JP6294862B2 - Surface-treated copper foil for printed wiring board, copper-clad laminate for printed wiring board, and printed wiring board - Google Patents

Surface-treated copper foil for printed wiring board, copper-clad laminate for printed wiring board, and printed wiring board Download PDF

Info

Publication number
JP6294862B2
JP6294862B2 JP2015240007A JP2015240007A JP6294862B2 JP 6294862 B2 JP6294862 B2 JP 6294862B2 JP 2015240007 A JP2015240007 A JP 2015240007A JP 2015240007 A JP2015240007 A JP 2015240007A JP 6294862 B2 JP6294862 B2 JP 6294862B2
Authority
JP
Japan
Prior art keywords
copper foil
printed wiring
coupling agent
silane coupling
roughened
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2015240007A
Other languages
Japanese (ja)
Other versions
JP2017106069A (en
Inventor
貴広 齋藤
貴広 齋藤
健 繪面
健 繪面
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
THE FURUKAW ELECTRIC CO., LTD.
Original Assignee
THE FURUKAW ELECTRIC CO., LTD.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by THE FURUKAW ELECTRIC CO., LTD. filed Critical THE FURUKAW ELECTRIC CO., LTD.
Priority to JP2015240007A priority Critical patent/JP6294862B2/en
Priority to CN201680004945.8A priority patent/CN107109679B/en
Priority to KR1020177027515A priority patent/KR102054281B1/en
Priority to PCT/JP2016/086281 priority patent/WO2017099093A1/en
Priority to TW105140617A priority patent/TWI645759B/en
Publication of JP2017106069A publication Critical patent/JP2017106069A/en
Application granted granted Critical
Publication of JP6294862B2 publication Critical patent/JP6294862B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25DPROCESSES FOR THE ELECTROLYTIC OR ELECTROPHORETIC PRODUCTION OF COATINGS; ELECTROFORMING; APPARATUS THEREFOR
    • C25D5/00Electroplating characterised by the process; Pretreatment or after-treatment of workpieces
    • C25D5/627Electroplating characterised by the visual appearance of the layers, e.g. colour, brightness or mat appearance
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K3/00Apparatus or processes for manufacturing printed circuits
    • H05K3/38Improvement of the adhesion between the insulating substrate and the metal
    • H05K3/389Improvement of the adhesion between the insulating substrate and the metal by the use of a coupling agent, e.g. silane
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B15/00Layered products comprising a layer of metal
    • B32B15/04Layered products comprising a layer of metal comprising metal as the main or only constituent of a layer, which is next to another layer of the same or of a different material
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B15/00Layered products comprising a layer of metal
    • B32B15/04Layered products comprising a layer of metal comprising metal as the main or only constituent of a layer, which is next to another layer of the same or of a different material
    • B32B15/08Layered products comprising a layer of metal comprising metal as the main or only constituent of a layer, which is next to another layer of the same or of a different material of synthetic resin
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25DPROCESSES FOR THE ELECTROLYTIC OR ELECTROPHORETIC PRODUCTION OF COATINGS; ELECTROFORMING; APPARATUS THEREFOR
    • C25D5/00Electroplating characterised by the process; Pretreatment or after-treatment of workpieces
    • C25D5/48After-treatment of electroplated surfaces
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25DPROCESSES FOR THE ELECTROLYTIC OR ELECTROPHORETIC PRODUCTION OF COATINGS; ELECTROFORMING; APPARATUS THEREFOR
    • C25D5/00Electroplating characterised by the process; Pretreatment or after-treatment of workpieces
    • C25D5/60Electroplating characterised by the structure or texture of the layers
    • C25D5/605Surface topography of the layers, e.g. rough, dendritic or nodular layers
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25DPROCESSES FOR THE ELECTROLYTIC OR ELECTROPHORETIC PRODUCTION OF COATINGS; ELECTROFORMING; APPARATUS THEREFOR
    • C25D7/00Electroplating characterised by the article coated
    • C25D7/06Wires; Strips; Foils
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K1/00Printed circuits
    • H05K1/02Details
    • H05K1/09Use of materials for the conductive, e.g. metallic pattern
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K3/00Apparatus or processes for manufacturing printed circuits
    • H05K3/38Improvement of the adhesion between the insulating substrate and the metal
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K3/00Apparatus or processes for manufacturing printed circuits
    • H05K3/38Improvement of the adhesion between the insulating substrate and the metal
    • H05K3/382Improvement of the adhesion between the insulating substrate and the metal by special treatment of the metal
    • H05K3/384Improvement of the adhesion between the insulating substrate and the metal by special treatment of the metal by plating

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Manufacturing & Machinery (AREA)
  • Laminated Bodies (AREA)
  • Electroplating Methods And Accessories (AREA)
  • Parts Printed On Printed Circuit Boards (AREA)
  • Manufacturing Of Printed Wiring (AREA)

Description

本発明は、プリント配線板用表面処理銅箔に関する。また本発明は、当該プリント配線板用表面処理銅箔を用いたプリント配線板用銅張積層板及びプリント配線板に関する。   The present invention relates to a surface-treated copper foil for a printed wiring board. Moreover, this invention relates to the copper clad laminated board for printed wiring boards and the printed wiring board using the said surface treatment copper foil for said printed wiring boards.

近年、コンピューターや情報通信機器の高性能・高機能化や、ネットワーク化の進展に伴い、大容量の情報をより高速に伝達処理する必要が生じている。そのため、伝達される信号はますます高周波化する傾向にあり、高周波信号の伝送損失を抑えたプリント配線板が求められている。プリント配線板の作製には、通常、銅箔と絶縁性基材(樹脂基材)とを積層し、これを加熱、加圧して接着した銅張積層板を製作し、この銅張積層板を用いて導体回路が形成される。この導体回路に高周波信号を伝送(高周波伝送)した際の伝送損失には、導体損失、誘電損失、輻射損失の3つの因子が関係している。   In recent years, with the advancement of high performance and high functionality of computers and information communication devices and the progress of networking, it is necessary to transmit large volumes of information at higher speed. For this reason, transmitted signals tend to have higher frequencies, and printed wiring boards that suppress transmission loss of high-frequency signals are required. For the production of printed wiring boards, copper foil and an insulating base material (resin base material) are usually laminated, and this is heated and pressed to produce a copper-clad laminate, which is bonded to the copper-clad laminate. A conductor circuit is formed by using. The transmission loss when a high-frequency signal is transmitted to this conductor circuit (high-frequency transmission) is related to three factors: conductor loss, dielectric loss, and radiation loss.

導体損失は、導体回路の表皮抵抗に起因するものである。銅張積層板を用いて形成した導体回路に高周波信号を伝送すると表皮効果現象が生じる。すなわち、導体回路に交流を流すと磁束が変化して導体回路の中心部に逆起電力が生じ、結果、電流が導体中心部を流れにくくなり、逆に導体表面部分(表皮部分)の電流密度が高まる現象が生じる。この表皮効果現象は、導体の有効断面積を減少させるために、いわゆる表皮抵抗が発生する。電流が流れる表皮部分の厚さ(表皮深さ)は、周波数の平方根に反比例する。   The conductor loss is caused by the skin resistance of the conductor circuit. When a high-frequency signal is transmitted to a conductor circuit formed using a copper-clad laminate, a skin effect phenomenon occurs. That is, when an alternating current is passed through the conductor circuit, the magnetic flux changes and a back electromotive force is generated at the center of the conductor circuit. As a result, it is difficult for current to flow through the center of the conductor. The phenomenon that increases. This skin effect phenomenon causes so-called skin resistance to reduce the effective cross-sectional area of the conductor. The thickness (skin depth) of the skin portion through which current flows is inversely proportional to the square root of the frequency.

近年では20GHzを超えるような高周波対応機器が開発されてきている。周波数がGHz帯の高周波信号を導体回路に伝送すると、表皮深さは2μm程度あるいはそれ以下となり、電流は導体のごく表層しか流れない。それ故、かかる高周波対応機器に用いる銅張積層板において銅箔の表面粗さが大きいと、この銅箔により形成される導体の伝送経路(すなわち表皮部分の伝送経路)が長くなり、伝送損失が増加する。したがって、高周波対応機器に用いる銅張積層板の銅箔は、その表面粗さを小さくすることが望まれている。
一方、プリント配線板に使用される銅箔は一般に、電気めっきやエッチングなどの手法を用いてその表面に粗化処理層(粗化粒子を形成させた層)を形成し、物理的な効果(アンカー効果)により樹脂基材との接着力を高めている。しかし、樹脂基材との接着力を効果的に高めるべく銅箔表面に形成する粗化粒子を大きくすると、上述の通り伝送損失が増加してしまう。
In recent years, high frequency compatible devices exceeding 20 GHz have been developed. When a high-frequency signal having a frequency in the GHz band is transmitted to the conductor circuit, the skin depth is about 2 μm or less, and the current flows only on the surface layer of the conductor. Therefore, if the surface roughness of the copper foil is large in the copper clad laminate used for such high frequency equipment, the transmission path of the conductor formed by the copper foil (that is, the transmission path of the skin portion) becomes long and transmission loss is reduced. To increase. Therefore, it is desired to reduce the surface roughness of the copper foil of the copper clad laminate used for high-frequency equipment.
On the other hand, copper foil used for printed wiring boards generally forms a roughened layer (layer on which roughened particles are formed) on the surface using a technique such as electroplating or etching, and has a physical effect ( The adhesive force with the resin base material is enhanced by the anchor effect). However, if the roughened particles formed on the surface of the copper foil are increased in order to effectively increase the adhesive strength with the resin base material, the transmission loss increases as described above.

誘電損失は、樹脂基材の誘電率や誘電正接に起因するものである。パルス信号を導体回路に流すと導体回路のまわりの電界に変化が起こる。この電界の変化する周期(周波数)が樹脂基材の分極の緩和時間(分極を生じる荷電体の移動時間)に近づくと(すなわち高周波化すると)電界変化に遅れが生じる。かかる状態においては樹脂内部に分子摩擦が生じて熱が発生し、伝送損失となる。この誘電損失を抑えるには、銅張積層板の樹脂基材として極性の大きな置換基の量が少ない樹脂や極性の大きな置換基を有しない樹脂を採用し、電界変化に伴う樹脂基材の分極を生じにくくする必要がある。
一方、プリント配線板に使用される銅箔は、前記粗化処理層の形成に加え、銅箔表面をシランカップリング剤で処理することにより、樹脂基材との化学的な接着力を高めることも行われる。シランカップリング剤と樹脂基材との化学的接着性を高めるには、樹脂基材がある程度極性の大きな置換基を有することを要するが、誘電損失を抑えるべく樹脂基材中の極性の大きな置換基の量を減少させた低誘電性基材を用いた場合、化学的接着力が低下し、銅箔と樹脂基材との十分な接着性が担保しにくくなる。
The dielectric loss is caused by the dielectric constant and dielectric loss tangent of the resin base material. When a pulse signal is passed through a conductor circuit, the electric field around the conductor circuit changes. When the period (frequency) at which the electric field changes approaches the relaxation time of polarization of the resin base material (the moving time of the charged body that generates polarization) (that is, when the frequency is increased), the electric field change is delayed. In such a state, molecular friction occurs inside the resin, heat is generated, and transmission loss occurs. In order to suppress this dielectric loss, a resin with a small amount of a large polar substituent or a resin without a large polar substituent is adopted as the resin base of the copper-clad laminate, and the resin base is polarized due to a change in electric field. It is necessary to make it difficult to produce.
On the other hand, the copper foil used for the printed wiring board increases the chemical adhesive force with the resin base material by treating the copper foil surface with a silane coupling agent in addition to the formation of the roughening treatment layer. Is also done. In order to improve the chemical adhesion between the silane coupling agent and the resin base material, it is necessary that the resin base material has a substituent having a certain degree of polarity. When a low dielectric substrate with a reduced amount of groups is used, the chemical adhesive strength is reduced, and it is difficult to ensure sufficient adhesion between the copper foil and the resin substrate.

このように、銅張積層板において、伝送損失の抑制と、銅箔と樹脂基材との密着性(接着性)の向上(耐久性の向上)とは、互いにトレードオフの関係にある。   As described above, in the copper-clad laminate, suppression of transmission loss and improvement in adhesion (adhesion) between the copper foil and the resin base material are in a trade-off relationship with each other.

近年、高周波対応プリント配線板は、より信頼性が要求される分野に展開されるようになってきている。例えば、車載用途など、移動体通信のプリント配線基板としての使用には、過酷な環境下での使用にも耐える高度な信頼性が要求される。この要求に応える銅張積層板には、銅箔と樹脂基材との密着性を高度に高める必要がある。
かかる要求を満たすべく技術開発が進められている。例えば特許文献1には、銅箔に粗化粒子を付着させ、表面粗さRzが1.5〜4.0μm、明度値が30以下の粗化面を形成し、当該粗化粒子が特定の密度で略均等に分布し、当該粗化粒子から形成された突起物が特定の高さ及び幅を有する表面処理銅箔が記載され、この表面処理銅箔を用いることで、液晶ポリマーをはじめとする高周波回路基板用の樹脂基材との密着性が高められたことが記載されている。
In recent years, high-frequency compatible printed wiring boards have been deployed in fields where higher reliability is required. For example, for use as a printed wiring board for mobile communication such as in-vehicle use, high reliability that can withstand use in harsh environments is required. A copper-clad laminate that meets this requirement requires a high degree of adhesion between the copper foil and the resin substrate.
Technological development is underway to meet these requirements. For example, in Patent Document 1, roughened particles are attached to a copper foil, a roughened surface having a surface roughness Rz of 1.5 to 4.0 μm and a brightness value of 30 or less is formed. A surface-treated copper foil in which the protrusions formed from the roughened particles have a specific height and width is described in which the surface-treated copper foil is distributed substantially evenly in density. It is described that the adhesion to a resin base material for a high-frequency circuit board is improved.

スマートフォンやタブレットPCといった小型電子機器には、配線の容易性や軽量性からフレキシブルプリント配線板(以下、FPC)が採用されている。近年、これらの小型電子機器の高機能化に伴い信号伝送速度の高速化が進み、FPCのインピーダンス整合(出力抵抗と入力抵抗のマッチング)が重要となっている。信号伝送速度の高速化に対するインピーダンス整合の実現のために、FPCのベースとなる樹脂基材(代表的にはポリイミド)を厚層化することが行われている。
FPCは、液晶基材に接合されたりICチップが搭載されたりするなど、所定の加工が施される。この加工の際の位置合わせは、エッチングにより銅箔が除去された部分の樹脂基材を透過して視認される位置決めパターンを指標にして行われる。そのため、上記位置合わせにおいては樹脂基材の透過性(視認性)が重要となる。この樹脂基材の透過性は通常、可視光領域の全光線透過率や曇り度(ヘイズ値)を用いて評価され、管理されている。近年、樹脂基材の厚層化や位置合わせプロセスの多様化が進み、エッチング後の樹脂基材に要求される透過性のレベルは高まっている。エッチング後の樹脂基材の透過性は、樹脂自体の特性に加え、樹脂基材に張り合わせられる銅箔の表面形状も大きく影響する。
ポリイミドや液晶ポリマーのようなフレキシブル性を有する樹脂基材は、高温、高圧条件で銅箔と張り合わせられる。その際、銅箔の粗化処理面に形成された粗化粒子の根元まで樹脂が入り込むため、粗化粒子が大きいほど樹脂に転写される凹凸も深くなり、結果、エッチング後の樹脂基材を透過する光は散乱されやすく、透過性に劣る傾向がある。
In a small electronic device such as a smartphone or a tablet PC, a flexible printed wiring board (hereinafter referred to as FPC) is adopted because of easy wiring and light weight. In recent years, with the increase in functionality of these small electronic devices, the speed of signal transmission has increased, and impedance matching (matching of output resistance and input resistance) of FPC has become important. In order to realize impedance matching for an increase in signal transmission speed, a resin base material (typically polyimide) serving as a base for an FPC is thickened.
The FPC is subjected to predetermined processing such as being bonded to a liquid crystal substrate or mounting an IC chip. The alignment at the time of this processing is performed using a positioning pattern that is visible through the portion of the resin base material from which the copper foil has been removed by etching as an index. Therefore, in the above alignment, the permeability (visibility) of the resin base material is important. The transparency of this resin substrate is usually evaluated and managed using the total light transmittance in the visible light region and haze (haze value). In recent years, the thickness of the resin base material and the alignment process have been diversified, and the level of permeability required for the resin base material after etching has increased. In addition to the characteristics of the resin itself, the surface shape of the copper foil bonded to the resin substrate greatly affects the permeability of the resin substrate after etching.
A resin base material having flexibility such as polyimide and liquid crystal polymer is laminated with a copper foil under high temperature and high pressure conditions. At that time, since the resin enters the base of the roughened particles formed on the roughened surface of the copper foil, the larger the roughened particles, the deeper the unevenness transferred to the resin. The transmitted light tends to be scattered and tends to be inferior in transparency.

また、FPCに関し特許文献2には、絶縁層に接着される接着面にニッケル−亜鉛合金による防錆処理層を備え、該接着面の表面粗度(Rz)が0.05〜1.5μmで、入射角60°における鏡面光沢度が250以上である電解銅箔を有するチップオンフィルム(COF)タイプに好適なFPCが記載され、このFPCが優れた光透過率を示し、且つ銅箔と樹脂基材との密着性も良好であることが記載されている。   Further, Patent Document 2 relating to FPC includes a rust-proofing layer made of a nickel-zinc alloy on an adhesion surface bonded to an insulating layer, and the surface roughness (Rz) of the adhesion surface is 0.05 to 1.5 μm. An FPC suitable for a chip-on-film (COF) type having an electrolytic copper foil having a specular gloss of 250 or more at an incident angle of 60 ° is described, and the FPC exhibits excellent light transmittance, and the copper foil and the resin It is described that the adhesion to the substrate is also good.

また、特許文献3には、粗化処理により粗化粒子を形成し、粗化処理面の平均粗さRzを0.5〜1.3μm、光沢度を4.8〜68とし、粗化粒子の表面積Aと、粗化粒子を前記銅箔表面側から平面視したときに得られる面積Bとの比A/Bを2.00〜2.45とした表面処理銅箔が記載され、この表面処理銅箔と樹脂基板とを積層して形成した銅張積層板が、銅箔をエッチング除去した後の樹脂透明性が良好で、かつ、銅箔と樹脂との密着性が良好であることが記載されている。   Further, in Patent Document 3, roughened particles are formed by roughening treatment, the average roughness Rz of the roughened surface is 0.5 to 1.3 μm, the glossiness is 4.8 to 68, and roughened particles. A surface-treated copper foil having a ratio A / B of 2.00 to 2.45 of the surface area A and the area B obtained when the roughened particles are planarly viewed from the copper foil surface side is described. The copper clad laminate formed by laminating the treated copper foil and the resin substrate has good resin transparency after the copper foil is removed by etching, and good adhesion between the copper foil and the resin. Have been described.

特許第4833556号公報Japanese Patent No. 4833556 特許第4090467号公報Japanese Patent No. 4090467 特許第5497808号公報Japanese Patent No. 5497808

上記特許文献1記載の表面処理銅箔は、高周波対応樹脂基材との密着性には優れるが、この表面処理銅箔を用いた銅張積層板はGHz帯の高周波帯域において伝送損失が高く、高周波対応プリント配線板に対する高度な要求を十分に満たすには至っていない。   The surface-treated copper foil described in Patent Document 1 is excellent in adhesion with a high-frequency resin substrate, but the copper-clad laminate using this surface-treated copper foil has a high transmission loss in the high-frequency band of the GHz band, The advanced requirements for high frequency printed circuit boards have not been fully met.

また、上記特許文献2記載のFPCに用いられている電解銅箔は、粗化処理が施されておらず、COF以外のプリント配線板に要求される樹脂基材との高度な密着性を実現するには至っていない。   In addition, the electrolytic copper foil used in the FPC described in Patent Document 2 is not roughened, and achieves a high degree of adhesion with a resin substrate required for printed wiring boards other than COF. It has not been done.

また、上記特許文献3記載の表面処理銅箔は、樹脂基材として低誘電基材を用いた場合には、樹脂基材との十分な密着性が得られない。   In addition, the surface-treated copper foil described in Patent Document 3 cannot obtain sufficient adhesion with a resin substrate when a low dielectric substrate is used as the resin substrate.

本発明は、GHz帯の高周波信号を伝送した際にも伝送損失が高度に抑えられ、樹脂基材との密着性が高く耐久性にも優れ、且つ、視認性にも優れたプリント配線板を得ることができるプリント配線板用表面処理銅箔を提供することを課題とする。また、本発明は、当該プリント配線板用表面処理銅箔を用いたプリント配線板用銅張積層板及びプリント配線板(回路基板)を提供することを課題とする。   The present invention provides a printed wiring board that has a high transmission loss even when transmitting a high frequency signal in the GHz band, has high adhesion to a resin base material, is excellent in durability, and has excellent visibility. It is an object to provide a surface-treated copper foil for a printed wiring board that can be obtained. Moreover, this invention makes it a subject to provide the copper clad laminated board for printed wiring boards and the printed wiring board (circuit board) using the said surface-treated copper foil for printed wiring boards.

本発明の上記課題は下記手段により解決される。
〔1〕
粗化めっき処理により粗化粒子が形成された表面にシランカップリング剤層を有するプリント配線板用表面処理銅箔であって、
前記シランカップリング剤層表面において、粗化粒子の平均高さが0.05μm以上0.5μm未満であり、
前記シランカップリング剤層表面のBET表面積比が1.2以上、微細表面係数Cmsが2.0以上8.0未満である、プリント配線板用表面処理銅箔。
〔2〕
前記シランカップリング剤層表面において、粗化粒子の平均高さが0.05μm以上0.3μm未満である、〔1〕に記載のプリント配線板用表面処理銅箔。
〔3〕
前記のシランカップリング剤層表面の、L表色系におけるLが40以上60未満である、〔1〕又は〔2〕に記載のプリント配線板用表面処理銅箔。
〔4〕
前記の粗化粒子が形成された表面が、クロム、鉄、コバルト、ニッケル、銅、亜鉛、モリブデン、及びスズから選ばれる少なくとも1種の金属を有する金属処理層を有するか、又は、クロム、鉄、コバルト、ニッケル、銅、亜鉛、モリブデン、及びスズから選ばれる2種以上の金属からなる合金を有する金属処理層を有する、〔1〕〜〔3〕のいずれか1項に記載のプリント配線板用表面処理銅箔。
〔5〕
前記シランカップリング剤層に含有されるSi元素量が0.5μg/dm以上15μg/dm未満である、〔1〕〜〔4〕のいずれか1項に記載のプリント配線板用表面処理銅箔。
〔6〕
前記シランカップリング剤が、エポキシ基、アミノ基、ビニル基、(メタ)アクリロイル基、スチリル基、ウレイド基、イソシアヌレート基、メルカプト基、スルフィド基、及びイソシアネート基から選ばれる少なくとも1種の官能基を有する、〔1〕〜〔5〕のいずれか1項に記載のプリント配線板用表面処理銅箔。
〔7〕
〔1〕〜〔6〕のいずれか1項に記載のプリント配線板用表面処理銅箔の、前記シランカップリング剤層表面に、樹脂層が積層されてなるプリント配線板用銅張積層板。
〔8〕
〔7〕に記載のプリント配線板用銅張積層板を用いたプリント配線板。
The above-mentioned problems of the present invention are solved by the following means.
[1]
A surface-treated copper foil for a printed wiring board having a silane coupling agent layer on the surface on which roughened particles are formed by roughening plating ,
On the surface of the silane coupling agent layer, the average height of the roughened particles is 0.05 μm or more and less than 0.5 μm,
A surface-treated copper foil for a printed wiring board, wherein a BET surface area ratio on the surface of the silane coupling agent layer is 1.2 or more and a fine surface coefficient Cms is 2.0 or more and less than 8.0.
[2]
The surface-treated copper foil for printed wiring board according to [1], wherein the average height of the roughened particles is 0.05 μm or more and less than 0.3 μm on the surface of the silane coupling agent layer.
[3]
Of the silane coupling agent layer surface, L * a * b * Table L * is less than 40 or more 60 in the color system, [1] or a printed circuit board for surface-treated copper foil according to [2].
[4]
The surface on which the roughened particles are formed has a metal treatment layer having at least one metal selected from chromium, iron, cobalt, nickel, copper, zinc, molybdenum, and tin, or chromium, iron The printed wiring board according to any one of [1] to [3], comprising a metal-treated layer having an alloy composed of two or more metals selected from cobalt, nickel, copper, zinc, molybdenum, and tin Surface treated copper foil.
[5]
The surface treatment for a printed wiring board according to any one of [1] to [4], wherein the amount of Si element contained in the silane coupling agent layer is 0.5 μg / dm 2 or more and less than 15 μg / dm 2. Copper foil.
[6]
The silane coupling agent is at least one functional group selected from an epoxy group, an amino group, a vinyl group, a (meth) acryloyl group, a styryl group, a ureido group, an isocyanurate group, a mercapto group, a sulfide group, and an isocyanate group. The surface-treated copper foil for printed wiring boards according to any one of [1] to [5].
[7]
The copper clad laminated board for printed wiring boards by which the resin layer is laminated | stacked on the said silane coupling agent layer surface of the surface-treated copper foil for printed wiring boards of any one of [1]-[6].
[8]
The printed wiring board using the copper clad laminated board for printed wiring boards as described in [7].

本発明のプリント配線板用表面処理銅箔は、これをプリント配線板の導体回路に用いることで、GHz帯の高周波信号を伝送した際の伝送損失が高度に抑えられ、銅箔と樹脂基材との密着性が高く耐久性にも優れ、且つ、視認性にも優れたプリント配線板を得ることができる。
本発明のプリント配線板用銅張積層板は、これをプリント配線板の基板として用いることにより、GHz帯の高周波信号を伝送した際の伝送損失が高度に抑えられ、銅箔と樹脂基材との密着性が高く耐久性にも優れ、且つ、視認性にも優れたプリント配線板を得ることができる。
本発明のプリント配線板は、GHz帯の高周波信号を伝送した際の伝送損失が高度に抑えられ、銅箔と樹脂基材との密着性が高く耐久性にも優れ、且つ、視認性にも優れる。
The surface-treated copper foil for a printed wiring board according to the present invention is used for a conductor circuit of a printed wiring board, so that transmission loss when transmitting a high-frequency signal in the GHz band is suppressed to a high level. It is possible to obtain a printed wiring board having high adhesion to the substrate, excellent durability, and excellent visibility.
The copper-clad laminate for a printed wiring board according to the present invention is used as a substrate for a printed wiring board, so that transmission loss when transmitting a high-frequency signal in the GHz band is suppressed to a high level. It is possible to obtain a printed wiring board having high adhesion and excellent durability and excellent visibility.
The printed wiring board of the present invention is highly suppressed in transmission loss when transmitting a high frequency signal in the GHz band, has high adhesion between the copper foil and the resin base material, is excellent in durability, and is also visible. Excellent.

粗化粒子の高さの測定方法の一例を示す説明図である。It is explanatory drawing which shows an example of the measuring method of the height of roughening particle | grains. 粗化粒子の高さの測定方法の一例を示す説明図である。It is explanatory drawing which shows an example of the measuring method of the height of roughening particle | grains.

本発明のプリント配線板用表面処理銅箔の好ましい実施形態について以下に説明する。   Preferred embodiments of the surface-treated copper foil for printed wiring board of the present invention will be described below.

[プリント配線板用表面処理銅箔]
本発明のプリント配線板用表面処理銅箔(以下、「本発明の表面処理銅箔」という。)は、粗化粒子が形成された表面(必要によりさらに防腐金属を付着させた面)がシランカップリング剤で処理されてなり(すなわち、粗化粒子が形成された表面にシランカップリング剤層を有してなり)、このシランカップリング剤層表面(表面処理銅箔最表面)において、粗化粒子の平均高さが0.05μm以上0.5μm未満であり、当該シランカップリング剤層表面のBET表面積比が1.2以上であり、且つ、当該シランカップリング剤層表面の微細表面積係数(Cms)が2.0以上8.0未満である。本発明の表面処理銅箔において、シランカップリング剤層表面であって、当該表面において測定される粗化粒子の平均高さが0.05μm以上0.5μm未満であり、当該表面のBET表面積比が1.2以上で、且つ当該表面のCmsが2.0以上8.0未満である面を、単に「粗化処理面」という。粗化処理面はその全体がシランカップリング剤で覆われていることが好ましいが、本発明の効果を奏する限りにおいて、粗化処理面の一部がシランカップリング剤で覆われていなくてもよい(すなわち、本発明の効果を奏する限り、粗化処理面のシランカップリング剤層の一部に膜欠陥が生じていてもよく、かかる形態も本発明における「シランカップリング剤層を有する」形態に包含される)。
本発明の表面処理銅箔は、少なくとも片面が粗化処理面であればよく、両面が粗化処理面であってもよい。本発明の表面処理銅箔は、通常は、片面のみが粗化処理面である形態である。
[Surface-treated copper foil for printed wiring boards]
The surface-treated copper foil for printed wiring boards of the present invention (hereinafter referred to as “surface-treated copper foil of the present invention”) has a surface on which roughened particles are formed (a surface on which an antiseptic metal is further adhered if necessary). Treated with a coupling agent (that is, having a silane coupling agent layer on the surface on which the roughened particles are formed), and on the surface of the silane coupling agent layer (surface treated copper foil outermost surface) The average height of the activated particles is 0.05 μm or more and less than 0.5 μm, the BET surface area ratio of the silane coupling agent layer surface is 1.2 or more, and the fine surface area coefficient of the silane coupling agent layer surface (Cms) is 2.0 or more and less than 8.0. In the surface-treated copper foil of the present invention, the average height of the roughened particles measured on the surface of the silane coupling agent layer is 0.05 μm or more and less than 0.5 μm, and the BET surface area ratio of the surface Is 1.2 or more and the surface Cms is 2.0 or more and less than 8.0 is simply referred to as “roughening surface”. The roughened surface is preferably entirely covered with a silane coupling agent, but as long as the effects of the present invention are achieved, a portion of the roughened surface may not be covered with the silane coupling agent. (In other words, as long as the effect of the present invention is exhibited, a film defect may be generated in a part of the silane coupling agent layer on the roughened surface, and such a form also has “a silane coupling agent layer” in the present invention. Included in the form).
The surface-treated copper foil of the present invention only needs to have at least one roughened surface, and both surfaces may be roughened surfaces. The surface-treated copper foil of the present invention is usually in a form in which only one surface is a roughened surface.

本発明の表面処理銅箔において、粗化処理面は、粗化粒子の平均高さが0.5μm未満と低いにもかかわらず、BET表面積比が1.2以上と大きい。それ故、当該粗化処理面を介して表面処理銅箔と樹脂層とを積層し、銅張積層板を作製した際には、粗化粒子のアンカー効果と大きな表面積とが相俟って、銅箔と樹脂層との密着性が高度に高められ、耐熱性に優れた銅張積層板を得ることができる。また、当該粗化処理面は、粗化粒子の平均高さが0.5μm未満と低く、伝送経路の長さへの粗化粒子の存在の影響を小さく出来る。それ故、当該銅張積層板を用いた導体回路にGHz帯の高周波信号を伝送した際にも伝送損失を効果的に抑えることができる。
これまで、銅箔表面に平均高さが0.5μm未満という小さな粗化粒子を形成しながらも、BET表面積比を1.2以上にまで高める方法は知られていない。本発明者らはかかる状況下、後述する特定の粗化めっき処理条件を採用することにより、平均高さ0.05μm以上0.5μm未満の粗化粒子を有し、且つBET表面積比が1.2以上の銅箔表面を作り出すことに成功し、本発明を完成させるに至った。
樹脂基材との高度な密着性を維持しながら伝送損失をより効果的に低減する観点から、上記粗化処理面における上記粗化粒子の平均高さは0.05μm以上0.5μm未満が好ましく、0.05μm以上0.3μm未満がより好ましい。
本発明において、粗化粒子は粗化処理面全体に一様に(均質に)形成されていることが好ましい。粗化粒子の平均高さは、後述する実施例に記載の方法により測定される。
In the surface-treated copper foil of the present invention, the roughened surface has a large BET surface area ratio of 1.2 or more although the average height of the roughened particles is as low as less than 0.5 μm. Therefore, when the surface-treated copper foil and the resin layer are laminated through the roughened surface, and the copper-clad laminate is produced, the anchor effect of the roughened particles and the large surface area are combined, Adhesion between the copper foil and the resin layer is highly enhanced, and a copper-clad laminate having excellent heat resistance can be obtained. Further, the roughened surface has an average height of roughened particles as low as less than 0.5 μm, and the influence of the presence of roughened particles on the length of the transmission path can be reduced. Therefore, transmission loss can be effectively suppressed even when a high-frequency signal in the GHz band is transmitted to a conductor circuit using the copper-clad laminate.
So far, there is no known method for increasing the BET surface area ratio to 1.2 or more while forming small rough particles having an average height of less than 0.5 μm on the copper foil surface. Under such circumstances, the present inventors employ the specific roughening plating treatment conditions described later to have roughened particles having an average height of 0.05 μm or more and less than 0.5 μm, and a BET surface area ratio of 1. The present invention was completed by successfully producing two or more copper foil surfaces.
From the viewpoint of more effectively reducing transmission loss while maintaining high adhesion with the resin base material, the average height of the roughened particles on the roughened surface is preferably 0.05 μm or more and less than 0.5 μm. 0.05 μm or more and less than 0.3 μm is more preferable.
In the present invention, the roughened particles are preferably formed uniformly (homogeneously) on the entire roughened surface. The average height of the roughened particles is measured by the method described in Examples described later.

上記BET表面積比とは、BET法による表面積の測定方法に基づき算出されるものである。すなわち、上記BET表面積比は、試料表面に吸着占有面積が既知である気体分子を吸着させ、その吸着量に基づき試料の表面積(BET測定表面積)を求め、このBET測定表面積から試料表面に凹凸が無いと仮定した場合の表面積(試料切り出し面積)を差し引いた値の、当該試料切り出し面積に対する比であり、後述する実施例に記載の方法により測定される。
本発明の表面処理銅箔において、粗化処理面のBET表面積比は、その値が大きい程、表面積が大きいことを意味する。したがって、粗化処理面の上記BET表面積比が大きい程、樹脂との相互作用性が高まり、粗化粒子のアンカー効果と相俟って、樹脂層を積層した際の銅箔と樹脂層との密着性が向上する。本発明の表面処理銅箔において、粗化処理面のBET表面積比は1.2以上10以下が好ましく、4以上8以下がより好ましい。
The BET surface area ratio is calculated based on the surface area measurement method by the BET method. That is, the BET surface area ratio is obtained by adsorbing a gas molecule whose adsorption occupation area is known on the sample surface, obtaining the surface area of the sample (BET measurement surface area) based on the adsorption amount, and unevenness on the sample surface from the BET measurement surface area. This is the ratio of the value obtained by subtracting the surface area (sample cut-out area) when it is assumed to be absent to the sample cut-out area, and is measured by the method described in the examples described later.
In the surface-treated copper foil of the present invention, the larger the value of the BET surface area ratio of the roughened surface, the larger the surface area. Therefore, the larger the BET surface area ratio of the roughened surface, the higher the interaction with the resin, and in combination with the anchor effect of the roughened particles, the copper foil and the resin layer when the resin layers are laminated Adhesion is improved. In the surface-treated copper foil of the present invention, the BET surface area ratio of the roughened surface is preferably 1.2 or more and 10 or less, more preferably 4 or more and 8 or less.

銅箔の表面積測定において一般的に用いられるレーザー顕微鏡による表面積測定では、粗化粒子の形状によりレーザー光が届かない「陰」となる部分の測定は原理的に不可能であり、また極微細な凹凸部分の表面積を高感度に検出することも困難である。例えば、高さと直径は同じ粗化粒子であっても、根元が括れている粗化粒子とそうでない粗化粒子を比較すると、樹脂と密着する面積が多いのは前者であるのに、レーザー顕微鏡による表面積測定では、ほぼ同一の値となってしまう。
これに対しBET法による表面積の測定では、気体分子の吸着により表面積を測定するので、微細な凹凸に対する感度が高く、レーザー光では「陰」となってしまう部分の測定も可能となる。したがって、粗化粒子を形成させた試料の表面積を、レーザー顕微鏡を用いた場合よりも、通常、高い精度で測定することができる。
本発明者らは、後述する特定の粗化めっき処理を施すことにより、レーザー顕微鏡では測定できない「陰」の部分や微細な凹凸部分の表面積の割合をより増大させることに成功した。これにより、粗化粒子の平均高さを抑えて、高周波信号を伝送した際の伝送損失を効果的に抑えながらも、樹脂基材との密着性を大きく高めることができ、また、エッチング後の樹脂基材の視認性を良好に維持できることを見い出し、本発明を完成させるに至ったものである。
In the surface area measurement with a laser microscope generally used in the surface area measurement of copper foil, it is impossible in principle to measure the “shade” part where the laser beam does not reach due to the shape of the roughened particles, and it is extremely fine. It is also difficult to detect the surface area of the uneven portion with high sensitivity. For example, even if rough particles with the same height and diameter are compared with rough particles with a narrow root and rough particles that do not, the former has a larger area in close contact with the resin. In the surface area measurement by, the values are almost the same.
On the other hand, in the measurement of the surface area by the BET method, since the surface area is measured by adsorption of gas molecules, the sensitivity to fine irregularities is high, and it is possible to measure a portion that is “shadow” by laser light. Therefore, the surface area of the sample on which the roughened particles are formed can usually be measured with higher accuracy than when a laser microscope is used.
The present inventors have succeeded in further increasing the ratio of the surface area of “shadows” and fine irregularities that cannot be measured with a laser microscope by applying a specific roughening plating process described later. Thereby, while suppressing the average height of the roughened particles and effectively suppressing the transmission loss when transmitting a high-frequency signal, it is possible to greatly improve the adhesion with the resin base material, and after etching The inventors have found that the visibility of the resin base material can be maintained well, and have completed the present invention.

上記Cmsは、レーザー顕微鏡で測定した表面積比に対する、BET法で測定した表面積比の比であり、レーザー顕微鏡では測定不可能な「陰」の部分や微細な凹凸部分の表面積の割合を数値化したものである。Cmsの算出方法の詳細は後述する実施例に記載される通りである。本発明の表面処理銅箔において、粗化処理面のCmsは、2.0以上8.0未満である。粗化処理面における粗化粒子の平均高さと、粗化処理面のBET表面積比を本発明で規定する範囲内とし、且つ、粗化処理面のCmsを2.0以上8.0未満とすることにより、当該表面と樹脂基材との密着性を高度に高めながらも、エッチング後の樹脂の視認性(透過性)を良好に維持することができる。Cmsは2.5以上5.0未満が好ましい。
尚、レーザー顕微鏡により測定される表面積とBET法により測定される表面積とでは、表面積の測定原理が異なり、粗化処理面の形状によってはCmsが1未満となることも有り得る。
The Cms is the ratio of the surface area ratio measured by the BET method to the surface area ratio measured by the laser microscope, and the ratio of the surface area of the “shadow” portion and the fine uneven portion that cannot be measured by the laser microscope is quantified. Is. Details of the calculation method of Cms are as described in the examples described later. In the surface-treated copper foil of the present invention, Cms of the roughened surface is 2.0 or more and less than 8.0. The average height of the roughened particles on the roughened surface and the BET surface area ratio of the roughened surface are within the range defined by the present invention, and the Cms of the roughened surface is 2.0 or more and less than 8.0. Thus, the visibility (transmittance) of the resin after etching can be maintained well while the adhesion between the surface and the resin base material is highly enhanced. Cms is preferably 2.5 or more and less than 5.0.
The surface area measured by the laser microscope and the surface area measured by the BET method have different surface area measurement principles, and Cms may be less than 1 depending on the shape of the roughened surface.

本発明の表面処理銅箔は、粗化処理面の明度指数L(Lightness)が40以上60未満であることが好ましく、40以上55未満であることがより好ましい。いわゆる黒化処理のような茶褐色〜黒色の処理表面(合金や酸化銅が形成されている表面)であるとLは小さく、伝送損失が高まる傾向がある。一方、粗化粒子の形状が丸みを帯びるとLが上昇し、樹脂基材との密着性が低下する傾向がある。Lは後述する実施例に記載の方法により測定される。 In the surface-treated copper foil of the present invention, the lightness index L * (Lightness) of the roughened surface is preferably 40 or more and less than 60, and more preferably 40 or more and less than 55. If the surface is a brown-brown to black treated surface (a surface on which an alloy or copper oxide is formed) as in the so-called blackening treatment, L * is small and transmission loss tends to increase. On the other hand, when the shape of the roughened particles is rounded, L * increases and the adhesion to the resin base material tends to decrease. L * is measured by the method described in Examples described later.

本発明の表面処理銅箔において、シランカップリング剤処理前の、粗化粒子が形成された表面は、クロム(Cr)、鉄(Fe)、コバルト(Co)、ニッケル(Ni)、銅(Cu)、亜鉛(Zn)、モリブデン(Mo)、及びスズ(Sn)から選ばれる少なくとも1種の金属を有する金属処理層を有するか、又は、クロム、鉄、コバルト、ニッケル、銅、亜鉛、モリブデン、及びスズから選ばれる2種以上の金属からなる合金を有する金属処理層を有することが好ましい。この金属処理層は、ニッケル、亜鉛、及びクロムから選ばれる少なくとも1種の金属を有する金属処理層を有するか、又は、ニッケル、亜鉛、及びクロムから選ばれる2種以上の金属からなる合金を有する金属処理層を有することがより好ましい。
本発明の表面処理銅箔が用いられる銅張積層板やプリント配線板は、その作製工程において、樹脂と銅箔との接着工程や、はんだ工程など、しばしば熱が加えられる。この熱により、銅が樹脂側に拡散して、銅と樹脂との密着性を低下させることがあるが、上記金属処理層を設けることで銅の拡散を防ぎ、樹脂基材との高度な密着性をより安定的に維持することができる。また、金属処理層を構成する金属は、銅の錆を防ぐ防錆金属としても機能する。
銅箔のエッチング性をより高める観点からは、シランカップリング剤処理前の、粗化粒子が形成された表面における防錆金属としてのニッケル量の制御も重要である。すなわち、ニッケル付着量が多い場合、銅の錆が生じにくく高温下での樹脂との密着性は向上する傾向があるが、エッチング後にニッケルが残留しやすく、十分な絶縁信頼性が得られにくい。本発明の表面処理銅箔が金属処理層を有する場合、高温下における密着性とエッチング性を両立する観点から、粗化処理面におけるニッケル元素量を0.1mg/dm以上0.3mg/dm未満となるようにすることが好ましい。
In the surface-treated copper foil of the present invention, the surface on which the roughened particles are formed before the silane coupling agent treatment is chromium (Cr), iron (Fe), cobalt (Co), nickel (Ni), copper (Cu ), Zinc (Zn), molybdenum (Mo), and tin (Sn), or a metal treatment layer having at least one metal selected from chromium, iron, cobalt, nickel, copper, zinc, molybdenum, And a metal treatment layer having an alloy composed of two or more metals selected from tin. This metal treatment layer has a metal treatment layer having at least one metal selected from nickel, zinc, and chromium, or an alloy made of two or more metals selected from nickel, zinc, and chromium. It is more preferable to have a metal treatment layer.
The copper clad laminate or printed wiring board in which the surface-treated copper foil of the present invention is used is often subjected to heat in the production process, such as an adhesion process between a resin and a copper foil, or a solder process. Due to this heat, copper may diffuse to the resin side and reduce the adhesion between copper and resin, but by providing the metal treatment layer, copper diffusion is prevented and high adhesion to the resin substrate is achieved. Sex can be maintained more stably. Moreover, the metal which comprises a metal processing layer functions also as a rust prevention metal which prevents the rust of copper.
From the viewpoint of further improving the etching property of the copper foil, it is also important to control the amount of nickel as a rust preventive metal on the surface on which the roughened particles are formed before the silane coupling agent treatment. That is, when there is a large amount of nickel adhered, copper rust is less likely to occur, and the adhesiveness to the resin at high temperatures tends to improve, but nickel tends to remain after etching, and sufficient insulation reliability is difficult to obtain. When the surface-treated copper foil of the present invention has a metal treatment layer, the amount of nickel element on the roughened surface is 0.1 mg / dm 2 or more and 0.3 mg / dm from the viewpoint of achieving both adhesion and etching at high temperatures. It is preferable to be less than 2 .

[プリント配線板用表面処理銅箔の製造]
<銅箔>
本発明の表面処理銅箔の製造に用いる銅箔としては、圧延銅箔、電解銅箔等、用途その他の目的に応じて選択することができる。本発明の表面処理銅箔に用いる銅箔の箔厚に特に制限は無く、目的に応じて適宜に選択すればよい。上記箔厚は、通常は4〜120μmであり、5〜50μmが好ましく、6〜18μmがより好ましい。
[Manufacture of surface-treated copper foil for printed wiring boards]
<Copper foil>
As copper foil used for manufacture of the surface-treated copper foil of this invention, it can select according to uses and other objectives, such as rolled copper foil and electrolytic copper foil. There is no restriction | limiting in particular in the foil thickness of the copper foil used for the surface treatment copper foil of this invention, What is necessary is just to select suitably according to the objective. The foil thickness is usually 4 to 120 μm, preferably 5 to 50 μm, and more preferably 6 to 18 μm.

<粗化めっき処理>
本発明の表面処理銅箔の製造において、上記粗化処理面は、特定の粗化めっき処理条件を適用することで形成することが可能になる。すなわち本発明は、本発明者らが、モリブデン濃度の特定の範囲内とし、且つ、後述する特定の条件下で電気めっき処理を施すことにより、上記粗化処理面を形成することが可能となることを見い出したことに基づく発明である。
<Roughening plating treatment>
In the production of the surface-treated copper foil of the present invention, the roughened surface can be formed by applying specific roughened plating conditions. That is, according to the present invention, it is possible for the present inventors to form the roughened surface by performing electroplating treatment within a specific range of molybdenum concentration and under specific conditions described later. It is an invention based on finding out.

(粗化めっき処理条件)
上記粗化処理面の形成を可能とするためには、粗化めっき処理(電気めっき処理)において、モリブデン濃度を50mg/L以上600mg/L以下に制御することが必要である。モリブデン濃度を50mg/L未満とすると、粉落ち等の問題が生じやすく、600mg/Lを超えると、他の特性を満足しつつ、シランカップリング剤処理後の表面(すなわち粗化処理面)BET表面積比を1.2以上に高めることが難しくなる。
(Roughening plating conditions)
In order to make it possible to form the roughened surface, it is necessary to control the molybdenum concentration to 50 mg / L or more and 600 mg / L or less in the roughing plating process (electroplating process). If the molybdenum concentration is less than 50 mg / L, problems such as powder falling are likely to occur, and if it exceeds 600 mg / L, the surface after treatment with the silane coupling agent (that is, the roughened surface) BET while satisfying other characteristics. It becomes difficult to increase the surface area ratio to 1.2 or more.

上記粗化処理面の形成を可能とするためには、粗化めっき処理において、極間流速を0.15m/秒以上0.4m/秒以下とすることが必要である。極間流速を0.15m/秒未満とすると、銅箔上に発生した水素ガスの脱離が進まず、モリブデンの効果が得られにくくなって粉落ち等の問題が生じやすい。また極間流速が0.4m/秒を超えると微細な凹部への銅イオン供給が過剰に進み、凹部がめっきで埋まってしまい、シランカップリング剤処理後の表面のBET表面積比を1.2以上に高めることが難しくなる。   In order to make it possible to form the roughened surface, it is necessary that the flow rate between the electrodes be 0.15 m / second or more and 0.4 m / second or less in the roughing plating treatment. When the inter-electrode flow rate is less than 0.15 m / sec, the desorption of hydrogen gas generated on the copper foil does not proceed and the effect of molybdenum is difficult to obtain, and problems such as powder falling are likely to occur. Further, when the inter-electrode flow rate exceeds 0.4 m / sec, the supply of copper ions to fine recesses proceeds excessively, and the recesses are filled with plating, and the BET surface area ratio of the surface after the silane coupling agent treatment is 1.2. It becomes difficult to raise more.

上記粗化処理面の形成を可能とするためには、粗化めっき処理において、電流密度に処理時間を乗じた値を20(A/dm)・秒以上250(A/dm)・秒以下とすることが必要である。この値が20(A/dm)・秒未満であると、シランカップリング剤処理後において、粗化処理面の粗化粒子の平均高さを0.05μm以上にすることが難しくなるので、積層する樹脂との十分な密着性を確保することが難しくなる。また250(A/dm)・秒を超えると、形成される粗化粒子の平均高さを0.5μm未満とすることが難しくなるので、伝送損失が悪化しやすくなる。上記の電流密度に処理時間を乗じた値は、20(A/dm)・秒以上160(A/dm)・秒未満とすることが好ましい。 In order to enable the formation of the roughened surface, the value obtained by multiplying the current density by the treatment time in the roughing plating process is 20 (A / dm 2 ) · second or more and 250 (A / dm 2 ) · second. It is necessary to: When this value is less than 20 (A / dm 2 ) · sec, it becomes difficult to make the average height of the roughened particles on the roughened surface after the silane coupling agent treatment 0.05 μm or more. It becomes difficult to ensure sufficient adhesion with the resin to be laminated. On the other hand, if it exceeds 250 (A / dm 2 ) · sec, it becomes difficult to make the average height of the formed coarse particles less than 0.5 μm, so that transmission loss tends to deteriorate. A value obtained by multiplying the current density by the treatment time is preferably 20 (A / dm 2 ) · second or more and less than 160 (A / dm 2 ) · second.

上記粗化処理面の形成を可能とするためには、粗化めっき処理において、電流密度に処理時間を乗じた値をMo濃度で割った値を1.0{(A/dm)・秒}/(mg/L)以上3.0{(A/dm)・秒}/(mg/L)以下とする必要がある。この値が1.0{(A/dm)・秒}/(mg/L)未満であると他の特性を満足しつつ十分なBET表面積比を得ることが難しくなる。またこの値が3.0{(A/dm)・秒}/(mg/L)を超えているとCmsを8.0未満とするのが難しくなる傾向がある。上記の電流密度に処理時間を乗じた値をMo濃度で割った値は、1.2{(A/dm)・秒}/(mg/L)以上2.4{(A/dm)・秒}/(mg/L)未満とすることが好ましい。
In order to make it possible to form the roughened surface, the value obtained by multiplying the current density multiplied by the processing time by the Mo concentration in the roughing plating process is 1.0 {(A / dm 2 ) · sec. } / (Mg / L) to 3.0 {(A / dm 2 ) · second} / (mg / L) or less. When this value is less than 1.0 {(A / dm 2 ) · sec} / (mg / L), it is difficult to obtain a sufficient BET surface area ratio while satisfying other characteristics. If this value exceeds 3.0 {(A / dm 2 ) · second} / (mg / L), it tends to be difficult to make Cms less than 8.0 . The value obtained by multiplying the above current density by the treatment time divided by the Mo concentration is 1.2 {(A / dm 2 ) · sec} / (mg / L) or more and 2.4 {(A / dm 2 ). -It is preferable to be less than second} / (mg / L).

上記粗化処理面の形成を可能とするための好ましい粗化めっき処理条件を以下に示す。
−粗化めっき処理条件−
Cu :10〜30g/L
SO :100〜200g/L
浴温 :20〜30℃
Mo濃度 :50〜600mg/L
極間流速 :0.15〜0.4m/秒
電流密度 :15〜70A/dm
処理時間 :0.1〜10秒
電流密度×処理時間 :20〜250(A/dm)・秒
電流密度×処理時間÷Mo濃度 :1.0〜3.0{(A/dm)・秒}/(mg/L)
The preferable roughening plating process conditions for enabling the formation of the roughened surface are shown below.
-Roughening plating conditions-
Cu: 10 to 30 g / L
H 2 SO 4: 100~200g / L
Bath temperature: 20-30 ° C
Mo concentration: 50-600 mg / L
Inter-electrode flow velocity: 0.15-0.4 m / sec Current density: 15-70 A / dm 2
Treatment time: 0.1 to 10 seconds Current density × treatment time: 20 to 250 (A / dm 2 ) · second Current density × treatment time ÷ Mo concentration: 1.0 to 3.0 {(A / dm 2 ) · Second} / (mg / L)

なお、めっき液へのモリブデンの添加は、モリブデンがイオンとして溶解する形態であり、かつ、硫酸銅めっき液のpHを変化させたり、銅めっき皮膜に取り込まれるような金属不純物を含んだりしていなければ特に制限されるものではない。例えば、モリブデン酸塩(例えばモリブデン酸ナトリウムやモリブデン酸カリウム)の水溶液を硫酸銅めっき液に添加することができる。   In addition, the addition of molybdenum to the plating solution is a form in which molybdenum dissolves as ions, and it must change the pH of the copper sulfate plating solution or contain metal impurities that are incorporated into the copper plating film. There is no particular limitation. For example, an aqueous solution of molybdate (for example, sodium molybdate or potassium molybdate) can be added to the copper sulfate plating solution.

<金属処理層>
本発明の表面処理銅箔が金属処理層を有する場合、金属処理層の形成方法に特に制限はなく、常法により形成することができる。例えば、ニッケル、亜鉛及びクロムを有する金属処理層を形成する場合を例にとると、下記条件で、ニッケルめっき、亜鉛めっき、クロムめっきを、例えばこの順に施すことで、金属処理層を形成することができる。
<Metal treatment layer>
When the surface-treated copper foil of this invention has a metal treatment layer, there is no restriction | limiting in particular in the formation method of a metal treatment layer, It can form by a conventional method. For example, taking a case where a metal treatment layer having nickel, zinc and chromium is formed as an example, a metal treatment layer is formed by applying nickel plating, zinc plating and chromium plating in this order, for example, under the following conditions. Can do.

(Niめっき)
Ni :10〜100g/L
BO :1〜50g/L
PO :0〜10g/L
浴温 :10〜70℃
電流密度 :1〜50A/dm
処理時間 :1秒〜2分
pH :2.0〜4.0
(Znめっき)
Zn :1〜30g/L
NaOH :10〜300g/L
浴温 :5〜60℃
電流密度 :0.1〜10A/dm
処理時間 :1秒〜2分
(Crめっき)
Cr :0.5〜40g/L
浴温 :20〜70℃
電流密度 :0.1〜10A/dm
処理時間 :1秒〜2分
pH :3.0以下
(Ni plating)
Ni: 10 to 100 g / L
H 3 BO 3 : 1 to 50 g / L
PO 2 : 0 to 10 g / L
Bath temperature: 10-70 ° C
Current density: 1 to 50 A / dm 2
Treatment time: 1 second to 2 minutes pH: 2.0 to 4.0
(Zn plating)
Zn: 1 to 30 g / L
NaOH: 10 to 300 g / L
Bath temperature: 5-60 ° C
Current density: 0.1 to 10 A / dm 2
Processing time: 1 second to 2 minutes (Cr plating)
Cr: 0.5 to 40 g / L
Bath temperature: 20-70 ° C
Current density: 0.1 to 10 A / dm 2
Treatment time: 1 second to 2 minutes pH: 3.0 or less

本発明の表面処理銅箔は、粗化処理面に存在するSi元素量(すなわち、シランカップリング剤層に含有されるSi元素量)が0.5μg/dm以上15μg/dm未満であることが好ましい。このSi元素量を0.5μg/dm以上15μg/dm未満とすることにより、シランカップリング剤の使用量を抑えながら、樹脂との密着性を効果的に高めることができる。シランカップリング剤層に含有されるSi元素量は、より好ましくは3μg/dm以上15μg/dm未満であり、さらに好ましくは5μg/dm以上15μg/dm未満である。
上記シランカップリング剤は、本発明の表面修飾銅箔と積層される樹脂層を構成する樹脂の分子構造(官能基の種類等)に応じて適宜に選択されるものである。なかでも上記シランカップリング剤は、エポキシ基、アミノ基、ビニル基、(メタ)アクリロイル基、スチリル基、ウレイド基、イソシアヌレート基、メルカプト基、スルフィド基、及びイソシアネート基から選ばれる少なくとも1種の官能基を有することが好ましい。「(メタ)アクリロイル基」は、「アクリロイル基及び/又はメタクリロイル基」の意味である。
In the surface-treated copper foil of the present invention, the amount of Si element existing on the roughened surface (that is, the amount of Si element contained in the silane coupling agent layer) is 0.5 μg / dm 2 or more and less than 15 μg / dm 2. It is preferable. By setting the amount of Si element to 0.5 μg / dm 2 or more and less than 15 μg / dm 2 , it is possible to effectively improve the adhesion to the resin while suppressing the amount of the silane coupling agent used. The amount of Si element contained in the silane coupling agent layer is more preferably 3 μg / dm 2 or more and less than 15 μg / dm 2 , and further preferably 5 μg / dm 2 or more and less than 15 μg / dm 2 .
The said silane coupling agent is suitably selected according to the molecular structure (kind of functional group etc.) of the resin which comprises the resin layer laminated | stacked with the surface modification copper foil of this invention. Among these, the silane coupling agent is at least one selected from an epoxy group, an amino group, a vinyl group, a (meth) acryloyl group, a styryl group, a ureido group, an isocyanurate group, a mercapto group, a sulfide group, and an isocyanate group. It preferably has a functional group. “(Meth) acryloyl group” means “acryloyl group and / or methacryloyl group”.

粗化粒子を形成した銅箔表面のシランカップリング剤による処理は常法により行うことができる。例えば、シランカップリング剤の溶液(塗布液)を調製し、この塗布液を粗化粒子を形成した銅箔表面に塗布し、乾燥させることで、粗化粒子を形成した銅箔表面にシランカップリング剤を吸着ないし結合させることができる。上記塗布液としては、例えば純水を用いてシランカップリング剤を0.05wt%〜1wt%の濃度で含有する溶液を用いることができる。
上記塗布液の塗布方法に特に制限はなく、例えば、銅箔を斜めにした状態で、粗化粒子を形成した表面に塗布液を均一に流し、ロールを用いて液切りをした後に加熱乾燥させたり、ロール間に、粗化粒子を形成した表面を下向きにして張られた銅箔に、塗布液を噴霧して、ロールで液切り後に加熱乾燥したりすることにより、塗布することができる。塗布温度に特に制限はなく、通常は10〜40℃で実施する。
The treatment with the silane coupling agent on the surface of the copper foil on which the roughened particles are formed can be performed by a conventional method. For example, a silane coupling agent solution (coating solution) is prepared, and this coating solution is applied to the surface of the copper foil on which the roughened particles are formed and dried, so that the silane cup is formed on the surface of the copper foil on which the roughened particles are formed. A ring agent can be adsorbed or bound. As the coating solution, for example, a solution containing a silane coupling agent at a concentration of 0.05 wt% to 1 wt% using pure water can be used.
There is no particular limitation on the coating method of the coating solution. For example, in a state where the copper foil is slanted, the coating solution is uniformly flowed on the surface on which the roughened particles are formed, and after being drained using a roll, it is dried by heating. Alternatively, it can be applied by spraying a coating solution on a copper foil stretched with the surface on which the roughened particles are formed facing down between the rolls, and then drying by heating after draining with a roll. There is no restriction | limiting in particular in application | coating temperature, Usually, it implements at 10-40 degreeC.

[プリント配線板用銅張積層板]
本発明のプリント配線板用銅張積層板(以下、「本発明の銅張積層板」という。)は、本発明の表面処理銅箔の粗化処理面に、樹脂層(樹脂基材)を積層した構造を有する。当該樹脂層に特に制限はなく、プリント配線板を作製するための銅張積層板に通常用いられる樹脂層を採用することができる。一例を挙げれば、リジット基板に使用されるハロゲンフリー低誘電基材や、フレキシブル基板に汎用される低誘電ポリイミドを用いることができる。
表面処理銅箔と、樹脂基材との積層方法に特に制限はなく、例えば、熱プレス加工機を用いた熱加圧成形法等により、銅箔と樹脂基材とを接着させることができる。上記熱加圧成形法におけるプレス温度は150〜400℃程度とすることが好ましい。また、プレス圧は1〜50MPa程度とすることが好ましい。
銅張積層板の厚さは、10〜1000μmが好ましい。
[Copper-clad laminate for printed wiring boards]
The copper-clad laminate for printed wiring boards of the present invention (hereinafter referred to as “the copper-clad laminate of the present invention”) has a resin layer (resin substrate) on the roughened surface of the surface-treated copper foil of the present invention. It has a laminated structure. There is no restriction | limiting in particular in the said resin layer, The resin layer normally used for the copper clad laminated board for producing a printed wiring board is employable. For example, a halogen-free low dielectric base material used for a rigid substrate or a low dielectric polyimide widely used for a flexible substrate can be used.
There is no restriction | limiting in particular in the lamination | stacking method of surface-treated copper foil and a resin base material, For example, copper foil and a resin base material can be adhere | attached by the hot-press molding method etc. which used the hot press processing machine. It is preferable that the press temperature in the said hot-press molding method shall be about 150-400 degreeC. The press pressure is preferably about 1 to 50 MPa.
The thickness of the copper clad laminate is preferably 10 to 1000 μm.

[プリント配線板]
本発明のプリント配線板は、本発明の銅張積層板を用いて作製される。すなわち、本発明の銅張積層板にエッチング等の処理を施し、導体回路パターンを形成し、更に、必要に応じてその他の構成を常法により形成ないし搭載して得ることができる。
[Printed wiring board]
The printed wiring board of the present invention is produced using the copper clad laminate of the present invention. That is, the copper-clad laminate of the present invention can be processed by etching or the like to form a conductor circuit pattern, and other components can be formed or mounted by a conventional method as required.

以下に、実施例に基づき本発明をさらに詳細に説明する。なお、以下は本発明の一例であり、本発明の実施にあたっては、本発明の趣旨を逸脱しない範囲において、種々の形態を採用することができる。   Below, based on an Example, this invention is demonstrated further in detail. The following is an example of the present invention, and various forms can be employed in implementing the present invention without departing from the spirit of the present invention.

[銅箔の製造]
粗化処理を施すための基材となる銅箔として、電解銅箔又は圧延銅箔を使用した。
実施例1、2、4、5、7及び8、比較例1〜4及び7並びに参考例1では、下記条件により製造した、厚さ12μmの電解銅箔を用いた。
<電解銅箔の製造条件>
CuSO :280g/L
SO :70g/L
塩素濃度 :25mg/L
浴温 :55℃
電流密度 :45A/dm
(添加剤)
・3−メルカプト1−プロパンスルホン酸ナトリウム :2mg/L
・ヒドロキシエチルセルロース :10mg/L
・低分子量膠(分子量3000) :50mg/L
[Manufacture of copper foil]
Electrolytic copper foil or rolled copper foil was used as the copper foil serving as the base material for the roughening treatment.
In Examples 1, 2, 4, 5, 7 and 8, Comparative Examples 1 to 4 and 7 and Reference Example 1, an electrolytic copper foil having a thickness of 12 μm produced under the following conditions was used.
<Production conditions for electrolytic copper foil>
CuSO 4 : 280 g / L
H 2 SO 4 : 70 g / L
Chlorine concentration: 25 mg / L
Bath temperature: 55 ° C
Current density: 45 A / dm 2
(Additive)
・ 3-mercapto 1-propanesulfonic acid sodium salt: 2 mg / L
Hydroxyethyl cellulose: 10 mg / L
・ Low molecular weight glue (molecular weight 3000): 50 mg / L

実施例3及び6並びに比較例5及び6では、市販の12μmのタフピッチ銅圧延箔(株式会社UACJ製)に対し、下記条件で脱脂処理を行ったものを用いた。
<脱脂処理条件>
脱脂溶液 :クリーナー160S(メルテックス株式会社製)の水溶液
濃度 :60g/L水溶液
浴温 :60℃
電流密度 :3A/dm
通電時間 :10秒
In Examples 3 and 6 and Comparative Examples 5 and 6, a commercially available 12 μm tough pitch copper rolled foil (manufactured by UACJ Co., Ltd.) subjected to degreasing treatment under the following conditions was used.
<Degreasing conditions>
Degreasing solution: Aqueous solution of cleaner 160S (Meltex Co., Ltd.) Concentration: 60 g / L aqueous solution Bath temperature: 60 ° C
Current density: 3 A / dm 2
Energizing time: 10 seconds

[粗化処理面の形成]
電気めっき処理により、上記銅箔の片面に粗化めっき処理面を形成した。この粗化めっき処理面は、下記の粗化めっき液基本浴組成を用いて、モリブデン濃度を下記表1記載の通りとし、且つ、極間流速、電流密度、処理時間を下記表1記載の通りとして形成した。モリブデン濃度は、モリブデン酸ナトリウムを純水に溶解した水溶液を基本浴に加えることで調整した。
<粗化めっき液基本浴組成>
Cu :25g/L
SO :180g/L
浴温 :25℃
[Formation of roughened surface]
A roughened plated surface was formed on one side of the copper foil by electroplating. The roughening plating treatment surface uses the following rough plating solution basic bath composition, the molybdenum concentration is as shown in Table 1 below, and the interelectrode flow velocity, current density, and treatment time are as shown in Table 1 below. Formed as. The molybdenum concentration was adjusted by adding an aqueous solution of sodium molybdate dissolved in pure water to the basic bath.
<Roughening plating solution basic bath composition>
Cu: 25 g / L
H 2 SO 4 : 180 g / L
Bath temperature: 25 ° C

<金属処理層の形成>
続いて、上記で粗化めっき処理した表面に、さらに下記条件で、Ni、Zn、Crの順に金属めっきを施して金属処理層を形成した。なお、参考例1については金属処理層を形成させなかった。
<Niめっき>
Ni :40g/L
BO :5g/L
浴温 :20℃
pH :3.6
電流密度 :0.2A/dm
通電時間 :10秒
<Znめっき>
Zn :2.5g/L
NaOH :40g/L
浴温 :20℃
電流密度 :0.3A/dm
通電時間 :5秒
<Crめっき>
Cr :5g/L
浴温 :30℃
pH :2.2
電流密度 :5A/dm
通電時間 :5秒
<Formation of metal treatment layer>
Subsequently, the surface subjected to the roughening plating treatment was further subjected to metal plating in the order of Ni, Zn, and Cr under the following conditions to form a metal treatment layer. In Reference Example 1, no metal treatment layer was formed.
<Ni plating>
Ni: 40 g / L
H 3 BO 3 : 5 g / L
Bath temperature: 20 ° C
pH: 3.6
Current density: 0.2 A / dm 2
Energizing time: 10 seconds <Zn plating>
Zn: 2.5 g / L
NaOH: 40 g / L
Bath temperature: 20 ° C
Current density: 0.3 A / dm 2
Energizing time: 5 seconds <Cr plating>
Cr: 5 g / L
Bath temperature: 30 ° C
pH: 2.2
Current density: 5 A / dm 2
Energizing time: 5 seconds

<シランカップリング剤の塗布(粗化処理面の形成)>
上記金属処理層表面全体に、表2記載の市販のシランカップリング剤の溶液(30℃)を塗布し、スキージーで余分な液切りを行った後、120℃大気下で30秒間乾燥させた。各シランカップリング剤の溶液の調製方法は以下の通りである。
<Application of silane coupling agent (formation of roughened surface)>
A solution (30 ° C.) of a commercially available silane coupling agent shown in Table 2 was applied to the entire surface of the metal treatment layer, and excess liquid was removed with a squeegee, followed by drying at 120 ° C. in the atmosphere for 30 seconds. The preparation method of each silane coupling agent solution is as follows.

3−グリシドキシプロピルメチルジメトキシシラン(信越化学株式会社製 KBM−402):純水で0.3wt%溶液を調製。
3−アミノプロピルトリメトキシシラン(信越化学株式会社製 KBM−903):純水で0.25wt%溶液を調製。
ビニルトリメトキシシラン(信越化学株式会社製 KBM−1003):純水に硫酸を添加してpH3に調整した溶液で0.2wt%溶液を調製。
3−メタクリロキシプロピルメチルジメトキシシラン(信越化学株式会社製 KBM−502):純水に硫酸を添加してpH3に調整した溶液で0.25wt%溶液を調製。
3−イソシアネートプロピルトリエトキシシラン(信越化学株式会社製 KBE−9007):純水に硫酸を添加してpH3に調整した溶液で0.2wt%溶液を調製。
3−ウレイドプロピルトリエトキシシラン(信越化学株式会社製 KBE−585):エタノールと純水を1:1で混合した溶液で0.3wt%溶液を調製。
3-Glycidoxypropylmethyldimethoxysilane (KBM-402 manufactured by Shin-Etsu Chemical Co., Ltd.): A 0.3 wt% solution is prepared with pure water.
3-aminopropyltrimethoxysilane (KBM-903, manufactured by Shin-Etsu Chemical Co., Ltd.): A 0.25 wt% solution was prepared with pure water.
Vinyltrimethoxysilane (KBE-1003 manufactured by Shin-Etsu Chemical Co., Ltd.): A 0.2 wt% solution was prepared with a solution adjusted to pH 3 by adding sulfuric acid to pure water.
3-Methacryloxypropylmethyldimethoxysilane (KBM-502 manufactured by Shin-Etsu Chemical Co., Ltd.): A 0.25 wt% solution was prepared with a solution adjusted to pH 3 by adding sulfuric acid to pure water.
3-isocyanatopropyltriethoxysilane (KBE-9007 manufactured by Shin-Etsu Chemical Co., Ltd.): A 0.2 wt% solution was prepared with a solution adjusted to pH 3 by adding sulfuric acid to pure water.
3-ureidopropyltriethoxysilane (KBE-585, manufactured by Shin-Etsu Chemical Co., Ltd.): A 0.3 wt% solution is prepared with a solution in which ethanol and pure water are mixed at a ratio of 1: 1.

[粗化粒子の平均高さの測定]
粗化処理面における粗化粒子の平均高さは、イオンミリング処理することで得られた銅箔の厚み方向と平行な断面をSEM観察することで求めた。詳細を以下に説明する。
図1は、比較例6で製造した表面処理銅箔の粗化処理面(シランカップリング剤処理後の表面)の厚み方向に平行な断面のSEM像である。同様に、各銅箔の断面において、視野内に粗化粒子の頭頂部と底部が確認でき、かつ、粗化粒子が10個前後含まれるような倍率で、無作為に異なる5視野についてSEM観察した。一つの銅箔の5つの視野毎に、高さの最も高い粗化粒子の当該高さを測定し、得られた5つの測定値(最大値)の平均を、その銅箔の粗化処理面における粗化粒子の平均高さとした。
粗化粒子の高さの測定方法を、図面を用いて詳細に説明する。図1に示されるように、測定対象とする粗化粒子について、左右の最底部を結んだ直線(a点とb点を結んだ直線)との最短距離が最も長い、当該粗化粒子の頭頂部(c点)と、a点とb点を結んだ直線との最短距離を、粗化粒子の高さHとした。
図2は、実施例2で製造した表面処理銅箔の粗化処理面(シランカップリング処理後の表面)の厚み方向に平行な断面のSEM像である。このように粗化粒子が枝分かれして形成されている場合には、枝分かれ構造を含めた全体を、1つの粗化粒子とみなす。すなわち、樹枝状に形成した粗化粒子の左右の最底部を結んだ直線(d点とe点を結んだ直線)との最短距離が最も長い、当該粗化粒子の頭頂部(f点)と、d点とe点を結んだ直線との最短距離を、粗化粒子の高さHとした。
結果を下記表3に示す。
[Measurement of average height of roughened particles]
The average height of the roughened particles on the roughened surface was obtained by SEM observation of a cross section parallel to the thickness direction of the copper foil obtained by ion milling. Details will be described below.
FIG. 1 is a SEM image of a cross section parallel to the thickness direction of the roughened surface (surface after silane coupling agent treatment) of the surface-treated copper foil produced in Comparative Example 6. Similarly, in the cross section of each copper foil, the top and bottom of the roughened particles can be confirmed within the field of view, and SEM observation is performed for five different fields of view at a magnification that includes about 10 roughened particles. did. For each of the five fields of view of one copper foil, the height of the roughened particles having the highest height is measured, and the average of the five measured values (maximum values) obtained is the roughened surface of the copper foil. The average height of roughened particles in
A method for measuring the height of the roughened particles will be described in detail with reference to the drawings. As shown in FIG. 1, the rough particle to be measured has the longest shortest distance from the straight line connecting the left and right bottoms (the straight line connecting points a and b) of the rough particle to be measured. The shortest distance between the top (point c) and the straight line connecting points a and b was defined as the height H of the roughened particles.
2 is an SEM image of a cross section parallel to the thickness direction of the roughened surface (surface after silane coupling treatment) of the surface-treated copper foil produced in Example 2. FIG. When the roughened particles are branched and formed in this way, the whole including the branched structure is regarded as one roughened particle. That is, the top of the roughened particles (point f) having the longest shortest distance from the straight line connecting the left and right bottoms of the roughened particles formed in a dendritic shape (straight line connecting points d and e) The shortest distance between the point d and the straight line connecting the points e was defined as the height H of the roughened particles.
The results are shown in Table 3 below.

[BET表面積比Aの測定]
BET表面積比Aは、BET法により測定される粗化処理面の表面積(BET測定表面積)を、平面視面積となる試料切り出し面積で除することで算出される。
BET測定表面積は、マイクロメリティクス社製ガス吸着細孔分布測定装置ASAP2020型を使用して、クリプトンガス吸着BET多点法により測定した。測定前に、前処理として150℃で6時間の減圧乾燥を行った。
測定に使用する試料(銅箔)は、およそ3gとなる3dmを切り出して、5mm角に切り分けた後、測定装置内に導入した。
BET法による表面積測定では装置内に導入した試料全面の表面積を測定するため、片面を粗化処理した上記の表面処理銅箔における当該粗化処理面のみの表面積を測定することはできない。そこで、BET表面積比Aは、実際には下記式により算出した。
[Measurement of BET surface area ratio A]
The BET surface area ratio A is calculated by dividing the surface area of the roughened surface (BET measurement surface area) measured by the BET method by the sample cut-out area that is the planar view area.
The BET measurement surface area was measured by a krypton gas adsorption BET multipoint method using a gas adsorption pore distribution measuring device ASAP2020 manufactured by Micromeritics. Prior to measurement, vacuum drying was performed at 150 ° C. for 6 hours as a pretreatment.
A sample (copper foil) used for the measurement was cut into 3 dm 2 to be approximately 3 g, cut into 5 mm squares, and then introduced into the measuring apparatus.
In the surface area measurement by the BET method, since the surface area of the entire surface of the sample introduced into the apparatus is measured, it is not possible to measure the surface area of only the roughened surface in the surface-treated copper foil subjected to the roughening treatment on one side. Therefore, the BET surface area ratio A was actually calculated by the following formula.

<BET表面積比A>
粗化処理が施されていない面(上記粗化処理面とは反対側の面)の表面積比を1、つまり試料切り出し面積と同一であるとみなし、下記式によりBET表面積比Aを算出した。
(BET表面積比A)=[(BET測定表面積)−(試料切り出し面積)]/(試料切り出し面積)
<BET surface area ratio A>
The surface area ratio of the surface not subjected to the roughening treatment (surface opposite to the roughening treatment surface) was regarded as 1, that is, the same as the sample cut-out area, and the BET surface area ratio A was calculated by the following formula.
(BET surface area ratio A) = [(BET measurement surface area) − (sample cutout area)] / (sample cutout area)

尚、BET法の表面積測定では粗化処理面及び粗化処理が施されていない面以外の面(
側面)の表面積も測定されるが、本発明の想定している最も厚い箔厚である120μmであってもその割合は全平面視面積の5%未満であるので、事実上無視できる。
In addition, in the surface area measurement of the BET method, a surface other than the roughened surface and the surface that has not been roughened (
The surface area of the side surface) is also measured, but even if it is 120 μm, which is the thickest foil thickness assumed by the present invention, the ratio is less than 5% of the total planar view area, so it can be virtually ignored.

参考例1のように、表面が粗化処理されていないものでは、BET法の測定原理に起因し、BET測定表面積が切り出し面積よりも小さくなることがある(つまり、BET表面積比Aが1未満となることがある)。一方、粗化処理により微細な凹凸を有する表面を形成した場合には、BET法を適用することにより、微細な凹凸等を高感度に検出することが可能となり、結果、BET表面積比Aは1を超えるようになる。   When the surface is not roughened as in Reference Example 1, the BET measurement surface area may be smaller than the cut-out area due to the measurement principle of the BET method (that is, the BET surface area ratio A is less than 1). Sometimes). On the other hand, when a surface having fine irregularities is formed by the roughening treatment, it is possible to detect fine irregularities and the like with high sensitivity by applying the BET method. As a result, the BET surface area ratio A is 1 It will be over.

[レーザー表面積比Bの測定]
レーザー表面積比Bは、レーザーマイクロスコープVK8500(キーエンス社製)を用いた表面積測定値に基づき算出した。より詳細には、試料(銅箔)の粗化処理面を、倍率1000倍で観察し、平面視面積6550μm部分の三次元表面積を測定して、当該三次元表面積を6550μmで除することにより、レーザー表面積比Bを求めた。測定ピッチは0.01μmとした。結果を表3に示す。
[Measurement of laser surface area ratio B]
The laser surface area ratio B was calculated based on the measured surface area using a laser microscope VK8500 (manufactured by Keyence Corporation). More particularly, the roughening treated surface of the sample (copper foil), and observed at a magnification 1000 times, to measure the three-dimensional surface area of the plan view area 6550Myuemu 2 portions, dividing the three-dimensional surface area 6550Myuemu 2 Thus, the laser surface area ratio B was determined. The measurement pitch was 0.01 μm. The results are shown in Table 3.

[微細表面係数Cmsの計算]
微細表面係数Cmsは、上記BET表面積比Aと上記レーザー表面積比Bを用いて下記式に基づき算出した。結果を下記表3に示す。

微細表面係数Cms=BET表面積比A/レーザー表面積比B
[Calculation of fine surface coefficient Cms]
The fine surface coefficient Cms was calculated based on the following formula using the BET surface area ratio A and the laser surface area ratio B. The results are shown in Table 3 below.

Fine surface coefficient Cms = BET surface area ratio A / laser surface area ratio B

[Siの測定]
粗化処理面のSi元素量(μg/dm)は(すなわち、シランカップリング剤層に含有されるSi元素量は)、試料の粗化めっき処理を行っていない面を塗料でマスキングした後10cm角に切り出し、80℃に加温した混合酸(硝酸2:塩酸1:純水5(体積比))で表面部のみを溶解した後、得られた溶液中のSi質量を日立ハイテクサイエンス社製の原子吸光光度計(型式:Z−2300)を用いて原子吸光分析法により定量分析を行って求めた。結果を下記表3にSi元素量として示す。
[Measurement of Si]
The amount of Si element (μg / dm 2 ) on the roughened surface (that is, the amount of Si element contained in the silane coupling agent layer) is obtained after masking the surface of the sample that has not been subjected to roughening plating with a paint. After cutting into a 10 cm square and dissolving only the surface part with a mixed acid (nitric acid 2: hydrochloric acid 1: pure water 5 (volume ratio)) heated to 80 ° C., the Si mass in the resulting solution was determined by Hitachi High-Tech Science Corporation. It was determined by quantitative analysis by atomic absorption spectrometry using an atomic absorption spectrophotometer (model: Z-2300). The results are shown in Table 3 below as the amount of Si element.

[明度指数Lの測定]
明度指数Lは、JIS−Z8729に規定される表色系LにおけるLである。明度指数Lの測定には、日本分光製紫外可視分光光度計V−660(積分球ユニット)を使用した。波長870〜200nmの間で粗化処理面の全光線分光反射率を測定した。得られたスペクトルから、測定機付属ソフトウェアにより明度指数L値を算出し、表3に示した。
[Measurement of brightness index L * ]
Lightness index L * is L * in JIS-Z8729 color system as defined in L * a * b *. For measurement of the lightness index L *, an ultraviolet-visible spectrophotometer V-660 (integrating sphere unit) manufactured by JASCO Corporation was used. The total light spectral reflectance of the roughened surface was measured between wavelengths 870 and 200 nm. From the obtained spectrum, the lightness index L * value was calculated by the software attached to the measuring instrument and is shown in Table 3.

[高周波特性の評価]
高周波特性の評価として高周波帯域での伝送損失を測定した。上記各実施例及び比較例で製造した、粗化処理面を有する表面処理銅箔の当該粗化処理面(シランカップリング剤で処理された面)を、パナソニック社製のポリフェニレンエーテル系低誘電率樹脂基材であるMEGTRON6(厚さ50〜100μm)に面圧3MPa、200℃の条件で2時間プレスすることにより張り合わせて銅張積層版を作製した。得られた積層版に回路加工を行い、その上にさらにMEGTRON6を張り合わせて最終的に3層の銅張積層版とした。伝送路は幅100μm、長さ40mmのマイクロストリップラインを形成させた。この伝送路に、ネットワークアナライザを用いて100GHzまでの高周波信号を伝送し、伝送損失を測定した。特性インピーダンスは50Ωとした。
伝送損失の測定値は、絶対値が小さいほど伝送損失が少なく、高周波特性が良好であることを意味する。表4には20GHzと70GHzにおける伝送損失の評価結果を記載する。その評価基準は下記の通りである。
<20GHzの伝送損失評価基準>
◎:伝送損失が−6.2dB以上
○:伝送損失が−6.2dB未満から−6.5dB以上
×:伝送損失が−6.5dB未満
<70GHzの伝送損失評価基準>
◎:伝送損失が−20.6dB以上
○:伝送損失が−20.6dB未満から−24.0dB以上
×:−24.0dB未満
[Evaluation of high frequency characteristics]
As an evaluation of high frequency characteristics, transmission loss in the high frequency band was measured. The roughened surface (surface treated with a silane coupling agent) of the surface-treated copper foil having a roughened surface produced in each of the above examples and comparative examples is a polyphenylene ether-based low dielectric constant manufactured by Panasonic Corporation. A copper-clad laminate was prepared by pressing the resin base material MEGTRON 6 (thickness 50 to 100 μm) for 2 hours under conditions of a surface pressure of 3 MPa and 200 ° C. Circuit processing was performed on the obtained laminated plate, and MEGRON 6 was further laminated thereon to finally form a three-layer copper-clad laminate. The transmission line was a microstrip line having a width of 100 μm and a length of 40 mm. A high frequency signal up to 100 GHz was transmitted to this transmission line using a network analyzer, and the transmission loss was measured. The characteristic impedance was 50Ω.
The measured value of transmission loss means that the smaller the absolute value, the smaller the transmission loss and the better the high frequency characteristics. Table 4 lists the evaluation results of transmission loss at 20 GHz and 70 GHz. The evaluation criteria are as follows.
<20 GHz transmission loss evaluation criteria>
◎: Transmission loss is −6.2 dB or more ○: Transmission loss is less than −6.2 dB to −6.5 dB or more ×: Transmission loss is less than −6.5 dB <70 GHz transmission loss evaluation criteria>
A: Transmission loss is −20.6 dB or more ○: Transmission loss is less than −20.6 dB to −24.0 dB or more ×: Less than −24.0 dB

さらに、上記伝送損失の評価結果に基づき、下記評価基準に基づき高周波特性を総合評価した。結果を下記表4に示す。
<高周波特性総合評価基準>
◎(優良):20GHzの伝送損失と70GHzの伝送損失の評価結果がいずれも◎である。
○(良):20GHzの伝送損失の評価結果が◎で、70GHzの伝送損失の評価結果が○である。
△(合格):70GHzの伝送損失の評価結果が×であるが、20GHzの伝送損失が◎又は○である。
×(不合格):20GHzの伝送損失と70GHzの伝送損失の評価結果がいずれも×である。
Furthermore, based on the evaluation result of the transmission loss, high frequency characteristics were comprehensively evaluated based on the following evaluation criteria. The results are shown in Table 4 below.
<High-frequency characteristics comprehensive evaluation criteria>
A (excellent): The evaluation results of the transmission loss of 20 GHz and the transmission loss of 70 GHz are both A.
○ (good): The evaluation result of the transmission loss at 20 GHz is “◎”, and the evaluation result of the transmission loss at 70 GHz is “◯”.
Δ (pass): The evaluation result of the transmission loss at 70 GHz is “x”, but the transmission loss at 20 GHz is “◎” or “◯”.
X (failure): The evaluation results of the transmission loss of 20 GHz and the transmission loss of 70 GHz are both x.

[視認性の評価]
視認性の評価として、曇り度(ヘイズ値)の測定を行った。実施例及び比較例にて製造したサンプルの粗化処理面を樹脂接着面として株式会社カネカ製のラミネート用ポリイミドであるPIXEO(FRS−522、厚さ12.5μm)の両面に張り合わせ銅張積層板を作製した。それらの銅張積層板について、両面に張り合わせられた銅箔を塩化銅水溶液によるエッチングで除去して、ヘイズ測定用サンプルフィルムを作製した。
作製したサンプルフィルムについて、日本分光製紫外可視分光光度計V−660(積分球ユニット)を使用し、JIS K 7136:2000に記載の方法に基づきヘイズを測定した。(Td/Tt)×100(%)をヘイズ値として算出した(Tt:全光線透過率、Td:拡散透過率)。
ヘイズ値はサンプルフィルムの曇り度を表しており、数値が小さくなるほど曇り度が低く、視認性としては良好である。かかる視認性を下記評価基準に基づき評価した。結果を下記表4に示す。
<視認性の評価基準>
◎:ヘイズ値が30%未満
○:ヘイズ値が30%以上60%未満
△:ヘイズ値が60%以上80%未満
×:ヘイズ値が80%以上
[Evaluation of visibility]
As an evaluation of visibility, the haze (haze value) was measured. Copper-clad laminates laminated on both sides of PIXEO (FRS-522, thickness 12.5 μm), which is a polyimide for laminating manufactured by Kaneka Co., Ltd., with the roughened surface of the samples produced in Examples and Comparative Examples as the resin-bonded surface. Was made. About those copper clad laminated boards, the copper foil bonded on both surfaces was removed by etching with an aqueous copper chloride solution to prepare a sample film for haze measurement.
About the produced sample film, the haze was measured based on the method as described in JISK7136: 2000 using the JASCO-made ultraviolet visible spectrophotometer V-660 (integral sphere unit). (Td / Tt) × 100 (%) was calculated as a haze value (Tt: total light transmittance, Td: diffuse transmittance).
The haze value represents the haze of the sample film. The smaller the value, the lower the haze and the better the visibility. Such visibility was evaluated based on the following evaluation criteria. The results are shown in Table 4 below.
<Evaluation criteria for visibility>
◎: Haze value is less than 30% ○: Haze value is 30% or more and less than 60% Δ: Haze value is 60% or more and less than 80% ×: Haze value is 80% or more

視認性が◎、○又は△であれば、実用上許容できる視認性であるといえる。   If the visibility is ◎, ○ or Δ, it can be said that the visibility is acceptable in practice.

[密着性の評価−1]
密着性は、剥離試験により評価した。上記[高周波特性の評価]で作製した銅張積層板と同様にして銅張積層板を作製し、得られた銅張積層板の銅箔部を10mm巾テープでマスキングした。この銅張積層板に対して塩化銅エッチングを行った後テープを除去し、10mm巾の回路配線板を作製した。東洋精機製作所社製のテンシロンテスターを用いて、この回路配線板の10mm巾の回路配線部分(銅箔部分)を90度方向に50mm/分の速度で樹脂基材から剥離した際の剥離強度を測定した。得られた測定値を指標にして、下記評価基準に基づき密着性を評価した。尚、MEGTRON6樹脂はPIXEO樹脂と比較して密着性へのアンカー効果の寄与が大きい。結果を下記表4に示す。
<密着性の評価基準>
○:剥離強度が0.6kN/m以上
△:剥離強度が0.5kN/m以上0.6kN/m未満
×:剥離強度が0.5kN/m未満
[Evaluation of adhesion-1]
Adhesion was evaluated by a peel test. A copper-clad laminate was produced in the same manner as the copper-clad laminate produced in [Evaluation of high-frequency characteristics], and the copper foil part of the obtained copper-clad laminate was masked with a 10 mm width tape. The copper-clad laminate was etched with copper chloride, and then the tape was removed to prepare a circuit wiring board having a width of 10 mm. Using a Tensilon tester manufactured by Toyo Seiki Seisakusho Co., Ltd., peel strength when peeling a 10 mm wide circuit wiring portion (copper foil portion) of this circuit wiring board from a resin base material at a speed of 50 mm / min in a 90 degree direction. It was measured. Using the obtained measured value as an index, the adhesion was evaluated based on the following evaluation criteria. Note that the MEGRON 6 resin has a greater contribution to the anchoring effect on adhesion than the PIXEO resin. The results are shown in Table 4 below.
<Adhesion evaluation criteria>
○: Peel strength is 0.6 kN / m or more Δ: Peel strength is 0.5 kN / m or more and less than 0.6 kN / m ×: Peel strength is less than 0.5 kN / m

[密着性の評価−2]
上記[視認性の評価]で作製した銅張積層板と同様にして銅張積層板を作製し、得られた銅張積層板の銅箔部を10mm巾テープでマスキングした。この銅張積層板に対して塩化銅エッチングを行った後テープを除去し、10mm巾の回路配線板を作製した。東洋精機製作所社製のテンシロンテスターを用いて、この回路配線板の10mm巾の回路配線部分(銅箔部分)を90度方向に50mm/分の速度で樹脂基材から剥離した際の剥離強度を測定した。得られた測定値を指標にして、下記評価基準に基づき密着性を評価した。結果を下記表4に示す。
<密着性の評価基準>
○:剥離強度が1kN/m以上
×:剥離強度が1kN/m未満
[Evaluation of adhesion-2]
A copper-clad laminate was produced in the same manner as the copper-clad laminate produced in the above [Evaluation of visibility], and the copper foil part of the obtained copper-clad laminate was masked with a 10 mm width tape. The copper-clad laminate was etched with copper chloride, and then the tape was removed to prepare a circuit wiring board having a width of 10 mm. Using a Tensilon tester manufactured by Toyo Seiki Seisakusho Co., Ltd., peel strength when peeling a 10 mm wide circuit wiring portion (copper foil portion) of this circuit wiring board from a resin base material at a speed of 50 mm / min in a 90 degree direction. It was measured. Using the obtained measured value as an index, the adhesion was evaluated based on the following evaluation criteria. The results are shown in Table 4 below.
<Adhesion evaluation criteria>
○: Peel strength is 1 kN / m or more ×: Peel strength is less than 1 kN / m

さらに、上記密着性の評価結果に基づき、下記評価基準に基づき密着性を総合評価した。結果を下記表4に示す。
<密着性総合評価基準>
◎(優良):上記[密着性の評価−1]及び[密着性の評価−2]の両評価結果が○である。
○(合格):上記[密着性の評価−1]の評価結果が△であり、上記[密着性の評価−2]の評価結果が○である。
×(不合格):上記[密着性の評価−1]及び[密着性の評価−2]の少なくともいずれか一方の評価結果が×である。
Furthermore, based on the said evaluation result of adhesiveness, adhesiveness was comprehensively evaluated based on the following evaluation criteria. The results are shown in Table 4 below.
<Adhesion comprehensive evaluation criteria>
A (excellent): Both evaluation results of [Adhesion Evaluation-1] and [Adhesion Evaluation-2] are ◯.
○ (Pass): The evaluation result of [Adhesion Evaluation-1] is Δ, and the evaluation result of [Adhesion Evaluation-2] is ○.
X (failure): The evaluation result of at least one of [Adhesion evaluation-1] and [Adhesion evaluation-2] is x.

[総合評価]
上記の高周波特性、視認性及び密着性のすべてを総合し、下記評価基準に基づき総合評価した。
<総合評価の評価基準>
A(優良):高周波特性の総合評価、視認性の評価及び密着性の総合評価の結果がいずれも◎である。
B:(合格):上記Aを満たさないが、高周波特性の総合評価、視認性の評価及び密着性の総合評価の結果において×がない。
C(不合格):高周波特性の総合評価、視認性の評価、及び密着性の総合評価の少なくとも1つの評価結果が×である。
[Comprehensive evaluation]
All of the above high-frequency characteristics, visibility, and adhesiveness were synthesized and comprehensively evaluated based on the following evaluation criteria.
<Evaluation criteria for comprehensive evaluation>
A (excellent): The results of overall evaluation of high-frequency characteristics, evaluation of visibility, and comprehensive evaluation of adhesion are all “密 着”.
B: (Accepted): The above A is not satisfied, but there is no x in the results of the comprehensive evaluation of the high frequency characteristics, the evaluation of the visibility, and the comprehensive evaluation of the adhesion.
C (failure): At least one evaluation result of comprehensive evaluation of high-frequency characteristics, evaluation of visibility, and comprehensive evaluation of adhesion is x.

上記各表に示された結果について考察する。
比較例1は、表面処理銅箔の粗化処理面に存在する粗化粒子の平均高さが本発明で規定するよりも小さい例である。比較例1の表面処理銅箔を用いて銅張積層板を作製した場合には、銅箔と樹脂基材との密着性に劣る結果となった。
比較例2、3及び7は、表面処理銅箔の粗化処理面のBET表面積比及びCmsのいずれも本発明で規定するよりも小さい例である。比較例2、3及び7の表面処理銅箔を用いて銅張積層板を作製した場合には、銅箔と樹脂基材との密着性に劣る結果となった。
比較例4及び5は、表面処理銅箔の粗化処理面に存在する粗化粒子の平均高さが本発明で規定するよりも大きい例である。比較例4及び5の表面処理銅箔を用いて銅張積層板を作製し、導体回路を形成した場合には、高周波特性及び視認性のいずれにも大きく劣る結果となった。
比較例6はCmsが本発明で規定するよりも小さい例である。比較例6の表面処理銅箔を用いて銅張積層板を作製した場合、密着性へのアンカー効果の寄与が大きいMEGTRON6樹脂では密着性に劣る結果となった。
また、参考例1は、銅箔に粗化処理を施しておらず、さらに金属処理層の形成もシランカップリング剤処理も行っていない例である。参考例1の銅箔を用いて銅張積層板を作製した場合には、銅箔と樹脂基材との密着性に大きく劣る結果となった。
Consider the results shown in the above tables.
Comparative Example 1 is an example in which the average height of the roughened particles present on the roughened surface of the surface-treated copper foil is smaller than that defined in the present invention. When the copper clad laminated board was produced using the surface-treated copper foil of the comparative example 1, it was inferior to the adhesiveness of copper foil and a resin base material.
Comparative Examples 2, 3 and 7 are examples in which both the BET surface area ratio and Cms of the roughened surface of the surface-treated copper foil are smaller than those defined in the present invention. When the copper clad laminated board was produced using the surface-treated copper foils of Comparative Examples 2, 3 and 7, the adhesion between the copper foil and the resin base material was inferior.
Comparative Examples 4 and 5 are examples in which the average height of the roughened particles existing on the roughened surface of the surface-treated copper foil is larger than that defined in the present invention. When copper-clad laminates were produced using the surface-treated copper foils of Comparative Examples 4 and 5 and a conductor circuit was formed, the results were greatly inferior in both high-frequency characteristics and visibility.
Comparative Example 6 is an example in which Cms is smaller than that defined in the present invention. When a copper-clad laminate was produced using the surface-treated copper foil of Comparative Example 6, MEGRON 6 resin, which greatly contributes to the anchor effect on adhesion, resulted in poor adhesion.
Reference Example 1 is an example in which the copper foil is not subjected to a roughening treatment, and further, neither a metal treatment layer is formed nor a silane coupling agent treatment is performed. When the copper clad laminated board was produced using the copper foil of the reference example 1, it became a result inferior to the adhesiveness of copper foil and a resin base material greatly.

これに対し、表面処理銅箔の粗化処理面に形成された粗化粒子の平均高さが本発明で規定する範囲内にあり、且つ、当該粗化処理面のBET表面積比及びCmsも本発明で規定を満たす実施例1〜8の表面処理銅箔は、これを用いて銅張積層板を作製した際には、銅箔と樹脂基材との密着性に優れていた。また、実施例1〜8の表面処理銅箔を用いた銅張積層板から形成した導体回路は高周波信号を伝送しても伝送損失が効果的に抑えられ、さらに実施例1〜8の表面処理銅箔を積層して密着させた樹脂基材は、その後銅箔をエッチングにより取り除いた際に、良好な視認性を示した。   In contrast, the average height of the roughened particles formed on the roughened surface of the surface-treated copper foil is within the range defined by the present invention, and the BET surface area ratio and Cms of the roughened surface are also present. The surface-treated copper foils of Examples 1 to 8 that satisfy the specifications in the invention were excellent in adhesion between the copper foil and the resin base material when a copper-clad laminate was produced using this. Moreover, the conductor circuit formed from the copper clad laminated board using the surface-treated copper foil of Examples 1-8 can suppress transmission loss effectively, even if it transmits a high frequency signal, Furthermore, the surface treatment of Examples 1-8 The resin base material on which the copper foil was laminated and adhered showed good visibility when the copper foil was removed by etching thereafter.

Claims (8)

粗化めっき処理により粗化粒子が形成された表面にシランカップリング剤層を有するプリント配線板用表面処理銅箔であって、
前記シランカップリング剤層表面において、粗化粒子の平均高さが0.05μm以上0.5μm未満であり、
前記シランカップリング剤層表面のBET表面積比が1.2以上、微細表面係数Cmsが2.0以上8.0未満である、プリント配線板用表面処理銅箔。
A surface-treated copper foil for a printed wiring board having a silane coupling agent layer on the surface on which roughened particles are formed by roughening plating ,
On the surface of the silane coupling agent layer, the average height of the roughened particles is 0.05 μm or more and less than 0.5 μm,
A surface-treated copper foil for a printed wiring board, wherein a BET surface area ratio on the surface of the silane coupling agent layer is 1.2 or more and a fine surface coefficient Cms is 2.0 or more and less than 8.0.
前記シランカップリング剤層表面において、粗化粒子の平均高さが0.05μm以上0.3μm未満である、請求項1に記載のプリント配線板用表面処理銅箔。   The surface-treated copper foil for printed wiring boards of Claim 1 whose average height of a roughening particle is 0.05 micrometer or more and less than 0.3 micrometer on the said silane coupling agent layer surface. 前記シランカップリング剤層表面の、L表色系におけるLが40以上60未満である、請求項1又は2に記載のプリント配線板用表面処理銅箔。 The silane coupling agent layer surface, L * a * b * L * in the color system is less than 40 or more 60, claim 1 or 2 for a printed circuit board surface-treated copper foil according to. 前記の粗化粒子が形成された表面が、クロム、鉄、コバルト、ニッケル、銅、亜鉛、モリブデン、及びスズから選ばれる少なくとも1種の金属を有する金属処理層を有するか、又は、クロム、鉄、コバルト、ニッケル、銅、亜鉛、モリブデン、及びスズから選ばれる2種以上の金属からなる合金を有する金属処理層を有する、請求項1〜3のいずれか1項に記載のプリント配線板用表面処理銅箔。   The surface on which the roughened particles are formed has a metal treatment layer having at least one metal selected from chromium, iron, cobalt, nickel, copper, zinc, molybdenum, and tin, or chromium, iron The surface for printed wiring boards of any one of Claims 1-3 which has a metal treatment layer which has an alloy which consists of 2 or more types of metals chosen from cobalt, nickel, copper, zinc, molybdenum, and tin Treated copper foil. 前記シランカップリング剤層に含有されるSi元素量が0.5μg/dm以上15μg/dm未満である、請求項1〜4のいずれか1項に記載のプリント配線板用表面処理銅箔。 The surface-treated copper foil for printed wiring boards according to any one of claims 1 to 4, wherein an amount of Si element contained in the silane coupling agent layer is 0.5 µg / dm 2 or more and less than 15 µg / dm 2. . 前記シランカップリング剤が、エポキシ基、アミノ基、ビニル基、(メタ)アクリロイル基、スチリル基、ウレイド基、イソシアヌレート基、メルカプト基、スルフィド基、及びイソシアネート基から選ばれる少なくとも1種の官能基を有する、請求項1〜5のいずれか1項に記載のプリント配線板用表面処理銅箔。   The silane coupling agent is at least one functional group selected from an epoxy group, an amino group, a vinyl group, a (meth) acryloyl group, a styryl group, a ureido group, an isocyanurate group, a mercapto group, a sulfide group, and an isocyanate group. The surface-treated copper foil for printed wiring boards of any one of Claims 1-5 which has these. 請求項1〜6のいずれか1項に記載のプリント配線板用表面処理銅箔の、前記シランカップリング剤層表面に、樹脂層が積層されてなるプリント配線板用銅張積層板。   The copper clad laminated board for printed wiring boards by which the resin layer is laminated | stacked on the said silane coupling agent layer surface of the surface treatment copper foil for printed wiring boards of any one of Claims 1-6. 請求項7に記載のプリント配線板用銅張積層板を用いたプリント配線板。
The printed wiring board using the copper clad laminated board for printed wiring boards of Claim 7.
JP2015240007A 2015-12-09 2015-12-09 Surface-treated copper foil for printed wiring board, copper-clad laminate for printed wiring board, and printed wiring board Active JP6294862B2 (en)

Priority Applications (5)

Application Number Priority Date Filing Date Title
JP2015240007A JP6294862B2 (en) 2015-12-09 2015-12-09 Surface-treated copper foil for printed wiring board, copper-clad laminate for printed wiring board, and printed wiring board
CN201680004945.8A CN107109679B (en) 2015-12-09 2016-12-06 Printed wiring board surface treatment copper foil, printed wiring board copper clad laminate and printed wiring board
KR1020177027515A KR102054281B1 (en) 2015-12-09 2016-12-06 Surface-treated copper foil for printed wiring boards, copper clad laminates for printed wiring boards and printed wiring boards
PCT/JP2016/086281 WO2017099093A1 (en) 2015-12-09 2016-12-06 Surface-treated copper foil for printed circuit board, copper-clad laminate for printed circuit board, and printed circuit board
TW105140617A TWI645759B (en) 2015-12-09 2016-12-08 Surface-treated copper foil for printed wiring board, copper-clad laminated board for printed wiring board, and printed wiring board

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2015240007A JP6294862B2 (en) 2015-12-09 2015-12-09 Surface-treated copper foil for printed wiring board, copper-clad laminate for printed wiring board, and printed wiring board

Publications (2)

Publication Number Publication Date
JP2017106069A JP2017106069A (en) 2017-06-15
JP6294862B2 true JP6294862B2 (en) 2018-03-14

Family

ID=59013245

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2015240007A Active JP6294862B2 (en) 2015-12-09 2015-12-09 Surface-treated copper foil for printed wiring board, copper-clad laminate for printed wiring board, and printed wiring board

Country Status (5)

Country Link
JP (1) JP6294862B2 (en)
KR (1) KR102054281B1 (en)
CN (1) CN107109679B (en)
TW (1) TWI645759B (en)
WO (1) WO2017099093A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
LU101698B1 (en) 2020-03-18 2021-09-20 Circuit Foil Luxembourg Surface-treated copper foil for high-frequency circuit and method for producing same

Families Citing this family (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2018090906A (en) * 2016-12-06 2018-06-14 Jx金属株式会社 Surface-treated copper foil, copper foil with carrier, laminate, method for producing printed wiring board, and method for producing electronic device
JP2018172782A (en) * 2017-03-31 2018-11-08 Jx金属株式会社 Surface-treated copper foil, surface-treated copper foil with resin layer, laminate, method for producing printed wiring board and method for producing electronic apparatus
CN110546313A (en) * 2017-04-25 2019-12-06 古河电气工业株式会社 Surface treated copper foil
JP6965660B2 (en) * 2017-09-26 2021-11-10 昭和電工マテリアルズ株式会社 Method for quantifying the surface condition, method for evaluating the bonding characteristics, and method for manufacturing the bonded body
JP7040056B2 (en) * 2017-09-28 2022-03-23 株式会社Gsユアサ Lead-acid battery
KR102390417B1 (en) * 2017-12-05 2022-04-22 후루카와 덴키 고교 가부시키가이샤 Surface-treated copper foil and copper clad laminate and printed wiring board using the same
JP6413039B1 (en) * 2018-03-29 2018-10-24 Jx金属株式会社 Surface treated copper foil and copper clad laminate
JP7251928B2 (en) * 2018-06-05 2023-04-04 Jx金属株式会社 Surface treated copper foil, copper clad laminate and printed wiring board
TWI656682B (en) * 2018-10-16 2019-04-11 長春石油化學股份有限公司 Electrolytic copper foil, electrode comprising the same, and lithium ion battery comprising the same
US11365486B2 (en) 2018-10-16 2022-06-21 Chang Chun Petrochemical Co., Ltd. Electrolytic copper foil, electrode comprising the same, and lithium ion battery comprising the same
JP7463831B2 (en) 2019-05-13 2024-04-09 大日本印刷株式会社 Laminate
CN110344105B (en) * 2019-08-05 2020-10-09 中色奥博特铜铝业有限公司 Double-sided surface treatment method of rolled copper foil
CN111364032A (en) * 2020-04-22 2020-07-03 山东金宝电子股份有限公司 Surface treating agent for copper foil for high-frequency high-speed copper-clad plate
CN111640845A (en) * 2020-05-29 2020-09-08 旭宇光电(深圳)股份有限公司 Deep ultraviolet LED light source and packaging method thereof
CN113099605B (en) * 2021-06-08 2022-07-12 广州方邦电子股份有限公司 Metal foil, metal foil with carrier, copper-clad laminate, and printed wiring board

Family Cites Families (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4833556A (en) 1971-09-03 1973-05-11
US4185781A (en) 1978-01-16 1980-01-29 Spraying Systems Co. Quick-disconnect nozzle connection
CN1301046C (en) 2002-05-13 2007-02-14 三井金属鉱业株式会社 Flexible printed wiring board for chip-on-film
CN1316066C (en) * 2002-06-04 2007-05-16 三井金属矿业株式会社 Surface treatment copper foil for low dielectric substrate, copper clad laminate including the same and printed wiring board
JP4570070B2 (en) * 2004-03-16 2010-10-27 三井金属鉱業株式会社 Electrolytic copper foil with carrier foil provided with resin layer for forming insulating layer, copper-clad laminate, printed wiring board, method for producing multilayer copper-clad laminate, and method for producing printed wiring board
JP5889443B2 (en) * 2013-08-01 2016-03-22 古河電気工業株式会社 Copper foil for printed circuit boards
JP6343204B2 (en) * 2013-08-20 2018-06-13 Jx金属株式会社 Surface-treated copper foil and copper foil with carrier using the same, laminated board, printed wiring board, electronic device, and method for producing printed wiring board
JP2015061757A (en) * 2013-08-21 2015-04-02 Jx日鉱日石金属株式会社 Copper foil with carrier and laminated board, printed wiring board and electronic device using same, as well as method for producing printed wiring board
KR101920976B1 (en) * 2013-09-20 2018-11-21 미쓰이금속광업주식회사 Copper foil, copper foil with carrier foil, and copper-clad laminate
JP5710737B1 (en) * 2013-11-29 2015-04-30 Jx日鉱日石金属株式会社 Surface-treated copper foil, laminated board, printed wiring board, printed circuit board, and electronic equipment
US20160303829A1 (en) * 2013-12-10 2016-10-20 Jx Nippon Mining & Metals Corporation Surface Treated Copper Foil, Copper Clad Laminate, Printed Wiring Board, Electronic Apparatus and Method for Manufacturing Printed Wiring Board

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
LU101698B1 (en) 2020-03-18 2021-09-20 Circuit Foil Luxembourg Surface-treated copper foil for high-frequency circuit and method for producing same
EP3882378A1 (en) 2020-03-18 2021-09-22 Circuit Foil Luxembourg Surface-treated copper foil for high-frequency circuit and method for producing the same

Also Published As

Publication number Publication date
KR20180037133A (en) 2018-04-11
TW201735754A (en) 2017-10-01
JP2017106069A (en) 2017-06-15
CN107109679A (en) 2017-08-29
KR102054281B1 (en) 2019-12-10
WO2017099093A1 (en) 2017-06-15
CN107109679B (en) 2019-10-29
TWI645759B (en) 2018-12-21

Similar Documents

Publication Publication Date Title
JP6294862B2 (en) Surface-treated copper foil for printed wiring board, copper-clad laminate for printed wiring board, and printed wiring board
JP6182584B2 (en) Surface-treated copper foil for printed wiring board, copper-clad laminate for printed wiring board, and printed wiring board
JP5710737B1 (en) Surface-treated copper foil, laminated board, printed wiring board, printed circuit board, and electronic equipment
WO2018110579A1 (en) Surface treated copper foil and copper-clad laminate
JP6149066B2 (en) Surface treated copper foil
KR101998923B1 (en) Treated copper foil for low dielectric resin substrate, and copper-clad laminate and printed writing board using the same
JP5871426B2 (en) Surface treated copper foil for high frequency transmission, laminated plate for high frequency transmission and printed wiring board for high frequency transmission
JP5764700B2 (en) Copper-clad laminate for high-frequency substrates and surface-treated copper foil
JP6632739B2 (en) Surface treated copper foil
JP2015180777A (en) surface-treated copper foil
KR20190049818A (en) Copper foil and copper-clad laminate having the copper foil
JP2016149438A (en) Treatment copper foil, copper-clad laminate using the treatment copper foil, and print circuit board
WO2015033917A1 (en) Surface-processed copper foil, copper clad laminate obtained using such surface-processed copper foil, and printed wiring board
WO2016088884A1 (en) Surface-treated copper foil for forming high frequency signal transmission circuit, copper clad laminate board and printed wiring board
JP2015105440A (en) Surface treated copper foil, laminate, printed wiring board, printed circuit board and electronic apparatus
JP2006351677A (en) Copper foil for high-frequency circuit and its manufacturing method
JP5576514B2 (en) Surface-treated copper foil, laminated board, printed wiring board and printed circuit board
WO2022215330A1 (en) Surface-treated copper foil, and copper-cladded laminate and printed wiring board each using said surface-treated copper foil
TWI687527B (en) Surface treated copper foil and copper clad laminate
KR20230161954A (en) Roughened copper foil, copper clad laminate and printed wiring board
KR20230141859A (en) Roughened copper foil, copper clad laminate and printed wiring board
TW202229651A (en) Surface-treated copper foil, copper-cladded laminate plate, and printed wiring board
JP2014098174A (en) Surface-treated copper foil, laminate using the same, printed wiring board, electronic component and production method of surface-treated copper foil

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20171020

A871 Explanation of circumstances concerning accelerated examination

Free format text: JAPANESE INTERMEDIATE CODE: A871

Effective date: 20171020

A975 Report on accelerated examination

Free format text: JAPANESE INTERMEDIATE CODE: A971005

Effective date: 20171025

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20171121

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20180115

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20180115

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20180130

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20180216

R151 Written notification of patent or utility model registration

Ref document number: 6294862

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350