JP2017003845A - 導光装置及び虚像表示装置 - Google Patents

導光装置及び虚像表示装置 Download PDF

Info

Publication number
JP2017003845A
JP2017003845A JP2015119001A JP2015119001A JP2017003845A JP 2017003845 A JP2017003845 A JP 2017003845A JP 2015119001 A JP2015119001 A JP 2015119001A JP 2015119001 A JP2015119001 A JP 2015119001A JP 2017003845 A JP2017003845 A JP 2017003845A
Authority
JP
Japan
Prior art keywords
light
light guide
incident
image
guide device
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP2015119001A
Other languages
English (en)
Inventor
小松 朗
Akira Komatsu
朗 小松
貴洋 戸谷
Takahiro Totani
貴洋 戸谷
武田 高司
Takashi Takeda
高司 武田
将行 ▲高▼木
将行 ▲高▼木
Masayuki Takagi
敏明 宮尾
Toshiaki Miyao
敏明 宮尾
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Seiko Epson Corp
Original Assignee
Seiko Epson Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Seiko Epson Corp filed Critical Seiko Epson Corp
Priority to JP2015119001A priority Critical patent/JP2017003845A/ja
Priority to KR1020177003599A priority patent/KR20170030594A/ko
Priority to MA040472A priority patent/MA40472A/fr
Priority to PCT/JP2015/004040 priority patent/WO2016027442A1/en
Priority to EP15756493.1A priority patent/EP3183613A1/en
Priority to US15/500,683 priority patent/US10108015B2/en
Priority to CN201580044643.9A priority patent/CN106796348B/zh
Priority to TW104126622A priority patent/TW201608282A/zh
Publication of JP2017003845A publication Critical patent/JP2017003845A/ja
Priority to US16/134,367 priority patent/US20190137763A1/en
Withdrawn legal-status Critical Current

Links

Images

Landscapes

  • Optical Elements Other Than Lenses (AREA)
  • Lenses (AREA)

Abstract

【課題】映像光及び外光にムラが生じにくく、ゴーストが形成されにくい導光装置及びこれを組み込んだ虚像表示装置を提供する。【解決手段】導光装置20は、平行導光体22と、入射部21と、射出部23とを備える。ここで、平行導光体22の外界側の平面(第1の全反射面)22aで反射された映像光GLが複数のハーフミラー31を透過することなく反射されて観察者側に向うように設定しているので、反射ユニット30のうち入射部21から離れた奥側において、観察されるべき映像光GLの傾きを相対的に大きくすることができる。これにより、観察されるべき映像光GLがハーフミラー31を通過する回数を減らして輝度ムラや減光を防止でき、ゴースト光の発生を抑えることにもなる。【選択図】図2

Description

本発明は、頭部に装着して使用するヘッドマウントディスプレイ等に用いられる導光装置及びこれを組み込んだ虚像表示装置に関する。
近年、ヘッドマウントディスプレイのように虚像の形成及び観察を可能にする虚像表示装置として、導光板によって表示素子からの映像光を観察者の瞳に導くタイプのものが種々提案されている。
例えば、視準像等を観察者の視野に導入する装置として、平行平面状の導光板の中に多数のハーフミラー(以下、「HM」とも呼ぶ)を配列し、このHMで映像光を反射して、観察者に提示するものが公知となっている(特許文献1〜5参照)。
特許文献1の装置では、導光板の一端側から導入された映像光が、導光板を斜めに横切る複数のHMを次々と透過しつつ反射されて観察者に届く。特許文献2の装置では、導光板に導入された映像光が、導光板の中を全反射しながら伝搬し、外側の表面で反射された後に、導光板を斜めに横切る複数のHMで反射されて観察者に向かう。特許文献3の装置では、導光板に導入された映像光が、導光板の中を全反射しながら伝搬し、観察者側の表面で反射された後に、導光板を斜めに横切る複数のHMで反射されて観察者に向かう。この際、効率を上げるため、HMに入射する光のうち、大きな入射角度(50度〜70度)の光線については反射率をほぼゼロにし、小さな角度(40度以下)の光線については、所定の反射率となる様に設定される。特許文献4の装置では、導光板に導入された映像光が、導光板の中を全反射しながら伝搬し、観察者側の表面で反射された後に、複数のHMで反射されて観察者に向かう。ここで、HMを設けた領域又は層の厚さは、導光板より薄く設定されており、HMを透過させることなく映像光を観察することができる。特許文献5の図1に示す装置では、導光板に導入された映像光が、導光板の中を全反射しながら伝搬し、外界側の表面で反射された後、HMで反射され、観察者に向かう。ここで、HMを設けた領域は、導光板と同じ厚みがあり、ディスプレイから離れるに従って、HMの反射率が順次高くなることが特徴となっている。
別の表示装置として、平行平板状の導光板の片側に、薄いマイクロミラーアレイを貼り付けるように付加したものが存在する(特許文献6参照)。この装置では、画像を形成するため、走査ビームイメージ源を使用しており、縦方向にも瞳拡大をしている。導光板に導入された走査光は、導光板及びハーフミラーアレイの中を伝搬し、外界側の表面で反射され後、観察者側のハーフミラーアレイのHMで反射され、観察者に向かう。
上記特許文献1〜3及び5に記載の装置では、映像光がHMを透過する度に輝度が減るため、視野の中でムラが生じ、これを解消又は抑制することは容易でない。このような輝度ムラを解消するために、例えば奥側又は反光源側のHMの反射率を順次上げると、これに対応してHMの透過率が下がり外光(シースルー光)にムラが生じてしまう。
上記特許文献4に記載の装置では、HMを配列して成る反射ユニットの厚みが、導光体よりも薄いので、奥側のHMにも他のHMを透過せずに光が到達するため、光量ムラが生じない。しかし、反射ユニットの中で、2つの小面を一組とするHM部が配置されており、映像光はHMで2回反射されるため、反射効率が下がる傾向がある。
上記特許文献6に記載の装置でも、光線束の横幅を広げる為、HMで光線束を分割しており、映像光が、奥側に伝搬するにつれ、輝度が下がり、視野の中でムラが生じ、これを解消又は抑制することは容易でない。
特開平3‐15815号公報 特開2013‐210633号公報 特開2010‐164988号公報 特開2012‐88588号公報 国際公開WO2007/062098号 国際公開WO2009/009268号
本発明は、上記背景技術に鑑みてなされたものであり、映像光及び外光にムラが生じにくく、ゴーストが形成されにくい導光装置及びこれを組み込んだ虚像表示装置を提供することを目的とする。
上記目的を達成するため、本発明に係る導光装置は、観察者側及び外界側に対応して対向し略平行に延びる一対の面を有する導光体と、導光体の一端側に設けられた入射部と、導光体の他端側において観察者側に設けられた射出部とを備え、射出部は、映像光を反射する複数のミラーを配列してなる反射ユニットを有し、複数のミラーは、外界側に向かって入射部側に傾斜し、導光体と反射ユニットとの境界面において映像光を反射させずに反射ユニットに入射した映像光を反射させて観察者側に向かわせる。ここで、導光体とは、一対の面に挟まれた導光領域を有する部材を意味する。また、導光体と反射ユニットとの境界面とは、機能的な意味での境界を含んでおり、具体的には材質的に不連続な接合面だけでなく材質的に連続する機能的な境界を含んでいる。
なお、導光体については、入射部及び射出部の一方又は双方と一体的に形成される場合があり、この場合、入射部や射出部において、一対の面を延長した部分を設けてもよい。
上記導光装置によれば、導光体と反射ユニットとの境界面において映像光を反射させずに反射ユニットに入射した映像光を反射させて観察者側に向わせるように設定しているので、映像光は、上記境界面で反射されることなく射出部を射出する位置又はその近傍のミラーを経由するのみとなる。これにより、観察されるべき映像光がミラーを経由する回数を減らして輝度ムラや減光を防止でき、その一方で、意図しない映像光の射出を防止してゴースト光の発生を抑えることができる。
本発明の具体的な側面では、上記導光装置において、反射ユニットの厚さは、導光体の厚さよりも薄い。この場合、導光体の外界側の面で反射されて反射ユニットに入射する映像光についてミラーの経由回数を減らすことができ、映像光を少ない損失で観察者側に取り出すことができる。
本発明の別の側面では、複数のミラーは、平行に配置されている。この場合、反射ユニットにおける入射位置によらず角度情報が保持され、映像光の形成が容易になり、高精度の画像を表示することができる。
本発明のさらに別の側面では、複数のミラーは、可変ピッチで配置されている。この場合、回折ムラやモアレの発生を抑制することができる。
本発明のさらに別の側面では、複数のミラーは、ランダムピッチで配置されている。この場合、回折ムラやモアレの発生を確実に抑制することができる。
本発明のさらに別の側面では、複数のミラーは、0.5mm〜2.0mmのピッチで配置されている。複数のミラーを上記のようなピッチで配置することにより、ミラーのピッチを比較的狭くした際の映像光の干渉による波長分散や、ミラーの幅を比較的広くした際の光の透過量の違いによる黒スジの発生を抑える効果がある。
本発明のさらに別の側面では、映像光のうち像形成に用いられる光が反射ユニットのミラーに入射する角度は、入射部から離れるに従って小さくなる。つまり、映像光源に近い入口側で、観察される映像光がミラーに入射する角度が大きくなり、映像光源から離れた奥側で、観察される映像光がミラーに入射する角度が小さくなる。
本発明のさらに別の側面では、像形成に用いられる光線束は、導光体の外界側の所定面領域で反射されて反射ユニットに入射し、光軸を含む断面において、当該所定面領域で反射される前後の直進光路のいずれかで幅が絞られる。この場合、像形成に用いられる光線束を所定面領域の周辺で一旦絞るので、視野角を比較的広くすることが容易になる。また、光軸を含む断面方向に関して、導光体に映像光を入射させる投射レンズを小型化することができ、投射レンズを製造しやすくすることができる。
本発明のさらに別の側面では、光軸を含む断面において、像形成に用いられる光線束が反射ユニットに入射する入射幅は、像形成に用いられる光線束が所定面領域に入射する入射幅よりも広い。このように、像形成に用いられる光線束が所定面領域に入射する入射幅を相対的に狭くすることにより、導光体と反射ユニットとの境界面において映像光を反射させずに反射ユニットに入射させ、その入射位置から映像光を取り出すことが容易になる。
本発明の別の側面では、複数のミラーは、ハーフミラーで構成されている。この場合、外界光の透過性を高めてシースルー視を容易にすることができる。また、複数のミラーの間隔を狭めることが容易になり、映像光の利用効率を高めることができる。
本発明の別の側面では、反射ユニットは、導光体の観察者側に設けられた面に沿うように配置されている。この場合、導光体の外界側の面で反射された映像光を複数のミラーで反射させることが容易となる。
本発明のさらに別の側面では、反射ユニットは、入射部から遠い部分が相対的に外界寄りとなるように傾斜して配置されている。この場合、導光体の外界側の面で反射された映像光を複数のミラーで観察者側に反射させることできる。
本発明のさらに別の側面では、全ての画角の映像光は、導光体の内部において、同一回数反射された後に複数のミラーで反射されて観察者の眼に至る。
本発明のさらに別の側面では、入射部は、曲面の入射面及び反射面の少なくとも一方を有する。
本発明のさらに別の側面では、導光体は、一対の対向する平面として平行に延びる第1及び第2の全反射面を有し、入射部から取り込まれた映像光を第1及び第2の全反射面での全反射により導く。
本発明のさらに別の側面では、入射部に在る面(例えば入射面又は反射面)は、非軸対称曲面とすることによって、設計上の自由度を向上し、良好な光学性能を実現している。
上記目的を達成するため、本発明に係る虚像表示装置は、映像光を生じさせる映像素子と、上述した導光装置とを備える。
上記虚像表示装置によれば、上述した導光装置を用いることにより、観察される映像の輝度ムラや減光を防止し、なおかつゴースト光の発生を抑えることができ、高品位の画像を観察可能にすることができる。
(A)は、第1実施形態に係る虚像表示装置を示す断面図であり、(B)は、導光装置の裏面図である。 導光装置等における映像光の光路を光軸を含む断面で説明する図である。 反射ユニットでの光路の変化を説明する部分拡大図である。 反射ユニットの一作製例を説明する図である。 (A)及び(B)は、実施例1の光学系を説明する断面図である。 (A)〜(F)は、実施例1の光学系の収差を説明する図である。 (A)〜(F)は、実施例1の光学系の収差を説明する図である。 実施例2の光学系を説明する断面図である。 (A)〜(F)は、実施例2の光学系の収差を説明する図である。 (A)〜(F)は、実施例2の光学系の収差を説明する図である。 実施例3の光学系を説明する断面図である。 (A)〜(F)は、実施例3の光学系の収差を説明する図である。 (A)〜(F)は、実施例3の光学系の収差を説明する図である。 実施例4の光学系を説明する断面図である。 (A)〜(F)は、実施例4の光学系の収差を説明する図である。 (A)〜(F)は、実施例4の光学系の収差を説明する図である。 実施例5の光学系を説明する断面図である。 (A)〜(F)は、実施例5の光学系の収差を説明する図である。 (A)〜(F)は、実施例5の光学系の収差を説明する図である。 (A)は、第2実施形態に係る虚像表示装置を示す断面図であり、(B)は、導光装置の裏面図である。 導光装置等における映像光の光路を光軸を含む断面で説明する図である。 反射ユニットでの光路の変化を説明する部分拡大図である。 (A)及び(B)は、反射ユニットの作製例を説明する図である。 映像光の光路の射出側における変形例を説明する断面図である。 (A)は、反射ユニットの配置的な変形例を示し、(B)は、反射ユニットの構造的な変形例を示す。 (A)及び(B)は、実施例6の光学系を説明する断面図である。 (A)〜(F)は、実施例6の光学系の収差を説明する図である。 (A)〜(F)は、実施例6の光学系の収差を説明する図である。 第3実施形態に係る虚像表示装置を示す断面図である。 反射ユニットでの光路の変化を説明する部分拡大図である。 (A)及び(B)は、導光装置の入射部に関する変形例を説明する図である。
〔第1実施形態〕
以下、本発明の第1実施形態に係る導光装置を組み込んだ虚像表示装置について説明する。
〔1A.導光装置及び虚像表示装置の構造〕
図1(A)に示す虚像表示装置100は、ヘッドマウントディスプレイに適用されるものであり、画像形成装置10と、導光装置20とを一組として備える。なお、図1(A)は、図1(B)に示す導光装置20のA−A断面と対応する。
虚像表示装置100は、観察者に虚像としての映像を認識させるとともに、観察者に外界像をシースルーで観察させるものである。虚像表示装置100において、画像形成装置10と導光装置20とは、通常観察者の右眼及び左眼に対応して一組ずつ設けられるが、右眼用と左眼用とでは左右対称であるので、ここでは左眼用のみを示し、右眼用については図示を省略している。なお、虚像表示装置100は、全体としては、例えば一般の眼鏡のような外観(不図示)を有するものとなっている。
画像形成装置10は、映像素子である液晶デバイス11と、光結合用の投射レンズ12とを備える。液晶デバイス(映像素子)11は、光源14からの照明光を空間的に変調して、動画像その他の表示対象となるべき映像光GLを形成する。投射レンズ12は、液晶デバイス11上の各点から射出された映像光GLを略平行光線にするコリメートレンズである。なお、投射レンズ12は、ガラス又はプラスチックで形成され、1枚に限らず複数枚の構成とすることができる。投射レンズ12は、球面レンズに限らず、非球面レンズ、自由曲面レンズ等とすることができる。
導光装置20は、平板状の部分を有し、画像形成装置10で形成された映像光GLを虚像光として観察者の眼EYに向けて射出するとともに、外界像に対応する外界光ELを実質的にそのまま透過させる。導光装置20は、映像光を取り込む入射部21と、導光用の平行導光体22と、映像光を取り出すための射出部23とを備える。平行導光体22と入射部21の本体とは、高い光透過性を有する樹脂材料により成形された一体品である。第1実施形態の場合、導光装置20を通す映像光GLの光路は、同一回数反射される1種類の光路からなり、複数種類の光路を合成するタイプとなっていない。
なお、平行導光体22は、観察者の眼EYを基準とする光軸AXに対して傾けて配置されており、その法線方向Zは、光軸AXに対して角κだけ傾いている。この場合、平行導光体22を顔の曲線に沿って配置できるが、平行導光体22の法線は、光軸AXに対して傾きを有するものとなる。このように、平行導光体22の法線を光軸AXに平行なx方向に対して角度κだけ傾ける場合、反射ユニット30から射出させる光軸AX上及びその近傍の映像光GL0は、光射出面OSの法線に対して角度κを成すものとなる。
入射部21は、画像形成装置10からの映像光GLを取り込む光入射面ISと、取り込んだ映像光GLを反射して平行導光体22内に導く反射面RSとを有する。光入射面ISは、投射レンズ12側に凹の曲面21bから形成されており、この曲面21bは、反射面RSで反射された映像光GLを内面側で全反射する機能も有する。反射面RSも、投射レンズ12側に凹の曲面21aから形成されている。反射面RSは、曲面21a上にアルミ蒸着等の成膜を施すことにより形成され、光入射面ISから入射した映像光GLを反射し光路を所定方向に折り曲げ、曲面21bは、反射面RSで反射された映像光GLを内側で全反射し光路を所定方向に折り曲げる。つまり、入射部21は、光入射面ISから入射した映像光GLを2回の反射によって折り曲げることで、映像光GLを平行導光体22内に確実に結合させる。
平行導光体22は、y軸に平行でz軸に対して傾斜した平板部分であり、導光体とも呼ぶ。平行導光体(導光体)22は、光透過性の樹脂材料等により形成され、平行な一対の平面22a,22bを有する。両平面22a,22bは、平行平面であるため、外界像に関して拡大やフォーカスズレを生じさせない。また、+z側又はZ側の一方の平面22aは、入射部21からの映像光を全反射させる全反射面として機能し、映像光を少ない損失で射出部23に導く役割を有する。+z側の平面22aは、平行導光体22の外界側に配置されて第1の全反射面として機能し、本明細書中では外界側面とも呼ぶ。また、−z側の平面22bは、本明細書中では観察者側面とも呼ぶ。また、裏側の平面(観察者側面)22bは、射出部23の一端まで延びている。ここで、裏側の平面22bの延長平面は、平行導光体22と射出部23との境界面IFとなっている(図2参照)。
平行導光体22において、入射部21の反射面RSや光入射面ISの内側で反射された映像光GLは、全反射面である平面22aに入射し、ここで全反射され、導光装置20の奥側即ち射出部23を設けた+x側又はX側に導かれる。
なお、平行導光体22は、導光装置20の外形のうち+x側又はX側の端面を画成する側面として終端面ESを有する。また、平行導光体22は、±y側の端面を画成する上面及び底面として上端面TPと下端面BPとをそれぞれ有している。
図2に示すように、射出部23は、平行導光体22の奥側(+x側)において、裏側の平面22b又は境界面IFに沿って層状に形成されている。射出部23は、平行導光体22の外界側の平面(全反射面)22aにおいて所定面領域FRで全反射された映像光GLを通過させる際に、入射した映像光GLを所定角度で反射して光射出面OS側へ折り曲げる。ここでは、射出部23にこれを透過することなく最初に入射する映像光GLが虚像光としての取出し対象である。つまり、射出部23において光射出面OSの内面で反射される光があっても、これは映像光として利用されない。射出部23は、透過性を有する複数のミラー(すなわち複数のハーフミラー)を配列してなる反射ユニット30を有するが、その詳しい構造については、図3等を参照して後に詳述する。なお、反射ユニット30は、平行導光体22の観察者側の平面22bに沿ってその延長上に形成されている。
導光装置20が以上のような構造を有することから、画像形成装置10から射出され光入射面ISから導光装置20に入射した映像光GLは、入射部21で複数回の反射によって折り曲げられ、平行導光体22の平面22aの所定面領域FRにおいて全反射されて光軸AXに略沿って進む。+z側の平面22aの所定面領域FRで反射された映像光GLは、射出部23に入射する。この際、xy面内において、所定面領域FRの長手方向の幅は、射出部23の長手方向の幅よりも狭くなっている。つまり、映像光GLの光線束が射出部23(又は反射ユニット30)に入射する入射幅は、映像光GLの光線束が所定面領域FRに入射する入射幅よりも広い。このように、映像光GLの光線束が所定面領域FRに入射する入射幅を相対的に狭くすることにより、光路の干渉が生じにくくなり、境界面IFを導光に利用しないで(つまり、境界面IFで映像光GLを反射させずに)、所定面領域FRからの映像光GLを射出部23(又は反射ユニット30)に直接的に入射させることが容易になる。射出部23に入射した映像光GLは、射出部23において適度な角度で折り曲げられることで取出し可能な状態となり、最終的に光射出面OSから射出される。光射出面OSから射出された映像光GLは、虚像光として観察者の眼EYに入射する。当該虚像光が観察者の網膜において結像することで、観察者は虚像による映像光GLを認識することができる。
ここで、像形成に用いられる映像光GLが射出部23に入射する角度は、光源側の入射部21から離れるに従って大きくなっている。つまり、射出部23の奥側には、外界側の平面22aに平行なZ方向又は光軸AXに対して傾きの大きな映像光GLが入射して比較的大きな角度で折り曲げられ、射出部23の前側には、Z方向又は光軸AXに対して傾きの小さな映像光GLが入射して比較的小さな角度で折り曲げられる。
〔1B.映像光の光路〕
以下、映像光の光路について詳しく説明する。図2に示すように、液晶デバイス11の射出面11a上からそれぞれ射出される映像光のうち、破線で示す射出面11aの中央部分から射出される成分を映像光GL0とし、図中一点鎖線で示す射出面11aの周辺のうち紙面左側(−x及び+z側)から射出される成分を映像光GL1とし、図中二点鎖線で示す射出面11aの周辺のうち紙面右側(+x及び−z側)から射出される成分を映像光GL2とする。これらのうち映像光GL0の光路は光軸AXに沿って延びるものとする。
投射レンズ12を経た各映像光GL0,GL1,GL2の主要成分は、導光装置20の光入射面ISからそれぞれ入射した後、入射部21を経て平行導光体22内を通過して射出部23に至る。
具体的には、映像光GL0,GL1,GL2のうち、射出面11aの中央部分から射出された映像光GL0は、入射部21で折り曲げられて平行導光体22内に結合された後、標準反射角θで一方の平面22aの所定面領域FRに入射して全反射され、平行導光体22と射出部23(又は反射ユニット30)との境界面IFで反射されないでこれを通過し、射出部23の中央の部分23kに直接的に入射する。映像光GL0は、部分23kにおいて所定の角度で反射され、光射出面OSから光射出面OSを含むXY面に対して傾いた光軸AX方向(Z方向に対して角κの方向)に平行光束として射出される。
また、射出面11aの一端側(−x側)から射出された映像光GL1は、入射部21で折り曲げられて平行導光体22内に結合された後、最大反射角θで一方の平面22aの所定面領域FRに入射して全反射され、平行導光体22と射出部23(又は反射ユニット30)との境界面IFで反射されないでこれを通過し、射出部23のうち奥側(+x側)の部分23hにおいて所定の角度で反射され、光射出面OSから所定の角度方向に向けて平行光束として射出される。この際の射出角γは、入射部21側に戻される程度が相対的に大きくなっている。
一方、射出面11aの他端側(+x側)から射出された映像光GL2は、入射部21で折り曲げられて平行導光体22内に結合された後、最小反射角θで一方の平面22aの所定面領域FRに入射して全反射され、平行導光体22と射出部23(又は反射ユニット30)との境界面IFで反射されないでこれを通過し、射出部23のうち入口側(−x側)の部分23mにおいて所定の角度で反射され、光射出面OSから所定の角度方向に向けて平行光束として射出される。この際の射出角γは、入射部21側に戻される程度が相対的に小さくなっている。
なお、映像光GL0,GL1,GL2は、映像光GLの光線全体の一部を代表して説明したものであるが、他の映像光GLを構成する光線成分についても映像光GL0等と同様に導かれ光射出面OSから射出されるため、これらについては図示及び説明を省略している。
ここで、入射部21及び平行導光体22に用いられる透明樹脂材料の屈折率nの値の一例として、n=1.4とすると、その臨界角θcの値はθc≒45.6°となる。各映像光GL0,GL1,GL2の反射角θ,θ,θのうち最小である反射角θを臨界角θcよりも大きな値とすることで、必要な映像光について平行導光体22内等に平面22aにおける全反射条件を満たすものにできる。
なお、中央向けの映像光GL0は、仰角φ(=90°−θ)で射出部23の部分23kに入射し、周辺向け映像光GL1は、仰角φ(=90°−θ)で射出部23の部分23hに入射し、周辺向け映像光GL2は、仰角φ(=90°−θ)で射出部23の部分23mに入射する。ここで、仰角φ,φ,φ間には、反射角θ,θ,θの大小関係を反映してφ>φ>φの関係が成り立っている。つまり、反射ユニット30のハーフミラー31への入射角ι(図3参照)は、仰角φに対応する部分23m、仰角φに対応する部分23k、仰角φに対応する部分23hの順で徐々に小さくなる。換言すれば、ハーフミラー31への入射角ι又はハーフミラー31での反射角は、入射部21から離れるに従って小さくなる。
平行導光体22の外界側の平面22aで反射されて射出部23に向かう映像光GLの光線束の全体的な挙動について説明する。映像光GLの光線束は、光軸AXを含む断面において、平行導光体22の外界側の所定面領域FRで反射される前後の直進光路P1,P2のいずれかで幅が絞られる。具体的には、映像光GLの光線束は、光軸AXを含む断面において、所定面領域FR近辺、つまり直進光路P1,P2の境界付近で両直進光路P1,P2に跨るような位置で全体として幅が絞られてビーム幅が細くなっている。これにより、映像光GLの光線束を射出部23の手前で絞ることになり、横方向の視野角を比較的広くすることが容易になる。
なお、図示の例では、映像光GLの光線束が両直進光路P1,P2に跨るような位置で幅が絞られてビーム幅が細くなっているが、直進光路P1,P2のいずれか片側のみで幅が絞られてビーム幅が細くなってもよい。
〔1C.射出部の構造及び射出部による光路の折曲げ〕
以下、図2、3等を参照して、射出部23の構造及び射出部23による映像光の光路の折曲げについて詳細に説明する。なお、射出部23は、平行導光体22と同様に、光軸AXに対して角κだけ傾いたXY平面に沿って延びている。
まず、射出部23の構造について説明する。射出部23は、映像光GLをそれぞれ反射する複数のハーフミラー31を配列してなる反射ユニット30を有する。反射ユニット30は、矩形板状の部材であり、細い帯状のハーフミラー31をストライプパターンとなるように多数埋め込んだ構造を有する。つまり、反射ユニット30は、y方向又はY方向に延びる細長いハーフミラー31を所定のピッチPTで平行導光体22の延びる方向即ちX方向に多数配列させることで構成されている。より具体的には、ハーフミラー31は、図2等に示す平行導光体22の平面22a,22bに平行でハーフミラー31の配列されるX方向に対して垂直に延びる方向のうち、上下のy方向又はY方向を長手方向として、線状に延びている。さらに、ハーフミラー31は、平行導光体22の観察者側よりも外界側に向かって入射部21側に傾斜している。より具体的には、ハーフミラー31は、その長手方向(Y方向)を軸として、平面22a,22bに直交するYZ面を基準として上端(+Z側)が反時計方向に回転するように傾斜している。つまり、各ハーフミラー31は、XZ断面で見て−X方向及び+Z方向の間の方向に延びている。さらに、全ハーフミラー31は、精密に互いに平行に配置されている。
反射ユニット30は、多数のブロック部材32を接合した構造を有し、ハーフミラー31は、隣接する一対のブロック部材32間に挟まれた薄膜状のものとなっている。ここで、ブロック部材32の屈折率は、平行導光体22の屈折率と略等しくなっているが、両者の屈折率を相違させることもできる。両者の屈折率を相違させる場合、ハーフミラー31を傾斜させる角度δを調整又は修正する必要がある。ハーフミラー31の映像光GLに対する反射率は、シースルーによる外界光ELの観察を容易にする観点で、想定される映像光GLの入射角範囲において10%以上50%以下とする。具体的な実施例のハーフミラー31の映像光GLに対する反射率は、例えば20%に設定され、映像光GLに対する透過率は、例えば80%に設定される。
図4を参照して、反射ユニット30の製造方法の一例について説明する。予め、ガラス製の平行平板である多数のガラス板91を準備し、それらの一面に金属反射膜や誘電体多層膜である反射膜92を成膜することにより多数の要素板90を準備する。その後、形成された多数の要素板90を接着剤で接合しつつ積層し、切断線C1、C2に沿って全体を斜めにカットする。これにより、平行平板を斜めに分割した細長いプリズム片であるブロック部材32の間に金属反射膜や誘電体多層膜からなるハーフミラー31を挟んだ構造の反射ユニット30を得ることができる。この反射ユニット30を、平行導光体22の観察者側の適所に接着剤を介して貼り付け、接着剤を硬化させることによって固定する。
なお、反射ユニット30におけるハーフミラー31のピッチPTは、0.5mm〜2.0mm程度に設定される。複数のハーフミラー31を上記のようなピッチで配置することにより、ハーフミラー31のピッチを狭くした際の映像光の干渉の仕方の違いによる色ずれ抑える効果や、ハーフミラー31のピッチを広くした際の光の透過量の違いによる黒スジの発生を抑える効果がある。
また、図3に示す反射ユニット30の場合、ハーフミラー31のピッチが若干広く外界光ELの一部を直接的に通過させるものとしているが、ハーフミラー31のピッチを適宜調整することにより、外界光ELが直接的に通過することを回避できる。
ハーフミラー31のピッチPTは、厳密には等間隔でなく、可変ピッチで配置されている。より具体的には、反射ユニット30におけるハーフミラー31のピッチPTは、基準間隔を中心としてランダムに増減するランダムピッチとなっている。このように、反射ユニット30におけるハーフミラー31をランダムピッチで配置することにより、回折ムラやモアレの発生を確実に抑制することができる。なお、ランダムピッチに限らず、例えば複数段階で増減するピッチを含む所定のピッチパターンを繰り返すものであってもよい。
ここで、反射ユニット30の厚み、即ちハーフミラー31のZ軸方向の厚みTIは、0.7mm〜3.0mm程度に設定される。なお、反射ユニット30を支持する平行導光体22の厚みは、例えば数mm〜10mm程度、好ましくは4mm〜6mm程度となっている。平行導光体22の厚みが反射ユニット30の厚みに比較して十分大きいと、反射ユニット30又は境界面IFへの映像光GLの入射角を小さくしやすく、映像光GLが眼EYに取り込まれない位置にあるハーフミラー31での反射を抑えやすい。一方、平行導光体22の厚みを比較的薄くすると、平行導光体22や導光装置20の軽量化を図りやすくなる。
図2、3等に示す例において、すべてのハーフミラー31は、平行導光体22の観察者側面22bを基準として、時計回りで例えば48°〜70°程度の傾斜角度δをなすものとでき、具体的には例えば60°の傾斜角度δをなしている。ここで、映像光GL0の仰角φが例えば30°に設定され、映像光GL1の仰角φが例えば22°に設定され、映像光GL2の仰角φが例えば38°に設定されているものとする。この場合、映像光GL1と映像光GL2とは、光軸AXを基準として角度γ=γ≒12.5°をなして観察者の眼EYに入射する。
これにより、上記映像光GLのうち全反射角度の比較的大きい成分(映像光GL1)を反射ユニット30のうち−x側の部分23h側に主に入射させ、全反射角度の比較的小さい成分(映像光GL2)を射出部23のうち+x側の部分23m側に主に入射させた場合において、映像光GLを全体として観察者の眼EYに集めるような角度状態で効率的に取り出すことが可能となる。このような角度関係で映像光GLを取り出す構成であるため、導光装置20は、映像光GLを反射ユニット30において原則として複数回経由させず、1回だけ経由させることができ、映像光GLを少ない損失で虚像光として取り出すことを可能にする。
なお、反射ユニット30の中央側や奥側の部分23k,23h等において、映像光GLの極一部は、ハーフミラー31を複数回経由(具体的には、1回の反射と1回以上の透過を含む通過)している。この場合、ハーフミラー31の経由回数が複数になるが、複数のハーフミラー31からの反射光が、映像光GLとして観察者の眼EYにそれぞれ入射するので、光量の損失はあまり大きくはならない。
また、反射ユニット30の中央側や奥側の部分23k,23h等において、映像光GLのうち平行導光体22の裏側又は観察者側(つまり、光射出面OS、境界面IF等)で反射される成分も発生する可能性がある。しかしながら、このような映像光GLは、ハーフミラー31で反射される非利用光GX(図3参照)として光路外に導かれるようになっており、観察者の眼EYに入射することが回避される。なお、ハーフミラー31を通過する非利用光は、外界側の平面22aに再度入射する可能性があるが、ここで全反射された場合、多くは反射ユニット30の奥側の部分23h又はさらに奧側であって有効領域外に入射させることができ、眼EYに入射する可能性が低減される。
〔1D.第1実施形態のまとめ〕
以上で説明した第1実施形態の導光装置20によれば、平行導光体22と反射ユニット30との境界面IFにおいて映像光GLを反射させずに反射ユニット30に入射した映像光GLを反射させて観察者側に向うように設定しているので、映像光GLは、境界面IFで反射されることなく射出部23の反射ユニット30を射出する位置又はその近傍のハーフミラー31を経由するのみとなる。これにより、観察されるべき映像光GLがハーフミラー31を経由する回数を減らして輝度ムラや減光を防止でき、ゴースト光の発生を抑えることにもなる。
見方を変えれば、本実施形態の導光装置20では、反射ユニット30が光軸AX方向に関して平行導光体22の半分程度以下に薄く、反射ユニット30を構成するハーフミラー31が平行導光体22の観察者側よりも外界側で入射部21に近づくように傾斜するとともに、反射ユニット30のうち少なくとも入射部21に近い部分が平行導光体22の観察者側に配置されている。これにより、反射ユニット30のうち入射部21から離れた奥側において、観察されるべき映像光GLの光軸AXに対する傾きを比較的大きくして、入射部21からの映像光GLを反射ユニット30の目標箇所に直接的に入射させることが容易となる。つまり、観察されるべき映像光GLがハーフミラー31を経由する回数を減らして輝度ムラや減光を防止でき、ゴースト光の発生を抑えることにもなる。
以上で説明した第1実施形態おいて、平行導光体22が眼を通る光軸AXに垂直なxy面に対して傾斜しているが、平行導光体22をxy面に平行にすることができる。
また、入射部21を曲面21a,21bで構成しているが、その一方又は双方を平面で構成することもんできる。この場合、曲面21bに対応する部分を平行導光体22の平面22bを延長した平面とすることができる。
また、入射部21において、光入射面ISから入射させた映像光GLを内面で反射させないで、そのまま平行導光体22に結合する構成とすることもできる。
さらに、平行導光体22は、完全な平行平板に限らず、若干の湾曲や楔角を持たせることができる。つまり、平行導光体22の平面22a,22bを非球面その他の湾曲面としたり、相互に傾き角を形成したりすることができる。ただし、平面22a,22bを湾曲させた場合、視度や倍率変化が発生するので、湾曲は少ない方が良い。また、平面22a,22b間に傾きを設けた場合、色分散が生じるので、傾き角は小さい方が望ましい。
〔1E.第1実施形態の実施例〕
以下、実施形態の虚像表示装置に組み込まれる光学系の実施例について説明する。各実施例で使用する記号を以下にまとめた。
STOP :眼に対応する絞り面
PLANE:眼前又は画像面前の平面
IMAGE:画像面
MA :ミラーアレイ
PSi :平面(i=同種面の面番号)
FFSj :自由曲面(j=同種面の面番号)
ASPk :球面又は平面(k=同種面の面番号)
R :曲率半径
T :軸上面間隔
Nd :光学材料のd線に対する屈折率
Vd :光学材料のd線に関するアッベ数
TLY :特定面の横断面(XZ断面)における光軸の傾斜角度(°)
(TLYについては、特定面の前後で変化する場合がある)
DCX :特定面の横断面(XZ断面)におけるX軸方向の光軸のズレ量
なお、以下の仕様は、すべての実施例において共通する。
虚像画角:25度×9.6度、2.5m先の50インチのモニターに相当
表示素子:9.6mm×5.4mm(0.43インチパネル)
焦点距離:21.7mm
入射瞳径:φ5mm
(実施例1)
実施例1を構成する光学面のデータを以下の表1に示す。なお、例えば符号PS1,FFS2は、平行導光体22の平面22a,22bを表し、符号FFS1,FFS2は、入射部21の反射面RSや光入射面ISを表す。符号ASP1〜ASP6は、投射レンズ12のレンズ面を表す。
〔表1〕
No Name T Nd Vd
1 STOP 20.00
2 PLANE 0.50 1.517 64.17
3 MA -0.50 1.517 64.17
4 PS1 -5.00 1.525 55.95
5 PS2 14.00 1.525 55.95
6 FFS1 -7.00 1.525 55.95
7 FFS2 7.00 1.525 55.95
8 FFS1 7.00
9 ASP1 12.00 1.525 55.95
10 ASP2 1.50
11 ASP3 1.00 1.585 29.90
12 ASP4 2.00
13 ASP5 6.00 1.525 55.95
14 ASP6 5.60
15 PLANE 1.10 1.458 67.82
16 IMAGE
実施例1を構成するプリズム中の光学面について、その横断面における光軸傾斜角度(ティルト)TLYと光軸ズレ量(ディセンター)DCXとを以下の表2に示す。
〔表2〕
No Name TLY(面前) DCX(面後) TLY(面後)
2 PLANE 15.00 0.0 0.00
5 PS2 0.00 11.8 65.08
6 FFS1 -54.00 0.0 -54.00
7 FFS2 36.48 0.0 -36.48
8 FFS1 54.00 7.0 32.38
実施例1を構成する光学面のうち自由曲面について、その多項式展開した係数Akm,nを以下の表3に示す。なお、表3において、記号m,nは、係数Akm,n中の変数又は次数を意味する。ここで、係数Akm,nは、対象とする第k面を表す多項式を構成する各項X・Yの係数を意味する。つまり、第k面は、Z=Σ{Akm,n・(X・Y)}で表される。
〔表3〕
m n FFS1 FFS2
2 0 4.025E-03 6.215E-03
0 2 6.136E-03 6.836E-03
3 0 2.529E-05 6.218E-05
1 2 1.150E-05 2.657E-05
4 0 2.362E-06 3.504E-06
2 2 1.238E-06 2.624E-06
0 4 4.822E-06 4.171E-06
5 0 0.000E+00 5.012E-08
3 2 0.000E+00 -5.990E-08
1 4 0.000E+00 4.723E-08
6 0 0.000E+00 7.769E-09
4 2 0.000E+00 -2.522E-09
2 4 0.000E+00 -6.814E-09
0 6 0.000E+00 -4.870E-09
実施例1を構成する光学面のうち非球面について、その断面形状を多項式展開した係数Bi(i=2,4,6,…)を以下の表4に示す。つまり、非球面は、r=X+Yとして、Z=ΣBi・rで表される。
〔表4〕
ASP1 ASP2 ASP3 ASP4 ASP5 ASP6
B2 4.088E-02 -2.844E-02 -5.546E-02 4.503E-02 6.674E-02 -1.370E-02
B4 4.789E-05 7.964E-05 3.746E-04 -2.053E-04 -3.603E-06 1.003E-03
B6 1.379E-07 7.442E-08 -1.359E-06 1.234E-06 -2.773E-06 -1.894E-05
B8 6.850E-10 -7.115E-10 2.222E-09 5.199E-08 2.982E-09 1.120E-07
図5(A)は、実施例1の導光装置20及び投射レンズ12の断面図である。導光装置20は、平行導光体22の一対の平面22a,22bとして、第1及び第2面S1,S2を有する。平面22a又は第1面S1は、光射出面OSに相当する。導光装置20は、入射部21において、自由曲面であり断面において比較的弱い負の屈折力を有する第3面S3と、自由曲面であり断面において比較的弱い正の屈折力を有する第4面S4と、第3面S3と共通する透過面である第5面S5とを有する。ここで、第5面S5は、光入射面ISに相当する。本実施例のように、入射部21に自由曲面を設けることで、投射レンズの負担を低減でき、結果として光学系を薄くできる。
なお、入出射の屈折面による波長による色分散を防止するために、入射部21側の光軸AXと、射出部23側の光軸AXとは、色分散を相殺する同様の方向傾いている。
投射レンズ12は、3つのレンズL1,L2,L3を有する。これらのレンズL1,L2,L3は、両光学面が非球面のレンズである。
図5(B)は、導光装置20を構成する第1〜第5面S1〜S5のローカル座標を具体的に図示したものである。
図6(A)〜6(F)及び図7(A)〜7(F)は、実施例1の収差を示す。各収差図において、横軸は瞳における位置を示し、縦軸は収差量を示す。具体的には、図6(A)及び6(B)は、X方向に−12.48°でY方向に0.0°の方位におけるY及びX方向の収差をミクロン単位で示し、図6(C)及び6(D)は、X方向に0.0°でY方向に0.0°の方位におけるY及びX方向の収差を示し、図6(E)及び6(F)は、X方向に12.48°でY方向に0.0°の方位におけるY及びX方向の収差を示す。図7(A)及び7(B)は、X方向に12.48°でY方向に7.1°の方位におけるY及びX方向の収差を示し、図7(C)及び7(D)は、X方向に0.0°でY方向に7.10°の方位におけるY及びX方向の収差を示し、図7(E)及び7(F)は、X方向に12.48°でY方向に7.1°の方位におけるY及びX方向の収差を示す。なお、図示の収差量は、便宜上光線を逆行させた場合の映像表示素子の像面における収差量となっている。
(実施例2)
実施例2を構成する光学面のデータを以下の表5に示す。
〔表5〕
No Name T Nd Vd
1 STOP 20.00
2 PS1 0.50 1.525 55.95
3 MA -4.50 1.525 55.95
4 PS2 5.00 1.525 55.95
5 PS1 -12.00 1.525 55.95
6 PS3 12.00 1.525 55.95
7 PS1 3.00
8 ASP1 10.00 1.525 55.95
9 ASP2 1.00
10 ASP3 1.00 1.585 29.90
11 ASP4 2.00
12 ASP5 8.00 1.525 55.95
13 ASP6 8.74
14 PLANE 1.10 1.458 67.82
15 IMAGE
実施例2を構成するプリズム中の光学面について、その横断面における光軸傾斜角度TLYと光軸ズレ量DCXとを以下の表6に示す。
〔表6〕
No Name TLY(面前) DCX(面後) TLY(面後)
6 PS3 32.00 0.0 -32.00
実施例2を構成する光学面のうち非球面について、その断面形状を多項式展開した係数Bi(i=2,4,6,…)を以下の表7に示す。
〔表7〕
ASP1 ASP2 ASP3 ASP4 ASP5 ASP6
B2 4.261E-02 -9.425E-03 6.069E-03 9.219E-02 7.256E-02 -1.695E-02
B4 -4.971E-05 -2.179E-04 -4.037E-04 -7.190E-04 -3.935E-04 6.896E-06
B6 4.023E-07 1.745E-06 4.321E-06 9.852E-06 3.653E-06 4.050E-07
B8 -4.222E-09 -5.872E-09 -1.277E-08 -4.414E-08 -1.601E-08 -6.515E-09
図8は、実施例2の導光装置20及び投射レンズ12の断面図である。導光装置20は、平行導光体22の一対の平面22a,22bとして、第1及び第2面S1,S2を有する。平面22a又は第1面S1は、光射出面OSに相当する。導光装置20は、入射部21において、平面である第3面S3と、平面である第4面S4と、第3面S3と共通する透過面である第5面S5とを有する。ここで、第5面S5は、光入射面ISに相当する。
なお、実施例2の場合、入射部21側の光軸AXと射出部23側の光軸AXとは平行になっている。
投射レンズ12は、3つのレンズL1,L2,L3を有する。これらのレンズL1,L2,L3は、両光学面が非球面のレンズである。
図9(A)〜9(F)及び図10(A)〜10(F)は、実施例2の収差を示す。各収差図において、横軸は瞳における位置を示し、縦軸は収差量を示す。具体的には、図9(A)及び9(B)は、X方向に−12.48°でY方向に0.0°の方位におけるY及びX方向の収差をミクロン単位で示し、図9(C)及び9(D)は、X方向に0.0°でY方向に0.0°の方位におけるY及びX方向の収差を示し、図9(E)及び9(F)は、X方向に12.48°でY方向に0.0°の方位におけるY及びX方向の収差を示す。図10(A)及び10(B)は、X方向に12.48°でY方向に7.1°の方位におけるY及びX方向の収差を示し、図10(C)及び10(D)は、X方向に0.0°でY方向に7.10°の方位におけるY及びX方向の収差を示し、図10(E)及び10(F)は、X方向に12.48°でY方向に7.1°の方位におけるY及びX方向の収差を示す。なお、図示の収差量は、便宜上光線を逆行させた場合の映像表示素子の像面における収差量となっている。
(実施例3)
実施例3を構成する光学面のデータを以下の表8に示す。
〔表8〕
No Name T Nd Vd
1 STOP 20.00
2 PS 0.50 1.517 64.17
3 MA -0.50 1.517 64.17
4 PS1 -5.00 1.525 55.95
5 PS2 5.00 1.525 55.95
6 PS1 -10.00 1.525 55.95
7 PS3 10.00 1.525 55.95
8 PS1 4.00
9 ASP1 12.00 1.525 55.95
10 ASP2 0.50
11 ASP3 1.00 1.585 29.90
12 ASP4 2.00
13 ASP5 11.00 1.525 55.95
14 ASP6 6.44
15 PLANE 1.10 1.458 67.82
16 IMAGE
実施例3を構成するプリズム中の光学面について、その横断面における光軸傾斜角度TLYと光軸ズレ量DCXとを以下の表9に示す。
〔表9〕
No Name TLY(面前) DCX(面後) TLY(面後)
7 PS3 25.00 0.0 -25.00
8 PS1 0.00 -22.8 23.56
実施例3を構成する光学面のうち非球面について、その断面形状を多項式展開した係数Bi(i=2,4,6,…)を以下の表10に示す。
〔表10〕
ASP1 ASP2 ASP3 ASP4 ASP5 ASP6
B2 3.396E-02 -4.156E-02 1.916E-02 1.215E-01 6.757E-02 -1.951E-02
B4 -1.679E-04 5.338E-05 -6.739E-04 -9.379E-04 -4.438E-04 -4.454E-04
B6 1.566E-06 1.826E-06 9.440E-06 6.844E-06 5.699E-06 5.299E-06
B8 -3.074E-09 -9.729E-09 -7.057E-08 -3.857E-08 -2.672E-08 -1.411E-08
図11は、実施例3の導光装置20及び投射レンズ12の断面図である。導光装置20は、平行導光体22の一対の平面22a,22bとして、第1及び第2面S1,S2を有する。平面22a又は第1面S1は、光射出面OSに相当する。導光装置20は、入射部21において、平面である第3面S3と、平面である第4面S4と、第3面S3と共通する透過面である第5面S5とを有する。ここで、第5面S5は、光入射面ISに相当する。
投射レンズ12は、3つのレンズL1,L2,L3を有する。これらのレンズL1,L2,L3は、両光学面が非球面のレンズである。
なお、入出射の屈折面による波長による色分散を防止するために、入射部21側の光軸AXと、射出部23側の光軸AXとは、色分散を相殺する同様の方向傾いている。
図12(A)〜12(F)及び図13(A)〜13(F)は、実施例3の収差を示す。各収差図において、横軸は瞳における位置を示し、縦軸は収差量を示す。具体的には、図12(A)及び12(B)は、X方向に−12.48°でY方向に0.0°の方位におけるY及びX方向の収差をミクロン単位で示し、図12(C)及び12(D)は、X方向に0.0°でY方向に0.0°の方位におけるY及びX方向の収差を示し、図12(E)及び12(F)は、X方向に12.48°でY方向に0.0°の方位におけるY及びX方向の収差を示す。図13(A)及び13(B)は、X方向に12.48°でY方向に7.1°の方位におけるY及びX方向の収差を示し、図13(C)及び13(D)は、X方向に0.0°でY方向に7.10°の方位におけるY及びX方向の収差を示し、図13(E)及び13(F)は、X方向に12.48°でY方向に7.1°の方位におけるY及びX方向の収差を示す。なお、図示の収差量は、便宜上光線を逆行させた場合の映像表示素子の像面における収差量となっている。
(実施例4)
実施例4を構成する光学面のデータを以下の表11に示す。
〔表11〕
No Name T Nd Vd
1 STOP 20.00
2 PLANE 0.50 1.517 64.17
3 MA -0.50 1.517 64.17
4 PS1 -5.00 1.525 55.95
5 PS2 5.00 1.525 55.95
6 PS1 -11.00 1.525 55.95
7 FFS1 11.00 1.525 55.95
8 PS1 6.00
9 FFS2 11.00 1.525 55.95
10 FFS3 4.00
11 FFS4 1.00 1.585 29.90
12 FFS5 0.70
13 FFS6 10.00 1.525 55.95
14 FFS7 8.66
15 PLANE 1.10 1.458 67.82
16 IMAGE
実施例4を構成するプリズム中の光学面について、その横断面における光軸傾斜角度TLYと光軸ズレ量DCXとを以下の表12に示す。
〔表12〕
No Name TLY(面前) DCX(面後) TLY(面後)
2 PLANE 15.00 0.0 0.00
6 PS3 20.18 0.0 -20.18
8 PS1 0.00 -22.8 23.56
実施例4を構成する光学面のうち自由曲面について、その多項式展開した係数Akm,nを以下の表13に示す。
〔表13〕
m n FFS1 FFS2 FFS3 FFS4
2 0 -1.001E-03 3.217E-02 -5.088E-02 -8.121E-02
0 2 4.459E-04 2.334E-02 -4.626E-02 -8.824E-02
3 0 -6.021E-06 -7.535E-04 -2.173E-03 -1.818E-03
1 2 -2.438E-05 7.471E-05 -1.249E-04 8.272E-04
4 0 5.245E-06 1.536E-05 4.219E-04 5.982E-04
2 2 -3.484E-06 1.888E-04 6.465E-04 8.631E-04
0 4 -1.471E-06 2.049E-05 2.157E-04 2.312E-04
5 0 -3.135E-07 4.773E-06 1.213E-05 1.253E-05
3 2 -3.589E-07 9.190E-06 1.529E-05 -3.229E-06
1 4 2.209E-08 -5.002E-06 -7.891E-06 -4.664E-06
6 0 -2.665E-08 -5.258E-07 -1.878E-06 -1.909E-06
4 2 -3.263E-08 -2.465E-09 -2.628E-06 -3.451E-06
2 4 4.590E-08 -4.226E-07 -2.623E-06 -2.557E-06
0 6 2.520E-08 2.158E-07 -3.016E-07 -1.037E-07

m n FFS5 FFS6 FFS7
2 0 5.047E-02 5.947E-02 -6.516E-02
0 2 3.508E-02 4.575E-02 -7.168E-02
3 0 1.568E-05 3.386E-04 -1.884E-04
1 2 7.011E-04 8.344E-05 2.050E-04
4 0 -3.949E-04 -2.512E-04 3.113E-04
2 2 -1.770E-04 -1.988E-04 5.372E-04
0 4 -4.641E-04 -2.057E-04 3.636E-04
5 0 -6.777E-06 3.364E-06 9.382E-06
3 2 -1.589E-05 -7.256E-06 -4.576E-06
1 4 3.806E-06 1.650E-06 -2.805E-06
6 0 5.946E-07 8.559E-07 1.296E-07
4 2 2.414E-06 2.436E-06 -1.315E-06
2 4 1.224E-06 1.358E-06 -7.629E-07
0 6 1.593E-06 5.668E-07 -8.658E-07
図14は、実施例4の導光装置20及び投射レンズ12の断面図である。導光装置20は、平行導光体22の一対の平面22a,22bとして、第1及び第2面S1,S2を有する。平面22a又は第1面S1は、光射出面OSに相当する。導光装置20は、入射部21において、平面である第3面S3と、自由曲面であり断面において比較的弱い負の屈折力を有する第4面S4と、第3面S3と共通する透過面である第5面S5とを有する。ここで、第5面S5は、光入射面ISに相当する。
なお、入出射の屈折面による波長による色分散を防止するために、入射部21側の光軸AXと、射出部23側の光軸AXとは、色分散を相殺する同様の方向傾いている。
投射レンズ12は、3つのレンズL1,L2,L3を有する。これらのレンズL1,L2,L3は、両光学面が非球面のレンズである。
図15(A)〜15(F)及び図16(A)〜16(F)は、実施例4の収差を示す。各収差図において、横軸は瞳における位置を示し、縦軸は収差量を示す。具体的には、図15(A)及び15(B)は、X方向に−12.48°でY方向に0.0°の方位におけるY及びX方向の収差をミクロン単位で示し、図15(C)及び15(D)は、X方向に0.0°でY方向に0.0°の方位におけるY及びX方向の収差を示し、図15(E)及び15(F)は、X方向に12.48°でY方向に0.0°の方位におけるY及びX方向の収差を示す。図16(A)及び16(B)は、X方向に12.48°でY方向に7.1°の方位におけるY及びX方向の収差を示し、図16(C)及び16(D)は、X方向に0.0°でY方向に7.10°の方位におけるY及びX方向の収差を示し、図16(E)及び16(F)は、X方向に12.48°でY方向に7.1°の方位におけるY及びX方向の収差を示す。なお、図示の収差量は、便宜上光線を逆行させた場合の映像表示素子の像面における収差量となっている。
(実施例5)
実施例5を構成する光学面のデータを以下の表14に示す。
〔表14〕
No Name T Nd Vd
1 STOP 20.00
2 PLANE 0.50 1.517 64.17
3 MA -0.50 1.517 64.17
4 PS1 -6.00 1.525 55.95
5 PS2 12.00 1.525 55.95
6 FFS1 5.00 1.525 55.95
7 ASP1 10.00 1.525 55.95
8 ASP2 3.00
9 ASP3 1.50 1.585 29.90
10 ASP4 1.00
11 ASP5 10.00 1.525 55.95
12 ASP6 6.00
13 PLANE 1.10 1.458 67.82
14 IMAGE
実施例5を構成するプリズム中の光学面について、その横断面における光軸傾斜角度TLYと光軸ズレ量DCXとを以下の表15に示す。
〔表15〕
No Name TLY(面前) DCX(面後) TLY(面後)
2 PLANE 15.00 0.0 0.00
5 PS2 0.00 16.8 68.93
6 FFS1 -20.29 0.0 31.99
実施例5を構成する光学面のうち自由曲面について、その多項式展開した係数Akm,nを以下の表16に示す。
〔表16〕
m n FFS1
2 0 -2.090E-03
0 2 -2.435E-03
3 0 3.217E-05
1 2 1.679E-05
4 0 2.794E-05
2 2 2.988E-05
0 4 2.551E-05
5 0 -2.605E-07
3 2 -2.269E-06
1 4 -3.500E-07
6 0 -5.325E-07
4 2 2.433E-07
2 4 -9.748E-08
0 6 -8.694E-08
実施例5を構成する光学面のうち非球面について、その断面形状を多項式展開した係数Bi(i=2,4,6,…)を以下の表17に示す。
〔表17〕
ASP1 ASP2 ASP3 ASP4 ASP5 ASP6
B2 2.824E-02 -5.969E-02 -6.451E-02 9.653E-02 7.941E-02 -5.863E-02
B4 -1.241E-05 4.250E-04 1.714E-04 -1.293E-03 -5.008E-04 2.358E-04
B6 9.445E-07 -2.368E-06 1.280E-06 1.421E-05 4.050E-06 1.477E-06
B8 -6.582E-09 4.155E-09 -1.087E-08 -6.560E-08 -9.310E-09 -9.397E-09
図17は、実施例5の導光装置20及び投射レンズ12の断面図である。導光装置20は、平行導光体22の一対の平面22a,22bとして、第1及び第2面S1,S2を有する。平面22a又は第1面S1は、光射出面OSに相当する。導光装置20は、入射部21において、自由曲面であり断面において比較的弱い屈折力を有する第3面S3とを有する。ここで、第3面S3は、光入射面ISに相当する。
なお、入出射の屈折面による波長による色分散を防止するために、入射部21側の光軸AXと、射出部23側の光軸AXとは、色分散を相殺する同様の方向傾いている。
投射レンズ12は、3つのレンズL1,L2,L3を有する。これらのレンズL1,L2,L3は、両光学面が非球面のレンズである。
図18(A)〜18(F)及び図19(A)〜19(F)は、実施例5の収差を示す。各収差図において、横軸は瞳における位置を示し、縦軸は収差量を示す。具体的には、図18(A)及び18(B)は、X方向に−12.48°でY方向に0.0°の方位におけるY及びX方向の収差をミクロン単位で示し、図18(C)及び18(D)は、X方向に0.0°でY方向に0.0°の方位におけるY及びX方向の収差を示し、図18(E)及び18(F)は、X方向に12.48°でY方向に0.0°の方位におけるY及びX方向の収差を示す。図19(A)及び19(B)は、X方向に12.48°でY方向に7.1°の方位におけるY及びX方向の収差を示し、図19(C)及び19(D)は、X方向に0.0°でY方向に7.10°の方位におけるY及びX方向の収差を示し、図19(E)及び19(F)は、X方向に12.48°でY方向に7.1°の方位におけるY及びX方向の収差を示す。なお、図示の収差量は、便宜上光線を逆行させた場合の映像表示素子の像面における収差量となっている。
〔第2実施形態〕
以下、本発明の第2実施形態に係る導光装置を組み込んだ虚像表示装置について説明する。なお、第2実施形態に係る導光装置は、第1実施形態に係る導光装置を部分的に変更したものであり、共通部分については説明を省略する。
〔2A.導光装置及び虚像表示装置の構造〕
図20(A)に示す虚像表示装置100は、ヘッドマウントディスプレイに適用されるものであり、画像形成装置10と、導光装置20とを一組として備える。なお、図20(A)は、図20(B)に示す導光装置20のA−A断面と対応する。
虚像表示装置100は、第1実施形態の場合と同様に、画像形成装置10と導光装置20とを表示ユニットとして、通常観察者の右眼及び左眼用に二組の表示ユニットを含むが、にここでは左眼用のみを示し、右眼用については図示を省略している。
画像形成装置10は、第1実施形態の場合と同様のものであり、映像素子である液晶デバイス11と、光結合用の投射レンズ12とを備える。
導光装置20は、図中xy面に平行に延びる平板状の部分を有し、画像形成装置10で形成された映像光GLを虚像光として観察者の眼EYに向けて射出するとともに、外界像に対応する外界光ELを実質的にそのまま透過させる。導光装置20は、映像光を取り込む入射部21と、導光用の平行導光体22と、映像光を取り出すための射出部23とを備える。なお、平行導光体22と入射部21の本体とは、高い光透過性を有する樹脂材料により成形された一体品である。なお、第2実施形態の場合、導光装置20を通す映像光GLの光路は、反射回数が異なる複数種類の光路を含んでおり、これら複数種類の光路を合成するタイプとなっている。
入射部21は、画像形成装置10からの映像光GLを取り込む光入射面ISと、取り込んだ映像光GLを反射して平行導光体22内に導く反射面RSとを有する。反射面RSは、斜面21a上にアルミ蒸着等の成膜を施すことにより形成され、入射した映像光GLを反射し光路を直交方向に近い所定方向に折り曲げる。つまり、反射面RSは、光入射面ISから入射し全体として+z方向に向かう映像光GLを、全体として+x方向に向かわせるように折り曲げることで、映像光GLを平行導光体22内に確実に結合させる。なお、入射部21は、反射面RSのサイズを確保するため、z方向に突起した三角プリズム状となっている。反射面RSのz方向の幅は、平行導光体22+z方向の幅又は厚みよりも大きくなっており、映像光GLを平行導光体22にロス無く結合することができる。
平行導光体22は、図中xy面に平行に延びる平板部分であり、導光体とも呼ぶ。平行導光体(導光体)22は、光透過性の樹脂材料等により形成され、xy面に平行な一対の平面22a,22bを有する。両平面22a,22bは、平行平面であるため、外界像に関して拡大やフォーカスズレを生じさせない。また、両平面22a,22bは、入射部21の反射面RSで折り曲げられた映像光を全反射させる全反射面として機能し、映像光を少ない損失で射出部23に導く役割を有する。ここで、+z側の平面22aは、平行導光体22の外界側に配置されて第1の全反射面として機能し、本明細書中では外界側面とも呼ぶ。また、−z側の平面22bは、平行導光体22の観察者側に配置されて第2の全反射面として機能し、本明細書中では観察者側面とも呼ぶ。裏側の平面(観察者側面)22bのうち画像形成装置10に近い一部は、光入射面ISと共通するものとなっている。つまり、観察者側面22bの一部が光入射面ISとしても機能している。また、裏側の平面(観察者側面)22bは、射出部23一端まで延びており、射出部23の光射出面OSと同一平面上に配置されている。つまり、平行導光体22と射出部23との境界面IFは、裏側の平面22bよりも奥まった後退位置に配置されている。
平行導光体22において、入射部21の反射面RSで反射された映像光GLは、まず、第2の全反射面である平面22bに入射し、全反射される。次に、当該映像光GLは、第1の全反射面である平面22aに入射し、全反射される。以上のような一対の全反射は、1回又は複数回繰り返され、映像光GLは、導光装置20の奥側即ち射出部23を設けた+x側に導かれる。
射出部23は、平行導光体22の奥側(+x側)において、裏側(−z側)の平面(第2の全反射面)22b又は境界面IFに沿って層状に形成されている。射出部23は、平行導光体22の一対の平面22a,22bで全反射されつつ伝搬され最後に外界側の平面(第1の全反射面)22aで全反射された映像光GLを通過させる際に、入射した映像光GLを所定角度で反射して光射出面OS側へ折り曲げる。ここでは、射出部23に最初に入射する映像光GLが虚像光としての取出し対象である。つまり、射出部23において光射出面OSの内面で反射される光があっても、これは映像光として利用されない。射出部23は、透過性を有する複数のミラー(すなわち複数のハーフミラー)を配列してなる反射ユニット30を有する。なお、なお、反射ユニット30は、平行導光体22の観察者側の平面22bに沿ってその延長上に形成されている。つまり、射出部23又は反射ユニット30は、入射部21に近い部分だけでなく入射部21から離れた部分も、平行導光体22の観察者側に配置されている。
導光装置20が以上のような構造を有することから、画像形成装置10から射出され光入射面ISから導光装置20に入射した映像光GLは、入射部21で一様に反射されて折り曲げられ、平行導光体22の一対の平面22a,22bにおいて繰り返し全反射されて光軸AXに略沿って進む。+z側の平面22aの所定面領域FRで反射された映像光GLのうち特定のものは、射出部23に入射する。この際、xy面内において、所定面領域FRの長手方向の幅は、射出部23の長手方向の幅よりも狭くなっている。つまり、映像光GLの光線束が射出部23(又は反射ユニット30)に入射する入射幅は、映像光GLの光線束が所定面領域FRに入射する入射幅よりも広い。このように、映像光GLの光線束が所定面領域FRに入射する入射幅を相対的に狭くすることにより、光射出面OSを導光に利用しないで(つまり、光射出面OSで映像光GLを反射させずに)、所定面領域FRからの映像光GLを射出部23(又は反射ユニット30)に直接的に入射させることが容易になる。射出部23に入射した映像光GLは、射出部23において適度な角度で折り曲げられることで取出し可能な状態となり、最終的に光射出面OSから射出される。光射出面OSから射出された映像光GLは、虚像光として観察者の眼EYに入射する。当該虚像光が観察者の網膜において結像することで、観察者は虚像による映像光GLを認識することができる。
ここで、像形成に用いられる映像光GLが射出部23に入射する角度は、第1実施形態の場合と同様に、光源側の入射部21から離れるに従って大きくなっている。つまり、射出部23の奥側には、z方向に対して傾きの大きな映像光GLが入射して比較的大きな角度で折り曲げられ、射出部23の前側には、z方向に対して傾きの小さな映像光GLが入射して比較的小さな角度で折り曲げられる。
〔2B.映像光の光路〕
以下、映像光の光路について詳しく説明する。図21に示すように、液晶デバイス11の射出面11a上からそれぞれ射出される映像光のうち、破線で示す射出面11aの中央部分から射出される成分を映像光GL0とし、図中一点鎖線で示す射出面11aの周辺のうち紙面左側(−x側)から射出される成分を映像光GL1とし、図中二点鎖線で示す射出面11aの周辺のうち紙面右側(+x側)から射出される成分を映像光GL2とする。
投射レンズ12を経た各映像光GL0,GL1,GL2の主要成分は、導光装置20の光入射面ISからそれぞれ入射した後、第1及び第2の全反射面に対応する平面22a,22bにおいて互いに異なる角度で全反射を繰り返す。
具体的には、映像光GL0,GL1,GL2のうち、射出面11aの中央部分から射出された映像光GL0は、平行光束として入射部21で反射された後、標準反射角θで平行導光体22の観察者側の平面22bに入射し、全反射される。その後、映像光GL0は、標準反射角θを保った状態で、一対の平面22a,22bで全反射を繰り返す。映像光GL0は、平面22a,22bにおいて偶数回全反射され、平行導光体22と射出部23又は反射ユニット30との境界面IFでは反射されないでこれを通過し、射出部23の中央の部分23kに入射する。映像光GL0は、部分23kにおいて所定の角度で反射され、光射出面OSから光射出面OSを含むxy面に対して垂直な光軸AX方向に平行光束として射出される。
また、射出面11aの一端側(−x側)から射出された映像光GL1は、平行光束として入射部21で反射された後、最大反射角θで平行導光体22の観察者側の平面22bに入射し、全反射される。映像光GL1は、平面22a,22bにおいて複数回全反射され、平行導光体22と射出部23又は反射ユニット30との境界面IFでは反射されないでこれを通過し、射出部23のうち奥側(+x側)の部分23hにおいて所定の角度で反射され、光射出面OSから所定の角度方向に向けて平行光束として射出される。この際の射出角γは、入射部21側に戻されるようなものになっており、+x軸に対して鋭角の光線となる。
一方、射出面11aの他端側(+x側)から射出された映像光GL2は、平行光束として入射部21で反射された後、最小反射角θで平行導光体22の観察者側の平面22bに入射し、全反射される。映像光GL2は、平面22a,22bにおいて複数回全反射され、平行導光体22と射出部23又は反射ユニット30との境界面IFでは反射されないでこれを通過し、射出部23のうち入口側(−x側)の部分23mにおいて所定の角度で反射され、光射出面OSから所定の角度方向に向けて平行光束として射出される。この際の射出角γは、入射部21側から離れるようなものになっており、+x軸に対して鈍角の光線となる。
なお、映像光GL0,GL1,GL2が射出部23に達するまでの全反射回数は、必ずしも一致していない。つまり、図示の例では、映像光GL2との全反射回数が映像光GL1の全反射回数よりも1回以上多くなっており、映像光GL0の全反射回数は、両映像光GL1,GL2の全反射回数と一致する場合を含む。ただし、平面22a,22bでの全反射による光の反射効率は非常に高いものであるため、上記のように映像光GL0,GL1,GL2間で反射回数が異なっていても、これによって輝度ムラが生じることは殆どない。また、映像光GL0,GL1,GL2は、映像光GLの光線全体の一部を代表して説明したものであるが、他の映像光GLを構成する光線成分についても映像光GL0等と同様に導かれ光射出面OSから射出されるため、これらについては図示及び説明を省略している。
ここで、入射部21及び平行導光体22に用いられる透明樹脂材料の屈折率nの値の一例として、n=1.4とすると、その臨界角θcの値はθc≒45.6°となる。各映像光GL0,GL1,GL2の反射角θ,θ,θのうち最小である反射角θを臨界角θcよりも大きな値とすることで、必要な映像光について平行導光体22内における全反射条件を満たすものにできる。
なお、中央向けの映像光GL0は、仰角φ(=90°−θ)で射出部23の部分23kに入射し、周辺向け映像光GL1は、仰角φ(=90°−θ)で射出部23の部分23hに入射し、周辺向け映像光GL2は、仰角φ(=90°−θ)で射出部23の部分23mに入射する。ここで、仰角φ,φ,φ間には、反射角θ,θ,θの大小関係を反映してφ>φ>φの関係が成り立っている。つまり、反射ユニット30のハーフミラー31への入射角ι(図22参照)は、仰角φに対応する部分23m、仰角φに対応する部分23k、仰角φに対応する部分23hの順で徐々に小さくなる。換言すれば、ハーフミラー31への入射角ι又はハーフミラー31での反射角は、入射部21から離れるに従って小さくなる。
平行導光体22の外界側の平面22aで反射されて射出部23に向かう映像光GLの光線束の全体的な挙動について説明する。映像光GLの光線束は、光軸AXを含む断面において、平行導光体22の外界側の所定面領域FRで反射される前後の直進光路P1,P2のいずれかで幅が絞られる。具体的には、映像光GLの光線束は、光軸AXを含む断面において、所定面領域FRでの反射後の直進光路P2で全体として幅が絞られてビーム幅が細くなる。これにより、映像光GLの光線束を射出部23の手前で絞ることになり、横方向の視野角を比較的広くすることが容易になる。
〔2C.射出部の構造及び射出部による光路の折曲げ〕
以下、図21、22等を参照して、射出部23の構造及び射出部23による映像光の光路の折曲げについて詳細に説明する。
まず、射出部23の構造について説明する。射出部23は、映像光GLをそれぞれ反射する複数のハーフミラー31を配列してなる反射ユニット30を有する。反射ユニット30は、矩形板状の部材であり、細い帯状のハーフミラー31をストライプパターンとなるように多数埋め込んだ構造を有する。つまり、反射ユニット30は、y方向に延びる細長いハーフミラー31を所定のピッチPTで平行導光体22の延びる方向即ちx方向に多数配列させることで構成されている。より具体的には、ハーフミラー31は、図21等に示す平行導光体22の平面22a,22bに平行でハーフミラー31の配列されるx方向に対して垂直に延びる方向のうち、上下のy方向を長手方向として、線状に延びている。さらに、ハーフミラー31は、平行導光体22の観察者側よりも外界側に向かって入射部21側の傾斜している。より具体的には、ハーフミラー31は、その長手方向(y軸方向)を軸として、平面22a,22bに直交するyz面を基準として上端(+z側)が反時計方向に回転するように傾斜している。つまり、各ハーフミラー31は、xz断面で見て−x方向及び+z方向の間の方向に延びている。さらに、全ハーフミラー31は、精密に互いに平行に配置されている。
反射ユニット30は、第1実施形態の場合と同様の構造を有しており、多数のブロック部材32を接合した構造を有し、ハーフミラー31は、隣接する一対のブロック部材32間に挟まれた薄膜状のものとなっている。
反射ユニット30は、第1実施形態の場合と同様に図4に示す方法によって製造可能である。
反射ユニット30については、平行導光体22と別体で作製するものに限らず、平行導光体22と一体的に形成することもできる。
例えば図23(A)に示すように、平行導光体22となるべき母材22iを準備し、反射ユニット30が形成されるべき位置に多数の断面三角形の部分22jが並んだ断面鋸歯状の立体構造部分22kを形成する。この構造部分22kの斜面22mにハーフミラー31となるべき反射層22nを形成し、構造部分22kの溝に液体樹脂を流し込む。これにより、図23(B)に示すように、構造部分22kを構成する各溝に液体樹脂を充填した多数の断面三角形の部分22pが形成され、層状の射出部23すなわち反射ユニット30が完成する。ここで、断面三角形の部分22jの観察者側の頂点を結んだ平面は、反射ユニット30と平行導光体22との間の境界面IFであるものとする。この境界面IFは、機能的な境界を意味しており、材質的に不連続な接合面ではなく材質的に連続するものとなっている。この結果、境界面IFでは、映像光GLの反射が生じない。
なお、図23(A)等では、平行導光体22となる母材22iに反射ユニット30を形成したが、平行導光体22とは別に形成した母材に図23(A)等に示す手法で反射ユニット30を形成し、こうして形成した反射ユニット30を平行導光体22に接合することもできる。
以上の図23(A)及び23(B)に例示する反射ユニット30の製造方法は、第1実施形態の反射ユニット30の製造にも適用可能である。
なお、反射ユニット30におけるハーフミラー31のピッチPTは、第1実施形態の場合と同様に、0.5mm〜2.0mm程度に設定される。
ハーフミラー31のピッチPTは、第1実施形態の場合と同様に、厳密には等間隔でなく、可変ピッチで配置されている。より具体的には、反射ユニット30におけるハーフミラー31のピッチPTは、基準間隔を中心としてランダムに増減するランダムピッチとなっている。
ここで、反射ユニット30の厚み、即ちハーフミラー31のz軸方向の厚みTIは、第1実施形態の場合と同様に、0.7mm〜3.0mm程度に設定される。なお、反射ユニット30を支持する平行導光体22の厚みも、第1実施形態の場合と同様に、例えば数mm〜10mm程度、好ましくは4mm〜6mm程度となっている。
図21、22等に示す具体例において、すべてのハーフミラー31は、平行導光体22の観察者側面22bを基準として、時計回りで例えば48°〜70°程度の傾斜角度δをなすものとでき、具体的には例えば60°の傾斜角度δをなしている。ここで、映像光GL0の仰角φが例えば30°に設定され、映像光GL1の仰角φが例えば22°に設定され、映像光GL2の仰角φが例えば38°に設定されているものとする。この場合、反射ユニット30の中央に入射した映像光GL0は、平面22bに垂直な−z方向に射出され観察者の眼EYに入射する。また、反射ユニット30の入射部21から離れた奥側の部分23hに入射した映像光GL1は、映像光GL0に対して角度γ=12.5°をなして観察者の眼EYに入射する。また、反射ユニット30の入射部21に近い前側の部分23mに入射した映像光GL2は、映像光GL0に対して角度γ=12.5°をなして観察者の眼EYに入射する。
これにより、上記映像光GLのうち全反射角度の比較的大きい成分(映像光GL1)を反射ユニット30のうち+x側の部分23h側に主に入射させ、全反射角度の比較的小さい成分(映像光GL2)を射出部23のうち−x側の部分23m側に主に入射させた場合において、映像光GLを全体として観察者の眼EYに集めるような角度状態で効率的に取り出すことが可能となる。このような角度関係で映像光GLを取り出す構成であるため、導光装置20は、映像光GLを反射ユニット30において原則として複数回経由させず、1回だけ経由させることができ、映像光GLを少ない損失で虚像光として取り出すことを可能にする。
なお、反射ユニット30の中央側や奥側の部分23k,23h等において、映像光GLは、ハーフミラー31を複数回経由(具体的には、1回の反射と1回以上の透過を含む通過)している。この場合、ハーフミラー31の経由回数が複数になるが、複数のハーフミラー31からの反射光が、映像光GLとして観察者の眼EYにそれぞれ入射するので、光量の損失はあまり大きくはならない。
また、反射ユニット30の中央側や奥側の部分23k,23h等において、映像光GLのうち平行導光体22の裏側又は観察者側(つまり、光射出面OS等)で反射される成分も発生する可能性がある。しかしながら、このような映像光GLは、ハーフミラー31で反射される非利用光GX(図22参照)として光路外に導かれるようになっており、観察者の眼EYに入射することが回避される。なお、ハーフミラー31を通過する非利用光は、外界側の平面22aに再度入射する可能性があるが、ここで全反射された場合、多くは反射ユニット30の奥側の部分23h又はさらに奧側であって有効領域外に入射させることができ、眼EYに入射する可能性が低減される。
〔2D.第2実施形態のまとめ〕
以上で説明した第1実施形態の導光装置20によれば、平行導光体22と反射ユニット30との境界面IFにおいて映像光GLを反射させずに反射ユニット30に入射した映像光GLを反射させて観察者側に向うように設定しているので、映像光GLは、境界面IFで反射されることなく射出部23の反射ユニット30を射出する位置又はその近傍のハーフミラー31を経由するのみとなる。これにより、観察されるべき映像光GLがハーフミラー31を経由する回数を減らして輝度ムラや減光を防止でき、ゴースト光の発生を抑えることにもなる。
見方を変えれば、本実施形態の導光装置20では、反射ユニット30が光軸AX方向に関して平行導光体22の半分程度以下に薄く、反射ユニット30を構成するハーフミラー31が平行導光体22の観察者側よりも外界側で入射部21に近づくように傾斜するとともに、反射ユニット30のうち少なくとも入射部21に近い部分が平行導光体22の観察者側に配置されている。これにより、反射ユニット30のうち入射部21から離れた奥側において、観察されるべき映像光GLの光軸AXに対する傾きを比較的大きくして、入射部21からの映像光GLを反射ユニット30の目標箇所に直接的に入射させることが容易となる。つまり、観察されるべき映像光GLがハーフミラー31を経由する回数を減らして輝度ムラや減光を防止でき、ゴースト光の発生を抑えることにもなる。
平行導光体22における映像光GLの全反射の回数は、図21に例示のものに限定されない。つまり、平行導光体22のz方向の厚みやx方向の長さに応じて、入射部21から射出部23に至るまでにおける映像光GLの全反射の回数を適宜変更することができる。
図24は、導光装置20の射出部23の構造等を変更した例を説明する図である。この場合、反射ユニット30の厚みが、入射部21に近い側で厚く入射部21から遠い側で薄くなっている。入射部21から遠い側では、映像光GL2の仰角φが小さくなっており、反射ユニット30を薄くすることで、ハーフミラー31を経由する回数が増加することを抑制できる。
以上の図24に例示する反射ユニット30の形状又は構造は、第1実施形態においても同様に採用可能である。
図25(A)は、射出部23の配置を変更した例を説明する図であり、図21に示す導光装置20の一部を拡大した断面図である。この場合、平行導光体22と反射ユニット30とが別体となっており、平行導光体22の裏側に設けた観察者側面22bに反射ユニット30を貼り付けた構造となっている。
図25(B)は、射出部23又は反射ユニット30の構造を変更した例を説明する図であり、図22に対応している。この場合、ハーフミラー31のピッチが若干広く、外界光ELの一部を直接的に通過させることができる。つまり、平行導光体22の正面から見て一対の隣接するハーフミラー31間に外界光ELを通過させる隙間が存在し、外界光ELの一部は、多数のハーフミラー31間に形成された多数の隙間を通過して比較的少ない損失で観察者の眼EYに入射する。なお、このようにハーフミラー31のピッチが広い場合、ハーフミラー31に代えて光透過性を有しない単なるミラーを用いても、反射ユニット30越しに外界光ELを透視することができる。
〔2E.第2実施形態の実施例〕
以下、実施形態の虚像表示装置に組み込まれる光学系の実施例について説明する。なお、以下の実施例6で使用する記号や仕様は、上記実施例1〜5と同様である。
(実施例6)
実施例6を構成する光学面のデータを以下の表18に示す。
〔表18〕
No Name T Nd Vd
1 STOP 20.00
2 PS1 0.50 1.525 55.95
3 MA -4.50 1.525 55.95
4 PS2 5.00 1.525 55.95
5 PS1 -5.00 1.525 55.95
6 PS2 5.00 1.525 55.95
7 PS1 -12.00 1.525 55.95
8 PS3 12.00 1.525 55.95
9 PS1 3.00
10 ASP1 10.00 1.525 55.95
11 ASP2 1.00
12 ASP3 1.00 1.585 29.90
13 ASP4 2.00
14 ASP5 8.00 1.525 55.95
15 ASP6 8.74
16 PLANE 1.10 1.458 67.82
17 IMAGE
実施例6
を構成するプリズム中の光学面について、その横断面における光軸傾斜角度TLYと光軸ズレ量DCXとを以下の表19に示す。
〔表19〕
No Type TLY(面前) DCX(面後) TLY(面後)
8 PS3 32.00 0.0 -32.00
実施例6を構成する光学面のうち非球面について、その断面形状を多項式展開した係数Bi(i=2,4,6,…)を以下の表20に示す。
〔表20〕
ASP1 ASP2 ASP3 ASP4 ASP5 ASP6
B2 4.261E-02 -9.425E-03 6.069E-03 9.219E-02 7.256E-02 -1.695E-02
B4 -4.971E-05 -2.179E-04 -4.037E-04 -7.190E-04 -3.935E-04 6.896E-06
B6 4.023E-07 1.745E-06 4.321E-06 9.852E-06 3.653E-06 4.050E-07
B8 -4.222E-09 -5.872E-09 -1.277E-08 -4.414E-08 -1.601E-08 -6.515E-09
図26(A)及び26(B)は、実施例6の導光装置20及び投射レンズ12の断面図である。導光装置20は、平行導光体22の一対の平面22a,22bとして、第1及び第2面S1,S2を有する。平面22a又は第1面S1は、光射出面OSに相当する。導光装置20は、入射部21において、平面である第3面S3と、平面である第4面S4とを有する。ここで、第4面S4は、光入射面ISに相当する。
実施例6の場合、反射回数が異なる複数種類の光路を含んでいるが、形状自体は、実施例2と略一致している。図26(A)は、+z方向を基準として−x側に傾いた方向(反時計回りに傾いた方向)から主に眼EYに入射する映像光GLを示す。また、図26(B)は、+z方向を基準として+x側に傾いた方向(時計回りに傾いた方向)から主に眼EYに入射する映像光GLを示す。
投射レンズ12は、3つのレンズL1,L2,L3を有する。これらのレンズL1,L2,L3は、両光学面が非球面のレンズである。
図27(A)〜27(F)及び図28(A)〜28(F)は、実施例6の収差を示す。各収差図において、横軸は瞳における位置を示し、縦軸は収差量を示す。具体的には、図28(A)及び28(B)は、X方向に−12.48°でY方向に0.0°の方位におけるY及びX方向の収差をミクロン単位で示し、図27(C)及び27(D)は、X方向に0.0°でY方向に0.0°の方位におけるY及びX方向の収差を示し、図27(E)及び27(F)は、X方向に12.48°でY方向に0.0°の方位におけるY及びX方向の収差を示す。図28(A)及び28(B)は、X方向に12.48°でY方向に7.1°の方位におけるY及びX方向の収差を示し、図28(C)及び28(D)は、X方向に0.0°でY方向に7.10°の方位におけるY及びX方向の収差を示し、図28(E)及び28(F)は、X方向に12.48°でY方向に7.1°の方位におけるY及びX方向の収差を示す。なお、図示の収差量は、便宜上光線を逆行させた場合の映像表示素子の像面における収差量となっている。
〔第3実施形態〕
以下、図29、30を参照して、第3実施形態に係る導光装置及び虚像表示装置について説明する。なお、本実施形態に係る導光装置及び虚像表示装置は、図2(A)等に示す第1及び第2実施形態の変形例であり、共通する事項については説明を省略する。
図29、30に示すように、本実施形態に係る導光装置20においては、射出部23に設けた反射ユニット30が傾斜した状態で組み込まれている。つまり、反射ユニット30は、入射部21から遠い奥側の部分23hが入射部21に近い前側の部分23mよりも外界寄りとなるように傾斜している。つまり、反射ユニット30の入射面30a及び出射面30bは、平行導光体22の平面22bを基準として、反時計回りに90°未満で適宜傾斜したものとなっている。
なお、射出部23は、反射ユニット30を挟んで平行導光体22の反対側に、反射ユニット30の出射面30bに接合されるプリズム部材23fを有する。これにより、平行導光体22の外界側の平面22bと、この平面22に対向する光射出面OSとが平行になって外界光ELの自然な観察が可能になる。
図30に示すように、反射ユニット30が傾斜した状態で配置されていても、第1及び第2実施形態の角度条件と同じであるので(例えば図22参照)、平行導光体22の外界側の平面22aで反射された映像光GLを複数のハーフミラー31で反射させて、観察側の平面22bを通過させることできる。射出部23から射出される映像光GL0,GL1,GL2は、図21等の場合と同様に虚像を形成する。ここで、映像光GLの光線束は、光軸AXを含む断面において、所定面領域FRでの反射前の直進光路P1で全体として幅が絞られてビーム幅が細くなる。これにより、映像光GLの光線束を射出部23の手前で絞ることになり、横方向の視野角を比較的広くすることが容易になる。
なお、上記第1及び第2実施形態において、反射ユニット30の入射部21から遠い奥側の端部23pは、外界側の平面22aと繋がっている必要はなく、端部23pが平面22aから離れた構成とすることもできる。また、反射ユニット30は、平行導光体22内で平面状又は断面視直線状に延びる必要はなく、図29の断面で見て例えば+z側に凹形状とでき、さらに、複数の線分からなるような形状とすることもできるが、連続した形状である必要はある。
〔その他〕
以上各実施形態に即して本発明を説明したが、本発明は、上記の実施形態に限られるものではなく、その要旨を逸脱しない範囲において種々の態様において実施することが可能であり、例えば次のような変形も可能である。
反射ユニット30に設けた多数のハーフミラー31の反射率は、原則として一致させるが、これらハーフミラー31の反射率を入射部21から射出部23にかけて徐々に変化させることもできる。
以上の説明では、例えば第2実施形態において入射部21で映像光GLを反射させて平行導光体22の一方の平面22bに入射させているが、入射部21の形状(反射面RSや光入射面ISの傾き、間隔等)を変更することによって、映像光GLを平行導光体22の他方の平面22aに入射させることもできる。
また、例えば第2実施形態において入射部21の光入射面ISは、平行導光体22を構成する一対の平面22a,22bのいずれかと共通の面とする必要はなく、これらと別のものとできる。
例えば図31(A)に示すように、平行導光体22の光入射側に設けられる入射部121を裏側の平面22bから突起させる形状とすることもでき、この場合、光入射面ISを観察者側面22bとは別に設けることになるが、平行導光体22に対して映像光GLを斜めに入射させることが容易になる。
さらに、図31(B)に示すように、観察者側面22bで突起する入射部121を設けた場合、一度斜面21fで反射させる構造とすることもでき、この場合、画像形成装置10の配置等に関して設計の自由度を高めることができる。
以上の説明では、映像素子として、透過型の液晶デバイス11を用いているが、映像素子としては、透過型の液晶デバイスに限らず種々のものを利用可能である。例えば、反射型の液晶パネルを用いた構成も可能であり、液晶デバイス11に代えてデジタル・マイクロミラー・デバイス等を用いることもできる。また、有機EL、LEDアレイや有機LEDなどに代表される自発光型素子用いた構成も可能である。さらに、レーザー光源とポリゴンミラーその他のスキャナとを組みあわせたレーザスキャナを用いた構成も可能である。
以上の説明では、虚像表示装置100として、右眼及び左眼の双方に対応して一組ずつ画像形成装置10及び導光装置20設ける構成としているが、右眼又は左眼のいずれか一方に対してのみ画像形成装置10と導光装置20とを設け画像を片眼視する構成にしてもよい。
以上の説明では、シースルー型の虚像表示装置について説明しているが、射出部23は、シースルー型以外の虚像表示装置についても適用可能である。なお、外界像を観察させる必要がない場合、平面22a等の光反射率を略100%することが可能である。
以上の説明では、実施形態の虚像表示装置100がヘッドマウントディスプレイであるとして具体的な説明を行ったが、実施形態の虚像表示装置100は、ヘッドアップディスプレイ、双眼鏡型のハンドヘルドディスプレイ等に適用することもできる。
以上の説明では、平行導光体22の平面22a,22b又は面21bにおいて、表面上にミラーやハーフミラー等を施すことなく空気との界面により映像光を全反射させて導くものとしているが、本願発明における全反射については、平面22a,22b上の全体又は一部にミラーコートや、ハーフミラー膜が形成されてなされる反射も含むものとする。例えば、映像光GLの入射角度が全反射条件を満たした上で、平面22a,22bの全体又は一部にミラーコート等が施され、実質的に全ての映像光を反射する場合も含まれる。
以上の説明では、第2実施形態等において平行導光体22をx方向に横長とし、光入射面ISをxy面に平行な平面上で目の左右外側に位置するように形成しているが、映像光GLを導光装置20内に適切に導くことができれば、光入射面ISの位置はこれに限らず、例えば導光装置20の上下にある上端面TPや下端面BPの一部等に設けることも可能である。
以上では触れていないが、平行導光体22において外形を画定する外周部のうち上端面TPや下端面BP等を黒色塗料塗布面やサンドブラスト加工面とすることができる。さらに、上端面TPや下端面BP以外の箇所に黒色塗装塗布やサンドブラスト加工を施してもよい。上端面TPや下端面BP等の一部にのみ黒色塗装やサンドブラスト加工を施すものとしてもよい。
また、反射ユニット30を構成するハーフミラー31としては、反射率を適宜低下させるものに限らず、ホログラムミラーを用いることができる。この際のホログラムミラーは、RGBの各色を一括処理する多層型とできるが、各色用の単層膜とすることもできる。
10…画像形成装置、 11…液晶デバイス、 11a…射出面、 12…投射レンズ、 14…光源、 20…導光装置、 21…入射部、 22…平行導光体、 22a,22b…平面(全反射面)、 23…射出部、 23h,23k,23m…部分、 30…反射ユニット、 31…ハーフミラー、 32…ブロック部材、 100…虚像表示装置、 AX…光軸、 EY…眼、 GL…映像光、 GL0,GL1,GL2…映像光、 GX…非利用光、 IS…光入射面、 OS…光射出面、 RS…反射面、 IF…境界面、 FR…所定面領域

Claims (17)

  1. 観察者側及び外界側に対応して対向し略平行に延びる一対の面を有する導光体と、
    前記導光体の一端側に設けられた入射部と、
    前記導光体の他端側に設けられた射出部とを備え、
    前記射出部は、映像光を反射する複数のミラーを配列してなる反射ユニットを有し、
    前記複数のミラーは、外界側に向かって前記入射部側に傾斜し、前記導光体と前記反射ユニットとの境界面において映像光を反射させずに前記反射ユニットに入射した映像光を反射させて観察者側に向かわせる、導光装置。
  2. 前記反射ユニットの厚さは、前記導光体の厚さよりも薄い、請求項1に記載の導光装置。
  3. 前記複数のミラーは、平行に配置されている、請求項1及び請求項2のいずれか一項に記載の導光装置。
  4. 前記複数のミラーは、可変ピッチで配置されている、請求項1から請求項3までのいずれか一項に記載の導光装置。
  5. 前記複数のミラーは、ランダムピッチで配置されている、請求項4に記載の導光装置。
  6. 前記複数のミラーは、0.5mm〜2.0mmのピッチで配置されている、請求項1から請求項5までのいずれか一項に記載の導光装置。
  7. 映像光のうち像形成に用いられる光が前記反射ユニットの前記ミラーに入射する角度は、前記入射部から離れるに従って小さくなる、請求項1から請求項6までのいずれか一項に記載の導光装置。
  8. 像形成に用いられる光線束は、前記導光体の外界側の所定面領域で反射されて前記反射ユニットに入射し、光軸を含む断面において、当該所定面領域で反射される前後の直進光路のいずれかで幅が絞られる、請求項1から請求項7までのいずれか一項に記載の導光装置。
  9. 光軸を含む断面において、像形成に用いられる光線束が前記反射ユニットに入射する入射幅は、像形成に用いられる光線束が前記所定面領域に入射する入射幅よりも広い、請求項8に記載の導光装置。
  10. 前記複数のミラーは、ハーフミラーで構成されている、請求項1から請求項9までのいずれか一項に記載の導光装置。
  11. 前記反射ユニットは、前記導光体の観察者側に設けられた面に沿うように配置されている、請求項1から請求項10までのいずれか一項に記載の導光装置。
  12. 前記反射ユニットは、前記入射部から遠い部分が相対的に外界寄りとなるように傾斜して配置されている、請求項1から請求項10までのいずれか一項に記載の導光装置。
  13. 全ての画角の映像光は、前記導光体の内部において、同一回数反射された後に前記複数のミラーで反射されて観察者の眼に至る、請求項1から請求項12までのいずれか一項に記載の導光装置。
  14. 前記入射部は、曲面の入射面及び反射面の少なくとも一方を有する、請求項13に記載の導光装置。
  15. 前記導光体は、前記一対の対向する平面として平行に延びる第1及び第2の全反射面を有し、前記入射部から取り込まれた映像光を前記第1及び第2の全反射面での全反射により導く、請求項1から請求項14までのいずれか一項に記載の導光装置。
  16. 前記入射部に在る面は、非軸対称曲面である、請求項1から請求項15までのいずれか一項に記載の導光装置。
  17. 映像光を生じさせる映像素子と、請求項1から請求項16までのいずれか一項に記載の導光装置を備える虚像表示装置。
JP2015119001A 2014-08-18 2015-06-12 導光装置及び虚像表示装置 Withdrawn JP2017003845A (ja)

Priority Applications (9)

Application Number Priority Date Filing Date Title
JP2015119001A JP2017003845A (ja) 2015-06-12 2015-06-12 導光装置及び虚像表示装置
KR1020177003599A KR20170030594A (ko) 2014-08-18 2015-08-12 도광 장치 및 허상 표시 장치
MA040472A MA40472A (fr) 2014-08-18 2015-08-12 Dispositif de guidage de lumière et appareil d'affichage d'image virtuelle
PCT/JP2015/004040 WO2016027442A1 (en) 2014-08-18 2015-08-12 Light guide device and virtual image display apparatus
EP15756493.1A EP3183613A1 (en) 2014-08-18 2015-08-12 Light guide device and virtual image display apparatus
US15/500,683 US10108015B2 (en) 2014-08-18 2015-08-12 Light guide device and virtual image display apparatus
CN201580044643.9A CN106796348B (zh) 2014-08-18 2015-08-12 导光装置及虚像显示设备
TW104126622A TW201608282A (zh) 2014-08-18 2015-08-14 導光裝置及虛像顯示裝置
US16/134,367 US20190137763A1 (en) 2014-08-18 2018-09-18 Light guide device and virtual image display apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2015119001A JP2017003845A (ja) 2015-06-12 2015-06-12 導光装置及び虚像表示装置

Publications (1)

Publication Number Publication Date
JP2017003845A true JP2017003845A (ja) 2017-01-05

Family

ID=57751717

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2015119001A Withdrawn JP2017003845A (ja) 2014-08-18 2015-06-12 導光装置及び虚像表示装置

Country Status (1)

Country Link
JP (1) JP2017003845A (ja)

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2017122771A (ja) * 2016-01-05 2017-07-13 株式会社リコー 虚像光学系及び虚像表示装置
JP2018165741A (ja) * 2017-03-28 2018-10-25 セイコーエプソン株式会社 表示装置
US10168535B2 (en) 2016-09-28 2019-01-01 Seiko Epson Corporation Optical element and display device
JP2019101205A (ja) * 2017-12-01 2019-06-24 キヤノン株式会社 接眼光学系及びそれを有する観察装置
US10571698B2 (en) 2017-03-28 2020-02-25 Seiko Epson Corporation Light guide device and display apparatus
US10591734B2 (en) 2017-03-28 2020-03-17 Seiko Epson Corporation Display apparatus
US10732461B2 (en) 2017-05-31 2020-08-04 Seiko Epson Corporation Display device and illumination device
US10802280B2 (en) 2017-12-20 2020-10-13 Seiko Epson Corporation Display device
US10852543B2 (en) 2017-03-28 2020-12-01 Seiko Epson Corporation Light guide device and display device
US10871650B2 (en) 2017-03-28 2020-12-22 Seiko Epson Corporation Display apparatus and light guide device
JPWO2019111927A1 (ja) * 2017-12-07 2020-12-24 キヤノン株式会社 表示装置及びヘッドマウントディスプレイ

Citations (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06121256A (ja) * 1992-06-29 1994-04-28 Motorola Inc プレーナ型撮像素子、直接網膜走査表示装置および直接網膜走査表示形成方法
US20080018555A1 (en) * 2006-07-21 2008-01-24 Huei Pei Kuo See-through display
JP2008083539A (ja) * 2006-09-28 2008-04-10 Brother Ind Ltd 光束転送用の光学系、及び、これを用いた網膜走査型ディスプレイ
US20100002991A1 (en) * 2008-07-03 2010-01-07 Microvision, Inc. Substrate Guided Relay with Polarization Rotating Apparatus
US20100111472A1 (en) * 2008-11-06 2010-05-06 Microvision, Inc. Substrate Guided Relay with Pupil Expanding Input Coupler
JP2011039490A (ja) * 2009-07-17 2011-02-24 Sony Corp 画像表示装置、頭部装着型ディスプレイ及び光ビーム伸長装置
EP2360509A1 (en) * 2010-01-25 2011-08-24 BAE Systems PLC Projection display
JP2012058302A (ja) * 2010-09-06 2012-03-22 Olympus Corp プリズム光学系、プリズム光学系を用いた画像表示装置及び撮像装置
JP2012083458A (ja) * 2010-10-08 2012-04-26 Seiko Epson Corp 虚像表示装置
JP2012088588A (ja) * 2010-10-21 2012-05-10 Seiko Epson Corp 導光板及びこれを備える虚像表示装置
JP2012168427A (ja) * 2011-02-16 2012-09-06 Seiko Epson Corp 虚像表示装置
JP2012198260A (ja) * 2011-03-18 2012-10-18 Seiko Epson Corp 導光板及びこれを備える虚像表示装置
JP2013210633A (ja) * 2000-06-05 2013-10-10 Lumus Ltd 基板によって誘導される光学ビーム拡大器
US20140036361A1 (en) * 2012-05-18 2014-02-06 Reald Inc. Directionally illuminated waveguide arrangement
US8665178B1 (en) * 2012-03-01 2014-03-04 Google, Inc. Partially-reflective waveguide stack and heads-up display using same

Patent Citations (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06121256A (ja) * 1992-06-29 1994-04-28 Motorola Inc プレーナ型撮像素子、直接網膜走査表示装置および直接網膜走査表示形成方法
JP2013210633A (ja) * 2000-06-05 2013-10-10 Lumus Ltd 基板によって誘導される光学ビーム拡大器
US20080018555A1 (en) * 2006-07-21 2008-01-24 Huei Pei Kuo See-through display
JP2008083539A (ja) * 2006-09-28 2008-04-10 Brother Ind Ltd 光束転送用の光学系、及び、これを用いた網膜走査型ディスプレイ
US20100002991A1 (en) * 2008-07-03 2010-01-07 Microvision, Inc. Substrate Guided Relay with Polarization Rotating Apparatus
US20100111472A1 (en) * 2008-11-06 2010-05-06 Microvision, Inc. Substrate Guided Relay with Pupil Expanding Input Coupler
JP2011039490A (ja) * 2009-07-17 2011-02-24 Sony Corp 画像表示装置、頭部装着型ディスプレイ及び光ビーム伸長装置
EP2360509A1 (en) * 2010-01-25 2011-08-24 BAE Systems PLC Projection display
JP2012058302A (ja) * 2010-09-06 2012-03-22 Olympus Corp プリズム光学系、プリズム光学系を用いた画像表示装置及び撮像装置
JP2012083458A (ja) * 2010-10-08 2012-04-26 Seiko Epson Corp 虚像表示装置
JP2012088588A (ja) * 2010-10-21 2012-05-10 Seiko Epson Corp 導光板及びこれを備える虚像表示装置
JP2012168427A (ja) * 2011-02-16 2012-09-06 Seiko Epson Corp 虚像表示装置
JP2012198260A (ja) * 2011-03-18 2012-10-18 Seiko Epson Corp 導光板及びこれを備える虚像表示装置
US8665178B1 (en) * 2012-03-01 2014-03-04 Google, Inc. Partially-reflective waveguide stack and heads-up display using same
US20140036361A1 (en) * 2012-05-18 2014-02-06 Reald Inc. Directionally illuminated waveguide arrangement

Cited By (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2017122771A (ja) * 2016-01-05 2017-07-13 株式会社リコー 虚像光学系及び虚像表示装置
US10168535B2 (en) 2016-09-28 2019-01-01 Seiko Epson Corporation Optical element and display device
US10591734B2 (en) 2017-03-28 2020-03-17 Seiko Epson Corporation Display apparatus
US10139634B2 (en) 2017-03-28 2018-11-27 Seiko Epson Corporation Display apparatus
US10571698B2 (en) 2017-03-28 2020-02-25 Seiko Epson Corporation Light guide device and display apparatus
JP2018165741A (ja) * 2017-03-28 2018-10-25 セイコーエプソン株式会社 表示装置
US10852543B2 (en) 2017-03-28 2020-12-01 Seiko Epson Corporation Light guide device and display device
US10871650B2 (en) 2017-03-28 2020-12-22 Seiko Epson Corporation Display apparatus and light guide device
US10732461B2 (en) 2017-05-31 2020-08-04 Seiko Epson Corporation Display device and illumination device
JP2019101205A (ja) * 2017-12-01 2019-06-24 キヤノン株式会社 接眼光学系及びそれを有する観察装置
JPWO2019111927A1 (ja) * 2017-12-07 2020-12-24 キヤノン株式会社 表示装置及びヘッドマウントディスプレイ
JP7216665B2 (ja) 2017-12-07 2023-02-01 キヤノン株式会社 表示装置及びヘッドマウントディスプレイ
US10802280B2 (en) 2017-12-20 2020-10-13 Seiko Epson Corporation Display device

Similar Documents

Publication Publication Date Title
TWI751262B (zh) 交疊的反射面構造
WO2016027442A1 (en) Light guide device and virtual image display apparatus
JP2017003845A (ja) 導光装置及び虚像表示装置
JP6409401B2 (ja) 導光装置及び虚像表示装置
US11275246B2 (en) Head-mounted display
JP5703875B2 (ja) 導光板及びこれを備える虚像表示装置
JP5879886B2 (ja) 虚像表示装置及びその製造方法
US20180329208A1 (en) Light guide and virtual image display device
CN107167919B (zh) 导光装置以及虚像显示装置
CN108254918B (zh) 光学元件和显示装置
JP5970684B2 (ja) 虚像表示装置
JP2017181537A (ja) 光学素子、表示装置、および光学素子の製造方法
JP2017049511A (ja) 導光装置及び虚像表示装置
JP2012198264A (ja) 導光板の製造方法及び導光板並びに導光板を備える虚像表示装置
US11422371B2 (en) Augmented reality (AR) display
JP2018049106A (ja) 光学素子および表示装置
JP2019012259A (ja) 虚像表示装置
JP2017122784A (ja) ライトガイドユニット及び虚像表示光学系
JP6565496B2 (ja) 導光装置及び虚像表示装置
JP5682215B2 (ja) 虚像表示装置
JP2017161564A (ja) 導光装置及び虚像表示装置
JP2019197079A (ja) 虚像表示装置
JP2017040784A (ja) 導光装置及び虚像表示装置
JP2017049289A (ja) 導光装置及び虚像表示装置
JP6183507B2 (ja) 虚像表示装置

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20180604

RD05 Notification of revocation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7425

Effective date: 20180906

RD03 Notification of appointment of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7423

Effective date: 20181116

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20190528

A761 Written withdrawal of application

Free format text: JAPANESE INTERMEDIATE CODE: A761

Effective date: 20190729