JP6632739B2 - Surface treated copper foil - Google Patents

Surface treated copper foil Download PDF

Info

Publication number
JP6632739B2
JP6632739B2 JP2018545261A JP2018545261A JP6632739B2 JP 6632739 B2 JP6632739 B2 JP 6632739B2 JP 2018545261 A JP2018545261 A JP 2018545261A JP 2018545261 A JP2018545261 A JP 2018545261A JP 6632739 B2 JP6632739 B2 JP 6632739B2
Authority
JP
Japan
Prior art keywords
copper foil
treated copper
silane coupling
coupling agent
resin
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2018545261A
Other languages
Japanese (ja)
Other versions
JPWO2018198905A1 (en
Inventor
隆宏 鶴田
隆宏 鶴田
岳夫 宇野
岳夫 宇野
裕子 奥野
裕子 奥野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
THE FURUKAW ELECTRIC CO., LTD.
Original Assignee
THE FURUKAW ELECTRIC CO., LTD.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by THE FURUKAW ELECTRIC CO., LTD. filed Critical THE FURUKAW ELECTRIC CO., LTD.
Publication of JPWO2018198905A1 publication Critical patent/JPWO2018198905A1/en
Application granted granted Critical
Publication of JP6632739B2 publication Critical patent/JP6632739B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25DPROCESSES FOR THE ELECTROLYTIC OR ELECTROPHORETIC PRODUCTION OF COATINGS; ELECTROFORMING; APPARATUS THEREFOR
    • C25D5/00Electroplating characterised by the process; Pretreatment or after-treatment of workpieces
    • C25D5/60Electroplating characterised by the structure or texture of the layers
    • C25D5/605Surface topography of the layers, e.g. rough, dendritic or nodular layers
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B15/00Layered products comprising a layer of metal
    • B32B15/04Layered products comprising a layer of metal comprising metal as the main or only constituent of a layer, which is next to another layer of the same or of a different material
    • B32B15/08Layered products comprising a layer of metal comprising metal as the main or only constituent of a layer, which is next to another layer of the same or of a different material of synthetic resin
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B15/00Layered products comprising a layer of metal
    • B32B15/20Layered products comprising a layer of metal comprising aluminium or copper
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C28/00Coating for obtaining at least two superposed coatings either by methods not provided for in a single one of groups C23C2/00 - C23C26/00 or by combinations of methods provided for in subclasses C23C and C25C or C25D
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25DPROCESSES FOR THE ELECTROLYTIC OR ELECTROPHORETIC PRODUCTION OF COATINGS; ELECTROFORMING; APPARATUS THEREFOR
    • C25D1/00Electroforming
    • C25D1/04Wires; Strips; Foils
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25DPROCESSES FOR THE ELECTROLYTIC OR ELECTROPHORETIC PRODUCTION OF COATINGS; ELECTROFORMING; APPARATUS THEREFOR
    • C25D7/00Electroplating characterised by the article coated
    • C25D7/06Wires; Strips; Foils
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K1/00Printed circuits
    • H05K1/02Details
    • H05K1/09Use of materials for the conductive, e.g. metallic pattern
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K3/00Apparatus or processes for manufacturing printed circuits
    • H05K3/38Improvement of the adhesion between the insulating substrate and the metal
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K3/00Apparatus or processes for manufacturing printed circuits
    • H05K3/38Improvement of the adhesion between the insulating substrate and the metal
    • H05K3/389Improvement of the adhesion between the insulating substrate and the metal by the use of a coupling agent, e.g. silane
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C2222/00Aspects relating to chemical surface treatment of metallic material by reaction of the surface with a reactive medium
    • C23C2222/20Use of solutions containing silanes
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25DPROCESSES FOR THE ELECTROLYTIC OR ELECTROPHORETIC PRODUCTION OF COATINGS; ELECTROFORMING; APPARATUS THEREFOR
    • C25D3/00Electroplating: Baths therefor
    • C25D3/02Electroplating: Baths therefor from solutions
    • C25D3/38Electroplating: Baths therefor from solutions of copper
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25DPROCESSES FOR THE ELECTROLYTIC OR ELECTROPHORETIC PRODUCTION OF COATINGS; ELECTROFORMING; APPARATUS THEREFOR
    • C25D7/00Electroplating characterised by the article coated
    • C25D7/06Wires; Strips; Foils
    • C25D7/0614Strips or foils

Description

本発明は、高周波対応基板の絶縁樹脂、特にポリフェニレンエーテル(以下PPE)系樹脂を含む樹脂基板との密着性に優れる表面処理銅箔に関する。   The present invention relates to a surface-treated copper foil having excellent adhesion to an insulating resin of a high-frequency-compatible substrate, particularly a resin substrate containing a polyphenylene ether (hereinafter, PPE) -based resin.

近年、コンピューターや情報通信機器が高性能・高機能化し、また、ネットワーク化の進展に伴い、大容量の情報を高速で伝達処理するために信号はますます高周波化する傾向にある。このような情報通信機器には、銅張積層板が使用されている。このような銅張積層板は高周波対応絶縁基板(樹脂基板)と銅箔を加熱し、加圧して作製する。   2. Description of the Related Art In recent years, as computers and information communication devices have become more sophisticated and more sophisticated, and as networking has progressed, signals have tended to have higher frequencies in order to transmit and process large amounts of information at high speed. Such information communication devices use copper-clad laminates. Such a copper-clad laminate is manufactured by heating and pressing a high-frequency compatible insulating substrate (resin substrate) and a copper foil.

一般に、サーバー、ルーター用回路基板などの高周波対応の銅張積層板を構成する絶縁基板には、誘電特性に優れた樹脂を用いる。比誘電率や誘電正接が低い樹脂としてポリフェニレンエーテル(PPE)系樹脂が使用されるが、PPE系樹脂との化学的親和性の良さから、銅箔のシランカップリング処理剤として、主としてオレフィン系シランカップリング剤による処理が採用されている。シランカップリング処理により銅箔表面にシロキサン架橋構造が形成され、これがPPE系樹脂との接着剤として機能することが期待できるからである。   Generally, a resin having excellent dielectric properties is used for an insulating substrate constituting a high-frequency compatible copper-clad laminate such as a circuit board for a server or a router. Polyphenylene ether (PPE) -based resin is used as a resin having a low relative dielectric constant and a low dielectric tangent. However, olefin-based silane coupling agent is mainly used as a silane coupling agent for copper foil due to its good chemical affinity with PPE-based resin. Treatment with a coupling agent is employed. This is because a siloxane cross-linking structure is formed on the surface of the copper foil by the silane coupling treatment, and it can be expected that this function as an adhesive with the PPE-based resin.

例えば、特許文献1では、銅箔表面に耐熱処理層を形成し、その上にオレフィン系シランカップリング処理を施すことにより、接着強度と防錆性の向上を図ることが提案されている。   For example, Patent Document 1 proposes that a heat-resistant treatment layer is formed on the surface of a copper foil, and an olefin-based silane coupling treatment is performed thereon, thereby improving the adhesive strength and rust prevention.

特開2003−201585号公報JP-A-2003-201585 特許第4927463号Patent No. 4927463 特許第5242710号Patent No. 5242710

しかしながら特許文献1では、実用上問題のない密着強度は確保されているものの、高周波対応に不可欠な伝送特性については言及されていない。特許文献1では、実施例に粗化後の表面粗度Rzが1.20μm以上の銅箔を扱っているが、粗化後の表面粗度が過大になると表皮効果が大きくなるため、伝送特性が低下する要因となる。また、実用上問題のない密着強度であっても、実際の製造工程においてはPPE系樹脂とオレフィン系シランカップリング剤により処理された銅箔を積層して高温プレス成形すると、銅箔と樹脂との界面にいわゆるフクレと呼ばれる局所的な接着不良領域がたびたび発生し、樹脂基板の歩留まり低下の原因となるが、この点については言及されていない。また、特許文献2では、実施例で表面粗度1.10μm以下の銅箔を扱っており、フレキシブル基板用途において実用上問題のない伝送特性が得られているが、PPE系樹脂を使用した場合の特性の向上や、フクレのような局所的な接着不良の問題については言及されていない。   However, Patent Document 1 does not refer to transmission characteristics indispensable for high-frequency use, although the adhesion strength has no practical problem. Patent Literature 1 deals with a copper foil having a surface roughness Rz after roughening of 1.20 μm or more in the examples. However, if the surface roughness after roughening becomes excessive, the skin effect becomes large, so that the transmission characteristics are increased. Is a factor of decrease. In addition, even if the adhesion strength has no practical problem, in the actual manufacturing process, when the copper foil treated with the PPE-based resin and the olefin-based silane coupling agent is laminated and hot-pressed, the copper foil and the resin become However, a local adhesion failure area called so-called swelling often occurs at the interface, which causes a reduction in the yield of the resin substrate, but this point is not mentioned. Patent Document 2 deals with copper foil having a surface roughness of 1.10 μm or less in the examples, and transmission characteristics that are practically acceptable in flexible substrate applications are obtained. No mention is made of the improvement of the characteristics of the above or the problem of local adhesion failure such as blisters.

本発明は、銅箔と樹脂とのプレス接合における接着不良、特に銅箔の粗化処理面にオレフィン系シランカップリング剤によりシランカップリング処理を施した銅箔の樹脂とのプレス接合における接着不良を解消することを目的とする。   The present invention relates to poor adhesion in press bonding between a copper foil and a resin, particularly in press bonding with a resin of a copper foil subjected to silane coupling treatment with an olefin-based silane coupling agent on a roughened surface of the copper foil. The purpose is to eliminate.

本発明の一実施形態の表面処理銅箔は、粗化処理側の面の表面粗さRzjisが接触式粗さ測定器で測定したときに1.10μm以下であり、かつ、前記粗化処理側の面の最小自己相関長さ(Sal)が0.20μm以上0.85μm以下の範囲であり、前記粗化処理側の面の界面展開面積比(Sdr)が20%以上300%以下の範囲である。
本発明者らは、PPE樹脂と銅箔を積層して高温プレス成形する際に銅箔と樹脂との界面に発生するフクレの原因について調査研究した結果、オレフィン系シランカップリング剤は粗化処理表面に応力を発生させ、粗化処理面側を内向きとするカールを発生させる傾向にあることがわかった。オレフィン系シランカップリング剤の処理により表面に応力が発生するメカニズムは定かではないが、銅箔表面に付着した官能基同士の斥力が弱いか、あるいは互いにひきつけあうため応力が発生しカールが生じるのではないかと考えられる。このときに生じた応力はプレス時においてさらに大きくなり接着不良を生じするものと考えられる。
The surface-treated copper foil of one embodiment of the present invention has a surface roughness Rzjis of the surface on the roughening treatment side of not more than 1.10 μm when measured by a contact-type roughness measuring instrument, and the roughening treatment side. The minimum autocorrelation length (Sal) of the surface is in the range of 0.20 μm to 0.85 μm, and the interface development area ratio (Sdr) of the surface on the roughening treatment side is in the range of 20% to 300%. is there.
The present inventors investigated and investigated the cause of blisters generated at the interface between the copper foil and the resin when the PPE resin and the copper foil were laminated and subjected to high-temperature press molding. As a result, the olefin-based silane coupling agent was roughened. It was found that a stress was generated on the surface, and a curl having a roughened surface side facing inward was likely to be generated. The mechanism by which stress is generated on the surface by the treatment of the olefin-based silane coupling agent is not clear, but the repulsion between the functional groups attached to the copper foil surface is weak, or they are attracted to each other and the stress is generated, causing curl. It is thought that it is. It is considered that the stress generated at this time is further increased at the time of pressing and causes poor bonding.

この問題を解決するためには、樹脂密着性確保のためにシランとの反応性を保ちつつ、粗化処理面側の応力を分散することができる表面性状を有する銅箔であることが有力であることを見出した。すなわち、銅箔の粗化処理側の面の表面粗さRzjisを接触式粗さ測定器で測定したときに1.10μm以下とし、粗化処理側の面の最小自己相関長さ(Sal)を0.20μm以上0.85μm以下の範囲とし、粗化処理側の面の界面展開面積比(Sdr)を20%以上300%未満の範囲とすることにより、粗化処理面側の応力を分散して、銅箔のカールやプレス接着時における積層板の接着不良を解消できることがわかった。
表面粗さRzjisは接触式表面粗さ測定器を用いて測定する。本発明の一実施形態では、株式会社小坂研究所製サーフコーダーSE1700αを使用して、JIS B 0601-2001により規定される十点平均表面粗さRzjisを測定する。
In order to solve this problem, copper foil having a surface property capable of dispersing the stress on the roughened surface side while maintaining the reactivity with silane to ensure resin adhesion is effective. I found something. That is, when the surface roughness Rzjis of the surface on the roughened side of the copper foil is measured to be 1.10 μm or less when measured by a contact-type roughness measuring instrument, the minimum autocorrelation length (Sal) of the surface on the roughened side is determined. The stress on the roughened surface is dispersed by setting the ratio of the interface development area (Sdr) of the surface on the roughened surface to a range of 20% to less than 300% by setting the range of 0.20 μm to 0.85 μm. Thus, it was found that the curl of the copper foil and the adhesion failure of the laminate at the time of press bonding can be eliminated.
The surface roughness Rzjis is measured using a contact type surface roughness measuring device. In one embodiment of the present invention, a ten-point average surface roughness Rzjis defined by JIS B 0601-2001 is measured using a surf coder SE1700α manufactured by Kosaka Laboratory Co., Ltd.

最小自己相関長さ(Sal)は、ISO25178で規定される値であり、表面形状の自己相関が相関値sまで減衰する面内での最短距離(特に断りが無ければs=1からs=0.2まで減衰する最短距離)として定義され、3次元白色干渉型顕微鏡により測定する。Salは、銅箔においては、粗化前の箔がもつ表面のうねりや、粗化による凹凸などにより生じる、表面形状の急峻さの指標として用いることができる。すなわち、Salの値が小さいほど短い距離で高低差が変化するので表面形状が急峻であると言える。本発明の一実施形態では、ブルカー株式会社製白色光干渉式表面形状装置Wykoを使用して、倍率50倍で、F-オペレータ処理による傾き除去(シリンダー・チルト補正有り)、データ補完(レガシーメソッド、5回反復)、ガウシアンフィルターによる高周波カットオフ(250KHz)を行って、最小自己相関長さ(Sal)を測定する。   The minimum autocorrelation length (Sal) is a value defined by ISO25178, and is the shortest distance in a plane where the autocorrelation of the surface shape attenuates to the correlation value s (s = 1 to s = 0.2 unless otherwise specified). The shortest distance that attenuates to the maximum) and is measured with a three-dimensional white interference microscope. Sal can be used as an index of the steepness of the surface shape caused by undulation of the surface of the foil before roughening or unevenness due to the roughening in the copper foil. That is, it can be said that the smaller the value of Sal, the higher the height difference changes over a shorter distance, and thus the steeper the surface shape. In one embodiment of the present invention, using a white light interference type surface shaper Wyko manufactured by Bruker Co., Ltd., at a magnification of 50 times, F-operator processing to remove tilt (with cylinder / tilt correction), data complementation (legacy method) , 5 times), and a high frequency cutoff (250 KHz) using a Gaussian filter is performed to measure the minimum autocorrelation length (Sal).

界面展開面積比(Sdr)とは、ISO25178で規定される値であり、測定領域のサイズを持つ理想面を基準として表面性状によって加わる表面積の割合を意味しており、次式で定義される。   The interface development area ratio (Sdr) is a value defined by ISO25178, and means a ratio of a surface area added by a surface property based on an ideal surface having a size of a measurement region, and is defined by the following equation.

Figure 0006632739
Figure 0006632739

ここで、式中のx、yは、平面座標であり、zは高さ方向の座標である。z(x,y)は、ある点の座標を示し、これを微分することで、その座標点における傾きとなる。また、Aは、測定領域の平面積である。界面展開面積比(Sdr)は、3次元白色干渉型顕微鏡、走査型電子顕微鏡(SEM)、電子線3次元粗さ解析装置などにより、銅箔表面の凹凸差を測定、評価して、求めることができる。本発明の一実施形態では、ブルカー株式会社製白色光干渉式表面形状装置Wykoを使用して、倍率50倍で、F-オペレータ処理による傾き除去(シリンダー・チルト補正有り)、データ補完(レガシーメソッド、5回反復)、ガウシアンフィルターによる高周波カットオフ(250KHz)を行って、界面展開面積比Sdrを測定する。一般に、Sdrは表面粗さSaの変化に関わらず、表面性状の空間的な複雑性が増すと大きくなる傾向にある。   Here, x and y in the expression are plane coordinates, and z is a coordinate in the height direction. z (x, y) indicates the coordinates of a certain point, and by differentiating this, it becomes the inclination at that coordinate point. A is the plane area of the measurement region. The interface development area ratio (Sdr) should be determined by measuring and evaluating the unevenness of the copper foil surface using a three-dimensional white interference microscope, scanning electron microscope (SEM), electron beam three-dimensional roughness analyzer, etc. Can be. In an embodiment of the present invention, using a white light interference type surface shaper Wyko manufactured by Bruker Co., Ltd., at a magnification of 50 ×, F-operator processing is used to remove tilt (with cylinder / tilt correction), and data complementation (legacy method) , 5 times), and a high frequency cutoff (250 KHz) using a Gaussian filter is performed to measure the interface development area ratio Sdr. In general, Sdr tends to increase as the spatial complexity of the surface texture increases, regardless of changes in the surface roughness Sa.

銅箔の粗化処理側の面の表面粗さRzjisは、接触式粗さ測定器で測定したときに1.10μm以下であるとPPE樹脂と銅箔を積層して高温プレス接着する際に銅箔と樹脂との界面にフクレが生じにくくなる。また、1.10μmを超えると高温プレス接着する際に銅箔と樹脂との界面にフクレが生じ、接着不良が生じる傾向にある。
銅箔の粗化処理側の面の最小自己相関長さSalは、0.20μm以上0.85μm以下の範囲であれば、PPE樹脂と銅箔を積層して高周波対応の銅張り積層板として使用した場合の良好な伝送特性と、カールおよび高温プレス時の接触不良の防止とを両立させることができる。Salが0.20μm未満であると、表面形状の急峻さが過剰なものとなり、高周波対応の銅張積層板として使用した際に表皮効果が大きくなって、伝送特性が悪化する傾向にある。一方で、Salが0.85μmを超えると、表面形状の急峻さが緩和されるため、高周波対応の銅張り積層板として使用した場合に表皮効果が抑制されて伝送特性は問題ないが、オレフィン系シランカップリング剤に起因する応力は分散されにくく、カールや高温プレス時の接触不良が起こりやすい傾向にある。
When the surface roughness Rzjis of the surface of the copper foil on the roughening treatment side is 1.10 μm or less as measured by a contact-type roughness measuring device, when the PPE resin and the copper foil are laminated and hot-press-bonded, copper Swelling is less likely to occur at the interface between the foil and the resin. On the other hand, if the thickness exceeds 1.10 μm, swelling occurs at the interface between the copper foil and the resin during high-temperature press bonding, which tends to cause poor bonding.
If the minimum autocorrelation length Sal of the surface of the copper foil on the roughening treatment side is in the range of 0.20 μm to 0.85 μm, PPE resin and copper foil are laminated and used as a copper-clad laminate for high frequency In this case, it is possible to achieve both good transmission characteristics and prevention of curling and poor contact during high-temperature pressing. If Sal is less than 0.20 μm, the steepness of the surface shape becomes excessive, and when used as a copper-clad laminate for high frequencies, the skin effect tends to increase, and the transmission characteristics tend to deteriorate. On the other hand, if Sal exceeds 0.85 μm, the steepness of the surface shape is reduced, and when used as a copper-clad laminate for high frequencies, the skin effect is suppressed and there is no problem in transmission characteristics. The stress caused by the silane coupling agent is not easily dispersed, and the curl and the poor contact at the time of high-temperature pressing tend to occur.

銅箔の粗化処理側の面の界面展開面積比Sdrは、20%以上300%以下の範囲であると、PPE樹脂と銅箔を積層して高周波対応の銅張り積層板として使用した場合の良好な伝送特性と、カールおよび高温プレス時の接触不良の防止とを両立させることができる。Sdrが20%未満であると、粗化処理側の面における局所的な応力が分散されにくく、上記の高温プレス接着をする際に、銅箔と樹脂との界面にフクレが生じやすい傾向にある。Sdrが300%を超えると高周波対応の銅張積層板として使用した際の表皮効果が大きくなり伝送特性が悪化する傾向にある。   When the interface development area ratio Sdr of the surface on the roughening treatment side of the copper foil is in the range of 20% or more and 300% or less, when the PPE resin and the copper foil are laminated and used as a copper-clad laminate for high frequency. It is possible to achieve both good transmission characteristics and prevention of contact failure during curling and high-temperature pressing. If the Sdr is less than 20%, local stress on the surface on the roughening treatment side is difficult to be dispersed, and when performing the above-mentioned high-temperature press bonding, blisters tend to be easily generated at the interface between the copper foil and the resin. . If the Sdr exceeds 300%, the skin effect when used as a copper-clad laminate for high frequencies tends to increase, and the transmission characteristics tend to deteriorate.

本発明によれば、表面処理された銅箔を樹脂基板とプレス接合する際の接合不良を解消することができ、樹脂基板との密着性に優れた表面処理銅箔を提供することができる。   ADVANTAGE OF THE INVENTION According to this invention, the joining failure at the time of press-joining a surface-treated copper foil to a resin substrate can be eliminated, and the surface-treated copper foil excellent in the adhesiveness with a resin substrate can be provided.

実施例の銅箔のカール値を算出するための測定箇所を示す図である。It is a figure which shows the measurement part for calculating the curl value of the copper foil of an Example.

本発明の他の実施形態の表面処理銅箔は、上記実施形態の表面処理銅箔において、前記粗化処理側の面の界面展開面積比Sdrが200%以上260%以下の範囲であればさらに好適である。銅箔の粗化処理側の面の界面展開面積比(Sdr)が200%を超えると、粗化処理側の面の応力がより分散して、銅箔のカールをより生じにくくする傾向にあり、260%未満であると高周波対応の銅張積層板として使用した際の伝送特性がさらに優れる傾向にある。
本発明の他の実施形態の表面処理銅箔は、上記実施形態の表面処理銅箔において、前記表面処理がオレフィン系シランカップリング処理を含むものであってよい。特に、シランカップリング剤がγ-アクリロキシプロピルトリメトキシシランであればさらに好適である。また、本発明の他の実施形態の表面処理銅箔は、PPE樹脂を含む樹脂基板用との密着性に優れるものである。
The surface-treated copper foil according to another embodiment of the present invention is the surface-treated copper foil according to the above embodiment, further provided that the interface development area ratio Sdr of the surface on the roughening treatment side is in a range of 200% or more and 260% or less. It is suitable. When the interface development area ratio (Sdr) of the surface on the roughened side of the copper foil exceeds 200%, the stress on the surface on the roughened side is more dispersed, and the copper foil tends to be less likely to curl. If it is less than 260%, the transmission characteristics when used as a copper-clad laminate for high frequency tend to be further excellent.
The surface-treated copper foil of another embodiment of the present invention may be the surface-treated copper foil of the above embodiment, wherein the surface treatment includes an olefin-based silane coupling treatment. In particular, it is more preferable that the silane coupling agent is γ-acryloxypropyltrimethoxysilane. Moreover, the surface-treated copper foil of another embodiment of the present invention has excellent adhesion to a resin substrate containing a PPE resin.

一般に、オレフィン系シランカップリング剤により処理された銅箔は、PPE系樹脂基板との化学的親和性の良いことが知られている。銅箔表面にシロキサン架橋構造が形成され、これがPPE系樹脂との接着剤として機能するものと考えられる。しかしながら、前述したように、PPE系樹脂とシランカップリング処理された銅箔を積層して高温プレス成形すると、銅箔と樹脂との界面にいわゆるフクレと呼ばれる接着不良領域が発生し、接着不良が生じる傾向にある。本発明の実施形態の銅箔はオレフィン系シランカップリング剤、特にアクリルシランによりシランカップリング処理された銅箔であっても、PPE樹脂を含む樹脂基板用との密着性に優れるものである。   Generally, it is known that a copper foil treated with an olefin-based silane coupling agent has good chemical affinity with a PPE-based resin substrate. It is considered that a siloxane crosslinked structure is formed on the copper foil surface, and this functions as an adhesive with the PPE-based resin. However, as described above, when a PPE-based resin and a copper foil subjected to silane coupling treatment are laminated and subjected to high-temperature press molding, an adhesion failure area called so-called blister is generated at the interface between the copper foil and the resin, and the adhesion failure occurs. Tends to occur. The copper foil of the embodiment of the present invention is excellent in adhesion to a resin substrate containing a PPE resin, even if the copper foil is silane-coupled with an olefin-based silane coupling agent, particularly acrylic silane.

(銅箔の製造)
本発明において使用される銅箔は、電解銅箔あるいは圧延銅箔いずれでもよい。通常、プリント配線板には電解銅箔が広く用いられている。この場合には製箔工程のドラム面側である電解析出開始面(S面)、又は非ドラム面側である電解析出終了面(M面)、いずれかの面に後述する耐熱処理層及びオレフィン系シランカップリング剤層が形成されてもよい。通常はM面を接着面として用いられるが、本発明の表面処理銅箔は、どちらの面であっても粗化処理を含む表面処理により粗化処理側の面の界面展開面積比(Sdr)が20%以上300%以下の範囲であると樹脂との密着性が優れ、かつ高周波対応の銅張積層板として使用した際の伝送特性に優れる。
(Manufacture of copper foil)
The copper foil used in the present invention may be either an electrolytic copper foil or a rolled copper foil. Usually, electrolytic copper foil is widely used for printed wiring boards. In this case, an electrolytic deposition start surface (S surface) on the drum surface side in the foil making process, or an electrolytic deposition end surface (M surface) on the non-drum surface side, or a heat-resistant treatment layer described later. And an olefin-based silane coupling agent layer may be formed. Normally, the M surface is used as an adhesive surface. However, the surface-treated copper foil of the present invention has an interface development area ratio (Sdr) of the surface on the roughening treatment side by the surface treatment including the roughening treatment on either surface. Is in the range of 20% or more and 300% or less, the adhesiveness to the resin is excellent, and the transmission characteristics when used as a copper-clad laminate for high frequencies are excellent.

(粗化層の形成)
銅箔の片面上に、微細な銅粒子の電析により、微細凹凸表面をもつ粗化層を形成する。粗化処理層は電気メッキにより形成するが、メッキ浴にキレート剤を添加することが好ましく、キレート剤の濃度は0.2〜0.4mg/Lが適当である。キレート剤としてはDL-りんご酸、EDTAナトリウム溶液、グルコン酸ナトリウム、ジエチレントリアミン五酢酸五ナトリウム(DTPA)などのキレート剤などが挙げられる。粗化処理は、2回に分けて、最初に比較的低い銅濃度でめっきを行い、次に比較的より高い銅濃度で粗化めっきを行ってもよい。
(Formation of roughened layer)
A roughened layer having a fine uneven surface is formed on one surface of a copper foil by electrodeposition of fine copper particles. Although the roughening layer is formed by electroplating, it is preferable to add a chelating agent to the plating bath, and the concentration of the chelating agent is suitably 0.2 to 0.4 mg / L. Examples of the chelating agent include chelating agents such as DL-malic acid, sodium EDTA solution, sodium gluconate, and pentasodium diethylenetriaminepentaacetic acid (DTPA). The roughening treatment may be divided into two steps: first, plating is performed at a relatively low copper concentration, and then roughening plating is performed at a relatively higher copper concentration.

電解浴には、硫酸銅、硫酸パラジウム(Pd)に加え、鉄(Fe)、タングステン(W)などの金属を添加することで、シランカップリング剤に起因する応力を分散させることができ、理想的な表面形状を形成することができる。通常、銅濃度として15〜25g/L、硫酸濃度として130〜180g/L、液温として20〜30℃、電流密度として30〜40A/dm、処理時間として5秒〜30秒の条件で電析が行われる。By adding a metal such as iron (Fe) and tungsten (W) to the electrolytic bath in addition to copper sulfate and palladium sulfate (Pd), the stress caused by the silane coupling agent can be dispersed. Surface shape can be formed. Normally, the copper concentration is 15 to 25 g / L, the sulfuric acid concentration is 130 to 180 g / L, the liquid temperature is 20 to 30 ° C., the current density is 30 to 40 A / dm 2 , and the processing time is 5 to 30 seconds. Analysis is performed.

(ニッケル層、亜鉛層、クロメート処理層の形成)
本発明では、粗化処理面の上に更にニッケル層、亜鉛層をこの順で形成することが好ましい。この亜鉛層は、薄銅箔と樹脂基板を熱圧着したときに、薄銅箔基板樹脂との反応による該基板樹脂の劣化や薄銅箔の表面酸化を防止して基板との接合強度を高める、耐熱処理層としての働きをする。またニッケル層は、樹脂基板への熱圧着時に該亜鉛層の亜鉛が銅箔(電解銅めっき層)側へ熱拡散することを防止し、もって亜鉛層の上記機能を有効に発揮させるための亜鉛層の下地層としての働きをする。
(Formation of nickel layer, zinc layer and chromate treatment layer)
In the present invention, it is preferable to further form a nickel layer and a zinc layer on the roughened surface in this order. When the thin copper foil and the resin substrate are thermocompressed, the zinc layer prevents the deterioration of the substrate resin and the surface oxidation of the thin copper foil due to the reaction with the thin copper foil substrate resin, thereby increasing the bonding strength with the substrate. , Functions as a heat-resistant layer. Further, the nickel layer prevents the zinc of the zinc layer from thermally diffusing to the copper foil (electrolytic copper plating layer) side during the thermocompression bonding to the resin substrate, and thus the zinc for effectively exhibiting the above-described function of the zinc layer. Serves as an underlayer for the layer.

なお、これらのニッケル層や亜鉛層は、公知の電解めっき法や無電解めっき法を適用して形成することができる。また、該ニッケル層は純ニッケルで形成してもよいし、含リンニッケル合金で形成してもよい。
また、亜鉛層の表面に更にクロメート処理を行うと、該表面に酸化防止層が形成されるので好ましい。適用するクロメート処理としては、公知の方法に従えばよく、例えば、特開昭60−86894号公報に開示されている方法をあげることができる。クロム量に換算して0.01〜0.3mg/dm程度のクロム酸化物とその水和物などを付着させることにより、銅箔に優れた防錆能を付与することができる。
The nickel layer and the zinc layer can be formed by applying a known electrolytic plating method or electroless plating method. Further, the nickel layer may be formed of pure nickel or a phosphorus-containing nickel alloy.
Further, it is preferable to further perform a chromate treatment on the surface of the zinc layer because an antioxidant layer is formed on the surface. The chromate treatment to be applied may be in accordance with a known method, for example, a method disclosed in Japanese Patent Application Laid-Open No. 60-86894. By adhering about 0.01 to 0.3 mg / dm 2 of chromium oxide and its hydrate in terms of the amount of chromium, the copper foil can have excellent rust-preventive ability.

(シラン処理)
上記のように表面処理を施した銅箔は、次にPPE系樹脂との親和性に優れたオレフィン系シランカップリング剤を塗布してその薄膜が形成される。そのシランカップリング剤の付着量は好適には0.25〜0.40mg/dm2であり、0.20〜0.50 mg/dm2μmであってもよい。塗布溶液は有効成分の濃度が0.001〜10質量%、好ましくは0.01〜6質量%になるように水、弱酸性水溶液などを溶媒として用いて調製する。0.001質量%未満では、接着の改善効果が少なくなる傾向にあり、また10質量%を超えると効果が飽和すると共に溶解性が悪くなる傾向にある。
(Silane treatment)
Next, the copper foil subjected to the surface treatment as described above is coated with an olefin-based silane coupling agent having an excellent affinity for the PPE-based resin to form a thin film thereof. Adhesion amount of the silane coupling agent is preferably a 0.25~0.40mg / dm 2, may be 0.20~0.50 mg / dm 2 μm. The coating solution is prepared using water, a weakly acidic aqueous solution, or the like as a solvent so that the concentration of the active ingredient is 0.001 to 10% by mass, preferably 0.01 to 6% by mass. If the amount is less than 0.001% by mass, the effect of improving adhesion tends to decrease, and if it exceeds 10% by mass, the effect tends to be saturated and the solubility tends to deteriorate.

オレフィン系シランカップリング剤としては、例えばビニル系シラン、アクリル系シラン、メタクリル系シランが挙げられる。ビニル系シランは、ビニルトリクロロシラン、ビニルトリアルコキシシラン、ビニルジアルコキシアルキルシラン等であり、例えば、ビニルトリメトキシシラン、ビニルトリエトキシシラン、ビニルトリス(β−メトキシエトキシ)シラン、ビニルジメトキシメチルシラン、ビニルジエトキシメチルシラン等である。アクリル系シランは、γ−アクリロキシプロピルトリメトキシシランが挙げられる。メタクリル系シランは、γ−メタクリロキシプロピルトリメトキシシラン、γ−メタクリロキシプロピルメチルジメトキシシラン、γ−メタクリロキシプロピルメチルジエトキシシラン、γ−メタクリロキシプロピルトリエトキシシラン等が挙げられる。特に、アクリル系シランなどを使用することができる。   Examples of the olefin silane coupling agent include vinyl silane, acrylic silane, and methacryl silane. The vinyl silane is vinyltrichlorosilane, vinyltrialkoxysilane, vinyldialkoxyalkylsilane, and the like. For example, vinyltrimethoxysilane, vinyltriethoxysilane, vinyltris (β-methoxyethoxy) silane, vinyldimethoxymethylsilane, vinyl And diethoxymethylsilane. Examples of the acrylic silane include γ-acryloxypropyltrimethoxysilane. Examples of the methacrylic silane include γ-methacryloxypropyltrimethoxysilane, γ-methacryloxypropylmethyldimethoxysilane, γ-methacryloxypropylmethyldiethoxysilane, and γ-methacryloxypropyltriethoxysilane. In particular, acrylic silane or the like can be used.

銅箔に上記のオレフィン系シランカップリング剤を塗布した後は、処理銅箔は風乾又は加熱乾燥される。水が蒸発すればよく、本発明の効果を十分に発揮するが、50〜180℃で乾燥すると、シランカップリング剤と銅箔の反応が促進し好適である。また、必要に応じて、他のシランカップリング剤、pH調整剤、緩衝剤等の添加剤を適宜添加配合することができる。
本発明の銅箔は、シラン処理の前処理として、シロキサン被膜を形成してもよい。シロキサン被膜を形成することによって、銅箔の耐酸性をさらに向上させることができ、かつ、絶縁樹脂との接着強度を向上させることができる。シロキサン被膜を形成する方法は、ケイ酸塩溶液又はテトラアルコキシシラン等のケイ素化合物を、水、メタノール、エタノール、アセトン、酢酸エチル、トルエン等の溶剤で0.001〜20重量%になるように希釈し、スプレーによる吹き付け、コーターでの塗布、浸漬、流しかけ等の何れかの方法で銅箔に塗布すればよい。
After applying the olefin-based silane coupling agent to the copper foil, the treated copper foil is air-dried or heat-dried. The effect of the present invention can be sufficiently exhibited as long as water evaporates, but drying at 50 to 180 ° C. is preferable because the reaction between the silane coupling agent and the copper foil is promoted. If necessary, other additives such as a silane coupling agent, a pH adjuster, and a buffer can be appropriately added and blended.
The copper foil of the present invention may be formed with a siloxane coating as a pretreatment before the silane treatment. By forming the siloxane coating, the acid resistance of the copper foil can be further improved, and the adhesive strength with the insulating resin can be improved. The method of forming a siloxane coating is to dilute a silicate solution or a silicon compound such as tetraalkoxysilane with a solvent such as water, methanol, ethanol, acetone, ethyl acetate or toluene so as to be 0.001 to 20% by weight. Then, it may be applied to the copper foil by any method such as spraying with a spray, coating with a coater, dipping, and pouring.

(銅張積層板の製造)
ポリフェニレンエーテル樹脂を含む樹脂、例えば、ポリフェニレンエーテル樹脂およびポリスチレン樹脂などを混合した電気絶縁性の基板の表面に、薄銅箔の銅箔面(粗化処理層面)を重ねて置き、加熱・加圧して銅張積層板を製造する。
(Manufacture of copper-clad laminates)
A copper foil surface (roughened layer surface) of a thin copper foil is placed on a surface of an electrically insulating substrate in which a resin containing a polyphenylene ether resin, for example, a polyphenylene ether resin and a polystyrene resin are mixed, and heated and pressed. To produce a copper-clad laminate.

次に本発明を実施例に基づいて具体的に説明する。これらの実施例は、好ましい実施形態の一例を示したものであり、実施形態としては、本発明の趣旨を逸脱しない範囲において、種々の形態を取ることができる。   Next, the present invention will be specifically described based on examples. These examples are merely examples of preferred embodiments, and the embodiments can take various forms without departing from the spirit of the present invention.

(電解銅箔の製造)
実施例1〜12および比較例1〜13の銅箔を製造するために、次に示す組成の電解液を調整し、下記の条件で、アノードには貴金属酸化物被覆チタン電極、カソードにはチタン製回転ドラムを用いて、電流密度=50〜100A/dmで、厚さ18μmの電解銅箔を製造した。
銅: 70〜130g/L
硫酸: 80〜140g/L
添加剤: 3−メルカプト−1−プロパンスルホン酸ナトリウム=1〜10ppm
ヒドロキシエチルセルロース=1〜100ppm
低分子量膠(分子量3,000)=1〜50ppm
塩化物イオン濃度=10〜50ppm
温度: 50〜60℃
(Manufacture of electrolytic copper foil)
In order to produce the copper foils of Examples 1 to 12 and Comparative Examples 1 to 13, an electrolytic solution having the following composition was prepared, and under the following conditions, the anode was a noble metal oxide-coated titanium electrode, and the cathode was titanium. An electrolytic copper foil having a thickness of 18 μm was produced at a current density of 50 to 100 A / dm 2 by using a rotary drum made of a resin.
Copper: 70-130 g / L
Sulfuric acid: 80-140 g / L
Additives: Sodium 3-mercapto-1-propanesulfonate = 1 to 10 ppm
Hydroxyethyl cellulose = 1 to 100 ppm
Low molecular weight glue (molecular weight 3,000) = 1 to 50 ppm
Chloride ion concentration = 10 to 50 ppm
Temperature: 50-60 ° C

(粗化処理)
次に、実施例1〜12の銅箔については、以下の条件により最初の粗化処理1および次の粗化処理2を行った。
(Roughening treatment)
Next, the copper foils of Examples 1 to 12 were subjected to the first roughening treatment 1 and the next roughening treatment 2 under the following conditions.

(粗化処理1)
硫酸銅:銅濃度として15〜25g−Cu/L
硫酸濃度:130〜180g/L
パラジウム化合物:パラジウム濃度として0.01〜0.05g−Pd/L
鉄化合物:鉄濃度として0.1〜0.3g−Fe/L
タングステン化合物:タングステン濃度として0.5〜1.5g−W/L
液温:20〜30℃
電流密度:30〜40A/dm
(Roughening treatment 1)
Copper sulfate: 15 to 25 g-Cu / L as copper concentration
Sulfuric acid concentration: 130-180 g / L
Palladium compound: 0.01 to 0.05 g-Pd / L as palladium concentration
Iron compound: 0.1 to 0.3 g-Fe / L as iron concentration
Tungsten compound: 0.5 to 1.5 g-W / L as tungsten concentration
Liquid temperature: 20-30 ° C
Current density: 30 to 40 A / dm 2

(粗化処理2)
硫酸銅:銅濃度として40〜70g−Cu/L
硫酸濃度:80〜120g/L
液温:20〜30℃
電流密度:1.5〜4A/dm
一方、比較例1〜4の銅箔については特許文献2の実施例、比較例5〜8については特許文献3の実施例に基づいて粗化めっきを行った。また、比較例9〜13については、次に示す粗化処理3と前述した粗化処理2、比較例14〜17については、次に示す粗化処理4と粗化処理2、比較例18〜21は次に示す粗化処理5と粗化処理2を組み合わせて行った。
(Roughening treatment 2)
Copper sulfate: 40-70 g-Cu / L as copper concentration
Sulfuric acid concentration: 80 to 120 g / L
Liquid temperature: 20-30 ° C
Current density: 1.5 to 4 A / dm 2
On the other hand, the copper foils of Comparative Examples 1 to 4 were subjected to rough plating based on the example of Patent Document 2, and Comparative Examples 5 to 8 were subjected to rough plating based on the example of Patent Document 3. Further, for Comparative Examples 9 to 13, the following roughening treatment 3 and the above-described roughening treatment 2, and for Comparative Examples 14 to 17, the following roughening treatment 4 and the roughening treatment 2, No. 21 was performed by combining the following roughening treatments 5 and 2.

(粗化処理3)
硫酸銅:銅濃度として15〜25g−Cu/L
硫酸濃度:130〜180g/L
モリブデン化合物:モリブデン濃度として0.1〜0.5g−Mo/L
鉄化合物:鉄濃度として0.1〜0.3g−Fe/L
液温:20〜60℃
電流密度:20〜50A/dm
(Roughening treatment 3)
Copper sulfate: 15 to 25 g-Cu / L as copper concentration
Sulfuric acid concentration: 130-180 g / L
Molybdenum compound: 0.1 to 0.5 g-Mo / L as molybdenum concentration
Iron compound: 0.1 to 0.3 g-Fe / L as iron concentration
Liquid temperature: 20-60 ° C
Current density: 20 to 50 A / dm 2

(粗化処理4)
硫酸銅:銅濃度として15〜25g−Cu/L
硫酸濃度:130〜180g/L
鉄化合物:鉄濃度として0.1〜0.3g−Fe/L
液温:20〜60℃
電流密度:20〜50A/dm
(Roughening treatment 4)
Copper sulfate: 15 to 25 g-Cu / L as copper concentration
Sulfuric acid concentration: 130-180 g / L
Iron compound: 0.1 to 0.3 g-Fe / L as iron concentration
Liquid temperature: 20-60 ° C
Current density: 20 to 50 A / dm 2

(粗化処理5)
硫酸銅:銅濃度として15〜25g−Cu/L
硫酸濃度:130〜180g/L
タングステン化合物:タングステン濃度として0.5〜1.5g−W/L
液温:20〜60℃
電流密度:20〜50A/dm
(Roughening treatment 5)
Copper sulfate: 15 to 25 g-Cu / L as copper concentration
Sulfuric acid concentration: 130-180 g / L
Tungsten compound: 0.5 to 1.5 g-W / L as tungsten concentration
Liquid temperature: 20-60 ° C
Current density: 20 to 50 A / dm 2

(金属めっき処理)
次に、実施例1〜12および比較例1〜21の銅箔について、以下の条件の金属めっき処理をニッケルめっき、亜鉛めっき、クロム酸めっきの順で行った。
(Metal plating)
Next, for the copper foils of Examples 1 to 12 and Comparative Examples 1 to 21, metal plating under the following conditions was performed in the order of nickel plating, zinc plating, and chromic acid plating.

(ニッケルめっき)
下記のめっき浴及びめっき条件で一次処理層を施した。
硫酸ニッケル6水和物:200〜300g/L
塩化ニッケル6水和物:30〜60g/L
ホウ酸:20〜40g/L
液温:40〜60℃
電流密度:0.1〜10A/dm
通電時間:1秒〜2分
(Nickel plating)
The primary treatment layer was applied under the following plating bath and plating conditions.
Nickel sulfate hexahydrate: 200-300 g / L
Nickel chloride hexahydrate: 30-60 g / L
Boric acid: 20-40 g / L
Liquid temperature: 40-60 ° C
Current density: 0.1 to 10 A / dm 2
Energizing time: 1 second to 2 minutes

(亜鉛めっき)
下記のめっき浴及びめっき条件で二次処理層を施した。
硫酸亜鉛7水和物:1〜30g/L
水酸化ナトリウム:10〜150g/L
液温:10〜30℃
電流密度:0.1〜10A/dm
通電時間:1秒〜2分
(Zinc plating)
The secondary treatment layer was applied under the following plating bath and plating conditions.
Zinc sulfate heptahydrate: 1 to 30 g / L
Sodium hydroxide: 10 to 150 g / L
Liquid temperature: 10-30 ° C
Current density: 0.1 to 10 A / dm 2
Energizing time: 1 second to 2 minutes

(クロム酸めっき)
上記各金属めっき層処理後に、下記条件でクロメート処理を施した。
無水クロム酸:0.1〜10g/L
液温:20〜40℃
電流密度:0.1〜2A/dm
通電時間:1秒〜2分
(Chromic plating)
After each metal plating layer treatment, a chromate treatment was performed under the following conditions.
Chromic anhydride: 0.1 to 10 g / L
Liquid temperature: 20-40 ° C
Current density: 0.1 to 2 A / dm 2
Energizing time: 1 second to 2 minutes

次に、実施例1〜12および比較例1〜21の銅箔について、表1に示すオレフィン系シラン種に属するシランカップリング剤の1vol.%水溶液を用い、室温で上記表面処理銅箔に塗布した。より詳細には、銅箔を斜めにした状態でシランカップリング剤水溶液を1分間均一に流し、その後、ロールによる液切りを行って乾燥した。   Next, with respect to the copper foils of Examples 1 to 12 and Comparative Examples 1 to 21, 1 vol. % Aqueous solution was applied to the surface-treated copper foil at room temperature. More specifically, an aqueous solution of a silane coupling agent was uniformly flowed for 1 minute in a state where the copper foil was slanted, and then the solution was drained with a roll and dried.

Figure 0006632739
Figure 0006632739

上述の表面処理を行った実施例1〜12および比較例1〜21の銅箔について、次に示す方法により界面展開面積比Sdr、最小自己相関長さSal、および表面粗度Rzの測定を行い、次いで、カールレベルの評価を行った。   For the copper foils of Examples 1 to 12 and Comparative Examples 1 to 21 having been subjected to the above surface treatment, the interface development area ratio Sdr, the minimum autocorrelation length Sal, and the surface roughness Rz were measured by the following method. Then, the curl level was evaluated.

(界面展開面積比Sdr、および最小自己相関長さSalの測定)
ブルカー株式会社製白色光干渉式表面形状測定装置Wykoを使用して、倍率50倍で、F-オペレータ処理による傾き除去(シリンダー・チルト補正有り)、データ補完(レガシーメソッド、5回反復)、ガウシアンフィルターによる高周波カットオフ(250KHz)を行って、表面処理銅箔の粗化面側の界面展開面積比Sdrおよび最小自己相関長さSalを測定した。測定箇所は5箇所とし、これらの平均値を測定結果とした。結果を表2に示した。
(Measurement of interface development area ratio Sdr and minimum autocorrelation length Sal)
Using a white light interference type surface shape measuring device Wyko manufactured by Bruker Co., Ltd. at 50 times magnification, F-operator processing to remove tilt (cylinder / tilt correction), data complement (legacy method, 5 repetitions), Gaussian A high-frequency cutoff (250 KHz) was performed using a filter to measure the interface development area ratio Sdr and the minimum autocorrelation length Sal on the roughened surface side of the surface-treated copper foil. The number of measurement points was five, and the average value was used as the measurement result. The results are shown in Table 2.

(表面粗度Rzの測定)
接触式表面粗さ測定機として、株式会社小坂研究所製サーフコーダーSE1700を用いて10点平均粗さRzを測定した。結果を表2に示した。
(Measurement of surface roughness Rz)
A 10-point average roughness Rz was measured using a surf coder SE1700 manufactured by Kosaka Laboratory Co., Ltd. as a contact-type surface roughness measuring device. The results are shown in Table 2.

Figure 0006632739
Figure 0006632739

(カールレベルの評価)
図1に示すように、シランカップリング処理を行った銅箔10を縦10cm×横5cmの長方形に切り、銅箔10の粗化面(M面)側を表にして、水平な台の上に静置し、左端が幅2cmはみ出すように、コクヨ製TZ−1343(商品名)のステンレス直定規(C型 JIS1級 30cm)20を重石として乗せた。その後、銅箔10の縦方向の中央部分(図中のAの位置)と、その上下2cmの部分(図中のBとCの位置)の計3点について、銅箔10を静置した面からの端部の立ち上がりの高さ[mm]を測定し、3点の平均値を算出することにより、カール値を測定した。
(Evaluation of curl level)
As shown in FIG. 1, the copper foil 10 that has been subjected to the silane coupling treatment is cut into a rectangle of 10 cm in length and 5 cm in width, and the roughened surface (M surface) of the copper foil 10 is placed on a horizontal table. And a stainless steel straight ruler (C type JIS first grade 30 cm) 20 of KOKUYO TZ-1343 (trade name) was put as a weight so that the left end protruded 2 cm in width. Then, the surface on which the copper foil 10 was allowed to stand at a total of three points, that is, a central portion (position A in the figure) in the vertical direction of the copper foil 10 and portions 2 cm above and below it (positions B and C in the figure). The curl value was measured by measuring the height [mm] of the rise of the edge from the end and calculating the average value of three points.

得られたカールの度合いについて、次の基準で評価した。すなわち、カール値が0.5mm未満のものを優として「◎」、0.5mm以上1.5mm未満となるものを良として「○」、1.5mm以上となるものを不可として「×」と、それぞれ表2に示した。
次に、樹脂基板への熱圧着時のフクレおよび伝送特性を評価するために、上述の表面処理を行った実施例1〜12および比較例1〜21の銅箔について、以下の方法で樹脂基板への圧着を行いフクレレベルおよび伝送特性の評価を行った。
The degree of curl obtained was evaluated according to the following criteria. That is, if the curl value is less than 0.5 mm, it is evaluated as “◎”, if it is 0.5 mm or more and less than 1.5 mm, it is evaluated as “Good”, and if it becomes 1.5 mm or more, it is evaluated as “X”. Are shown in Table 2.
Next, in order to evaluate blisters and transmission characteristics at the time of thermocompression bonding to a resin substrate, the copper foils of Examples 1 to 12 and Comparative Examples 1 to 21 which were subjected to the above-described surface treatment were subjected to the following method. Then, the blister level and the transmission characteristics were evaluated.

(樹脂基板への圧着)
ポリフェニレンエーテル樹脂およびポリスチレン樹脂を特定の比率で混合して厚さ0.2mmの板状に成形した樹脂基材を作製した。上記表面処理銅箔のシランカップリング剤の塗布面と樹脂基材とを重ね、熱プレス加工機(東洋精機製作所社製、ミニテストプレス(商品名))を用いた熱加圧成形法(プレス温度=200℃、プレス圧力=3.0MPa)により、表面処理銅箔と樹脂基材とからなる銅張積層板を作製し、試験片とした。
(Press bonding to resin substrate)
A polyphenylene ether resin and a polystyrene resin were mixed at a specific ratio to prepare a 0.2 mm-thick plate-shaped resin base material. The surface to be coated with the silane coupling agent of the surface-treated copper foil and the resin substrate are overlapped, and a hot press molding method (press, using a mini test press (trade name, manufactured by Toyo Seiki Seisaku-sho, Ltd.)) A temperature = 200 ° C., a pressing pressure = 3.0 MPa) was used to produce a copper-clad laminate composed of a surface-treated copper foil and a resin substrate, and used as a test piece.

(密着強度の測定)
密着強度は、テンシロンテスター(株式会社エー・アンド・デイ製)を使用して、絶縁基板と銅箔とをプレス後に、試験片を10mm幅の回路パターンにエッチング加工し、回路パターンを90度方向に50mm/分の速度で引っ張った際の引き剥がし強さを測定した。測定サンプルは5個とし、それらの平均値を測定結果とした。
密着強度のレベルについては、次の基準で評価した。すなわち、引きはがし強さが0.7kN/m以上のものを優として「◎」、0.5kN/m以上0.7kN/m未満のものを良として「○」、0.4kN/m以上0.5kN/m未満のものを不可として「×」と、それぞれ表2に示した。
(Measurement of adhesion strength)
The adhesion strength was determined by pressing the insulating substrate and copper foil using a tensilon tester (manufactured by A & D Corporation), etching the test piece into a 10 mm wide circuit pattern, and turning the circuit pattern in the 90 degree direction. Was measured at a speed of 50 mm / min. The number of measurement samples was 5, and the average value thereof was used as the measurement result.
The level of adhesion strength was evaluated according to the following criteria. In other words, those with a peel strength of 0.7 kN / m or more were evaluated as excellent (」), those with a peel strength of 0.5 kN / m or more and less than 0.7 kN / m were evaluated as good (「), and those with a peel strength of 0.4 kN / m or more Tables 2 each show "x", indicating that the sample was less than 0.5 kN / m.

(フクレレベルの評価)
100mm×100mm(1dm2)の上記樹脂基材と銅箔を上記条件で熱加圧成形により積層した後に塩化第二銅溶液を用いて銅箔をエッチングし、銅箔を溶解除去した面に別のポリフェニレンエーテル系樹脂基材を重ねて熱加圧成形して試験片を作製した。この試験片をトップ温度260℃でリフロー炉を通過させるリフロー加熱を実施し、冷却後の試験片に発生したフクレの有無を観察した。
フクレレベルについて、次の基準で評価した。すなわち、発生したフクレの個数が0個/dm2のものを優として「◎」、1〜2個/dm2のものを良として「○」、3個/dm2以上のものを不可として「×」と、それぞれ表2に示した。
(Evaluation of blister level)
After laminating the above-mentioned resin base material and copper foil of 100 mm × 100 mm (1 dm 2 ) by hot pressing under the above conditions, the copper foil is etched using a cupric chloride solution, and the copper foil is dissolved and removed separately. The polyphenylene ether-based resin base material was laminated and hot-pressed to produce a test piece. The test piece was subjected to reflow heating at a top temperature of 260 ° C. through a reflow furnace, and the presence or absence of blisters generated on the cooled test piece was observed.
The blister level was evaluated according to the following criteria. That is, the number of blisters generated was 0 / dm 2 as excellent (「), 1-2 / dm 2 as good (○), 3 / dm 2 or more as bad (不可). And “×” are shown in Table 2.

(伝送特性)
表面処理銅箔を樹脂基材に熱加圧成形により積層した後に、伝送特性測定用のサンプルを作製して高周波帯域における伝送損失を測定した。伝送特性の評価には、1〜25GHz帯域の測定に適する公知のストリップライン共振器法(マイクロストリップ構造:誘電体厚さ50μm、導体長さ1.0mm、導体厚さ18μm、導体回路幅120μm、特性インピーダンス50Ωでカバーレイフィルムなしの状態でS21パラメーターを測定する方法)を用いて、周波数10GHzにおける伝送損失(dB/100mm)を計測した。伝送損失が大きい程、マイナスの絶対値が大きくなる。測定サンプルは5個とし、それらの平均値を測定結果とした。
得られた伝送損失に基づいて、伝送特性を次の基準で評価した。すなわち、伝送損失の絶対値が16dB未満のものを優として「◎」、16dB以上20dB未満となるものを良として「○」、20dB以上となるものを不可として「×」と、それぞれ表2に示した。
(Transmission characteristics)
After laminating the surface-treated copper foil on the resin substrate by hot press molding, a sample for measuring the transmission characteristics was prepared, and the transmission loss in the high frequency band was measured. To evaluate the transmission characteristics, a known stripline resonator method (microstrip structure: dielectric thickness: 50 μm, conductor length: 1.0 mm, conductor thickness: 18 μm, conductor circuit width: 120 μm) suitable for measurement in the 1 to 25 GHz band, Transmission loss (dB / 100 mm) at a frequency of 10 GHz was measured using a method of measuring the S21 parameter with a characteristic impedance of 50Ω and no coverlay film. As the transmission loss increases, the negative absolute value increases. The number of measurement samples was 5, and the average value thereof was used as the measurement result.
Based on the obtained transmission loss, the transmission characteristics were evaluated according to the following criteria. In other words, Table 2 shows that the absolute value of the transmission loss was less than 16 dB as "◎", that of 16 dB or more and less than 20 dB as "Good", and that of 20 dB or more as "X". Indicated.

(銅箔特性の総合評価)
前述した密着強度、カール、フクレ、および伝送特性のレベルを考慮し、以下の基準で銅箔の総合評価を行った。すなわち、「×」が全くなく、すべての項目が「◎」であれば「S」、「◎」が2〜3個であれば「A」、「◎」が1個であれば「B」とした。一方、「×」がある場合、その個数が1個であれば「C」、2個であれば「D」、3個であれば「E」とし、すべての項目が「×」であれば「F」として、それぞれ表2に示した。
(Comprehensive evaluation of copper foil properties)
In consideration of the above-described levels of adhesion strength, curl, blister, and transmission characteristics, a comprehensive evaluation of the copper foil was performed according to the following criteria. That is, there is no "x" and "S" if all items are "◎", "A" if there are two or three "◎", and "B" if there is one "◎". And On the other hand, if there is “×”, the number is “C” if the number is 1, “D” if it is 2, “E” if it is 3, and if all items are “×”. This is shown in Table 2 as “F”.

表2からわかるように、実施例1〜4は、カールレベル、フクレレベルとも非常に良好であり、伝送特性も良好であった。次いで、実施例5〜8は実施例1に比べるとSdr値がやや小さいので、カールレベル、フクレレベルは少し劣っているが品質に問題はないレベルであり、伝送特性も良好であった。さらに、実施例9〜12は、実施例1に比べるとSdr値がやや大きいので、カールレベル、フクレレベルは良好であり、伝送特性については電流の表皮効果が大きくなるため伝送特性は若干劣るが品質には問題のないレベルであった。   As can be seen from Table 2, in Examples 1 to 4, both the curl level and the blister level were very good, and the transmission characteristics were also good. Next, in Examples 5 to 8, since the Sdr value was slightly smaller than that in Example 1, the curl level and blister level were slightly inferior, but the quality was not a problem, and the transmission characteristics were good. Further, in Examples 9 to 12, since the Sdr value is slightly larger than that in Example 1, the curl level and the blister level are good, and the transmission characteristics are slightly inferior because the skin effect of the current is large. There was no problem.

これに対して、比較例1〜4はSdr値が20%以下であるため、カールレベル、フクレレベルとも品質的に不合格であった。比較例5〜8はSdr値が300%を超えるため、カールレベル、フクレレベルに問題はないものの、表皮効果が大きくなりすぎ、品質としては不合格であった。比較例9〜13は粗化面の粗度Rzが1.10μmを超えて過剰であるため、Sdrの値にかかわらずカールレベル、フクレレベルとも不合格であった。表皮効果も大きくなりすぎるので、伝送損失も不合格であった。比較例14〜17は、Sal値が0.20μm未満と過少なため、表皮効果が大きくなり、伝送特性が不合格であった。さらに、比較例18〜21は、Sal値が0.85μmを超えて過大なため、カールレベル、フクレレベルが不合格であった。   On the other hand, in Comparative Examples 1 to 4, since the Sdr value was 20% or less, both the curl level and the blister level failed in terms of quality. In Comparative Examples 5 to 8, since the Sdr value exceeded 300%, there was no problem with the curl level and blister level, but the skin effect was too large and the quality was unacceptable. In Comparative Examples 9 to 13, since the roughness Rz of the roughened surface exceeded 1.10 μm and was excessive, the curl level and blister level were rejected regardless of the value of Sdr. Since the skin effect became too large, the transmission loss was also rejected. In Comparative Examples 14 to 17, since the Sal value was too small at less than 0.20 μm, the skin effect was increased and the transmission characteristics were unacceptable. Further, in Comparative Examples 18 to 21, the curl level and blister level were rejected because the Sal value was excessively larger than 0.85 μm.

本発明によれば、表面処理された銅箔を樹脂基板とプレス接合する際の接合不良を解消することができ、樹脂基板との密着性に優れた表面処理銅箔および伝送特性の優れた銅張積層板を提供することができ、産業上の利用可能性が高い。   ADVANTAGE OF THE INVENTION According to this invention, the joining defect at the time of press-joining the surface-treated copper foil with the resin substrate can be eliminated, the surface-treated copper foil excellent in the adhesiveness with the resin substrate, and the copper excellent in the transmission characteristics. It can provide a laminated board and has high industrial applicability.

10 銅箔
20 定規
10 Copper foil 20 Ruler

Claims (7)

粗化処理側の面のJISB0601-2001により規定される十点平均表面粗さRzjisが0.19μm以上1.10μm以下であり、かつ、前記粗化処理側の面の最小自己相関長さ(Sal)が0.20μm以上0.85μm以下の範囲であり、かつ、前記粗化処理側の面の界面展開面積比(Sdr)が100%超300%以下の範囲である表面処理銅箔。 The ten-point average surface roughness Rzjis defined by JISB0601-2001 on the surface on the roughening treatment side is 0. 19 μm or more and 1.10 μm or less, and the minimum autocorrelation length (Sal) of the surface on the roughened side is in a range of 0.20 μm or more and 0.85 μm or less, and the surface on the roughened side. A surface-treated copper foil having an interface development area ratio (Sdr) of more than 100% to 300% or less. 前記界面展開面積比(Sdr)が200%以上260%以下の範囲である請求項1に記載の表面処理銅箔。   The surface-treated copper foil according to claim 1, wherein the interface development area ratio (Sdr) is in a range of 200% or more and 260% or less. 前記表面処理銅箔にはオレフィン系シランカップリング剤によるシランカップリング剤層が形成されている請求項1または2に記載の表面処理銅箔。   The surface-treated copper foil according to claim 1, wherein a silane coupling agent layer is formed on the surface-treated copper foil using an olefin-based silane coupling agent. 前記オレフィン系シランカップリング剤がγ-アクリロキシプロピルトリメトキシシランである請求項3に記載の表面処理銅箔。   The surface-treated copper foil according to claim 3, wherein the olefin-based silane coupling agent is γ-acryloxypropyltrimethoxysilane. ポリフェニレンエーテル系樹脂を含む樹脂基板との引き剥がし強度が0.5kN/m以上であり、前記引き剥がし強度は前記樹脂基板と前記表面処理銅箔とをプレス後に、試験片を10mm幅の回路パターンにエッチング加工し、テンシロンテスター(株式会社エー・アンド・デイ製)を使用して、回路パターンを90度方向に50mm/分の速度で引っ張ることにより測定される、請求項1〜4のいずれか一項に記載の表面処理銅箔。 Technology of peel strength between the resin substrate containing polyphenylene ether resin is at 0.5 kN / m or more, the peeling strength between the surface-treated copper foil and the resin substrate after pressing, the circuit of 10mm wide test pieces The method according to any one of claims 1 to 4, wherein the pattern is etched, and the circuit pattern is measured by pulling the circuit pattern in a 90-degree direction at a speed of 50 mm / min using a tensilon tester (manufactured by A & D Corporation). The surface-treated copper foil according to claim 1. 表面にオレフィン系シランカップリング剤層を有する表面処理銅箔において、前記表面処理銅箔を縦10cm×横5cmの長方形に切り出し、前記表面処理銅箔粗化面(M面)側を表にして水平な台の上に静置し、左端が幅2cmはみ出すようにステンレス直定規を乗せ、前記表面処理銅箔縦方向の中央部分とその上下2cmの部分の計3点について、前記表面処理銅箔を静置した面からの端部の立ち上がりの高さ[mm]を測定し、前記3点における前記立ち上がりの高さの平均値を算出することにより得られるカール値が、0.5mm未満であることを特徴とする、請求項1〜5のいずれか一項に記載の表面処理銅箔。   In a surface-treated copper foil having an olefin-based silane coupling agent layer on the surface, the surface-treated copper foil is cut into a rectangle of 10 cm (length) × 5 cm (width), and the roughened surface (M surface) of the surface-treated copper foil is turned upside down. Place it on a horizontal table and place a stainless steel straightedge so that the left end protrudes by 2 cm. The surface-treated copper foil is a total of three points: the central part in the vertical direction of the surface-treated copper foil and two cm above and below it. The curl value obtained by measuring the height [mm] of the rise of the end from the surface on which the sample is placed and calculating the average value of the rise heights at the three points is less than 0.5 mm. The surface-treated copper foil according to any one of claims 1 to 5, characterized in that: 表面にオレフィン系シランカップリング剤層を有する表面処理銅箔であって、
ポリフェニレンエーテル樹脂を有する厚さ0.2mmの混合樹脂基材と、前記表面処理銅箔の前記オレフィン系シランカップリング剤層側とが積層されてなる銅張積層板において、測定されるフクレの個数が0個であり、
前記測定は、該銅張積層板を100mm×100mmに切り出し、前記表面処理銅箔を塩化第二銅溶液によりエッチングし溶解除去した面に、別のポリフェニレンエーテル系樹脂基材を重ねて熱加圧成形して試験片を作製し、該試験片をトップ温度260℃でリフロー炉を通過させるリフロー加熱を実施し、冷却後の前記試験片に発生した前記フクレの個数を測定することを特徴とする、請求項1〜6のいずれか一項に記載の表面処理銅箔。
A surface-treated copper foil having an olefin-based silane coupling agent layer on its surface,
The number of blisters measured in a copper-clad laminate obtained by laminating a mixed resin base material having a thickness of 0.2 mm having a polyphenylene ether resin and the olefin-based silane coupling agent layer side of the surface-treated copper foil. Is zero,
In the measurement, the copper-clad laminate was cut into 100 mm x 100 mm, and the surface-treated copper foil was etched and dissolved and removed with a cupric chloride solution, and another polyphenylene ether-based resin base material was superimposed thereon and hot-pressed. Forming a test piece, performing reflow heating by passing the test piece through a reflow furnace at a top temperature of 260 ° C., and measuring the number of blisters generated on the test piece after cooling. The surface-treated copper foil according to any one of claims 1 to 6.
JP2018545261A 2017-04-25 2018-04-18 Surface treated copper foil Active JP6632739B2 (en)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2017086083 2017-04-25
JP2017086083 2017-04-25
PCT/JP2018/015995 WO2018198905A1 (en) 2017-04-25 2018-04-18 Surface-treated copper foil

Publications (2)

Publication Number Publication Date
JPWO2018198905A1 JPWO2018198905A1 (en) 2019-06-27
JP6632739B2 true JP6632739B2 (en) 2020-01-22

Family

ID=63918978

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2018545261A Active JP6632739B2 (en) 2017-04-25 2018-04-18 Surface treated copper foil

Country Status (5)

Country Link
JP (1) JP6632739B2 (en)
KR (1) KR102340473B1 (en)
CN (1) CN110546313A (en)
TW (1) TWI745585B (en)
WO (1) WO2018198905A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20230112638A (en) 2020-11-27 2023-07-27 후루카와 덴키 고교 가부시키가이샤 Roughened copper foil, copper clad laminate, and printed wiring board

Families Citing this family (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2019198610A1 (en) * 2018-04-10 2019-10-17 Dic株式会社 Composite structure and manufacturing method therefor
JP6845382B1 (en) * 2019-06-07 2021-03-17 古河電気工業株式会社 Surface-treated copper foil, copper-clad laminate, and printed wiring board
TWI764170B (en) * 2019-06-19 2022-05-11 金居開發股份有限公司 Micro-roughened electrodeposited copper foil and copper clad laminate
KR20220119391A (en) * 2019-12-26 2022-08-29 나믹스 가부시끼가이샤 Composite copper member treated with silane coupling agent
KR20220106200A (en) * 2020-02-04 2022-07-28 미쓰이금속광업주식회사 Roughening process copper foil, copper foil provided with a carrier, copper clad laminated board, and printed wiring board
JP7177956B2 (en) * 2020-02-04 2022-11-24 三井金属鉱業株式会社 Roughened copper foil, copper foil with carrier, copper clad laminate and printed wiring board
CN112455020B (en) * 2020-11-23 2023-04-07 江苏晟大元通新材料科技有限公司 High-frequency high-speed PCB copper-clad laminate and preparation method thereof
TWI756155B (en) * 2021-07-19 2022-02-21 長春石油化學股份有限公司 Surface-treated copper foil and copper clad laminate
JP7387084B2 (en) 2021-12-22 2023-11-27 三井金属鉱業株式会社 Method for measuring surface parameters of copper foil, method for sorting copper foil, and method for manufacturing surface-treated copper foil

Family Cites Families (24)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5242710B2 (en) 1973-06-20 1977-10-26
JPS5810479B2 (en) * 1980-06-12 1983-02-25 新田 信市 Surface treatment method
JPH08309918A (en) * 1995-05-22 1996-11-26 Nippon Denkai Kk Copper clad laminated sheet, printed circuit board using the same and production of them
JP4379854B2 (en) * 2001-10-30 2009-12-09 日鉱金属株式会社 Surface treated copper foil
JP2005190945A (en) * 2003-12-26 2005-07-14 Tdk Corp Member for electronic component, and electronic component using the same
TWI414638B (en) * 2006-06-07 2013-11-11 Furukawa Electric Co Ltd A method for manufacturing a surface-treated electrolytic copper foil, and a circuit board
JP4927463B2 (en) 2006-07-10 2012-05-09 パナソニック株式会社 Semiconductor integrated circuit
JP2008309918A (en) * 2007-06-13 2008-12-25 Panasonic Corp Plasma display device, and driving method of plasma display panel
JP4927963B2 (en) * 2010-01-22 2012-05-09 古河電気工業株式会社 Surface-treated copper foil, method for producing the same, and copper-clad laminate
JP2011216598A (en) * 2010-03-31 2011-10-27 Kuraray Co Ltd High-frequency circuit board
US20130251945A1 (en) * 2010-12-14 2013-09-26 3M Innovative Properties Company Images and method of making the same
JP5871426B2 (en) * 2012-01-31 2016-03-01 古河電気工業株式会社 Surface treated copper foil for high frequency transmission, laminated plate for high frequency transmission and printed wiring board for high frequency transmission
US9351397B2 (en) * 2012-01-31 2016-05-24 Mitsubishi Gas Chemical Company, Inc. Resin composition for printed wiring board material, and prepreg, resin sheet, metal foil clad laminate, and printed wiring board using same
KR102078897B1 (en) * 2012-11-26 2020-02-19 제이엑스금속주식회사 Surface-treated electrolytic copper foil, laminate, and printed circuit board
CN103060882B (en) * 2013-01-21 2015-11-04 福建清景铜箔有限公司 The method and system of electrolytic copper foil are produced in a kind of copper-bath countercurrent flow
JP5764700B2 (en) * 2013-06-07 2015-08-19 古河電気工業株式会社 Copper-clad laminate for high-frequency substrates and surface-treated copper foil
JP5885790B2 (en) * 2013-08-20 2016-03-15 Jx金属株式会社 Surface treated copper foil and laminated board using the same, copper foil with carrier, printed wiring board, electronic device, method for manufacturing electronic device, and method for manufacturing printed wiring board
JP5710737B1 (en) * 2013-11-29 2015-04-30 Jx日鉱日石金属株式会社 Surface-treated copper foil, laminated board, printed wiring board, printed circuit board, and electronic equipment
KR101828880B1 (en) * 2015-01-19 2018-02-13 후루카와 덴키 고교 가부시키가이샤 Surface-treated electrolytic copper foil for lithium-ion secondary cell, electrode for lithium-ion secondary cell in which same is used, and lithium-ion secondary cell
WO2016158775A1 (en) * 2015-03-31 2016-10-06 三井金属鉱業株式会社 Roughened copper foil, copper foil provided with carrier, copper-clad laminated sheet, and printed wiring board
CN107532322B (en) * 2015-04-28 2019-07-16 三井金属矿业株式会社 Roughening treatment copper foil and printed circuit board
KR20180058735A (en) * 2015-09-25 2018-06-01 후루카와 덴키 고교 가부시키가이샤 Electrolytic copper foil, various products using electrolytic copper foil
JP6294862B2 (en) * 2015-12-09 2018-03-14 古河電気工業株式会社 Surface-treated copper foil for printed wiring board, copper-clad laminate for printed wiring board, and printed wiring board
JP7114500B2 (en) * 2019-01-30 2022-08-08 Jx金属株式会社 Surface treated copper foil, copper clad laminate and printed wiring board

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20230112638A (en) 2020-11-27 2023-07-27 후루카와 덴키 고교 가부시키가이샤 Roughened copper foil, copper clad laminate, and printed wiring board

Also Published As

Publication number Publication date
TWI745585B (en) 2021-11-11
KR102340473B1 (en) 2021-12-16
TW201900927A (en) 2019-01-01
KR20190139883A (en) 2019-12-18
JPWO2018198905A1 (en) 2019-06-27
CN110546313A (en) 2019-12-06
WO2018198905A1 (en) 2018-11-01

Similar Documents

Publication Publication Date Title
JP6632739B2 (en) Surface treated copper foil
JP6462961B2 (en) Surface treated copper foil and copper clad laminate
JP6297124B2 (en) Copper foil, copper foil with carrier foil and copper clad laminate
JP5764700B2 (en) Copper-clad laminate for high-frequency substrates and surface-treated copper foil
JP5242710B2 (en) Roughening copper foil, copper clad laminate and printed wiring board
JP6182584B2 (en) Surface-treated copper foil for printed wiring board, copper-clad laminate for printed wiring board, and printed wiring board
KR101998923B1 (en) Treated copper foil for low dielectric resin substrate, and copper-clad laminate and printed writing board using the same
JP6294862B2 (en) Surface-treated copper foil for printed wiring board, copper-clad laminate for printed wiring board, and printed wiring board
JP6487704B2 (en) Treated copper foil, copper-clad laminate using the treated copper foil, and printed wiring board
WO2018047933A1 (en) Copper foil and copper-clad laminate comprising same
JP6261037B2 (en) Copper foil for high frequency circuit, copper clad laminate and printed wiring board
WO2015151935A1 (en) Copper foil with carrier foil, copper clad laminate, and printed circuit board
JP2013155415A (en) Surface-treated copper foil for high frequency transmission, laminated plate for high frequency transmission, and printed wiring board for high frequency transmission
WO2016035876A1 (en) Copper foil, copper clad laminated plate, and substrate
WO2022215330A1 (en) Surface-treated copper foil, and copper-cladded laminate and printed wiring board each using said surface-treated copper foil
TWI747620B (en) Surface-treated copper foil, manufacturing method thereof, copper foil laminate including the same, and printed wiring board including the same
LU501394B1 (en) Surface-treated copper foil for high-frequency circuit and method for producing the same
JP6827083B2 (en) Surface-treated copper foil, copper-clad laminate, and printed wiring board

Legal Events

Date Code Title Description
A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20181225

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20181225

A871 Explanation of circumstances concerning accelerated examination

Free format text: JAPANESE INTERMEDIATE CODE: A871

Effective date: 20181225

A975 Report on accelerated examination

Free format text: JAPANESE INTERMEDIATE CODE: A971005

Effective date: 20190115

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20190401

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20190402

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20190531

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20190806

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20191004

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20191126

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20191210

R151 Written notification of patent or utility model registration

Ref document number: 6632739

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350