JP2016507652A - Method and system for producing electrolytic copper foil by backflow of copper sulfate solution - Google Patents

Method and system for producing electrolytic copper foil by backflow of copper sulfate solution Download PDF

Info

Publication number
JP2016507652A
JP2016507652A JP2015552983A JP2015552983A JP2016507652A JP 2016507652 A JP2016507652 A JP 2016507652A JP 2015552983 A JP2015552983 A JP 2015552983A JP 2015552983 A JP2015552983 A JP 2015552983A JP 2016507652 A JP2016507652 A JP 2016507652A
Authority
JP
Japan
Prior art keywords
sulfate solution
copper sulfate
copper
cathode roll
anode
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2015552983A
Other languages
Japanese (ja)
Other versions
JP6165880B2 (en
Inventor
▲鄭▼金▲財▼
▲楊▼初坤
Original Assignee
福建清景▲銅▼箔有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 福建清景▲銅▼箔有限公司 filed Critical 福建清景▲銅▼箔有限公司
Publication of JP2016507652A publication Critical patent/JP2016507652A/en
Application granted granted Critical
Publication of JP6165880B2 publication Critical patent/JP6165880B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25DPROCESSES FOR THE ELECTROLYTIC OR ELECTROPHORETIC PRODUCTION OF COATINGS; ELECTROFORMING; APPARATUS THEREFOR
    • C25D1/00Electroforming
    • C25D1/04Wires; Strips; Foils
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25DPROCESSES FOR THE ELECTROLYTIC OR ELECTROPHORETIC PRODUCTION OF COATINGS; ELECTROFORMING; APPARATUS THEREFOR
    • C25D21/00Processes for servicing or operating cells for electrolytic coating
    • C25D21/10Agitating of electrolytes; Moving of racks
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25DPROCESSES FOR THE ELECTROLYTIC OR ELECTROPHORETIC PRODUCTION OF COATINGS; ELECTROFORMING; APPARATUS THEREFOR
    • C25D21/00Processes for servicing or operating cells for electrolytic coating
    • C25D21/16Regeneration of process solutions
    • C25D21/18Regeneration of process solutions of electrolytes
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25DPROCESSES FOR THE ELECTROLYTIC OR ELECTROPHORETIC PRODUCTION OF COATINGS; ELECTROFORMING; APPARATUS THEREFOR
    • C25D3/00Electroplating: Baths therefor
    • C25D3/02Electroplating: Baths therefor from solutions
    • C25D3/38Electroplating: Baths therefor from solutions of copper

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Electroplating Methods And Accessories (AREA)
  • Electrolytic Production Of Metals (AREA)
  • Automation & Control Theory (AREA)
  • Electroplating And Plating Baths Therefor (AREA)

Abstract

本発明は、硫酸銅溶液の逆流による電解銅箔の生産方法及びシステムであって、陰極ロールと陽極槽を含み、陽極槽両側の上端口は陰極ロールの両側にあり、陽極槽の中には流れる硫酸銅溶液があり、陰極ロールの一部の外表面が硫酸銅溶液に浸漬しており、陰極ロールの回転につれて、陰極ロールにメッキした銅箔がどんどんはがれながら巻き取られ、前記硫酸銅溶液は少なくとも陰極ロールの片側にある陽極槽の上端口から陽極槽に流れ込む方法である。本発明は伝統的な原箔システムより構造がシンプルで、添加剤でしか銅箔表面の質量を制御できないという歴史を徹底的に覆し、陰極ロール表面での硫酸銅溶液の流速を制御することによって銅箔表面のあらさ、及び銅箔の銅イオンのメッキ密度を制御する。本発明は、生産プロセスを簡単化し、制御の過程が簡単になり、操作しやすくなり、生産コストを減らし、汚染物の排出も減らし、環境によく、著しい経済的な効果と社会的な効果がある。【選択図】図1The present invention relates to a method and system for producing electrolytic copper foil by backflow of a copper sulfate solution, including a cathode roll and an anode tank, and upper end ports on both sides of the anode tank are on both sides of the cathode roll. There is a flowing copper sulfate solution, a part of the outer surface of the cathode roll is immersed in the copper sulfate solution, and as the cathode roll rotates, the copper foil plated on the cathode roll is wound while being peeled off, and the copper sulfate solution Is a method of flowing into the anode tank from at least the upper end port of the anode tank on one side of the cathode roll. The present invention has a simpler structure than the traditional raw foil system, and completely overturns the history that only the additive can control the mass of the copper foil surface, by controlling the flow rate of the copper sulfate solution on the cathode roll surface. The roughness of the copper foil surface and the copper ion plating density of the copper foil are controlled. The present invention simplifies the production process, simplifies the control process, makes it easier to operate, reduces production costs, reduces pollutant emissions, is environmentally friendly, has significant economic and social effects. is there. [Selection] Figure 1

Description

本発明は、電解銅箔の生産技術分野に属し、特に硫酸銅溶液の逆流による電解銅箔の生産方法及びシステムに関する。陽極槽中の硫酸銅溶液を下から上まで流す伝統的な方法を上から下まで流すように変え、硫酸銅溶液の方向と流速を変えることによって銅箔表面の品質を制御でき、銅箔の生産に意外な効果を持たらし、添加剤でしか銅箔表面の質量を制御できないという歴史から徹底的に脱出した。   The present invention belongs to the field of electrolytic copper foil production technology, and particularly relates to a method and system for producing electrolytic copper foil by backflow of a copper sulfate solution. The traditional method of flowing the copper sulfate solution in the anode tank from bottom to top can be changed to flow from top to bottom, and the copper foil surface quality can be controlled by changing the direction and flow rate of the copper sulfate solution. It has an unexpected effect on production, and has escaped from the history of controlling the mass of the copper foil surface only with additives.

現在、電解銅箔の生産は環境に優しくなく、浸食されやすい鉛陽極の代わりに、表面に導電層を塗ったチタンイリジウム陽極を使う。ただし、鉛陽極とチタンイリジウム陽極のうちどちらを使用しても、その生産プロセスは基本的に変わらなく、陽極槽中の硫酸銅溶液はいつも槽の底から流入し、陽極槽の上端口から流出して銅溶解装置に逆流する。伝統的な生産設備とプロセスにおいて、銅箔の生産は、表面の粗さがRa≦0.4μmである陰極ロールの軸線以下を陽極槽中で流動する銅濃度が70−110g/Lで、酸濃度が80−130g/Lで、温度が40−65℃である硫酸銅溶液中に浸し、陰極ロールと陽極の間に電流を通すとメッキの原理に従い、流動する硫酸銅溶液に浸している陰極ロールの表面に銅の結晶粒子がメッキされる。メッキ定数:1.186g/A−hによって、電流が一定の状況で、陰極ロール表面にメッキする銅箔の厚さは陰極ロールが硫酸銅溶液に浸す時間によって決定される。陰極ロールを回転して硫酸銅溶液での陰極ロールの回転速度を変えることによって陰極ロール表面にメッキする銅箔の厚さを変えることができ、陰極ロールの回転に従い、陰極ロール表面にメッキしている銅箔をどんどん剥がすことで厚さの異なる銅箔を得る。銅箔の陰極ロールの表面に貼る側を光面と呼び、メッキ層側を粗面と呼ぶ。メッキ過程の分極作用によって、銅箔の粗面に山のような不規則な銅結晶粒子ができ、銅箔が厚いほど銅結晶粒子は大きくなり、粗さも大きくなる。生産プロセスにおいて、添加剤(ゼラチンや修飾ゼラチン、チオ尿素など)を加えることで銅箔の粗さRzを制御する。しかし、生産プロセスは複雑で非常に制御し難いため、銅箔生産のボトルネックになり、各銅箔製造会社が秘密にする独自の技術にもなっているとともに、硫酸銅溶液中に大量の添加剤を添加したため、硫酸銅溶液が銅溶解装置に逆流した時、硫酸銅溶液の品質を高めるために上記添加剤を濾過する必要があり、そのため複数の濾過設備を増やす必要があり、したがって濾過器の負担も増やす。また、硫酸銅溶液中の銅イオンが陰極ロールの表面にメッキされる過程に酸素を放出して、大量の気泡が発生し、気泡もメッキ効果に影響を及ぼす。硫酸銅溶液は上へ流れるため、気泡は硫酸銅溶液によって陽極槽の上端口から持ち出され、硫酸煙を生成し、陰極ロールから剥がしたばかりの銅箔表面を酸化する。この問題を解決するために、陽極槽の口に大排気量の排気口を設置することにより、銅箔を生産する設備が複雑になり、制御も難しくなる。   Currently, the production of electrolytic copper foil is not environmentally friendly, and instead of a lead anode that is susceptible to erosion, a titanium iridium anode with a conductive layer coated on the surface is used. However, regardless of whether you use a lead anode or a titanium iridium anode, the production process is basically the same, and the copper sulfate solution in the anode tank always flows in from the bottom of the anode tank and flows out from the upper end of the anode tank. And then back flow into the copper melting apparatus. In traditional production facilities and processes, copper foil is produced in such a manner that the concentration of copper flowing in the anode tank below the axis of the cathode roll with surface roughness Ra ≦ 0.4 μm is 70-110 g / L, A cathode immersed in a flowing copper sulfate solution according to the principle of plating when immersed in a copper sulfate solution having a concentration of 80-130 g / L and a temperature of 40-65 ° C. and passing a current between the cathode roll and the anode. Copper crystal particles are plated on the surface of the roll. According to the plating constant: 1.186 g / A-h, the thickness of the copper foil plated on the surface of the cathode roll is determined by the time during which the cathode roll is immersed in the copper sulfate solution in a situation where the current is constant. The thickness of the copper foil plated on the surface of the cathode roll can be changed by rotating the cathode roll and changing the rotation speed of the cathode roll in the copper sulfate solution. The copper foil with different thickness is obtained by peeling off the copper foil. The side of the copper foil attached to the surface of the cathode roll is called the light surface, and the plated layer side is called the rough surface. Due to the polarization effect of the plating process, irregular copper crystal particles such as peaks are formed on the rough surface of the copper foil, and the thicker the copper foil, the larger the copper crystal particles and the larger the roughness. In the production process, an additive (gelatin, modified gelatin, thiourea, etc.) is added to control the roughness Rz of the copper foil. However, since the production process is complicated and very difficult to control, it has become a bottleneck in copper foil production, a unique technology kept secret by each copper foil manufacturer, and a large amount of addition in the copper sulfate solution When the copper sulfate solution flows back into the copper dissolution apparatus, it is necessary to filter the additive in order to improve the quality of the copper sulfate solution. Therefore, it is necessary to increase the number of filtration facilities, and therefore the filter Increase the burden of. Further, oxygen is released during the process in which copper ions in the copper sulfate solution are plated on the surface of the cathode roll, and a large amount of bubbles are generated, which also affects the plating effect. Since the copper sulfate solution flows upward, the bubbles are taken out from the upper end of the anode tank by the copper sulfate solution to generate sulfuric acid smoke and oxidize the copper foil surface just peeled off from the cathode roll. In order to solve this problem, by installing an exhaust port with a large displacement at the mouth of the anode tank, equipment for producing copper foil becomes complicated and control becomes difficult.

1955年電解銅箔がYatesによって商業化された以来、その生産プロセスは基本的に変わらなく、ずっと溶液は下から入り、上から溢れ出る方法で生産する。この方法は主に溶液中の銅イオンや添加剤の濃度を維持することで、槽中の流体力学の問題を解決する良い方案はなかった。   Since 1955 when electrolytic copper foil was commercialized by Yates, the production process has remained essentially unchanged, and the solution has always been produced in a way that enters from the bottom and overflows from the top. There was no good way to solve the hydrodynamic problem in the tank, mainly by maintaining the concentration of copper ions and additives in the solution.

電解銅箔の生産に高位槽や耐酸ポンプのどれかで硫酸銅溶液を供給しても、流速は一般的に0.5メートル/秒以下になり、得られた銅箔結晶は棒状である。ライト添加剤の添加によって常温での結晶構造及び物理的特性を変えることができても、高温の下では非常に不安定的であり、抗張力は大きく減衰する。結晶格子を利用することによって欠陥が生じるため、ピンホール及び反りが生じしやすく、このような銅箔は高級な回路基板お及びリチウム電池への使用に適しない。   Even if the copper sulfate solution is supplied to the production of the electrolytic copper foil by using either a high-level tank or an acid-resistant pump, the flow rate is generally 0.5 meters / second or less, and the obtained copper foil crystals are rod-shaped. Even though the crystal structure and physical properties at room temperature can be changed by the addition of light additive, it is very unstable at high temperature and the tensile strength is greatly attenuated. Defects are generated by using the crystal lattice, so that pinholes and warping are likely to occur, and such a copper foil is not suitable for use in high-quality circuit boards and lithium batteries.

銅箔の生産過程において、銅原子は陰極の表面に堆積し、酸素気泡は陽極表面に生成し且つ下から入る溶液に連られて液面に到着し、硫酸銅とともに酸霧を生成して、銅箔の表面及び操作者に大きな損害を及ぼすため、必ず強力な換気装置で職場の清潔を維持しなければならない。   In the copper foil production process, copper atoms are deposited on the surface of the cathode, oxygen bubbles are generated on the anode surface, and are connected to the solution entering from the bottom to arrive at the liquid surface. Because the copper foil surface and the operator are seriously damaged, the workplace must be kept clean with strong ventilation.

下から入る溶液は液体注入口付近で大きな乱流を生成し、ルノー数が2000を超える。多くのメーカーは液体注入管のデザインに沢山苦労したが、厚さの不均衡の現象を解決することはまだできない。液体注入バルブやシールドを利用して厚さを調整しなければならないが、このような調節方法は一時的で、非常に不安定であり、一日又は二日一回調整する必要がある。シールドは一回から二回しか使えなく、コストも驚くほど高いため、連続的な生産には困ることになっている。   The solution entering from below generates a large turbulent flow near the liquid inlet, and the Renault number exceeds 2000. Many manufacturers have struggled with the design of liquid injection tubes, but they still cannot solve the phenomenon of thickness imbalance. Although the thickness must be adjusted using a liquid injection valve or shield, such adjustment methods are temporary and very unstable and need to be adjusted once a day or twice a day. The shield can only be used once or twice, and the cost is surprisingly high, making continuous production difficult.

下から入る溶液には閉鎖式及び開放式の2種類があって、前者は100パーセントの新液で、後者は新旧液を同時に使うことになっている。しかし、どの方式でも、左右両側の陽極の流量を正確に制御することはできない。両方に各半分の流量があると仮定するしかなく、流量に対する制御性は相当低い。   There are two types of solutions that enter from the bottom, the closed type and the open type, with the former being 100 percent new solution and the latter using the old and new solutions at the same time. However, the flow rate of the anodes on both the left and right sides cannot be accurately controlled by any method. There is no choice but to assume that both have half the flow rate, and the controllability for the flow rate is quite low.

下から入る溶液の最大な欠点は、陽極槽の硫酸銅溶液流出口の液面の溶液は電解した後の旧液で、銅イオンや添加剤の濃度は低く、液面に沢山の気泡が累積して、液面の抵抗が大きくなることである。両者を混合した後、液面の電流密度が液面の下より低くなる。このような現象は陰極ロールを液面に入れる時、結晶核の生成に不利である。酷い状況では、銅箔にピンホールや反りができる大きな原因になる。   The biggest drawback of the solution entering from below is that the solution at the outlet of the copper sulfate solution outlet of the anode tank is the old solution after electrolysis, the concentration of copper ions and additives is low, and many bubbles accumulate on the surface. Thus, the resistance of the liquid level increases. After mixing both, the current density at the liquid level is lower than below the liquid level. Such a phenomenon is disadvantageous for the formation of crystal nuclei when the cathode roll is placed on the liquid surface. In severe situations, it can be a major cause of pinholes and warping in the copper foil.

本発明の目的は上記の問題に対して硫酸銅溶液の逆流による電解銅箔の製造方法及びシステムの技術的解決手段を提供し、硫酸銅溶液を陽極槽の下から上へ流す伝統的な方法を上から下まで流す方法に改善して、流速を高め、銅箔の生産に意外な効果を持たらし、添加剤だけで銅箔の表面品質を制御できる歴史から徹底的に脱出した。   The object of the present invention is to provide a technical solution of a method and system for producing electrolytic copper foil by reverse flow of copper sulfate solution to the above problems, and to flow the copper sulfate solution from the bottom to the top of the anode tank. Improved the method of flowing from top to bottom, increased the flow rate, had a surprising effect on the production of copper foil, and thoroughly escaped from the history of controlling the surface quality of copper foil only with additives.

上記の目的を実現するための本発明の技術的解決手段は、
硫酸銅溶液の逆流による電解銅箔の生産方法であって、陰極ロールと、弧状陽極と、陰極ロールと弧状陽極の間に設置される隙間で形成される陽極槽とを含み、陽極槽両側の上端口は陰極ロールの両側にあり、その片側は箔の生成側であり、陽極槽の中には流動する硫酸銅溶液があり、陰極ロールは陽極槽の中で回転し、陰極ロールの一部の外表面が硫酸銅溶液に浸され、陰極ロールと陽極の間に電流を流し、陰極ロールの回転につれて、陰極ロールにメッキした銅箔がどんどんはがれながら巻き取られ、そのうち、前記方法は前記硫酸銅溶液が少なくとも陰極ロールの片側にある陽極槽の上端口から陽極槽に流れ込むことである。
The technical solution of the present invention for realizing the above object is as follows:
A method for producing electrolytic copper foil by backflow of a copper sulfate solution, comprising: a cathode roll; an arcuate anode; and an anode tank formed by a gap installed between the cathode roll and the arcuate anode; The upper end is on both sides of the cathode roll, one side is the foil production side, there is a flowing copper sulfate solution in the anode tank, the cathode roll rotates in the anode tank, and part of the cathode roll The outer surface of the copper foil is immersed in a copper sulfate solution, a current is passed between the cathode roll and the anode, and as the cathode roll rotates, the copper foil plated on the cathode roll is wound up while being peeled off. The copper solution flows into the anode cell from the upper end of the anode cell on at least one side of the cathode roll.

さらに好ましい方法は、前記硫酸銅溶液が陰極ロールの箔の生成側の陽極槽の上端口から陽極槽に流れ込むことである。   A more preferable method is that the copper sulfate solution flows into the anode tank from the upper end of the anode tank on the cathode roll foil production side.

さらに好ましい方法は、前記硫酸銅溶液が陰極ロールの箔の生成側の陽極槽の上端口から陽極槽に流れ込み、且つ陽極槽の底部から流れ出し、流れ出す硫酸銅溶液がメッキする時にできた気泡を陽極槽の底部から持ち出すことである。   A more preferable method is that the copper sulfate solution flows into the anode tank from the upper end of the anode tank on the cathode roll foil production side, and flows out from the bottom of the anode tank. It is taken out from the bottom of the tank.

さらに好ましい方法は、前記の方法はさらに銅箔の鍍層の表面のあらさが設定値より大きい場合、陰極ロールの流れ込む側の表面で硫酸銅溶液が形成する流速をあげ、銅箔の鍍層の表面のあらさが設定値より小さい場合、陰極ロールの流れ込む側の表面で硫酸銅溶液が形成する流速をさげることを含むことである。   Further preferably, when the roughness of the surface of the copper foil ridge layer is larger than the set value, the above method increases the flow rate of the copper sulfate solution formed on the surface of the cathode roll into which the surface of the copper foil ridge layer is formed. If the roughness is smaller than the set value, it includes reducing the flow rate formed by the copper sulfate solution on the surface of the cathode roll into which it flows.

さらに好ましい方法は、電解銅箔の生産プロセスの条件の下で、前記陰極ロールの表面で硫酸銅溶液が形成する流速は少なくとも0.5メートル/秒であり、前記電解銅箔の生産プロセスの条件は、銅の含有量は70−110g/Lで、酸の濃度は80−130g/Lで、温度は40−65℃である硫酸銅溶液と、50アンペア−85アンペア毎平方デシメートルの陽極の電流密度を含むことである。   Further preferred method is that, under the conditions of the electrolytic copper foil production process, the flow rate of the copper sulfate solution formed on the surface of the cathode roll is at least 0.5 meter / second, and the electrolytic copper foil production process conditions Has a copper content of 70-110 g / L, an acid concentration of 80-130 g / L, a temperature of 40-65 ° C., and an anode of 50 amperes-85 amperes per square decimeter Including the current density.

さらに好ましい方法は、前記硫酸銅溶液は一次硫酸銅溶液と二次硫酸銅溶液の混合液で、前記一次硫酸銅溶液は銅溶解装置から直接提供される硫酸銅原液で、前記二次硫酸銅溶液は陽極槽から流出してメッキした後の硫酸銅溶液である。   More preferably, the copper sulfate solution is a mixed solution of a primary copper sulfate solution and a secondary copper sulfate solution, and the primary copper sulfate solution is a copper sulfate stock solution provided directly from a copper dissolving apparatus, and the secondary copper sulfate solution Is a copper sulfate solution after flowing out of the anode tank and plating.

さらに好ましい方法は、前記混合液の中で一次硫酸銅溶液と二次硫酸銅溶液の比は≧1:2である。   In a more preferred method, the ratio of the primary copper sulfate solution to the secondary copper sulfate solution in the mixed solution is ≧ 1: 2.

硫酸銅溶液の逆流による電解銅箔の生産方法を実現するシステムであって、陰極ロール、弧状陽極及び銅溶解装置を含み、陰極ロールは弧状陽極の中に回転できるように設置され、陰極ロールと弧状陽極の間に設置された隙間で陽極槽を形成し、陽極槽には硫酸銅溶液を陽極槽へ搬送する上溝が設けられており、陽極槽両側の上端はそれぞれ陰極ロールの両側に位置し、そのうち片側は箔の生成側であり、前記陽極槽には硫酸銅溶液の流入口と流出口が設置されており、銅溶解装置は搬送パイプを介して上溝の液体注入口と連通しており、さらに、逆流する硫酸銅溶液のレシーバタンクが設置され、陽極槽の硫酸銅溶液の流出口は前記レシーバタンクと連通し、レシーバタンクは銅溶解装置と連通し、前記レシーバタンクは硫酸銅溶液の補助ポンプを介して上溝の液体注入口に連通し、前記上溝の液体排出口は硫酸銅溶液搬送パイプを介して少なくとも陰極ロールの一つの側面にある陽極槽の上端口と連通する。   A system for realizing a method for producing electrolytic copper foil by backflow of a copper sulfate solution, comprising a cathode roll, an arcuate anode, and a copper melting device, wherein the cathode roll is rotatably installed in the arcuate anode, The anode tank is formed by a gap installed between the arcuate anodes, and the anode tank is provided with an upper groove for transporting the copper sulfate solution to the anode tank. The upper ends of both sides of the anode tank are located on both sides of the cathode roll. One side is the foil generation side, and the anode tank is provided with an inlet and an outlet for the copper sulfate solution, and the copper dissolving device communicates with the liquid inlet in the upper groove via a conveying pipe. In addition, a receiver tank of the copper sulfate solution that flows backward is installed, the outlet of the copper sulfate solution in the anode tank communicates with the receiver tank, the receiver tank communicates with the copper dissolving device, and the receiver tank is composed of the copper sulfate solution. auxiliary Communication with the liquid inlet of the upper groove through the pump, the liquid outlet of the upper groove is upper opening communicating with the anode chamber in one side of at least the cathode roller through a copper sulfate solution transport pipe.

さらに好ましい方法は、前記上溝と陽極槽の硫酸銅溶液の流入口とを連通するパイプには総流量制御弁が設置され、前記陽極槽の硫酸銅溶液流出口とレシーバタンクとを連通するパイプの中に陽極槽の硫酸銅溶液流速を調節する流速制御弁が設置され、前記硫酸銅溶液の補助ポンプと上溝の間を連通するパイプには逆流する硫酸銅溶液流量の制御弁が設置されている。   In a more preferred method, a total flow control valve is installed in a pipe that communicates the upper groove and the copper sulfate solution inlet of the anode tank, and a pipe that communicates the copper sulfate solution outlet of the anode tank and the receiver tank. A flow rate control valve for adjusting the flow rate of the copper sulfate solution in the anode tank is installed therein, and a control valve for the flow rate of the copper sulfate solution that flows backward is installed in the pipe communicating between the auxiliary pump for the copper sulfate solution and the upper groove. .

さらに好ましい方法は、前記陰極ロールの片側の陽極槽の上端口は陰極ロールの箔の生成側にある陽極槽の上端口である。   In a more preferred method, the upper end opening of the anode tank on one side of the cathode roll is the upper end opening of the anode tank on the foil forming side of the cathode roll.

さらに好ましい方法は、前記上溝の液体排出口は硫酸銅溶液の搬送パイプを介して陰極ロールの両側にある陽極槽の上端口と連通し、前記陽極槽の硫酸銅溶液流出口は陽極槽の底部に設置される。   In a more preferred method, the liquid discharge port of the upper groove communicates with the upper end port of the anode tank on both sides of the cathode roll via the copper sulfate solution transport pipe, and the copper sulfate solution outlet of the anode tank is the bottom of the anode tank. Installed.

さらに好ましい方法は、前記陽極槽の底部の硫酸銅溶液流出口の長さは陰極ロールの長さであり、流出口の幅は少なくとも陰極ロールと弧状陽極の間にある隙間の2倍である。   More preferably, the length of the copper sulfate solution outlet at the bottom of the anode tank is the length of the cathode roll, and the width of the outlet is at least twice the gap between the cathode roll and the arcuate anode.

さらに好ましい方法は、前記陽極槽上端口には陽極槽上端口と同幅の流入する硫酸銅溶液の転換口が連結され、転換口には硫酸銅溶液の流動方向を制御できるそらせ板が設置される。   A more preferred method is that the upper end port of the anode tank is connected to a conversion port for a copper sulfate solution flowing in the same width as the upper end port of the anode cell, and a baffle plate that can control the flow direction of the copper sulfate solution is installed at the conversion port. The

既存技術と比べ、本発明は以下のような利点がある。
1.添加剤でしか銅箔表面の質量を制御できない生産プロセスを徹底的に覆し、硫酸銅溶液の方向を変えること及び陰極ロール表面での硫酸銅溶液の流速を制御することによって銅箔表面のあらさ、及び銅箔の銅イオンのメッキ密度を制御し、それにより濾過設備に対する要求を低下させ、生産プロセスを簡単化し、制御の過程が簡単になり、操作しやすくなる。
Compared with the existing technology, the present invention has the following advantages.
1. Roughly overturning the production process in which the mass of the copper foil surface can only be controlled with additives, the roughness of the copper foil surface by changing the direction of the copper sulfate solution and controlling the flow rate of the copper sulfate solution on the cathode roll surface, And controlling the copper ion plating density of the copper foil, thereby reducing the requirements for filtration equipment, simplifying the production process, simplifying the control process and making it easier to operate.

2.本発明はろ過装置への要求を低下させ、伝統的な箔の生産設備より簡単で、生産コストを低下させる。   2. The present invention reduces the need for filtration equipment, is simpler than traditional foil production equipment, and reduces production costs.

3.本発明の生産過程は汚染物の排出を減少し、環境に優しく、著しい経済利益及び社会利益がある。   3. The production process of the present invention reduces pollutant emissions, is environmentally friendly and has significant economic and social benefits.

以下、添付図と実施例を参照しながら本発明をより詳しく説明する。   Hereinafter, the present invention will be described in more detail with reference to the accompanying drawings and examples.

発明内容
ここに技術分野の説明段落をタイピングする。
Content of the Invention Here is a description paragraph in the technical field.

本発明の生産プロセスのフローの模式図。The schematic diagram of the flow of the production process of this invention. 本発明のシステム構造の模式図。The schematic diagram of the system structure of this invention. 本発明の陽極槽上端口の流入する硫酸銅溶液の転換口構造の模式図。The schematic diagram of the conversion port structure of the copper sulfate solution which flows into the anode tank upper end port of this invention.

具体的な実施形態
実施例1
硫酸銅溶液の逆流による電解銅箔の生産方法の実施例であり、図1のように、陰極ロール1と湾曲した半円弧状陽極の間に設置される隙間で形成される陽極槽とを含み、陽極と陰極ロール間の距離は通常8−15mmの間に維持され、陽極槽両側の上端口は陰極ロールの両側に位置し(すなわち、陰極ロールの中心軸に沿って垂直に分離した二つの側面)、そのうち片側は箔の生成側であり、陽極槽の中には流動する硫酸銅溶液4があり、陰極ロールは陽極槽の中で回転し、陰極ロールの軸線以下の外表面は銅の含有量は70−110g/Lで、酸の濃度は80−130g/Lで、温度は40−65℃である硫酸銅溶液を入れている陽極槽に浸され、陰極ロールと陽極の間に電流を流し、陰極ロールの回転につれて、電気化学反応により、陰極ロールにメッキされた銅箔5はどんどん剥がされ、剥離ロール6を経て巻取ロール7で巻取る。そのうち、前記硫酸銅溶液が少なくとも陰極ロールの片側にある陽極槽の上端口から陽極槽に流れ込むことにより、硫酸銅溶液は陰極ロールの流入側の表面で下向けの流速の衝撃力を形成する(すなわち、硫酸銅溶液が気泡を生成する動きと逆方向である一定の流速の衝撃力、つまり気泡を下へ持ち運ぶ流速の衝撃力を形成する)。
Specific Embodiment Example 1
It is an Example of the production method of the electrolytic copper foil by the backflow of a copper sulfate solution, and includes the anode tank formed by the clearance gap installed between the cathode roll 1 and the curved semi-arc shaped anode like FIG. The distance between the anode and the cathode roll is usually maintained between 8-15 mm, and the upper end openings on both sides of the anode cell are located on both sides of the cathode roll (ie, two vertically separated along the central axis of the cathode roll). Side), one side of which is the foil production side, the anode tank has a flowing copper sulfate solution 4, the cathode roll rotates in the anode tank, and the outer surface below the axis of the cathode roll is copper. The content is 70-110 g / L, the concentration of acid is 80-130 g / L, the temperature is 40-65 ° C., immersed in an anode tank containing a copper sulfate solution, and a current between the cathode roll and the anode. As the cathode roll rotates, Copper foil 5, which is plated to a role more and more is peeled off, the wound in the take-up roll 7 through the peeling roll 6. Among them, the copper sulfate solution flows into the anode tank from at least the upper end of the anode tank on one side of the cathode roll, so that the copper sulfate solution forms an impact force with a downward flow velocity on the inflow side surface of the cathode roll ( That is, the copper sulfate solution forms an impact force at a constant flow rate that is the opposite direction to the movement of bubbles, that is, an impact force at a flow rate that carries the bubbles downward).

本実施例の好ましい形態1は、前記片側の陽極槽の上端口とは陰極ロールの箔の生成側の陽極槽の上端口であり、すなわち、前記硫酸銅溶液は陰極ロールの箔の生成側の陽極槽の上端口3−1から陽極槽に流れ込むことである。   A preferred form 1 of this embodiment is that the upper end of the anode tank on one side is the upper end of the anode tank on the cathode roll foil production side, that is, the copper sulfate solution is on the cathode roll foil production side. It is flowing into the anode tank from the upper end port 3-1 of the anode tank.

本実施例の好ましい形態2は、硫酸銅溶液は少なくとも陰極ロールの片側にある陽極槽の上端口から流入するため、陽極槽からの硫酸銅溶液の流出は陽極槽の底からでもよいし、陰極ロールの他側にある陽極槽の上端口からでもよいことである。硫酸銅溶液中の銅イオンが陰極ロールの表面をメッキする過程において、酸素の放出により大量の気泡が発生され、陽極槽の上端口から放出されることを防止するため、当該好ましい形態と上記方法との相違点は、硫酸銅溶液は陰極ロールの両側にある陽極槽の上端口から陽極槽中に流れ込み、且つ陽極槽の底から流出するため、流出する硫酸銅溶液はメッキ過程で発生した気泡を陽極槽の底から持ち出す。下へ高速に流れる硫酸銅溶液は迅速に気泡を持ち出し、銅箔品質への気泡の影響を低下させ、さらに無くす。   In the preferred form 2 of the present embodiment, the copper sulfate solution flows from at least the upper end of the anode tank on one side of the cathode roll, so that the copper sulfate solution can flow out of the anode tank from the bottom of the anode tank, It may be from the upper end opening of the anode tank on the other side of the roll. In the process of plating the surface of the cathode roll with copper ions in the copper sulfate solution, in order to prevent a large amount of bubbles from being generated due to the release of oxygen and released from the upper end of the anode tank, the preferred mode and the above method The difference is that the copper sulfate solution flows into the anode tank from the upper end of the anode tank on both sides of the cathode roll, and flows out from the bottom of the anode tank. Is taken out from the bottom of the anode tank. The copper sulphate solution that flows fast down takes bubbles quickly, reducing the effect of bubbles on the copper foil quality and eliminating it.

上記形態において、更なる方法は、銅箔表面の粗さが設定値より大きい場合、陽極槽の底から流出する硫酸銅溶液の速度を上げ、即ち、陰極ロール表面での硫酸銅溶液の流速をあげる。銅箔表面の粗さが設定値より小さい場合、陽極槽の底から流出する硫酸銅溶液の速度を下げ、即ち、硫陰極ロール表面での酸銅溶液の流速を下げる。銅箔メッキ層表面の粗さの設定値、つまり粗面の粗さは製品によって異なるが、通常Rz≦2.5μmに制御する。   In the above embodiment, when the roughness of the copper foil surface is larger than the set value, the speed of the copper sulfate solution flowing out from the bottom of the anode tank is increased, that is, the flow rate of the copper sulfate solution on the cathode roll surface is increased. I'll give you. When the roughness of the copper foil surface is smaller than the set value, the speed of the copper sulfate solution flowing out from the bottom of the anode tank is lowered, that is, the flow rate of the acid copper solution on the surface of the sulfur cathode roll is lowered. The set value of the roughness of the copper foil plating layer surface, that is, the roughness of the rough surface varies depending on the product, but is usually controlled to Rz ≦ 2.5 μm.

上記形態において、メッキ過程の分極作用を改善して、銅箔品質への気泡の影響を解決し、銅箔表面の粗さと銅箔結晶粒子の密度を改善するため、電解銅箔の生産プロセス条件で、前記硫酸銅溶液が陰極ロール表面で形成する流速は少なくとも0.5メートル/秒で、通常0.5−0.9メートル/秒であり、前記電解銅箔の生産プロセス条件は、硫酸銅溶液の銅の含有量は70−110g/Lで、酸の濃度は80−130g/Lで、温度は40−65℃で、陽極の電流の密度は50アンペア−85アンペア毎平方デシメートルであることを含む。そのうち、陽極電流密度が70/dmアンペアであるとき、発生した気泡を早速に持ち出すために、硫酸銅溶液の流速を0.7メートル/秒に制御することが好ましい。 In the above form, the electrolytic copper foil production process conditions to improve the polarization effect of the plating process, solve the influence of bubbles on the copper foil quality, and improve the copper foil surface roughness and copper foil crystal particle density The flow rate of the copper sulfate solution formed on the cathode roll surface is at least 0.5 meter / second, usually 0.5-0.9 meter / second, and the production process conditions for the electrolytic copper foil are copper sulfate The copper content of the solution is 70-110 g / L, the acid concentration is 80-130 g / L, the temperature is 40-65 ° C., and the anode current density is 50 amperes-85 amperes per square decimeter. Including that. Among them, when the anode current density is 70 / dm 2 ampere, it is preferable to control the flow rate of the copper sulfate solution to 0.7 meter / second in order to quickly take out the generated bubbles.

伝統的なプロセスにおいて、陽極槽の中で硫酸銅溶液は下から上へ流れ、それにより陰極ロール表面で形成する硫酸銅溶液の流速は常に0.5メートル/秒以下であり、もし0.5メートル/秒より大きくする場合、陽極槽の上端口から大量の硫酸煙が持ち出され、且つ硫酸銅溶液も噴出されるなど一連の問題が発生するため流速を上げることはできない。これに対し、本実施例は陽極槽での硫酸銅溶液の搬送方向を変えることにより、陰極ロール表面形成する前記硫酸銅溶液の流速がすくなくとも0.5メートル/秒であることを実現し、且つ陰極ロールの表面での硫酸銅溶液の流速を制御することで銅箔表面の粗さを制御し、銅箔表面の粗さが設定値より大きい場合、陽極槽から流出する硫酸銅溶液の速度を上げ、即ち、硫酸銅溶液の流速を上げる。銅箔表面の粗さが設定値より小さい場合、陽極槽の底から流出する硫酸銅溶液の速度を下げ、即ち、硫酸銅溶液の流速を下げる。銅箔表面の粗さの設定値、つまり粗面の粗さは製品によって異なるが、通常Rz≦2.5μmに制御する。   In traditional processes, the copper sulfate solution flows from bottom to top in the anode cell so that the flow rate of the copper sulfate solution formed on the cathode roll surface is always less than 0.5 meters / second if 0.5 When the speed is higher than the meter / second, a large amount of sulfuric acid smoke is taken out from the upper end of the anode tank and a copper sulfate solution is also ejected, so that the flow rate cannot be increased. On the other hand, this example realized that the flow rate of the copper sulfate solution formed on the cathode roll surface was at least 0.5 meter / second by changing the transport direction of the copper sulfate solution in the anode tank, and By controlling the flow rate of the copper sulfate solution on the surface of the cathode roll, the roughness of the copper foil surface is controlled. When the roughness of the copper foil surface is larger than the set value, the speed of the copper sulfate solution flowing out of the anode tank is controlled. Increase, that is, increase the flow rate of the copper sulfate solution. When the roughness of the copper foil surface is smaller than the set value, the speed of the copper sulfate solution flowing out from the bottom of the anode tank is reduced, that is, the flow rate of the copper sulfate solution is lowered. The set value of the roughness of the copper foil surface, that is, the roughness of the rough surface varies depending on the product, but is usually controlled to Rz ≦ 2.5 μm.

実施例2
硫酸銅溶液の逆流による電解銅箔の生産方法の別の実施例であり、本実施例は実施例1を基に改善したものであり、本実施例における例1と実施例2の同じ部分は、実施例1と実施例2に開示した内容を参考に理解し、実施例1と実施例2の開示された内容は本実施例の内容にもなるべきである。
Example 2
It is another Example of the production method of the electrolytic copper foil by the backflow of a copper sulfate solution, and a present Example is improved based on Example 1, The same part of Example 1 and Example 2 in a present Example is the same part. The contents disclosed in Example 1 and Example 2 should be understood with reference to the contents, and the contents disclosed in Example 1 and Example 2 should be the contents of this example.

上記実施例において、陰極ロール表面で形成する硫酸銅溶液の流速を上げるため、硫酸銅原液に対するニーズが増加し、それによって銅溶解装置へのニーズも増加し、したがって設備への投入も増加する。この問題を解決するため、本実例において、前記硫酸銅溶液とは一次硫酸銅溶液と二次硫酸銅溶液の混合溶液であり、前記一次硫酸銅溶液とは銅溶解装置から直接流出する硫酸銅原液であり、前記二次硫酸銅溶液とは陽極槽から流出するメッキ後の硫酸銅溶液である。そのうち、硫酸銅溶液中の銅含有率の変化は元の生産プロセスの効果を影響しないため、本実例に係る混合溶液における一次硫酸銅溶液と二次硫酸銅溶液の比は≧1:2であり、7:3がもっとも好ましい。すなわち、100%の硫酸銅溶液において、70%は一次硫酸銅溶液で、30%は二次硫酸銅溶液である。   In the above embodiment, since the flow rate of the copper sulfate solution formed on the surface of the cathode roll is increased, the need for the copper sulfate stock solution is increased, thereby increasing the need for the copper dissolving apparatus, and thus increasing the input to the equipment. In order to solve this problem, in this example, the copper sulfate solution is a mixed solution of a primary copper sulfate solution and a secondary copper sulfate solution, and the primary copper sulfate solution is a copper sulfate stock solution that flows out directly from the copper dissolving apparatus. The secondary copper sulfate solution is a copper sulfate solution after plating that flows out of the anode tank. Among them, since the change in the copper content in the copper sulfate solution does not affect the effect of the original production process, the ratio of the primary copper sulfate solution to the secondary copper sulfate solution in the mixed solution according to this example is ≧ 1: 2. 7: 3 is most preferable. That is, in a 100% copper sulfate solution, 70% is a primary copper sulfate solution and 30% is a secondary copper sulfate solution.

実施例3
図1と図2のように、実施例1と実施例2の硫酸銅溶液の逆流による電解銅箔の生産方法に基づいたシステムである。陰極ロール1、半円弧状陽極2及び銅溶解装置12を含み、陰極ロールは弧状陽極の中に回転できるように設置され、陰極ロールと弧状陽極の間に設置された隙間で陽極槽3を形成し、陽極と陰極ロール間の距離は通常8‐15mmの間に維持され、陽極槽の上部に硫酸銅溶液を陽極槽中に搬送する上部槽13を設置し、陽極槽には硫酸銅溶液を陽極槽へ搬送する上溝13が設けられ、陽極槽両側の上端口はそれぞれ陰極ロールの両側に位置し(すなわち、陰極ロールが中心軸に沿って垂直に分離した二つの側面にある陽極槽の上端口)、そのうち、陰極ロールの半径方向の両側のうち一側は箔の生成側である。前記陽極槽には硫酸銅溶液流入口と流出口が設置され、銅溶解装置は搬送パイプ18を介して上溝の液体注入口と連通し、そのうち、前記システムは逆流する硫酸銅溶液のレシーバタンク8が設置され、陽極槽の硫酸銅溶液の流出口は前記レシーバタンクと連通し、前記レシーバタンクは銅溶解装置と連通し、前記レシーバタンクは硫酸銅溶液の補助ポンプ9を介して上溝の液体注入口に連通し、前記上溝の液体排出口は硫酸銅溶液搬送パイプを介して少なくとも陰極ロールの片側にある陽極槽の上端口と連通する。
Example 3
As shown in FIG. 1 and FIG. 2, the system is based on a method for producing electrolytic copper foil by backflow of the copper sulfate solution of Example 1 and Example 2. The cathode roll 1 includes a semicircular arc anode 2 and a copper melting device 12. The cathode roll is installed so as to be able to rotate in the arcuate anode, and an anode tank 3 is formed by a gap installed between the cathode roll and the arcuate anode. The distance between the anode and the cathode roll is usually maintained between 8-15 mm, and an upper tank 13 for conveying the copper sulfate solution into the anode tank is installed at the upper part of the anode tank, and the copper sulfate solution is placed in the anode tank. An upper groove 13 for conveying to the anode cell is provided, and upper end ports on both sides of the anode cell are respectively located on both sides of the cathode roll (that is, the upper surface of the anode cell on the two side surfaces separated vertically along the central axis). End)), one of the radial sides of the cathode roll is the foil generation side. The anode tank is provided with a copper sulfate solution inlet and an outlet, and the copper dissolving device communicates with the liquid inlet of the upper groove through the transfer pipe 18. The outlet of the copper sulfate solution in the anode tank is in communication with the receiver tank, the receiver tank is in communication with a copper dissolving device, and the receiver tank is infused with liquid in the upper groove via an auxiliary pump 9 for the copper sulfate solution. The liquid discharge port of the upper groove communicates with the upper end port of the anode tank on at least one side of the cathode roll through the copper sulfate solution transport pipe.

前記の銅溶解装置は現在銅箔工場が使用する伝統的なシステム装置であり、銅溶解タンク、熱交換器、濾過器及び貯蔵タンクを含み、銅溶解装置は搬送パイプによって上溝の液体注入口に連通し、つまり銅溶解装置の貯蔵タンクがポンプとパイプを介して上溝の液体注入口に連通する。   The copper melting device is a traditional system device currently used by the copper foil factory, and includes a copper melting tank, heat exchanger, filter and storage tank. The copper melting device is connected to the liquid inlet of the upper groove by a conveying pipe. In communication, that is, the storage tank of the copper melting device communicates with the liquid inlet of the upper groove through a pump and a pipe.

好ましい形態1として、本実例に係る陰極ロールの片側とは、陰極ロールの箔の生成側を示し、即ち、前記陰極ロールの片側にある陽極槽の上端口は陰極ロールの箔の生成側の陽極槽の上端口である。   As a preferred embodiment 1, the one side of the cathode roll according to this example means the production side of the cathode roll foil, that is, the upper end of the anode tank on one side of the cathode roll is the anode on the production side of the cathode roll foil. This is the upper end of the tank.

好ましい形態2として、前記陽極槽の硫酸銅溶液流入口は、少なくとも陰極ロールの片側にある陽極槽の上端口であるため、陽極槽の硫酸銅溶液流出口は陽極槽の底にあってもよく、陰極ロールの別側にある陽極槽の上端口にあっても良い。硫酸銅溶液中の銅イオンが陰極ロールの表面にメッキされる過程で酸素の放出により発生される大量の気泡が陽極槽の上端口から放出されることを克服するため、当好ましい形態において、前記上溝の形態排出口は硫酸銅溶液の搬送パイプによって陰極ロールの両側にある陽極槽の上端口に連通し、前記陽極槽の硫酸銅溶液流出口は陽極槽の底に設置されている。(すなわち、弧状陽極の底には軸方向に沿って全長のノッチを設置する)。   As a preferred form 2, since the copper sulfate solution inlet of the anode tank is at least the upper end of the anode tank on one side of the cathode roll, the copper sulfate solution outlet of the anode tank may be at the bottom of the anode tank. It may be at the upper end of the anode tank on the other side of the cathode roll. In order to overcome the large amount of air bubbles generated by the release of oxygen during the process of plating the copper ions in the copper sulfate solution on the surface of the cathode roll, The upper groove form discharge port communicates with the upper end port of the anode tank on both sides of the cathode roll by a copper sulfate solution transport pipe, and the copper sulfate solution outlet of the anode tank is installed at the bottom of the anode tank. (In other words, a full-length notch is installed along the axial direction at the bottom of the arcuate anode).

そのうち、陽極槽の中での硫酸銅溶液の流速の制御を実現するため、前記陽極槽の底の硫酸銅溶液流出口の長さは陰極ロールの長さと同じにし、流出口の幅19は少なくとも陰極ロールと弧状陽極間の隙間の2倍にする。   Among them, in order to control the flow rate of the copper sulfate solution in the anode tank, the length of the copper sulfate solution outlet at the bottom of the anode tank is the same as the length of the cathode roll, and the outlet width 19 is at least Double the gap between the cathode roll and the arcuate anode.

実施例において、前記上溝と陽極槽の硫酸銅溶液流入口を連通するパイプ14には総流量制御弁15が設置され、前記陽極槽の硫酸銅溶液流出口とレシーバタンクを連通するパイプ10には陽極槽での硫酸銅溶液流速の制御弁11が設置されて、前記硫酸銅溶液の補充ポンプと上溝を連通するパイプ16には逆流する硫酸銅溶液の流速を調整する制御弁17が設置されている。   In the embodiment, a total flow control valve 15 is installed in the pipe 14 that communicates the upper groove and the copper sulfate solution inlet of the anode tank, and the pipe 10 that communicates the copper sulfate solution outlet of the anode tank and the receiver tank is provided in the pipe 10. A control valve 11 for the flow rate of the copper sulfate solution in the anode tank is installed, and a control valve 17 for adjusting the flow rate of the copper sulfate solution flowing backward is installed in the pipe 16 communicating with the replenishment pump for the copper sulfate solution and the upper groove. Yes.

実施例4
本実施例は、実施例3を基に改善したものであり、本実施例における例3と同じ部分は、実施例3に開示した内容を参考に理解し、実施例2に開示された内容も本実施例の内容になるべきである。
Example 4
The present embodiment is an improvement based on the third embodiment, and the same parts as the third embodiment in the present embodiment are understood with reference to the contents disclosed in the third embodiment, and the contents disclosed in the second embodiment are also included. It should be the contents of this embodiment.

本実施例に係る陽極槽の上端口は、陽極槽の上端口と同じ幅の流入する硫酸銅溶液の転換口20に連結され、転換口の中に硫酸銅溶液の流れ方向を調節できるそらせ板21が設置される。そらせ板の方向を制御することで銅箔の断面の厚さの均一さを調節できる。   The upper end port of the anode tank according to the present embodiment is connected to the inflowing copper sulfate solution conversion port 20 having the same width as the upper end port of the anode cell, and the baffle plate that can adjust the flow direction of the copper sulfate solution in the conversion port. 21 is installed. By controlling the direction of the baffle, the uniformity of the thickness of the cross section of the copper foil can be adjusted.

Claims (13)

陰極ロールと弧状陽極の間に設置する隙間で形成される陽極槽を含み、陽極槽両側の上端口は陰極ロールの両側にあり、その片側は箔の生成側であり、陽極槽の中には流動する硫酸銅溶液があり、陰極ロールは陽極槽の中で回転し、陰極ロールの一部の外表面が硫酸銅溶液に浸され、陰極ロールと陽極の間に電流を流し、陰極ロールの回転につれて、陰極ロールにメッキした銅箔がどんどんはがれながら巻き取られており、前記硫酸銅溶液は少なくとも陰極ロールの片側にある陽極槽の上端口から陽極槽に流れ込む前記方法を特徴とする硫酸銅溶液の逆流による電解銅箔の生産方法。   Including an anode tank formed by a gap installed between the cathode roll and the arcuate anode, the upper end ports on both sides of the anode tank are on both sides of the cathode roll, one side is the foil generation side, There is a flowing copper sulfate solution, the cathode roll rotates in the anode tank, a part of the outer surface of the cathode roll is immersed in the copper sulfate solution, current flows between the cathode roll and the anode, and the cathode roll rotates. The copper sulfate solution is characterized in that the copper foil plated on the cathode roll is wound while being peeled off and the copper sulfate solution flows into the anode tank from the upper end of the anode tank on at least one side of the cathode roll. A method for producing electrolytic copper foil by backflow. 前記硫酸銅溶液は、陰極ロールの箔の生成側の陽極槽の上端口から陽極槽に流れ込むことを特徴とする請求項1に記載の硫酸銅溶液の逆流による電解銅箔の生産方法。   The said copper sulfate solution flows into an anode tank from the upper end port of the anode tank of the production | generation side of the foil of a cathode roll, The production method of the electrolytic copper foil by the reverse flow of the copper sulfate solution of Claim 1 characterized by the above-mentioned. 前記硫酸銅溶液は、陰極ロールの箔の生成側の陽極槽の上端口から陽極槽に流れ込み、且つ陽極槽の底部から流れ出し、メッキする時にできる気泡を、流れ出す硫酸銅溶液が陽極槽の底部から持ち出すことを特徴とする請求項1に記載の硫酸銅溶液の逆流による電解銅箔の生産方法。   The copper sulfate solution flows into the anode tank from the upper end of the anode tank on the production side of the cathode roll foil, flows out from the bottom of the anode tank, and bubbles formed during plating, the copper sulfate solution flowing out from the bottom of the anode tank The method for producing an electrolytic copper foil by reverse flow of the copper sulfate solution according to claim 1, wherein the copper copper solution is taken out. 前記方法は、さらに、銅箔の鍍層表面のあらさが設定値より大きい場合、陰極ロールの流れ込む側の表面で硫酸銅溶液が形成する流速をあげ、銅箔の鍍層の表面のあらさが設定値より小さい場合、陰極ロールの流れ込む側の表面で硫酸銅溶液が形成する流速をさげることを特徴とする請求項1に記載の硫酸銅溶液の逆流による電解銅箔の生産方法。   The method further increases the flow rate of the copper sulfate solution formed on the surface of the cathode roll into which the roughness of the surface of the copper foil is larger than the set value, and the roughness of the surface of the copper foil on the surface of the copper foil exceeds the set value. 2. The method for producing electrolytic copper foil by reverse flow of a copper sulfate solution according to claim 1, wherein the flow rate at which the copper sulfate solution forms on the surface of the cathode roll into which the cathode roll flows is reduced. 電解銅箔の生産プロセスの条件の下で、陰極ロールの表面で前記硫酸銅溶液が形成する流速は少なくとも0.5メートル/秒であり、前記電解銅箔の生産プロセスの条件は、銅の含有量は70−110g/Lで、酸の濃度は80−130g/Lで、温度は40−65℃である硫酸銅溶液と、50アンペア−85アンペア毎平方デシメートルの陽極の電流密度とを含むことを特徴とする請求項1〜4のいずれか1項に記載の硫酸銅溶液の逆流による電解銅箔の生産方法。   Under the conditions of the electrolytic copper foil production process, the flow rate formed by the copper sulfate solution on the surface of the cathode roll is at least 0.5 meter / second, and the electrolytic copper foil production process condition is the inclusion of copper. Includes copper sulfate solution with an amount of 70-110 g / L, acid concentration of 80-130 g / L, temperature of 40-65 ° C., and anode current density of 50 amps-85 amps per square decimeter. The method for producing an electrolytic copper foil by backflow of the copper sulfate solution according to any one of claims 1 to 4. 前記硫酸銅溶液は、一次硫酸銅溶液と二次硫酸銅溶液の混合液で、前記一次硫酸銅溶液は銅溶解装置から直接提供される硫酸銅原液で、前記二次硫酸銅溶液は陽極槽から流出してメッキした後の硫酸銅溶液であることを特徴とする請求項1〜4のいずれか1項に記載の硫酸銅溶液の逆流による電解銅箔の生産方法。   The copper sulfate solution is a mixed solution of a primary copper sulfate solution and a secondary copper sulfate solution, the primary copper sulfate solution is a copper sulfate stock solution provided directly from a copper dissolving device, and the secondary copper sulfate solution is from an anode tank. It is a copper sulfate solution after flowing out and plating, The production method of the electrolytic copper foil by the backflow of the copper sulfate solution of any one of Claims 1-4 characterized by the above-mentioned. 前記混合液の中で一次硫酸銅溶液と二次硫酸銅溶液の比は≧1:2であることを特徴とする請求項6に記載の硫酸銅溶液の逆流による電解銅箔の生産方法   The method for producing an electrolytic copper foil by backflow of a copper sulfate solution according to claim 6, wherein the ratio of the primary copper sulfate solution to the secondary copper sulfate solution in the mixed solution is ≧ 1: 2. 陰極ロール、弧状陽極及び銅溶解装置を含み、陰極ロールは弧状陽極の中に回転できるように設置され、陰極ロールと弧状陽極の間で設置された隙間で陽極槽を形成し、陽極槽に硫酸銅溶液を陽極槽へ搬送する上端槽が設けられており、陽極槽両側の上端はそれぞれ陰極ロールの両側に位置し、そのうち片側は箔の生成側であり、前記陽極槽には硫酸銅溶液の流入口と流出口が設置されており、銅溶解装置は搬送パイプを介して上溝の液体注入口と連通しており、さらに、逆流した硫酸銅溶液のレシーバタンクが設置され、陽極槽の硫酸銅溶液の流出口は前記レシーバタンクと連通し、レシーバタンクは銅溶解装置と連通し、前記レシーバタンクは硫酸銅溶液の補助ポンプを介して上溝の液体注入口に連通し、前記上溝の液体排出口は硫酸銅溶液搬送パイプを介して少なくとも陰極ロールの一つの側面にある陽極槽の上端口と連通することを特徴とする請求項1に記載の硫酸銅溶液の逆流による電解銅箔の生産方法のシステム   A cathode roll, an arcuate anode, and a copper melting device are included. The cathode roll is installed so as to be rotatable in the arcuate anode, and an anode tank is formed by a gap installed between the cathode roll and the arcuate anode. An upper end tank for transporting the copper solution to the anode tank is provided, and the upper ends on both sides of the anode tank are located on both sides of the cathode roll, respectively, one side of which is the foil generation side, and the anode tank contains the copper sulfate solution. An inflow port and an outflow port are installed, the copper dissolving device communicates with the liquid inlet in the upper groove via a transport pipe, and a receiver tank for the backflowed copper sulfate solution is installed, and the copper sulfate in the anode tank The outlet of the solution communicates with the receiver tank, the receiver tank communicates with a copper dissolving device, the receiver tank communicates with the liquid inlet of the upper groove via an auxiliary pump of the copper sulfate solution, and the liquid outlet of the upper groove Is copper sulfate System method for producing an electrolytic copper foil by backflow of copper sulfate solution according to claim 1, characterized in that the upper opening in communication with the anode chamber in one side of at least the cathode roll through the liquid conveying pipe 前記上溝と陽極槽の硫酸銅溶液の流入口とを連通するパイプには総流量制御弁が設置され、前記陽極槽の硫酸銅溶液流出口とレシーバタンクとを連通するパイプの中に陽極槽の硫酸銅溶液流速を調節する流速制御弁が設置され、前記硫酸銅溶液の補助ポンプと上溝の間を連通するパイプには逆流する硫酸銅溶液流量の制御弁が設置されていることを特徴とする請求項8に記載の硫酸銅溶液の逆流による電解銅箔の生産方法のシステム   A total flow control valve is installed in the pipe that communicates the upper groove and the copper sulfate solution inlet of the anode tank, and the anode tank has a pipe that communicates the copper sulfate solution outlet of the anode tank and the receiver tank. A flow rate control valve for adjusting the flow rate of the copper sulfate solution is installed, and a control valve for the flow rate of the copper sulfate solution flowing back is installed in the pipe communicating between the auxiliary pump for the copper sulfate solution and the upper groove. The system of the production method of the electrolytic copper foil by the backflow of the copper sulfate solution of Claim 8 前記陰極ロールの片側の陽極槽の上端口は陰極ロールの箔の生成側にある陽極槽の上端口であることを特徴とする請求項8または9に記載の硫酸銅溶液の逆流による電解銅箔の生産方法のシステム   10. The electrolytic copper foil by reverse flow of the copper sulfate solution according to claim 8, wherein the upper end port of the anode tank on one side of the cathode roll is the upper end port of the anode tank on the production side of the foil of the cathode roll. Production method system 前記上溝の液体排出口は硫酸銅溶液の搬送パイプを介して陰極ロールの両側にある陽極槽の上端口と連通し、前記陽極槽の硫酸銅溶液流出口は陽極槽の底部に設置されることを特徴とする請求項8または9に記載の硫酸銅溶液の逆流による電解銅箔の生産方法のシステム   The liquid discharge port of the upper groove communicates with the upper end port of the anode tank on both sides of the cathode roll through the copper sulfate solution transport pipe, and the copper sulfate solution outlet of the anode tank is installed at the bottom of the anode tank. A system for producing electrolytic copper foil by backflow of a copper sulfate solution according to claim 8 or 9, 前記陽極槽の底部の硫酸銅溶液流出口の長さは陰極ロールの長さであり、流出口の幅は少なくとも陰極ロールと弧状陽極の間にある隙間の2倍であることを特徴とする請求項11に記載の硫酸銅溶液の逆流による電解銅箔の生産方法のシステム   The length of the copper sulfate solution outlet at the bottom of the anode tank is the length of the cathode roll, and the width of the outlet is at least twice the gap between the cathode roll and the arcuate anode. Item 11. System for producing electrolytic copper foil by backflow of copper sulfate solution according to item 11 前記陽極槽上端口には陽極槽上端口と同幅の流入する硫酸銅溶液の転換口が連結され、転換口には硫酸銅溶液の流動方向を制御できるそらせ板が設置されることを特徴とする請求項11に記載の硫酸銅溶液の逆流による電解銅箔の生産方法のシステム   The anode tank upper end port is connected to a copper sulfate solution conversion port having the same width as the anode cell upper end port, and the conversion port is provided with a baffle plate capable of controlling the flow direction of the copper sulfate solution. A system for producing electrolytic copper foil by backflow of a copper sulfate solution according to claim 11
JP2015552983A 2013-01-21 2013-12-19 System of production method of electrolytic copper foil by backflow of copper sulfate solution Active JP6165880B2 (en)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
CN201310021021.7A CN103060882B (en) 2013-01-21 2013-01-21 The method and system of electrolytic copper foil are produced in a kind of copper-bath countercurrent flow
CN201310021021.7 2013-01-21
PCT/CN2013/089959 WO2014110958A1 (en) 2013-01-21 2013-12-19 Method and system for producing electrolytic copper foil by using reverse flow of copper sulfate solution

Publications (2)

Publication Number Publication Date
JP2016507652A true JP2016507652A (en) 2016-03-10
JP6165880B2 JP6165880B2 (en) 2017-07-19

Family

ID=48103766

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2015552983A Active JP6165880B2 (en) 2013-01-21 2013-12-19 System of production method of electrolytic copper foil by backflow of copper sulfate solution

Country Status (5)

Country Link
EP (1) EP2947182A4 (en)
JP (1) JP6165880B2 (en)
KR (1) KR20150110728A (en)
CN (1) CN103060882B (en)
WO (1) WO2014110958A1 (en)

Families Citing this family (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103060882B (en) * 2013-01-21 2015-11-04 福建清景铜箔有限公司 The method and system of electrolytic copper foil are produced in a kind of copper-bath countercurrent flow
CN103233249A (en) * 2013-05-09 2013-08-07 南京顺捷机械设备有限公司 Upper-electrolyte-inlet copper foil all-in-one equipment
CN103510106B (en) * 2013-09-22 2015-10-21 中南大学 A kind of copper electrolysis additive and using method thereof
CN104313668B (en) * 2014-09-30 2017-03-15 苏州芯航元电子科技有限公司 Electronics producing line electrochemical processing cell
KR20180040754A (en) * 2016-10-12 2018-04-23 케이씨에프테크놀로지스 주식회사 Easily Handleable Electrolytic Copper Foil, Electrode Comprising The Same, Secondary Battery Comprising The Same, and Method for Manufacturing The Same
KR102096448B1 (en) * 2017-01-02 2020-05-28 한양대학교 에리카산학협력단 Method and apparatus for manufacturing copper foil coated with graphene
JP6632739B2 (en) * 2017-04-25 2020-01-22 古河電気工業株式会社 Surface treated copper foil
CN108642780A (en) * 2018-05-24 2018-10-12 武汉纺织大学 It is a kind of using yarn dyeing roller as the Electrochemical Dyeing device and method of cathode
CN109440170A (en) * 2018-11-28 2019-03-08 灵宝华鑫铜箔有限责任公司 A kind of molten copper system system of energy-saving and environment-friendly electrolytic copper foil and molten process for copper
CN112899740B (en) * 2019-11-15 2022-04-19 源秩科技(上海)有限公司 Electrochemical-based processing apparatus and method
CN113011001B (en) * 2021-02-20 2021-09-14 广东嘉元科技股份有限公司 Method for calculating high value and low value of washing flow, storage medium and raw foil machine
CN113546885A (en) * 2021-07-23 2021-10-26 江西铜博科技有限公司 Automatic cleaning device of copper foil electrolytic cell
CN113802156B (en) * 2021-11-05 2022-06-03 广东嘉元科技股份有限公司 Electrolytic copper foil production equipment with cleaning assembly and production process thereof
CN115216813B (en) * 2022-07-15 2024-04-16 福建紫金铜箔科技有限公司 Method for regulating and controlling transverse thickness of copper foil

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5339941A (en) * 1976-09-25 1978-04-12 Toppan Printing Co Ltd High speed electrocasting apparatus
GB1555458A (en) * 1976-07-19 1979-11-07 British Steel Corp Method and apparatus for producing metal strip
JPS63149390A (en) * 1986-12-12 1988-06-22 Furukawa Saakitsuto Fuoiru Kk Method and apparatus for producing metallic foil by electrolysis
JPH1036991A (en) * 1996-07-19 1998-02-10 Japan Energy Corp Production of electrolytic copper foil
JP2001011685A (en) * 1999-06-30 2001-01-16 Mitsui Mining & Smelting Co Ltd Electrolytic copper foil and its production
JP2005254673A (en) * 2004-03-12 2005-09-22 Furukawa Circuit Foil Kk Ultrathin copper foil with carrier and wiring plate using ultrathin copper foil with carrier

Family Cites Families (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6026689A (en) * 1983-07-26 1985-02-09 Sumitomo Metal Ind Ltd Method and device for producing metallic foil by electrodeposition
DD238707A3 (en) * 1984-02-20 1986-09-03 Lokomotivbau Elektrotech ANODENCORB FOR ELECTROLYTE FILTRATION IN COPPER FILM PRODUCTION PLANTS
DD279697A1 (en) * 1989-02-01 1990-06-13 Beimler Lokomotivbau METHOD AND ARRANGEMENT FOR THE EQUAL CHEMICAL DEPOSITION OF A THIN METAL PAVEMENT
US5863410A (en) * 1997-06-23 1999-01-26 Circuit Foil Usa, Inc. Process for the manufacture of high quality very low profile copper foil and copper foil produced thereby
MY124018A (en) * 1999-06-08 2006-06-30 Mitsui Mining & Smelting Co Ltd Manufacturing method of electrodeposited copper foil, electrodeposited copper foil, copper-clad laminate and printed wiring board
JP3794613B2 (en) * 2000-05-18 2006-07-05 三井金属鉱業株式会社 Electrolytic equipment for electrolytic copper foil
JP2004325201A (en) * 2003-04-24 2004-11-18 Mitsui Mining & Smelting Co Ltd Electrode potential measuring probe and continuous electrolyzation apparatus of metal foil with the same
US20050158574A1 (en) * 2003-11-11 2005-07-21 Furukawa Circuit Foil Co., Ltd. Ultra-thin copper foil with carrier and printed wiring board using ultra-thin copper foil with carrier
JP4430020B2 (en) * 2005-02-21 2010-03-10 古河電気工業株式会社 Copper foil for flexible printed wiring board, manufacturing method thereof and flexible printed wiring board
TWI396779B (en) * 2005-02-21 2013-05-21 Copper foil and its manufacturing method, and flexible printed circuit board
CN102277597B (en) * 2011-08-12 2013-07-31 合肥铜冠国轩铜材有限公司 Preparation of double-sided photoelectrolytic copper foil for special lithium battery
CN203049057U (en) * 2013-01-21 2013-07-10 福建清景铜箔有限公司 Device for producing electrolytic copper foil
CN103060882B (en) * 2013-01-21 2015-11-04 福建清景铜箔有限公司 The method and system of electrolytic copper foil are produced in a kind of copper-bath countercurrent flow

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB1555458A (en) * 1976-07-19 1979-11-07 British Steel Corp Method and apparatus for producing metal strip
JPS5339941A (en) * 1976-09-25 1978-04-12 Toppan Printing Co Ltd High speed electrocasting apparatus
JPS63149390A (en) * 1986-12-12 1988-06-22 Furukawa Saakitsuto Fuoiru Kk Method and apparatus for producing metallic foil by electrolysis
JPH1036991A (en) * 1996-07-19 1998-02-10 Japan Energy Corp Production of electrolytic copper foil
JP2001011685A (en) * 1999-06-30 2001-01-16 Mitsui Mining & Smelting Co Ltd Electrolytic copper foil and its production
JP2005254673A (en) * 2004-03-12 2005-09-22 Furukawa Circuit Foil Kk Ultrathin copper foil with carrier and wiring plate using ultrathin copper foil with carrier

Also Published As

Publication number Publication date
WO2014110958A1 (en) 2014-07-24
CN103060882A (en) 2013-04-24
KR20150110728A (en) 2015-10-02
EP2947182A4 (en) 2016-09-28
CN103060882B (en) 2015-11-04
JP6165880B2 (en) 2017-07-19
EP2947182A1 (en) 2015-11-25

Similar Documents

Publication Publication Date Title
JP6165880B2 (en) System of production method of electrolytic copper foil by backflow of copper sulfate solution
CN103233249A (en) Upper-electrolyte-inlet copper foil all-in-one equipment
KR100476174B1 (en) Electrolysis apparatus for electrolytic copper foil and electrolytic copper foil produced in the electrolysis apparatus
CN105862089B (en) A kind of production electrolytic copper foil electrolyte for preventing anode fouling and preparation method thereof
TWI707067B (en) Method and device for producing electroplating solution or electroplating replenishing solution for insoluble anode acid copper electroplating process
CN203049057U (en) Device for producing electrolytic copper foil
WO2022057092A1 (en) Manufacturing method for improving tensile strength of thinned copper foil
TW490510B (en) Method and apparatus for producing electrolytic copper foil
TW201821654A (en) Acid copper electroplating process using insoluble anode and equipment therefor
WO2015050192A1 (en) Nickel solution for forming film and film-forming method using same
WO2013015032A1 (en) Method for producing indium hydroxide or compound containing indium hydroxide
US20210087700A1 (en) Device for manufacturing hybrid metal foams
US20150211143A1 (en) Aluminum plating apparatus and method for producing aluminum film using same
CN110923755B (en) Surface anti-oxidation process for lithium-ion battery copper foil
CN111286745B (en) Additive for high-tensile electrolytic copper foil, preparation method of electrolytic copper foil and lithium ion battery
CN108130576A (en) A kind of oxidized aluminum alloy slot aluminium ion and retrieval of sulfuric acid system and technique
CN113089034B (en) Side liquid tank, electrolyte flowing method, foil forming machine and working method of foil forming machine
CN108823610B (en) Additive for electrolytic copper foil and production process of electrolytic copper foil for 5-micron double-light lithium battery
CN106521556A (en) Magnesium electrolytic cell production line and method of incorporating singly-operating cell into production line
CN111020643A (en) Double-sided smooth copper foil and preparation method and device thereof
CN111826690B (en) Formula and process of vertical high-speed continuous tin plating solution
CN101781770A (en) Electrolysis or electrodeposition method and electrolysis or electrodeposition device adopting solution flowing rotationally bidirectionally in parallel
CN104775132A (en) Trapezoidal flow electrodeposition apparatus
CN114381792B (en) Method for stably controlling electroplating solution
CN117026315A (en) Production process of electrolytic copper foil for lithium battery

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20160915

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20161011

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20161209

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20170221

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20170330

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20170530

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20170621

R150 Certificate of patent or registration of utility model

Ref document number: 6165880

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250