the crystal oscillator monitor for preheating position monitoring, it is placed on the electrode of the crystal oscillator for vapor deposition position monitoring. The time it takes for the deposited material to reach a predetermined thickness is shorter than that of the crystal oscillator for preheating position monitoring. Therefore, the crystal oscillator monitor for vapor deposition position monitoring will reach the end of its life earlier than the crystal oscillator monitor for preheating position monitoring. As a result, there is a problem that the replacement cycle of the crystal oscillator monitor for monitoring the vapor deposition position becomes relatively short.

本発明は上記課題に鑑み、蒸着位置監視用の成膜レート測定部の交換周期の短縮を抑制するための技術を提供することを主な目的とする。 In view of the above problems, it is a main object of the present invention to provide a technique for suppressing shortening of the replacement cycle of the film deposition rate measuring unit for monitoring the vapor deposition position.

本発明の第1態様による成膜装置は、真空容器と、前記真空容器内に設置され、それぞれが複数のるつぼを含む複数の蒸発源と、前記複数の蒸発源のうち、第1蒸発源の第1位置に向けて設置された第1成膜レート測定部と、前記第1蒸発源の第2位置に向けて設置された第2成膜レート測定部と、前記第1位置に対応する位置に設置された第1可動式開閉手段と、前記第2位置に対応する位置に設置され、前記真空容器に固定されるように設置される第1カバー手段とを含み、前記第1位置と前記第1成膜レート測定部との間の第1距離が、前記第2位置と前記第2成膜レート測定部との間の第2距離より大きいことを特徴とする。
本発明の第2態様による成膜方法は、本発明の第1態様による成膜装置を用いて基板上に成膜材料を成膜することを特徴とする成膜方法。
本発明の第3態様による電子デバイス製造方法は、本発明の第2態様による成膜方法を用いて電子デバイスを製造することを特徴とする。
The film forming apparatus according to the first aspect of the present invention comprises a vacuum vessel, a plurality of evaporation sources each of which is installed in the vacuum vessel and includes a plurality of pots, and a first evaporation source among the plurality of evaporation sources. A first film formation rate measuring unit installed toward the first position, a second film forming rate measuring unit installed toward the second position of the first evaporation source, and a position corresponding to the first position. A first movable opening / closing means installed in the first position and a first cover means installed at a position corresponding to the second position and fixed to the vacuum vessel. The first distance between the first film formation rate measuring unit is larger than the second distance between the second position and the second film forming rate measuring unit.
The film forming method according to the second aspect of the present invention is a film forming method characterized in that a film forming material is formed on a substrate by using the film forming apparatus according to the first aspect of the present invention.
The method for manufacturing an electronic device according to the third aspect of the present invention is characterized in that the electronic device is manufactured by using the film forming method according to the second aspect of the present invention.

本発明によれば、蒸着位置監視用の成膜レート測定部の交換周期の短縮を抑制するための技術を提供することができる。 According to the present invention, it is possible to provide a technique for suppressing shortening of the replacement cycle of the film formation rate measuring unit for monitoring the vapor deposition position.

図1は、本発明の一実施例による電子デバイスの製造ラインの一部の模式図である。FIG. 1 is a schematic view of a part of an electronic device manufacturing line according to an embodiment of the present invention. 図2は、本発明の一実施例による成膜装置の模式図である。FIG. 2 is a schematic view of a film forming apparatus according to an embodiment of the present invention. 図3は、本発明の一実施例による成膜装置の蒸発源の模式図である。FIG. 3 is a schematic view of an evaporation source of a film forming apparatus according to an embodiment of the present invention. 図4は、本発明の一実施例による防着部材の構造を示す模式図である。FIG. 4 is a schematic view showing the structure of the adhesive member according to the embodiment of the present invention. 図5は、本発明の一実施例による成膜レート測定手段の構造を示す模式図である。FIG. 5 is a schematic view showing the structure of the film formation rate measuring means according to the embodiment of the present invention. 図6は、本発明の一実施例による成膜レート測定部と蒸発源の配置構造を示す模式図である。FIG. 6 is a schematic view showing an arrangement structure of a film formation rate measuring unit and an evaporation source according to an embodiment of the present invention. 図7は、有機EL表示装置の構造を示す模式図である。FIG. 7 is a schematic view showing the structure of the organic EL display device. 図8は、金属電極層の成膜装置に使われる蒸発源の一例を示す模式図である。FIG. 8 is a schematic view showing an example of an evaporation source used in a film forming apparatus for a metal electrode layer.

以下、図面を参照しつつ本発明の好適な実施形態及び実施例を説明する。ただし、以下の実施形態及び実施例は本発明の好ましい構成を例示的に示すものにすぎず、本発明の範囲はそれらの構成に限定されない。また、以下の説明における、装置のハードウェア構成及びソフトウェア構成、処理フロー、製造条件、寸法、材質、形状などは、特に特定的な記載がないかぎりは、本発明の範囲をそれらのみに限定する趣旨のものではない。 Hereinafter, preferred embodiments and examples of the present invention will be described with reference to the drawings. However, the following embodiments and examples merely exemplify preferable configurations of the present invention, and the scope of the present invention is not limited to those configurations. Further, the hardware configuration and software configuration, processing flow, manufacturing conditions, dimensions, materials, shapes, etc. of the apparatus in the following description are limited to those of the present invention unless otherwise specified. It is not the purpose.

本発明は、基板の表面に各種材料を堆積させて成膜を行う装置に適用することができ、真空蒸着によって所望のパターンの薄膜(材料層)を形成する装置に望ましく適用することができる。基板の材料としては、ガラス、高分子材料のフィルム、金属などの任意の材料を選択することができ、基板は、例えば、ガラス基板上にポリイミドなどのフィルムが積層された基板であってもよい。また、成膜材料としても、有機材料、金属性材料(金属
、金属酸化物など)などの任意の材料を選択してもよい。なお、以下の説明において説明する真空蒸着装置以外にも、スパッタ装置やCVD(Chemical Vapor Deposition)装置を含む成膜装置にも、本発明を適用することができる。本発明の技術は、具体的には、有機電子デバイス(例えば、有機EL素子、薄膜太陽電池)、光学部材などの製造装置に適用可能である。その中でも、成膜材料を蒸発させてマスクを介して基板に蒸着させることで有機EL素子を形成する有機EL素子の製造装置は、本発明の好ましい適用例の一つである。
The present invention can be applied to an apparatus for depositing various materials on the surface of a substrate to form a film, and can be preferably applied to an apparatus for forming a thin film (material layer) having a desired pattern by vacuum vapor deposition. As the material of the substrate, any material such as glass, a film of a polymer material, and a metal can be selected, and the substrate may be, for example, a substrate in which a film such as polyimide is laminated on a glass substrate. .. Further, as the film forming material, any material such as an organic material and a metallic material (metal, metal oxide, etc.) may be selected. The present invention can be applied to a film forming apparatus including a sputtering apparatus and a CVD (Chemical Vapor Deposition) apparatus in addition to the vacuum vapor deposition apparatus described in the following description. Specifically, the technique of the present invention can be applied to manufacturing equipment such as organic electronic devices (for example, organic EL elements and thin film solar cells) and optical members. Among them, an apparatus for manufacturing an organic EL element, which forms an organic EL element by evaporating a film-forming material and depositing it on a substrate via a mask, is one of the preferred application examples of the present invention.

<電子デバイスの製造装置>
図1は、電子デバイスの製造装置の一部の構成を模式的に示す平面図である。
図1の製造装置は、例えば、スマートフォン用の有機EL表示装置の表示パネルの製造に用いられる。スマートフォン用の表示パネルの場合、例えば、4.5世代の基板(約700mm×約900mm)や6世代のフルサイズ(約1500mm×約1850mm)又はハーフカットサイズ(約1500mm×約925mm)の基板に、有機EL素子の形成のための成膜を行った後、該基板を切り抜いて複数の小さなサイズのパネルを製造する。電子デバイスの製造装置は、一般的に、複数のクラスタ装置1と、クラスタ装置の間を繋ぐ中継装置とを含む。
<Manufacturing equipment for electronic devices>
FIG. 1 is a plan view schematically showing a configuration of a part of an electronic device manufacturing apparatus.
The manufacturing apparatus of FIG. 1 is used, for example, for manufacturing a display panel of an organic EL display device for a smartphone. In the case of a display panel for smartphones, for example, on a 4.5th generation substrate (about 700 mm x about 900 mm), a 6th generation full size (about 1500 mm x about 1850 mm), or a half cut size (about 1500 mm x about 925 mm) substrate. After forming a film for forming an organic EL element, the substrate is cut out to manufacture a plurality of small-sized panels. The electronic device manufacturing device generally includes a plurality of cluster devices 1 and a relay device that connects the cluster devices.

クラスタ装置1は、基板Sに対する処理(例えば、成膜)を行う複数の成膜装置11と、使用前後のマスクMを収納する複数のマスクストック装置12と、その中央に配置される搬送室13と、を具備する。搬送室13は、図1に示すように、複数の成膜装置11およびマスクストック装置12のそれぞれと接続されている。 The cluster device 1 includes a plurality of film forming devices 11 for performing processing (for example, film forming) on the substrate S, a plurality of mask stock devices 12 for accommodating masks M before and after use, and a transport chamber 13 arranged in the center thereof. And. As shown in FIG. 1, the transport chamber 13 is connected to each of the plurality of film forming apparatus 11 and the mask stock apparatus 12.

搬送室13内には、基板SおよびマスクMを搬送する搬送ロボット14が配置されている。搬送ロボット14は、上流側に配置された中継装置のパス室15から成膜装置11へと基板Sを搬送する。また、搬送ロボット14は、成膜装置11とマスクストック装置12との間でマスクMを搬送する。搬送ロボット14は、例えば、多関節アームに、基板S又はマスクMを保持するロボットハンドが取り付けられた構造を有するロボットである。成膜装置11(蒸着装置とも呼ぶ)では、蒸発源に収納された成膜材料がヒータによって加熱されて蒸発し、マスクを介して基板上に成膜される。搬送ロボット14との基板S/マスクMの受け渡し、基板SとマスクMの相対位置の調整(アライメント)、マスクM上への基板Sの固定、成膜(蒸着)などの一連の成膜プロセスは、成膜装置11によって行われる。 A transfer robot 14 that transfers the substrate S and the mask M is arranged in the transfer chamber 13. The transfer robot 14 transfers the substrate S from the pass chamber 15 of the relay device arranged on the upstream side to the film forming apparatus 11. Further, the transfer robot 14 transfers the mask M between the film forming apparatus 11 and the mask stock apparatus 12. The transfer robot 14 is, for example, a robot having a structure in which a robot hand holding a substrate S or a mask M is attached to an articulated arm. In the film forming apparatus 11 (also referred to as a vapor deposition apparatus), the film forming material stored in the evaporation source is heated by the heater and evaporated, and the film is formed on the substrate through the mask. A series of film formation processes such as delivery of the substrate S / mask M to and from the transfer robot 14, adjustment (alignment) of the relative positions of the substrate S and the mask M, fixing of the substrate S on the mask M, and film formation (deposited film deposition) , Is performed by the film forming apparatus 11.

マスクストック装置12には、成膜装置11での成膜工程に使われる新しいマスクと、使用済みのマスクとが、二つのカセットに分けて収納される。搬送ロボット14は、使用済みのマスクを成膜装置11からマスクストック装置12のカセットに搬送し、マスクストック装置12の他のカセットに収納された新しいマスクを成膜装置11に搬送する。 In the mask stock device 12, a new mask used in the film forming process in the film forming apparatus 11 and a used mask are separately stored in two cassettes. The transfer robot 14 transfers the used mask from the film forming apparatus 11 to the cassette of the mask stock device 12, and conveys a new mask stored in another cassette of the mask stock device 12 to the film forming apparatus 11.

クラスタ装置1には、基板Sの流れ方向において上流側からの基板Sを当該クラスタ装置1に伝達するパス室15と、当該クラスタ装置1で成膜処理が完了した基板Sを下流側の他のクラスタ装置に伝えるためのバッファー室16が連結される。搬送室13の搬送ロボット14は、上流側のパス室15から基板Sを受け取って、当該クラスタ装置1内の成膜装置11の一つ(例えば、成膜装置11a)に搬送する。また、搬送ロボット14は、当該クラスタ装置1での成膜処理が完了した基板Sを複数の成膜装置11の一つ(例えば、成膜装置11b)から受け取って、下流側に連結されたバッファー室16に搬送する。 The cluster device 1 includes a path chamber 15 that transmits the board S from the upstream side to the cluster device 1 in the flow direction of the board S, and another board S on the downstream side that has been film-formed by the cluster device 1. A buffer chamber 16 for transmitting to the cluster device is connected. The transfer robot 14 in the transfer chamber 13 receives the substrate S from the pass chamber 15 on the upstream side and transfers it to one of the film forming devices 11 (for example, the film forming device 11a) in the cluster device 1. Further, the transfer robot 14 receives the substrate S for which the film forming process in the cluster device 1 has been completed from one of the plurality of film forming devices 11 (for example, the film forming device 11b), and the buffer connected to the downstream side. Transport to chamber 16.

バッファー室16とパス室15との間には、基板の向きを変える旋回室17が設置される。旋回室17には、バッファー室16から基板Sを受け取って基板Sを180°回転させ、パス室15に搬送するための搬送ロボット18が設けられる。これにより、上流側の
クラスタ装置と下流側のクラスタ装置で基板Sの向きが同じくなり、基板処理が容易になる。
パス室15、バッファー室16、旋回室17は、クラスタ装置の間を連結する、いわゆる中継装置であり、クラスタ装置の上流側及び/又は下流側に設置される中継装置は、パス室、バッファー室、旋回室のうち少なくとも1つを含む。
A swivel chamber 17 for changing the orientation of the substrate is installed between the buffer chamber 16 and the pass chamber 15. The swivel chamber 17 is provided with a transport robot 18 for receiving the substrate S from the buffer chamber 16, rotating the substrate S by 180 °, and transporting the substrate S to the pass chamber 15. As a result, the orientation of the substrate S is the same between the cluster device on the upstream side and the cluster device on the downstream side, and the substrate processing becomes easy.
The pass chamber 15, the buffer chamber 16, and the swivel chamber 17 are so-called relay devices that connect the cluster devices, and the relay devices installed on the upstream side and / or the downstream side of the cluster device are the pass room and the buffer room. , Includes at least one of the swivel chambers.

成膜装置11、マスクストック装置12、搬送室13、バッファー室16、旋回室17などは、有機発光素子の製造の過程で、高真空状態に維持される。パス室15は、通常低真空状態に維持されるが、必要に応じて高真空状態に維持されてもよい。 The film forming apparatus 11, the mask stock apparatus 12, the transport chamber 13, the buffer chamber 16, the swirl chamber 17, and the like are maintained in a high vacuum state in the process of manufacturing the organic light emitting element. The pass chamber 15 is usually maintained in a low vacuum state, but may be maintained in a high vacuum state if necessary.

本実施例では、図1を参照して、電子デバイスの製造装置の構成について説明したが、本発明はこれに限定されず、他の種類の装置やチャンバーを有してもよく、これらの装置やチャンバー間の配置が変わってもよい。
例えば、本発明は、基板SとマスクMを、成膜装置11ではなく、別の装置またはチャンバーで合着させた後、これをキャリアに乗せて、一列に並んだ複数の成膜装置を通して搬送させながら成膜工程を行うインラインタイプの製造装置にも適用することができる。
In this embodiment, the configuration of the manufacturing apparatus for the electronic device has been described with reference to FIG. 1, but the present invention is not limited to this, and other types of apparatus and chambers may be provided, and these devices may be provided. And the arrangement between the chambers may change.
For example, in the present invention, the substrate S and the mask M are coalesced by another device or chamber instead of the film forming apparatus 11, and then placed on a carrier and conveyed through a plurality of film forming apparatus arranged in a row. It can also be applied to an in-line type manufacturing apparatus that performs a film forming process while performing the film forming process.

<成膜装置>
以下、図2から図5を参照して、本発明の一実施形態に係る成膜装置について説明する。
<Film formation equipment>
Hereinafter, the film forming apparatus according to the embodiment of the present invention will be described with reference to FIGS. 2 to 5.

図2は、成膜装置、特に、金属電極層を成膜するのに使われる金属性成膜材料の成膜装置11の構成を模式的に示す断面図である。
成膜装置11は、真空容器20と、基板保持ユニット21と、マスク保持ユニット22と、蒸発源23を備える。真空容器20の内部は、真空などの減圧雰囲気、あるいは、窒素ガスなどの不活性ガス雰囲気に維持される。ここで「真空」という用語は、成膜に応じて必要な真空度を満たした状態を指し、ここで言う「真空容器」も容器内部を成膜に必要な雰囲気に保つことができるものを指す。
FIG. 2 is a cross-sectional view schematically showing the configuration of a film forming apparatus, particularly a film forming apparatus 11 of a metallic film forming material used for forming a metal electrode layer.
The film forming apparatus 11 includes a vacuum vessel 20, a substrate holding unit 21, a mask holding unit 22, and an evaporation source 23. The inside of the vacuum vessel 20 is maintained in a reduced pressure atmosphere such as vacuum or an inert gas atmosphere such as nitrogen gas. Here, the term "vacuum" refers to a state in which the degree of vacuum required for film formation is satisfied, and the "vacuum container" here also refers to a container that can maintain the atmosphere required for film formation. ..

図2に示すように、真空容器20の内部の上部には、基板保持ユニット21とマスク保持ユニット22とが設けられ、真空容器20の内部の下部または底面には、蒸発源23が設置される。
基板保持ユニット21は、搬送室13の搬送ロボット14から受け取った基板Sを保持する手段であり、基板ホルダとも呼ぶ。
マスク保持ユニット22は、真空容器20内に搬入されたマスクMを保持する手段であり、基板保持ユニット21の下方に設置される。マスク保持ユニット22にはマスクMが載置される。マスクMは、基板S上に形成される薄膜パターンに対応する開口パターンを有する。
As shown in FIG. 2, a substrate holding unit 21 and a mask holding unit 22 are provided in the upper part inside the vacuum container 20, and an evaporation source 23 is installed in the lower part or the bottom surface inside the vacuum container 20. ..
The board holding unit 21 is a means for holding the board S received from the transfer robot 14 in the transfer chamber 13, and is also called a board holder.
The mask holding unit 22 is a means for holding the mask M carried into the vacuum container 20, and is installed below the substrate holding unit 21. The mask M is placed on the mask holding unit 22. The mask M has an opening pattern corresponding to the thin film pattern formed on the substrate S.

成膜時には、例えば、基板保持ユニット21がマスク保持ユニット22に対して相対的に下降し、基板保持ユニット21によって保持された基板SがマスクM上に載置される。また、真空容器20の上部(外部)から導入された回転シャフト24によって、基板保持ユニット21及びマスク保持ユニット22が一緒に回転することで、マスクM及びマスクMの上に載置された基板Sが回転する。これによって、基板S上に金属性成膜材料を均一な厚さで成膜することができる。 At the time of film formation, for example, the substrate holding unit 21 descends relative to the mask holding unit 22, and the substrate S held by the substrate holding unit 21 is placed on the mask M. Further, the substrate holding unit 21 and the mask holding unit 22 are rotated together by the rotating shaft 24 introduced from the upper part (outside) of the vacuum vessel 20, so that the mask M and the substrate S placed on the mask M are placed on the mask M. Rotates. As a result, the metallic film-forming material can be formed on the substrate S with a uniform thickness.

蒸発源23は、基板に成膜される成膜材料が収納されるるつぼ231と、るつぼ231を加熱するためのヒータ(不図示)と、を含む。
金属性成膜材料の成膜装置11の蒸発源23は、図3に示すように、複数設けられ、各蒸発源23は複数のるつぼ(収納部)231を含む。一つの蒸発源23に含まれるるつぼ
231の数は、通常、5個あるいは7個であり、それぞれの蒸発源23は回転駆動機構(不図示)によって回転(例えば、自転)して、るつぼ231を所望の位置に移動させることができる。そのため、金属性成膜材料の成膜装置11の蒸発源23をリボルバ(revolver)とも称する。
The evaporation source 23 includes a crucible 231 in which a film-forming material to be formed on the substrate is stored, and a heater (not shown) for heating the crucible 231.
As shown in FIG. 3, a plurality of evaporation sources 23 of the film forming apparatus 11 of the metallic film-forming material are provided, and each evaporation source 23 includes a plurality of crucibles (storage portions) 231. The number of crucibles 231 included in one evaporation source 23 is usually 5, or 7, and each evaporation source 23 is rotated (for example, rotated) by a rotation drive mechanism (not shown) to rotate the crucible 231. It can be moved to a desired position. Therefore, the evaporation source 23 of the film forming apparatus 11 of the metallic film forming material is also referred to as a revolver.

成膜の際には、複数の蒸発源23(23a,23b)それぞれの蒸着位置232(232a,232b、成膜位置)にあるるつぼ231をヒータによって高温に加熱して、るつぼ231内に収納された成膜材料を蒸発させ、基板10に成膜する。蒸着位置232に来たるつぼ231を加熱し始めた後、適切な時点で、予熱位置237(237a,237b)にあるるつぼ231を予熱し始める。予熱位置237は、次に蒸着位置232に移動し、成膜に用いられるるつぼ231が予め加熱される位置である。予熱の開始時点は、蒸着位置232のるつぼ231の成膜材料がなくなる前に、予熱位置237のるつぼ231からの蒸発レート(あるいは予熱位置237にあるるつぼ231が蒸着位置232に移動したときに当該るつぼによって基板S上に成膜される膜の成膜レート、以下同様である)が所定値に到達することができるように設定される。つまり、予熱位置237のるつぼは、蒸着位置232のるつぼが成膜に使用される期間の少なくとも一部の期間中に予熱される。 At the time of film formation, the crucible 231 at the vapor deposition position 232 (232a, 232b, film formation position) of each of the plurality of evaporation sources 23 (23a, 23b) is heated to a high temperature by a heater and stored in the crucible 231. The film-forming material is evaporated to form a film on the substrate 10. After starting to heat the crucible 231 that came to the vapor deposition position 232, the crucible 231 at the preheating position 237 (237a, 237b) starts to be preheated at an appropriate time. The preheating position 237 is a position where the crucible 231 used for film formation is preheated by moving to the vapor deposition position 232 next. The start time of preheating is when the evaporation rate from the crucible 231 at the preheating position 237 (or when the crucible 231 at the preheating position 237 moves to the vapor deposition position 232 before the film forming material of the crucible 231 at the vapor deposition position 232 runs out. The film formation rate of the film formed on the substrate S by the crucible, the same applies hereinafter) is set so as to reach a predetermined value. That is, the crucible at the preheating position 237 is preheated during at least a part of the period during which the crucible at the vapor deposition position 232 is used for film formation.

蒸着位置232のるつぼ231内の成膜材料がなくなると、蒸発源23を回転(例えば、自転)駆動して、蒸着位置232にあったるつぼ231を蒸着後位置234に移動させ、予熱位置237にあったるつぼ231を蒸着位置232に回転移動させる。予熱位置237は、次に蒸着位置232に移動するるつぼを予め加熱しておく位置であり、このように、次に蒸着位置232に移動するるつぼを予め加熱しておくことで、蒸着位置232に移動された後に当該るつぼを加熱するためにかかる時間を減らすことができ、全体的な成膜時間を短縮することができる。 When the film-forming material in the crucible 231 at the vapor deposition position 232 runs out, the evaporation source 23 is driven to rotate (for example, rotate) to move the crucible 231 at the vapor deposition position 232 to the post-deposition position 234 and move to the preheating position 237. The existing crucible 231 is rotationally moved to the vapor deposition position 232. The preheating position 237 is a position where the crucible that next moves to the vapor deposition position 232 is preheated. In this way, by preheating the crucible that moves to the vapor deposition position 232 in advance, the vapor deposition position 232 is reached. The time required to heat the crucible after being moved can be reduced, and the overall film formation time can be shortened.

蒸着位置232と予熱位置237は、当該位置のるつぼが互いに熱干渉しないように、一個飛ばしの関係にあるように設定する。このようにして、蒸発源23内のすべてのるつぼ231の成膜材料が消耗するまで蒸発源23a,23bそれぞれを回転させながら成膜を行う。 The vapor deposition position 232 and the preheating position 237 are set so that the crucibles at the positions are skipped one by one so as not to interfere with each other. In this way, film formation is performed while rotating each of the evaporation sources 23a and 23b until all the film forming materials of the crucibles 231 in the evaporation source 23 are consumed.

蒸着位置232にあるるつぼだけではなく予熱位置237や蒸着後位置234にあるるつぼも相対的に温度が高く維持されるので、予熱位置237や蒸着後位置234にあるるつぼからも成膜材料が蒸発されるが、これら位置(237,234)のるつぼから蒸発した成膜材料が基板Sまたは真空容器20内の他の部品に向かって飛散することを抑制するため、防着部材(カバー手段)25をそれぞれの蒸発源23上に設ける。例えば、本実施例に係る防着部材25は、第1蒸発源23a上に設けられた第1防着部材25a(第1カバー手段)と、第2蒸発源23b上に設置された第2防着部材25b(第2カバー手段)とを含む。第1防着部材は第1予熱位置(後述)に位置するるつぼと基板との間に配置されており、第2防着部材は第2予熱位置(後述)に位置するるつぼと基板との間に配置されている。 Since the temperature of not only the crucible at the vapor deposition position 232 but also the crucible at the preheating position 237 and the post-deposition position 234 is maintained relatively high, the film-forming material evaporates from the crucible at the preheating position 237 and the post-deposition position 234. However, in order to prevent the film-forming material evaporated from the crucibles at these positions (237, 234) from scattering toward the substrate S or other parts in the vacuum vessel 20, the adhesive member (covering means) 25 Is provided on each evaporation source 23. For example, the adhesion member 25 according to the present embodiment includes a first protection member 25a (first cover means) provided on the first evaporation source 23a and a second protection member 25 installed on the second evaporation source 23b. Includes a landing member 25b (second cover means). The first anti-adhesive member is arranged between the crucible located at the first preheating position (described later) and the substrate, and the second anti-adhesive member is located between the crucible located at the second preheating position (described later) and the substrate. It is located in.

また、防着部材25は、成膜装置11の真空容器20に固定されるように設置される。本発明の一実施例による防着部材25は、図4に示すように、蒸発源23の蒸着位置232に対応する位置に第1開口251を有する。これにより、蒸着位置232に来たるつぼ231から蒸発された成膜材料の粒子が基板に向かって飛ぶことができる。 Further, the adhesion member 25 is installed so as to be fixed to the vacuum container 20 of the film forming apparatus 11. As shown in FIG. 4, the adhesive member 25 according to an embodiment of the present invention has a first opening 251 at a position corresponding to the vapor deposition position 232 of the evaporation source 23. As a result, the particles of the film-forming material evaporated from the crucible 231 that came to the vapor deposition position 232 can fly toward the substrate.

また、防着部材25は、予熱位置237のるつぼ231からの蒸発粒子が基板Sに向かって飛ぶことを防止するとともに、予熱位置237のるつぼ231からの蒸発レートを測定するために、予熱位置237のるつぼ231からの蒸発粒子が成膜レート測定手段27
に到達することができるように構成される。例えば、防着部材25は、予熱位置237のるつぼから成膜レート測定部27に向かって飛散する蒸発粒子をガイドするガイド部252と、ガイド部252に沿って成膜レート測定手段27に向かって飛散する蒸発粒子が通過することができる第2開口253とを有する。すなわち、第2開口253は、予熱位置237のるつぼ231から成膜レート測定手段27に向かう経路上に設置される。
Further, the adhesion member 25 prevents the evaporated particles from the crucible 231 at the preheating position 237 from flying toward the substrate S, and measures the evaporation rate from the crucible 231 at the preheating position 237 in order to measure the evaporation rate from the crucible 231 at the preheating position 237. Evaporated particles from the crucible 231 are the film-forming rate measuring means 27
Is configured to be able to reach. For example, the adhesion member 25 has a guide unit 252 that guides the evaporated particles scattered from the crucible at the preheating position 237 toward the film formation rate measuring unit 27, and the film forming rate measuring means 27 along the guide unit 252. It has a second opening 253 through which scattered evaporated particles can pass. That is, the second opening 253 is installed on the path from the crucible 231 at the preheating position 237 to the film formation rate measuring means 27.

防着部材25には予熱位置237及び蒸着後位置234のるつぼから蒸発した成膜材料が堆積される。本実施例による防着部材25は、防着部材25に堆積された成膜材料が反射ないし再蒸発して、真空容器20内の他の構成部分を汚染させることを低減するために、予熱位置237及び/または蒸着後位置234に対応する位置に凸部254、255を形成してもよい。 The film-forming material evaporated from the crucible at the preheating position 237 and the post-depositing position 234 is deposited on the adhesion member 25. The adhesion member 25 according to the present embodiment has a preheating position in order to reduce that the film-forming material deposited on the adhesion member 25 is reflected or re-evaporated and contaminates other components in the vacuum vessel 20. Convex portions 254 and 255 may be formed at positions corresponding to 237 and / or post-evaporation positions 234.

蒸着位置232のるつぼ231から蒸発した成膜材料の蒸発粒子が基板Sに堆積することを一時的に(例えば、蒸着位置232のるつぼ231の蒸発レートが所定値に到達するまでに)防ぐために、蒸発源シャッタ(可動式開閉手段)26がそれぞれの蒸発源23の上方に回転可能に設置される。例えば、本実施例に係る蒸発源シャッタ26は、第1蒸発源23aの上方に設置された第1蒸発源シャッタ26a(第1可動式開閉手段)と、第2蒸発源23bの上方に設置された第2蒸発源シャッタ26b(第2可動式開閉手段)とを含む。第1可動開閉手段は第1蒸着位置(後述)に位置するるつぼと基板との間に配置されており、第2可動開閉手段は第2蒸着位置(後述)に位置するるつぼと基板との間に配置されている。 In order to temporarily prevent the evaporated particles of the film-forming material evaporated from the crucible 231 at the vapor deposition position 232 from being deposited on the substrate S (for example, by the time the evaporation rate of the crucible 231 at the vapor deposition position 232 reaches a predetermined value). The evaporation source shutter (movable opening / closing means) 26 is rotatably installed above each evaporation source 23. For example, the evaporation source shutter 26 according to the present embodiment is installed above the first evaporation source shutter 26a (first movable opening / closing means) installed above the first evaporation source 23a and above the second evaporation source 23b. It also includes a second evaporation source shutter 26b (second movable opening / closing means). The first movable opening / closing means is arranged between the crucible located at the first thin-film deposition position (described later) and the substrate, and the second movable opening / closing means is located between the crucible located at the second vapor deposition position (described later) and the substrate. It is located in.

基板Sへの成膜が開始する時点で、蒸発源シャッタ26は、回転移動して、蒸着位置232のるつぼ231の上方を開放し、蒸着位置232のるつぼ231からの成膜材料の蒸発粒子が基板Sに向かって飛ぶようにする。つまり、蒸発源シャッタ26は、蒸着位置232のるつぼ231の上方を防ぐ閉鎖位置(図2の実線)と、蒸着位置232のるつぼ231からの蒸発粒子が基板に向かって飛散することができるよう退避する開放位置(図2の破線)との間を回動する。 At the time when the film formation on the substrate S starts, the evaporation source shutter 26 rotates and moves to open the upper part of the crucible 231 at the vapor deposition position 232, and the evaporated particles of the film-forming material from the crucible 231 at the vapor deposition position 232 are released. Make it fly toward the substrate S. That is, the evaporation source shutter 26 is retracted so that the closed position (solid line in FIG. 2) that prevents the upper part of the crucible 231 at the vapor deposition position 232 and the evaporated particles from the crucible 231 at the vapor deposition position 232 can be scattered toward the substrate. Rotate between the open position (broken line in FIG. 2).

成膜装置11の真空容器20内には、複数の蒸発源23からの成膜材料の蒸発レート、または、成膜材料の粒子が基板S上に成膜される成膜レートを測定するための複数の成膜レート測定手段27が設置される。
例えば、第1成膜レート測定手段27aは、第1蒸発源23aの蒸発レートおよび/または成膜レートを測定し、第2成膜レート測定手段27bは、第2蒸発源23bの蒸発レートおよび/または成膜レートを測定する。
In the vacuum vessel 20 of the film forming apparatus 11, for measuring the evaporation rate of the film forming material from the plurality of evaporation sources 23 or the film forming rate at which the particles of the film forming material are formed on the substrate S. A plurality of film formation rate measuring means 27 are installed.
For example, the first film-forming rate measuring means 27a measures the evaporation rate and / or the film-forming rate of the first evaporation source 23a, and the second film-forming rate measuring means 27b measures the evaporation rate and / or the evaporation rate of the second evaporation source 23b. Or measure the film formation rate.

本発明の一実施例によるそれぞれの蒸発レート測定手段27(27a,27b)は、蒸着位置232のるつぼからの蒸発レート及び/又は基板上への成膜レートを測定するための成膜レート測定部271(271a,271b)と、予熱位置237のるつぼからの蒸発レートを測定するための成膜レート測定部272(272a,272b)とを含む。
例えば、第1成膜レート測定手段27aの第1成膜レート測定部271aは、第1蒸発源23aにおいて蒸着位置232にあるるつぼ231の蒸発レートまたは成膜レートを測定し、第1成膜レート測定手段27aの第2成膜レート測定部272aは、第1蒸発源23aにおいて予熱位置237にあるるつぼ231の蒸発レートを測定する。
Each of the evaporation rate measuring means 27 (27a, 27b) according to the embodiment of the present invention is a film forming rate measuring unit for measuring the evaporation rate from the pot at the vapor deposition position 232 and / or the film forming rate on the substrate. It includes 271 (271a, 271b) and a film formation rate measuring unit 272 (272a, 272b) for measuring the evaporation rate from the pot at the preheating position 237.
For example, the first film forming rate measuring unit 271a of the first film forming rate measuring means 27a measures the evaporation rate or the film forming rate of the pot 231 at the vapor deposition position 232 in the first evaporation source 23a, and measures the first film forming rate. The second film formation rate measuring unit 272a of the measuring means 27a measures the evaporation rate of the pot 231 at the preheating position 237 in the first evaporation source 23a.

成膜装置は、装置の各構成要素の動作制御や、そのために必要な各種演算、例えば水晶振動子30から得られる情報に基づく膜厚や成膜レートの算出処理などを行うための、制御部800を備える。成膜装置ごとに制御部を備えていてもよいし、成膜クラスタごとに制御部を備えていてもよい。制御部800としては、プロセッサやメモリなどの演算資源を備える情報処理装置や、専用の処理回路を用いてもよい。 The film forming apparatus is a control unit for controlling the operation of each component of the apparatus and performing various calculations necessary for that purpose, for example, calculating the film thickness and the film forming rate based on the information obtained from the crystal oscillator 30. It has 800. A control unit may be provided for each film forming apparatus, or a control unit may be provided for each film forming cluster. As the control unit 800, an information processing device including computing resources such as a processor and a memory, or a dedicated processing circuit may be used.

本発明の一実施例による成膜レート測定手段27は、図5の(a)に示すような水晶振動子30を含む。制御部800は、蒸発源23からの成膜材料の堆積に応じた水晶振動子30の共振周波数の変化に基づいて、基板S上に成膜された成膜材料の膜厚及び成膜レートを間接的に算出する。 The film formation rate measuring means 27 according to an embodiment of the present invention includes a crystal oscillator 30 as shown in FIG. 5A. The control unit 800 determines the film thickness and film formation rate of the film-forming material formed on the substrate S based on the change in the resonance frequency of the crystal oscillator 30 according to the deposition of the film-forming material from the evaporation source 23. Calculate indirectly.

水晶振動子30は、一定の結晶方向に切断された水晶板31の表面及び裏面に電極膜32、33を形成した構造を持つ。
水晶振動子30に用いられる水晶板31は、比較的温度特性が優れたAT−カット(AT−cut)をした水晶を使うことが望ましい。図5の(a)に示すように、電極膜33側の裏面を曲面にし、成膜材料が堆積される電極膜32側の表面は平面にする方が水晶振動子30の振動の安定性を高めることができる。
The crystal oscillator 30 has a structure in which electrode films 32 and 33 are formed on the front surface and the back surface of a crystal plate 31 cut in a certain crystal direction.
As the crystal plate 31 used for the crystal oscillator 30, it is desirable to use a crystal having AT-cut, which has relatively excellent temperature characteristics. As shown in FIG. 5A, it is better to make the back surface on the electrode film 33 side curved and the surface on the electrode film 32 side on which the film-forming material is deposited flat to improve the vibration stability of the crystal oscillator 30. Can be enhanced.

水晶振動子30の電極膜32、33は、アルミニウム(Al)を主成分とする合金、あるいは、金(Au)からなることが好ましい。これはアルミニウム合金あるいは金の電極膜32、33が成膜材料との密着性がよく、水晶振動子30の電極膜32上に堆積された膜が水晶振動子30の共振振動をよく追従することができるからである。図5の(a)では、電極膜32上に直接成膜材料が堆積することと図示したが、電極膜32上には電極材料との密着性がもっと良いつつ、成膜材料との境界が連続的に変わる第3の膜(例えば、成膜材料と異なる有機材料)を追加的に形成しても良い。 The electrode films 32 and 33 of the crystal oscillator 30 are preferably made of an alloy containing aluminum (Al) as a main component or gold (Au). This is because the aluminum alloy or gold electrode films 32 and 33 have good adhesion to the film forming material, and the film deposited on the electrode film 32 of the crystal oscillator 30 follows the resonance vibration of the crystal oscillator 30 well. Because it can be done. In FIG. 5A, it is shown that the film-forming material is directly deposited on the electrode film 32, but the adhesion with the electrode material is better on the electrode film 32, and the boundary with the film-forming material is formed. A third film that changes continuously (for example, an organic material different from the film forming material) may be additionally formed.

水晶振動子30の電極膜32、33に交流電圧を印加すると、水晶の圧電特性によって水晶振動子30は振動し、水晶板の厚さが決まった条件を満たす場合、共振周波数で振動をするようになる。このような水晶振動子30の共振周波数は、電極膜32上に堆積された成膜材料の質量変動によって変わる。水晶振動子30の共振周波数の変動値と成膜材料の質量の変動値との間には以下のような関係式(Sauerbrey式)が成り立つ。

Figure 2020139227

ここで、Δfは、共振周波数の変動値、Δmは、水晶振動子の電極膜32上に堆積された成膜材料の質量変動値、fは、水晶の基本周波数、μは、水晶のせん断係数(shear modulus)、ρQは、水晶の密度、Aは、電極面積である。すなわち、水晶振動子30の電極32上に成膜材料が堆積されて、その質量が増加するにつれて、水晶振動子30の共振周波数は小さくなる。 When an AC voltage is applied to the electrode films 32 and 33 of the crystal oscillator 30, the crystal oscillator 30 vibrates due to the piezoelectric characteristics of the crystal, and when the thickness of the crystal plate satisfies a predetermined condition, it vibrates at a resonance frequency. become. The resonance frequency of such a crystal oscillator 30 changes depending on the mass fluctuation of the film-forming material deposited on the electrode film 32. The following relational expression (Sauerbury equation) holds between the fluctuation value of the resonance frequency of the crystal oscillator 30 and the fluctuation value of the mass of the film-forming material.
Figure 2020139227

Here, Δf is the fluctuation value of the resonance frequency, Δm is the mass fluctuation value of the film-forming material deposited on the electrode film 32 of the crystal oscillator, f is the fundamental frequency of the crystal, and μ is the shear coefficient of the crystal. (Shear modulus), ρQ is the crystal density, and A is the electrode area. That is, as the film-forming material is deposited on the electrode 32 of the crystal oscillator 30 and its mass increases, the resonance frequency of the crystal oscillator 30 decreases.

このような関係を利用して、測定された水晶振動子30の共振周波数の変動値から電極膜32上に堆積された膜の質量の変動値、さらに膜厚及び成膜レートを求めることができる。 Utilizing such a relationship, it is possible to obtain the fluctuation value of the mass of the film deposited on the electrode film 32, the film thickness and the film formation rate from the measured fluctuation value of the resonance frequency of the crystal oscillator 30. ..

本発明の一実施例による成膜レート測定手段27のそれぞれの成膜レート測定部は、図5の(b)に示すように、複数の(例えば、10個の)水晶振動子30を含む。複数の水晶振動子30のうち、開口34に対応する位置にある水晶振動子30だけが蒸発源23に露出され、蒸発源23から飛散してきた成膜材料が堆積される。この間、残りの水晶振動子30は、蒸発源23に露出しない状態で維持され、蒸発源23に露出されていた水晶振動子30が寿命に達すれば、他の水晶振動子30を開口34に対応する位置に、例えば、回転移動させて、同様に膜厚及び成膜レートの測定を続ける。このようにして、成膜レート測定部に含まれた水晶振動子30のすべてが使用できなくなると、成膜レート測定部を入れ替る。これによって、成膜レート測定部の全体的な寿命を長くすることができ、成膜
レート測定部の交替によって成膜工程が中止される時間を減らすことで、生産ラインの全体的なスループットを増加させることができる。
As shown in FIG. 5B, each film forming rate measuring unit of the film forming rate measuring means 27 according to the embodiment of the present invention includes a plurality of (for example, 10) crystal oscillators 30. Of the plurality of crystal oscillators 30, only the crystal oscillator 30 located at the position corresponding to the opening 34 is exposed to the evaporation source 23, and the film-forming material scattered from the evaporation source 23 is deposited. During this period, the remaining crystal oscillator 30 is maintained in a state of not being exposed to the evaporation source 23, and when the crystal oscillator 30 exposed to the evaporation source 23 reaches the end of its life, the other crystal oscillator 30 corresponds to the opening 34. For example, the film thickness and the film formation rate are continuously measured by rotating the film to the desired position. In this way, when all of the crystal oscillators 30 included in the film forming rate measuring section cannot be used, the film forming rate measuring section is replaced. This can prolong the overall life of the film formation rate measuring section and increase the overall throughput of the production line by reducing the time that the film forming process is interrupted by the replacement of the film forming rate measuring section. Can be made to.

本発明の一実施例による成膜レート測定部には、図5の(b)に示すように、回転可能なチョッパ35を用いて、開口34に対応する位置にある水晶振動子30に堆積される成膜材料の量を調節することができる。すなわち、開口部356を有するチョッパ35を一定の速度で回転させ、開口34に対応する位置にある水晶振動子30が周期的に蒸発源23から遮られるようにすることによって、当該水晶振動子30に堆積される成膜材料の量を調節することができる。 As shown in FIG. 5B, a rotatable chopper 35 is used in the film formation rate measuring unit according to an embodiment of the present invention, and the film is deposited on the crystal oscillator 30 at a position corresponding to the opening 34. The amount of film-forming material can be adjusted. That is, the chopper 35 having the opening 356 is rotated at a constant speed so that the crystal oscillator 30 at the position corresponding to the opening 34 is periodically shielded from the evaporation source 23. The amount of film-forming material deposited on the surface can be adjusted.

<成膜レート測定手段と蒸発源の相対的な配置構造>
以下、図6を参照して、本発明の一実施例による成膜レート測定手段27と蒸発源23の配置構造について説明する。
<Relative arrangement structure of film formation rate measuring means and evaporation source>
Hereinafter, the arrangement structure of the film formation rate measuring means 27 and the evaporation source 23 according to the embodiment of the present invention will be described with reference to FIG.

図6は、図3に破線で囲んだ第1蒸発源23a及び第2蒸発源23bと、これらの蒸発源23a、23bのそれぞれからの蒸発レートや成膜レートを測定するための第1成膜レート測定手段27a及び第2成膜レート測定手段27bを示す。 FIG. 6 shows the first evaporation source 23a and the second evaporation source 23b surrounded by a broken line in FIG. 3, and the first film formation for measuring the evaporation rate and the film formation rate from each of these evaporation sources 23a and 23b. The rate measuring means 27a and the second film forming rate measuring means 27b are shown.

本発明の一実施例による成膜装置11において、複数の蒸発源23のいずれかの蒸発源、例えば、第1蒸発源23aの第1蒸着位置(第1位置、232a)のるつぼ231からの蒸発レート/成膜レートを測定するために、第1蒸発源23aの第1蒸着位置232aに向けて設置された第1成膜レート測定手段27aの第1成膜レート測定部271aと、第1蒸発源23aの第1予熱位置(第2位置、237a)のるつぼ231からの蒸発レート/成膜レートを測定するために、第1蒸発源23aの第1予熱位置237aに向けて設置された第1成膜レート測定手段27aの第2成膜レート測定部272aは、第1成膜レート測定部271aと第1蒸着位置232aあるいは第1蒸着位置232aのるつぼ231との間の距離が、第2成膜レート測定部272aと第1予熱位置237aあるいは第1予熱位置237aのるつぼ231との間の距離と異なるように設置される。 In the film forming apparatus 11 according to the embodiment of the present invention, evaporation from any of the plurality of evaporation sources 23, for example, the first vapor deposition position (first position, 232a) of the first evaporation source 23a from the pot 231. In order to measure the rate / film formation rate, the first film formation rate measuring unit 271a of the first film formation rate measuring means 27a installed toward the first vapor deposition position 232a of the first evaporation source 23a and the first evaporation A first set toward the first preheating position 237a of the first evaporation source 23a in order to measure the evaporation rate / film formation rate from the pot 231 of the first preheating position (second position 237a) of the source 23a. In the second film forming rate measuring unit 272a of the film forming rate measuring means 27a, the distance between the first film forming rate measuring unit 271a and the pot 231 of the first deposition position 232a or the first deposition position 232a is the second formation. The film rate measuring unit 272a is installed so as to be different from the distance between the first preheating position 237a or the pot 231 of the first preheating position 237a.

例えば、第1成膜レート測定部271a及び第2成膜レート測定部272aは、第1成膜レート測定部271aと第1蒸着位置232a又は第1蒸着位置232aのるつぼ231との間の距離である第1距離Aが、第2成膜レート測定部272aと第1予熱位置237a又は第1予熱位置237aのるつぼ231との間の距離である第2距離Bより大きくなるように設置される。 For example, the first film forming rate measuring unit 271a and the second film forming rate measuring unit 272a are at a distance between the first film forming rate measuring unit 271a and the pot 231 of the first deposition position 232a or the first deposition position 232a. A certain first distance A is installed so as to be larger than the second distance B, which is the distance between the second film formation rate measuring unit 272a and the first preheating position 237a or the pot 231 of the first preheating position 237a.

このように、第1蒸着位置232aのるつぼ231に向けられた第1成膜レート測定部271aを第1予熱位置237aのるつぼ231に向けられた第2成膜レート測定部272aより第1蒸発源23aの該当位置のるつぼから遠い位置に設置することで、第1蒸着位置232aのるつぼ231から蒸発して、第1成膜レート測定部271aに堆積される成膜材料の成膜レートを下げることができる。これは、るつぼから蒸発した成膜材料の粒子の一部は、成膜レート測定部に到達する前に他の粒子との衝突などによって成膜レート測定部まで到達できないからである。第1蒸発源23aの第1蒸着位置232aのるつぼ231から蒸発した成膜材料の粒子の一部も、第1成膜レート測定部271aに向かって飛ぶ過程で他の粒子との衝突などを起こして脱落するため、実際に第1成膜レート測定部271aに到達する粒子の量が減る。 In this way, the first film formation rate measuring unit 271a directed to the crucible 231 at the first vapor deposition position 232a is directed from the second film forming rate measuring unit 272a directed to the crucible 231 at the first preheating position 237a to form the first evaporation source. By installing the film at a position far from the crucible at the corresponding position of 23a, the film forming rate of the film forming material deposited on the first film forming rate measuring unit 271a due to evaporation from the crucible 231 at the first deposition position 232a is lowered. Can be done. This is because some of the particles of the film-forming material evaporated from the crucible cannot reach the film-forming rate measuring section due to collision with other particles before reaching the film-forming rate measuring section. Some of the particles of the film-forming material evaporated from the pot 231 of the first evaporation position 232a of the first evaporation source 23a also collide with other particles in the process of flying toward the first film-forming rate measuring unit 271a. Therefore, the amount of particles that actually reach the first film formation rate measuring unit 271a is reduced.

したがって、第1成膜レート測定部271aが第2成膜レート測定部272aに比べて、第1蒸発源23aのるつぼに露出される時間が相対的に長い場合にも、第1成膜レート測定部271aに堆積する成膜材料の成膜レートが、第2成膜レート測定部272aに堆積する成膜材料の成膜レートよりも低いことにより、第1成膜レート測定部271aと第
2成膜レート測定部272aの間の成膜レートの差を縮めることができる。その結果、第1成膜レート測定部271aが第2成膜レート測定部272aより先に寿命に到達し、交換周期が短くなる問題を低減することができ、第1成膜レート測定部271aが第1蒸発源23aの第1蒸着位置232aから近い場合に比べて、相対的に長い時間の間、監視を行うことができる。
Therefore, even when the first film formation rate measuring unit 271a is exposed to the pot of the first evaporation source 23a for a relatively longer time than the second film formation rate measuring unit 272a, the first film formation rate measurement is performed. Since the film forming rate of the film forming material deposited on the part 271a is lower than the film forming rate of the film forming material deposited on the second film forming rate measuring section 272a, the first film forming rate measuring section 271a and the second forming are formed. The difference in film formation rate between the film rate measuring units 272a can be reduced. As a result, the problem that the first film formation rate measuring unit 271a reaches the life before the second film formation rate measuring unit 272a and the replacement cycle is shortened can be reduced, and the first film forming rate measuring unit 271a can be used. Monitoring can be performed for a relatively long time as compared with the case where the first evaporation source 23a is closer to the first vapor deposition position 232a.

一方、第1蒸発源23aに露出される時間が相対的に短い第2成膜レート測定部272aは、第1蒸発源23aの第1予熱位置237aから近くに設置されるので、他の成膜材料の粒子から受ける影響が少ないため、高感度で、第1蒸発源23aの第1予熱位置237aのるつぼ231の蒸発レートを監視することができる。 On the other hand, since the second film formation rate measuring unit 272a, which is exposed to the first evaporation source 23a for a relatively short time, is installed near the first preheating position 237a of the first evaporation source 23a, another film formation is performed. Since the influence from the particles of the material is small, the evaporation rate of the crucible 231 at the first preheating position 237a of the first evaporation source 23a can be monitored with high sensitivity.

図6に示した本発明の一実施例において、第2成膜レート測定手段27bの第3成膜レート測定部271bと第4成膜レート測定部272bも、第1成膜レート測定手段27aの測定部らと同様に配置される。すなわち、第2蒸発源23bの第2蒸着位置(第3位置、232b)に向けられる第3成膜レート測定部271bと第2蒸発源23bの第2予熱位置(第4位置、237b)に向けられる第4成膜レート測定部272bは、第3成膜レート測定部271bと第2蒸着位置232bまたは第2蒸着位置232bのるつぼ231との間の距離が、第4成膜レート測定部272bと第2の予熱位置237bまたは第2予熱位置237bのるつぼ231との間の距離より大きくなるように設置される。 In one embodiment of the present invention shown in FIG. 6, the third film formation rate measuring unit 271b and the fourth film forming rate measuring unit 272b of the second film forming rate measuring means 27b also belong to the first film forming rate measuring means 27a. It is arranged in the same way as the measuring units. That is, toward the third film formation rate measuring unit 271b directed to the second vapor deposition position (third position 232b) of the second evaporation source 23b and the second preheating position (fourth position 237b) of the second evaporation source 23b. In the fourth film forming rate measuring unit 272b, the distance between the third film forming rate measuring unit 271b and the pot 231 of the second vapor deposition position 232b or the second vapor deposition position 232b is different from that of the fourth film forming rate measuring unit 272b. It is installed so as to be larger than the distance between the second preheating position 237b or the second preheating position 237b and the pot 231.

さらに、本発明の一実施例において、第1成膜レート測定部271aと第3成膜レート測定部271bは、第1成膜レート測定部271aと第1蒸着位置232aとの間の第1距離Aが、第3成膜レート測定部271bと第1蒸着位置232aとの間の第3距離Cより大きくなるように設けられる。つまり、平面上から見た際、第1成膜レート測定部271aと第3成膜レート測定部271bとの間に第1蒸発源23aの第1蒸着位置232aがあり、第1成膜レート測定部271aと第1蒸発源23aの第1蒸着位置232aとの間の経路と、第3成膜レート測定部271bと第2蒸発源23bの第2蒸着位置232bとの間の経路とが互いに交差することになる。
これにより、第1成膜レート測定部271aと第3成膜レート測定部271bを連結する方向(例えば、成膜装置11に搬入される基板Sの短辺方向)における成膜装置11のサイズを小さくすることができる。
Further, in one embodiment of the present invention, the first film formation rate measuring unit 271a and the third film forming rate measuring unit 271b are the first distance between the first film forming rate measuring unit 271a and the first deposition position 232a. A is provided so as to be larger than the third distance C between the third film formation rate measuring unit 271b and the first vapor deposition position 232a. That is, when viewed from a plane, there is a first thin-film deposition position 232a of the first evaporation source 23a between the first film-forming rate measuring unit 271a and the third film-forming rate measuring unit 271b, and the first film-forming rate measurement. The path between the portion 271a and the first vapor deposition position 232a of the first evaporation source 23a and the path between the third film formation rate measuring unit 271b and the second vapor deposition position 232b of the second evaporation source 23b intersect each other. Will be done.
As a result, the size of the film forming apparatus 11 in the direction in which the first film forming rate measuring unit 271a and the third film forming rate measuring unit 271b are connected (for example, the short side direction of the substrate S carried into the film forming apparatus 11) is determined. It can be made smaller.

また、第2成膜レート測定部272aと第1予熱位置237aとの間の距離である第2距離Bが、第3成膜レート測定部271bと第1蒸着位置232aとの間の距離である第3距離Cより短くなるように成膜レート測定部らが設置される。同様に、第4成膜レート測定部272bと第2予熱位置237bとの間の距離が、第1成膜レート測定部271aと第2蒸着位置232bとの間の距離より短くなるように、該当成膜レート測定部らが設置される。 Further, the second distance B, which is the distance between the second film formation rate measuring unit 272a and the first preheating position 237a, is the distance between the third film forming rate measuring unit 271b and the first vapor deposition position 232a. The film formation rate measuring unit and the like are installed so as to be shorter than the third distance C. Similarly, the distance between the fourth film formation rate measuring unit 272b and the second preheating position 237b is shorter than the distance between the first film formation rate measuring unit 271a and the second vapor deposition position 232b. The film formation rate measuring unit and others are installed.

これにより、各蒸発源23の蒸着位置232に向けられた成膜レート測定部が予熱位置237に向けられた成膜レート測定部より成膜装置の鉛直方向において高い位置に設置され、蒸発源シャッタ26の妨害を受けずに蒸発源23の蒸着位置232にあるるつぼ231からの蒸発レート/成膜レートを高精度で測定することができる。各成膜レート測定部は、対応する蒸発源シャッタ26が開放位置にある場合であっても、閉鎖位置にある場合であっても、蒸発レート/成膜レートを測定することができる。 As a result, the film formation rate measuring section directed to the vapor deposition position 232 of each evaporation source 23 is installed at a position higher in the vertical direction of the film forming apparatus than the film forming rate measuring section directed to the preheating position 237, and the evaporation source shutter. The evaporation rate / film formation rate from the pot 231 at the evaporation position 232 of the evaporation source 23 can be measured with high accuracy without being disturbed by 26. Each film formation rate measuring unit can measure the evaporation rate / film formation rate regardless of whether the corresponding evaporation source shutter 26 is in the open position or the closed position.

例えば、第1成膜レート測定部271aと第3成膜レート測定部271bが、第1蒸発源シャッタ26aまたは第2蒸発源シャッタ26bの妨害を受けずに、第1蒸発源23aの第1蒸着位置232a又は第2蒸発源23bの第2蒸着位置232bのるつぼ231からの蒸発レート/成膜レートを高精度で測定することができる。 For example, the first film deposition rate measuring unit 271a and the third film forming rate measuring unit 271b perform the first vapor deposition of the first evaporation source 23a without being disturbed by the first evaporation source shutter 26a or the second evaporation source shutter 26b. The evaporation rate / deposition rate from the pot 231 at the second vapor deposition position 232b of the position 232a or the second evaporation source 23b can be measured with high accuracy.

さらに、本発明の一実施例においては、第1成膜レート測定部271aと第1蒸発源23aの第1蒸着位置232aとの間の第1距離Aが、第4成膜レート測定部272bと第1蒸発源23aの第1蒸着位置232aとの間の第4距離Dより小さくなるように、該当成膜レート測定部が設置される。 Further, in one embodiment of the present invention, the first distance A between the first film formation rate measuring unit 271a and the first vapor deposition position 232a of the first evaporation source 23a is the fourth film formation rate measuring unit 272b. The corresponding film formation rate measuring unit is installed so as to be smaller than the fourth distance D between the first evaporation source 23a and the first vapor deposition position 232a.

本発明の一実施例において、第1蒸発源シャッタ26aは、第1蒸発源シャッタ26aの開放位置である第1開放位置と第1蒸発源23aの第1蒸着位置232aとの間の距離が、第1蒸発源シャッタ26aの閉鎖位置である第1閉鎖位置と第1蒸発源23aの第1蒸着位置232aとの間の距離より大きくなるように、第1開放位置と、第1閉鎖位置との間を移動可能である。
同様に、第2蒸発源シャッタ26bは、第2蒸発源シャッタ26bの開放位置である第2開放位置と第2蒸発源23bの第2蒸着位置232bとの間の距離が、第2蒸発源シャッタ26bの閉鎖位置である第2閉鎖位置と第2の蒸発源23bの第2蒸着位置232bとの間の距離より大きくなるように、第2開放位置と第2閉鎖位置との間を移動可能である。
In one embodiment of the present invention, in the first evaporation source shutter 26a, the distance between the first open position, which is the open position of the first evaporation source shutter 26a, and the first vapor deposition position 232a of the first evaporation source 23a is determined. The first open position and the first closed position are set so as to be larger than the distance between the first closed position, which is the closed position of the first evaporation source shutter 26a, and the first vapor deposition position 232a of the first evaporation source 23a. It is possible to move between.
Similarly, in the second evaporation source shutter 26b, the distance between the second open position, which is the open position of the second evaporation source shutter 26b, and the second vapor deposition position 232b of the second evaporation source 23b is the second evaporation source shutter. It is possible to move between the second open position and the second closed position so as to be larger than the distance between the second closed position, which is the closed position of 26b, and the second vapor deposition position 232b of the second evaporation source 23b. is there.

本実施例においては、複数の蒸発源23のうち、第1蒸発源23a及び第2蒸発源23bと、これらの蒸発源からの蒸発レート/成膜レートを測定するための成膜レート測定手段の測定部らとの相対的な配置位置を中心に説明したが、本発明はこれに限定されず、複数の蒸発源23のうち、第3蒸発源23c及び第4蒸発源23dと、これらの蒸発源からの蒸発レート/成膜レートを測定するのための成膜レート測定手段の測定部らとの相対的な配置位置も同様に決めることができる。
また、複数の蒸発源23のうち、第5蒸発源23eにおいても、第5蒸発源23eの蒸着位置に向けられる成膜レート測定部が第5蒸発源23eの予熱位置に向けられる成膜レート測定部より遠い位置に設置されるようにすることが好ましい。
In this embodiment, among the plurality of evaporation sources 23, the first evaporation source 23a and the second evaporation source 23b, and the deposition rate measuring means for measuring the evaporation rate / deposition rate from these evaporation sources. Although the description has focused on the relative arrangement position with the measuring unit and others, the present invention is not limited to this, and among the plurality of evaporation sources 23, the third evaporation source 23c and the fourth evaporation source 23d and their evaporation Similarly, the position relative to the measuring unit of the film forming rate measuring means for measuring the evaporation rate / film forming rate from the source can be determined.
Further, among the plurality of evaporation sources 23, also in the fifth evaporation source 23e, the film formation rate measurement unit directed to the vapor deposition position of the fifth evaporation source 23e is directed to the preheating position of the fifth evaporation source 23e. It is preferable to install it at a position farther than the unit.

<電子デバイスの製造方法>
次に、本実施形態の成膜装置を用いた電子デバイスの製造方法の一例を説明する。以下、電子デバイスの例として有機EL表示装置の構成及び製造方法を例示する。
まず、製造する有機EL表示装置について説明する。図7の(a)は、有機EL表示装置60の全体図であり、図7の(b)は、一画素の断面構造を示している。
<Manufacturing method of electronic devices>
Next, an example of a method for manufacturing an electronic device using the film forming apparatus of the present embodiment will be described. Hereinafter, the configuration and manufacturing method of the organic EL display device will be illustrated as an example of the electronic device.
First, the organic EL display device to be manufactured will be described. FIG. 7A is an overall view of the organic EL display device 60, and FIG. 7B shows a cross-sectional structure of one pixel.

図7の(a)に示すように、有機EL表示装置60の表示領域61には、発光素子を複数備える画素62がマトリクス状に複数配置されている。詳細は後で説明するが、発光素子のそれぞれは、一対の電極に挟まれた有機層を備えた構造を有している。なお、ここでいう画素とは、表示領域61において所望の色の表示を可能とする最小単位を指している。本実施例にかかる有機EL表示装置の場合、互いに異なる発光を示す第1発光素子62R、第2発光素子62G、第3発光素子62Bの組合せにより画素62が構成されている。画素62は、赤色発光素子と緑色発光素子と青色発光素子の組合せで構成されることが多いが、黄色発光素子とシアン発光素子と白色発光素子の組み合わせでもよく、少なくとも1色以上であれば特に制限されるものではない。 As shown in FIG. 7A, a plurality of pixels 62 including a plurality of light emitting elements are arranged in a matrix in the display area 61 of the organic EL display device 60. Although details will be described later, each of the light emitting elements has a structure including an organic layer sandwiched between a pair of electrodes. The pixel referred to here refers to the smallest unit that enables the display of a desired color in the display area 61. In the case of the organic EL display device according to this embodiment, the pixel 62 is composed of a combination of a first light emitting element 62R, a second light emitting element 62G, and a third light emitting element 62B that emit light differently from each other. The pixel 62 is often composed of a combination of a red light emitting element, a green light emitting element, and a blue light emitting element, but may be a combination of a yellow light emitting element, a cyan light emitting element, and a white light emitting element, and is particularly limited to at least one color. There are no restrictions.

図7の(b)は、図7の(a)のA−B線における部分断面模式図である。画素62は、基板63上に、第1電極(陽極)64と、正孔輸送層65と、発光層66R、66G、66Bのいずれかと、電子輸送層67と、第2電極(陰極)68と、を備える有機EL素子を有している。これらのうち、正孔輸送層65、発光層66R、66G、66B、電子輸送層67が有機層に当たる。また、本実施形態では、発光層66Rは赤色を発する有機EL層、発光層66Gは緑色を発する有機EL層、発光層66Bは青色を発する有機EL層である。発光層66R、66G、66Bは、それぞれ赤色、緑色、青色を発する発光素
子(有機EL素子と記述する場合もある)に対応するパターンに形成されている。また、第1電極64は、発光素子ごとに分離して形成されている。正孔輸送層65と電子輸送層67と第2電極68は、複数の発光素子62R、62G、62Bと共通で形成されていてもよいし、発光素子毎に形成されていてもよい。なお、第1電極64と第2電極68とが異物によってショートするのを防ぐために、第1電極64間に絶縁層69が設けられている。さらに、有機EL層は水分や酸素によって劣化するため、水分や酸素から有機EL素子を保護するための保護層70が設けられている。
FIG. 7B is a schematic partial cross-sectional view taken along the line AB of FIG. 7A. The pixel 62 has a first electrode (anode) 64, a hole transport layer 65, one of the light emitting layers 66R, 66G, 66B, an electron transport layer 67, and a second electrode (cathode) 68 on the substrate 63. It has an organic EL element comprising. Of these, the hole transport layer 65, the light emitting layers 66R, 66G, 66B, and the electron transport layer 67 correspond to the organic layer. Further, in the present embodiment, the light emitting layer 66R is an organic EL layer that emits red, the light emitting layer 66G is an organic EL layer that emits green, and the light emitting layer 66B is an organic EL layer that emits blue. The light emitting layers 66R, 66G, and 66B are formed in a pattern corresponding to a light emitting element (sometimes referred to as an organic EL element) that emits red, green, and blue, respectively. Further, the first electrode 64 is formed separately for each light emitting element. The hole transport layer 65, the electron transport layer 67, and the second electrode 68 may be formed in common with the plurality of light emitting elements 62R, 62G, and 62B, or may be formed for each light emitting element. An insulating layer 69 is provided between the first electrodes 64 in order to prevent the first electrode 64 and the second electrode 68 from being short-circuited by foreign matter. Further, since the organic EL layer is deteriorated by moisture and oxygen, a protective layer 70 for protecting the organic EL element from moisture and oxygen is provided.

図7の(b)では正孔輸送層65や電子輸送層67が一つの層で示されているが、有機EL表示素子の構造によって、正孔ブロック層や電子ブロック層を含む複数の層で形成されてもよい。また、第1電極64と正孔輸送層65との間には、第1電極64から正孔輸送層65への正孔の注入が円滑に行われるようにすることのできるエネルギーバンド構造を有する正孔注入層を形成することもできる。同様に、第2電極68と電子輸送層67の間にも電子注入層が形成されことができる。 In FIG. 7B, the hole transport layer 65 and the electron transport layer 67 are shown as one layer, but depending on the structure of the organic EL display element, there are a plurality of layers including the hole block layer and the electron block layer. It may be formed. Further, between the first electrode 64 and the hole transport layer 65, there is an energy band structure capable of smoothly injecting holes from the first electrode 64 into the hole transport layer 65. A hole injection layer can also be formed. Similarly, an electron injection layer can be formed between the second electrode 68 and the electron transport layer 67.

次に、有機EL表示装置の製造方法の例について具体的に説明する。
まず、有機EL表示装置を駆動するための回路(不図示)および第1電極64が形成された基板63を準備する。
Next, an example of a method for manufacturing an organic EL display device will be specifically described.
First, a substrate 63 on which a circuit (not shown) for driving an organic EL display device and a first electrode 64 is formed is prepared.

第1電極64が形成された基板63の上にアクリル樹脂をスピンコートで形成し、アクリル樹脂をリソグラフィ法により、第1電極64が形成された部分に開口が形成されるようにパターニングし絶縁層69を形成する。この開口部が、発光素子が実際に発光する発光領域に相当する。 Acrylic resin is formed by spin coating on the substrate 63 on which the first electrode 64 is formed, and the acrylic resin is patterned by a lithography method so that an opening is formed in the portion where the first electrode 64 is formed to form an insulating layer. Form 69. This opening corresponds to a light emitting region where the light emitting element actually emits light.

絶縁層69がパターニングされた基板63を第1の有機材料成膜装置に搬入し、基板保持ユニット21及び/又は静電チャック(不図示)にて、基板を保持し、正孔輸送層65を、表示領域の第1電極64の上に共通する層として成膜する。正孔輸送層65は真空蒸着により成膜される。実際には、正孔輸送層65は表示領域61よりも大きなサイズに形成されるため、高精細なマスクは不要である。 The substrate 63 in which the insulating layer 69 is patterned is carried into the first organic material film forming apparatus, the substrate is held by the substrate holding unit 21 and / or an electrostatic chuck (not shown), and the hole transport layer 65 is formed. , A common layer is formed on the first electrode 64 in the display area. The hole transport layer 65 is formed by vacuum deposition. In reality, the hole transport layer 65 is formed to have a size larger than that of the display region 61, so that a high-definition mask is unnecessary.

次に、正孔輸送層65までが形成された基板63を第2の有機材料成膜装置に搬入し、基板保持ユニット21及び/又は静電チャックにて保持する。基板とマスクとのアライメントを行い、基板をマスクの上に載置し、基板63の赤色を発する素子を配置する部分に、赤色を発する発光層66Rを成膜する。 Next, the substrate 63 on which the hole transport layer 65 is formed is carried into the second organic material film forming apparatus and held by the substrate holding unit 21 and / or the electrostatic chuck. The substrate and the mask are aligned, the substrate is placed on the mask, and the light emitting layer 66R that emits red is formed on the portion of the substrate 63 on which the element that emits red is arranged.

発光層66Rの成膜と同様に、第3の有機材料成膜装置により緑色を発する発光層66Gを成膜し、さらに第4の有機材料成膜装置により青色を発する発光層66Bを成膜する。発光層66R、66G、66Bの成膜が完了した後、第5の成膜装置により表示領域61の全体に電子輸送層67を成膜する。電子輸送層67は、3色の発光層66R、66G、66Bに共通の層として形成される。 Similar to the film formation of the light emitting layer 66R, the light emitting layer 66G that emits green is formed by the third organic material film forming apparatus, and the light emitting layer 66B that emits blue is further formed by the fourth organic material film forming apparatus. .. After the film formation of the light emitting layers 66R, 66G, and 66B is completed, the electron transport layer 67 is formed on the entire display region 61 by the fifth film forming apparatus. The electron transport layer 67 is formed as a layer common to the three color light emitting layers 66R, 66G, and 66B.

電子輸送層67まで形成された基板を金属性成膜材料の成膜装置に移動させて第2電極68を成膜する。
本発明の一実施例によれば、金属性膜材料の成膜装置において、蒸発源の蒸着位置に向けられた成膜レート測定部を蒸発源の予熱位置に向けられた成膜レート測定部より遠く設置することで、蒸発源の蒸着位置に向けられた成膜レートの測定部の交換周期が短くなることを抑制することができる。
その後プラズマCVD装置に移動して保護層70を成膜して、有機EL表示装置60が完成する。
The substrate formed up to the electron transport layer 67 is moved to a film forming apparatus made of a metallic film forming material to form a second electrode 68.
According to one embodiment of the present invention, in the film forming apparatus for a metallic film material, the film forming rate measuring section directed to the vapor deposition position of the evaporation source is directed from the film forming rate measuring section directed to the preheating position of the evaporation source. By installing it far away, it is possible to prevent the replacement cycle of the film formation rate measuring unit directed to the vapor deposition position of the evaporation source from being shortened.
After that, it moves to a plasma CVD device to form a protective layer 70, and the organic EL display device 60 is completed.

絶縁層69がパターニングされた基板63を成膜装置に搬入してから保護層70の成膜が完了するまでは、水分や酸素を含む雰囲気にさらしてしまうと、有機EL材料からなる発光層が水分や酸素によって劣化してしまうおそれがある。従って、本例において、成膜装置間の基板の搬入搬出は、真空雰囲気または不活性ガス雰囲気の下で行われる。
前記実施例は本発明の一例を示したものであり、本発明は前記実施例の構成に限定されないし、その技術思想の範囲内で適切に変形しても良い。
From the time when the substrate 63 in which the insulating layer 69 is patterned is carried into the film forming apparatus until the film formation of the protective layer 70 is completed, when the substrate 63 is exposed to an atmosphere containing moisture or oxygen, a light emitting layer made of an organic EL material is formed. It may be deteriorated by moisture and oxygen. Therefore, in this example, the loading and unloading of the substrate between the film forming apparatus is performed in a vacuum atmosphere or an inert gas atmosphere.
The above-described embodiment shows an example of the present invention, and the present invention is not limited to the configuration of the above-described embodiment and may be appropriately modified within the scope of the technical idea.

11:成膜装置
20:真空容器(容器)
21:基板保持ユニット
23:蒸発源
23a:第1蒸発源
23b:第2蒸発源
25:防着部材(カバー手段)
25a:第1防着部材(カバー手段)
25b:第2防着部材(カバー手段)
26:蒸発源シャッタ(可動式開閉手段)
26a:第1蒸発源シャッタ(可動式開閉手段)
26b:第2蒸発源シャッタ(可動式開閉手段)
27:成膜レート測定手段
231:るつぼ(収納部)
232:蒸着位置
232a:第1蒸着位置(第1位置)
232b:第2蒸着位置(第3位置)
237:予熱位置
237a:第1予熱位置(第2位置)
237b:第2予熱位置(第4位置)
271、272:成膜レート測定部
271a:第1成膜レート測定部
272a:第2成膜レート測定部
271b:第3成膜レート測定部
272b:第4成膜レート測定部
A:第1距離
B:第2距離
11: Film forming apparatus 20: Vacuum container (container)
21: Substrate holding unit 23: Evaporation source 23a: First evaporation source 23b: Second evaporation source 25: Adhesive member (covering means)
25a: First adhesive member (covering means)
25b: Second adhesive member (covering means)
26: Evaporation source shutter (movable opening / closing means)
26a: First evaporation source shutter (movable opening / closing means)
26b: Second evaporation source shutter (movable opening / closing means)
27: Film formation rate measuring means 231: Crucible (storage unit)
232: Vapor deposition position 232a: First vapor deposition position (first position)
232b: Second vapor deposition position (third position)
237: Preheating position 237a: First preheating position (second position)
237b: 2nd preheating position (4th position)
271, 272: Film formation rate measurement unit 271a: First film formation rate measurement unit 272a: Second film formation rate measurement unit 271b: Third film formation rate measurement unit 272b: Fourth film formation rate measurement unit A: First distance B: Second distance

Claims (16)

容器と、
前記容器内に設置され、複数のるつぼを含む第1蒸発源と、
前記第1蒸発源の第1位置に向けて設置された第1成膜レート測定部と、
前記第1蒸発源の第2位置に向けて設置された第2成膜レート測定部と、
前記第1位置に対応する位置に設置され、前記第1位置に位置するるつぼと前記容器内の成膜位置に配置された基板との間に設置された第1可動式開閉手段と、
前記第2位置に対応する位置に設置され、前記容器に固定されるように設置される第1カバー手段と、
を含み、
前記第1位置と前記第1成膜レート測定部との間の第1距離が、前記第2位置と前記第2成膜レート測定部との間の第2距離より大きい
ことを特徴とする成膜装置。
With the container
A first evaporation source installed in the container and containing a plurality of crucibles,
A first film formation rate measuring unit installed toward the first position of the first evaporation source,
A second film formation rate measuring unit installed toward the second position of the first evaporation source,
A first movable opening / closing means installed at a position corresponding to the first position and between a crucible located at the first position and a substrate arranged at a film forming position in the container.
A first cover means installed at a position corresponding to the second position and fixed to the container.
Including
The first distance between the first position and the first film formation rate measuring unit is larger than the second distance between the second position and the second film forming rate measuring unit. Membrane device.
前記第1位置は、前記第1蒸発源の複数のるつぼのうち、成膜に用いられるるつぼが配置される位置である
ことを特徴とする請求項1に記載の成膜装置。
The film forming apparatus according to claim 1, wherein the first position is a position where a crucible used for film formation is arranged among a plurality of crucibles of the first evaporation source.
前記第2位置は、前記第1蒸発源の前記複数のるつぼのうち、次に成膜に用いられるるつぼが配置される位置である
ことを特徴とする請求項2に記載の成膜装置。
The film forming apparatus according to claim 2, wherein the second position is a position in which the crucible used for film formation is arranged next among the plurality of crucibles of the first evaporation source.
前記第2位置に配置されたるつぼは、前記成膜に用いられるるつぼが成膜に用いられる期間の少なくとも一部の期間中に予熱される
ことを特徴とする請求項3に記載の成膜装置。
The film forming apparatus according to claim 3, wherein the crucible arranged at the second position is preheated during at least a part of the period during which the crucible used for film formation is used for film formation. ..
前記第2位置に配置されたるつぼが予熱される期間は、前記成膜に用いられるるつぼが成膜に用いられる期間よりも短い
ことを特徴とする請求項4に記載の成膜装置。
The film forming apparatus according to claim 4, wherein the period in which the crucible arranged at the second position is preheated is shorter than the period in which the crucible used for film formation is used for film formation.
前記第1蒸発源は、回転することが可能である
ことを特徴とする請求項1〜5のいずれか一項に記載の成膜装置。
The film forming apparatus according to any one of claims 1 to 5, wherein the first evaporation source is rotatable.
前記第1カバー手段は、前記第1位置に対応する位置に設置された第1開口部と、前記第2位置から前記第2成膜レート測定部に向かう経路上に設けられた第2開口部とを含むことを特徴とする請求項1〜6のいずれか一項に記載の成膜装置。 The first cover means includes a first opening provided at a position corresponding to the first position and a second opening provided on a path from the second position to the second film formation rate measuring unit. The film forming apparatus according to any one of claims 1 to 6, wherein the film forming apparatus comprises. 前記第1可動式開閉手段は、前記第1蒸発源の前記第1位置を覆う第1閉鎖位置と、前記第1蒸発源の前記第1位置を開放する第1開放位置との間を移動可能であり、
前記第1開放位置と前記第1位置との間の距離が、前記第1閉鎖位置と前記第1位置との間の距離より大きい
ことを特徴とする請求項1〜7のいずれか一項に記載の成膜装置。
The first movable opening / closing means can move between a first closed position that covers the first position of the first evaporation source and a first open position that opens the first position of the first evaporation source. And
According to any one of claims 1 to 7, the distance between the first open position and the first position is larger than the distance between the first closed position and the first position. The film forming apparatus according to the above.
複数のるつぼを含む第2蒸発源をさらに有し、
第2蒸発源の第3位置に向けて設置された第3成膜レート測定部と、
前記第3位置に対応する位置に設置された第2可動式開閉手段と、
をさらに含み、
前記第1距離は、前記第1位置と前記第3成膜レート測定部との間の距離である第3距離より大きい
ことを特徴とする請求項1〜8のいずれか一項に記載の成膜装置。
It also has a second evaporation source containing multiple crucibles,
A third film formation rate measuring unit installed toward the third position of the second evaporation source,
A second movable opening / closing means installed at a position corresponding to the third position,
Including
The result according to any one of claims 1 to 8, wherein the first distance is larger than the third distance, which is the distance between the first position and the third film formation rate measuring unit. Membrane device.
前記第2距離は前記第3距離より小さい
ことを特徴とする請求項9に記載の成膜装置。
The film forming apparatus according to claim 9, wherein the second distance is smaller than the third distance.
前記第2蒸発源の第4位置に向けて設置された第4成膜レート測定部と、
前記第4位置に対応する位置に設置され、前記容器に固定されるように設置される第2カバー手段と、
をさらに含み、
前記第1距離は、前記第1位置と前記第4成膜レート測定部との間の第4距離より小さい
ことを特徴とする請求項9または10に記載の成膜装置。
A fourth film formation rate measuring unit installed toward the fourth position of the second evaporation source,
A second cover means installed at a position corresponding to the fourth position and fixed to the container.
Including
The film forming apparatus according to claim 9 or 10, wherein the first distance is smaller than the fourth distance between the first position and the fourth film forming rate measuring unit.
前記第3位置は、前記第2蒸発源の複数のるつぼのうち、成膜に用いられるるつぼが配置される位置であり、
前記第4位置は、前記第2蒸発源の前記複数のるつぼのうち、次に成膜に用いられるるつぼが配置される位置であり、
前記第4位置に配置されるるつぼは、前記成膜に用いられるるつぼが成膜に使用される期間の少なくとも一部の期間中に予熱される
ことを特徴とする請求項11に記載の成膜装置。
The third position is a position where the crucible used for film formation is arranged among the plurality of crucibles of the second evaporation source.
The fourth position is a position where the crucible used for film formation is placed next among the plurality of crucibles of the second evaporation source.
The film formation according to claim 11, wherein the crucible arranged at the fourth position is preheated during at least a part of the period during which the crucible used for the film formation is used for the film formation. apparatus.
前記第2蒸発源は、回転することが可能である
ことを特徴とする請求項9〜12のいずれか一項に記載の成膜装置。
The film forming apparatus according to any one of claims 9 to 12, wherein the second evaporation source is rotatable.
前記第1可動式開閉手段は、前記第1蒸発源の前記第1位置を覆う第1閉鎖位置と、前記第1蒸発源の前記第1位置を開放する第1開放位置との間を移動可能であり、
前記第1開放位置と前記第3位置との間の距離が、前記第1閉鎖位置と前記第3位置との間の距離より大きい
ことを特徴とする請求項9に記載の成膜装置。
The first movable opening / closing means can move between a first closed position that covers the first position of the first evaporation source and a first open position that opens the first position of the first evaporation source. And
The film forming apparatus according to claim 9, wherein the distance between the first open position and the third position is larger than the distance between the first closed position and the third position.
請求項1〜14のいずれか一項に記載の成膜装置を用いて、基板上に成膜材料を成膜する成膜方法。 A film forming method for forming a film forming material on a substrate by using the film forming apparatus according to any one of claims 1 to 14. 請求項15の成膜方法を用いて、電子デバイスを製造する方法。 A method for manufacturing an electronic device by using the film forming method of claim 15.
JP2019203955A 2019-02-27 2019-11-11 Film forming apparatus, film forming method, and electronic device manufacturing method Active JP7364432B2 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR10-2019-0023490 2019-02-27
KR1020190023490A KR102184356B1 (en) 2019-02-27 2019-02-27 Film forming apparatus, film forming method and manufacturing method of electronic device

Publications (3)

Publication Number Publication Date
JP2020139227A true JP2020139227A (en) 2020-09-03
JP2020139227A5 JP2020139227A5 (en) 2022-09-29
JP7364432B2 JP7364432B2 (en) 2023-10-18

Family

ID=72257844

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2019203955A Active JP7364432B2 (en) 2019-02-27 2019-11-11 Film forming apparatus, film forming method, and electronic device manufacturing method

Country Status (3)

Country Link
JP (1) JP7364432B2 (en)
KR (1) KR102184356B1 (en)
CN (1) CN111621762B (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115537760A (en) * 2021-06-30 2022-12-30 佳能特机株式会社 Film forming apparatus, film forming method, and evaporation source unit
JP7498216B2 (en) 2022-04-04 2024-06-11 キヤノントッキ株式会社 Film forming apparatus and film forming method

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7309773B2 (en) * 2021-03-31 2023-07-18 キヤノントッキ株式会社 Film forming apparatus and electronic device manufacturing method
CN112877649A (en) * 2021-04-01 2021-06-01 宁波星河材料科技有限公司 High-flux thin film preparation device convenient for crucible replacement and application thereof
JP7535030B2 (en) * 2021-11-26 2024-08-15 キヤノントッキ株式会社 Film forming apparatus, film thickness measurement method, and electronic device manufacturing method
CN114277354B (en) * 2021-12-28 2023-09-19 深圳奥卓真空设备技术有限公司 AF continuous vacuum coating equipment and uniformity control method thereof

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004256843A (en) * 2003-02-25 2004-09-16 Jeol Ltd Vacuum vapor deposition apparatus
JP2004263299A (en) * 2003-02-14 2004-09-24 Semiconductor Energy Lab Co Ltd Manufacturing apparatus
JP2005325391A (en) * 2004-05-13 2005-11-24 Ulvac Japan Ltd Film deposition system of organic thin film
JP2015140458A (en) * 2014-01-29 2015-08-03 シャープ株式会社 Vapor deposition apparatus, vapor deposition method and method for manufacturing organic electroluminescence element
JP2017008409A (en) * 2015-06-18 2017-01-12 キヤノントッキ株式会社 Vacuum evaporation device, production method of evaporation film and production method of organic electronic device

Family Cites Families (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20040040504A1 (en) * 2002-08-01 2004-03-04 Semiconductor Energy Laboratory Co., Ltd. Manufacturing apparatus
JP2004076074A (en) 2002-08-14 2004-03-11 Fuji Photo Film Co Ltd Vapor deposition system
JP5072184B2 (en) * 2002-12-12 2012-11-14 株式会社半導体エネルギー研究所 Deposition method
JP2004238688A (en) * 2003-02-06 2004-08-26 Sony Corp Apparatus for manufacturing organic light emitting device and system for manufacturing display device
JP4463492B2 (en) * 2003-04-10 2010-05-19 株式会社半導体エネルギー研究所 Manufacturing equipment
JP5325471B2 (en) * 2007-07-06 2013-10-23 株式会社半導体エネルギー研究所 Method for manufacturing light emitting device
JP2009221496A (en) 2008-03-13 2009-10-01 Toshiba Corp Thin film deposition apparatus, and method of manufacturing thin film
JP2012112034A (en) * 2010-11-04 2012-06-14 Canon Inc Vacuum vapor deposition system
JP5557817B2 (en) * 2011-09-30 2014-07-23 株式会社日立ハイテクノロジーズ Evaporation source and film forming apparatus
US8976698B2 (en) * 2012-08-09 2015-03-10 Qualcomm Incorporated Methods and apparatus for radio link monitoring in new carrier type (NCT) in a long term evolution (LTE) system
JP2014055342A (en) * 2012-09-14 2014-03-27 Hitachi High-Technologies Corp Film deposition apparatus
JP2014066673A (en) 2012-09-27 2014-04-17 Hitachi High-Technologies Corp Rate sensor, linear source, and vapor depositing apparatus
JP6179908B2 (en) * 2013-12-12 2017-08-16 株式会社アルバック Deposition preparation method for inline type film forming apparatus, inline type film forming apparatus and carrier
CN106256925B (en) * 2015-06-18 2020-10-02 佳能特机株式会社 Vacuum evaporation apparatus, method for manufacturing evaporated film, and method for manufacturing organic electronic device
KR101851734B1 (en) * 2016-12-29 2018-04-24 주식회사 에스에프에이 Deposition apparatus
CN207002834U (en) * 2017-05-25 2018-02-13 昆山国显光电有限公司 A kind of evaporation rate measurement apparatus

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004263299A (en) * 2003-02-14 2004-09-24 Semiconductor Energy Lab Co Ltd Manufacturing apparatus
JP2004256843A (en) * 2003-02-25 2004-09-16 Jeol Ltd Vacuum vapor deposition apparatus
JP2005325391A (en) * 2004-05-13 2005-11-24 Ulvac Japan Ltd Film deposition system of organic thin film
JP2015140458A (en) * 2014-01-29 2015-08-03 シャープ株式会社 Vapor deposition apparatus, vapor deposition method and method for manufacturing organic electroluminescence element
JP2017008409A (en) * 2015-06-18 2017-01-12 キヤノントッキ株式会社 Vacuum evaporation device, production method of evaporation film and production method of organic electronic device

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115537760A (en) * 2021-06-30 2022-12-30 佳能特机株式会社 Film forming apparatus, film forming method, and evaporation source unit
CN115537760B (en) * 2021-06-30 2024-09-20 佳能特机株式会社 Film forming apparatus, film forming method, and evaporation source unit
JP7498216B2 (en) 2022-04-04 2024-06-11 キヤノントッキ株式会社 Film forming apparatus and film forming method

Also Published As

Publication number Publication date
JP7364432B2 (en) 2023-10-18
KR102184356B1 (en) 2020-11-30
CN111621762A (en) 2020-09-04
CN111621762B (en) 2023-06-02
KR20200104743A (en) 2020-09-04

Similar Documents

Publication Publication Date Title
JP2020139227A (en) Film deposition apparatus, film deposition method, and manufacturing method of electronic device
CN110777350B (en) Evaporation measuring device, method for controlling evaporation rate measuring device, film forming method, and method for manufacturing electronic device
US8852687B2 (en) Organic layer deposition apparatus
JP6641649B2 (en) Method for determining life of quartz oscillator, film thickness measuring device, film forming method, film forming device, and electronic device manufacturing method
JP7018375B2 (en) Film forming equipment, film forming method, and electronic device manufacturing method
US20040089232A1 (en) Organic film formation apparatus
US20140034917A1 (en) Organic layer deposition assembly, organic layer deposition apparatus, organic light-emitting display apparatus and method of manufacturing the same
CN109811311B (en) Film forming apparatus, film forming method, and method for manufacturing electronic device
JP2019218623A (en) Film deposition apparatus, film deposition method and method of manufacturing electronic device
JP7017619B2 (en) Film forming equipment, electronic device manufacturing equipment, film forming method, and electronic device manufacturing method
JP7150776B2 (en) Film forming apparatus and electronic device manufacturing method
JP2021102811A (en) Film deposition device and method for producing electronic device
CN115011929B (en) Film forming apparatus, method for controlling film forming apparatus, and method for manufacturing electronic device
CN112442662A (en) Deposition amount information acquisition device, film forming device, opening/closing device, film forming method, and method for manufacturing electronic device
JP7296204B2 (en) Film forming apparatus, organic device manufacturing apparatus, and organic device manufacturing method
JP7329005B2 (en) Film forming apparatus, film forming method, and electronic device manufacturing method
KR20230059770A (en) Film forming apparatus, film forming method and manufacturing method of electronic device
JP2020070491A (en) Alignment device, film deposition, alignment method, film deposition method, and electronic device manufacturing method
JP2022173248A (en) Deposition device, deposition method, and method for producing electronic device
JP7291098B2 (en) Film forming apparatus, film forming method, and electronic device manufacturing method
WO2024070473A1 (en) Film formation device and film formation method
JP2022107969A (en) Deposition apparatus, deposition method, and production method of electronic device
KR20190036232A (en) Film forming apparatus, film forming method and method of manufacturing electronic device
JP2022167957A (en) Film deposition apparatus and method for manufacturing electronic device
JP2023152477A (en) Film deposition apparatus and film deposition method

Legal Events

Date Code Title Description
A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20220920

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20220920

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20230522

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20230606

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20230627

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20230926

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20231005

R150 Certificate of patent or registration of utility model

Ref document number: 7364432

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150