JP2015105440A - Surface treated copper foil, laminate, printed wiring board, printed circuit board and electronic apparatus - Google Patents

Surface treated copper foil, laminate, printed wiring board, printed circuit board and electronic apparatus Download PDF

Info

Publication number
JP2015105440A
JP2015105440A JP2014236812A JP2014236812A JP2015105440A JP 2015105440 A JP2015105440 A JP 2015105440A JP 2014236812 A JP2014236812 A JP 2014236812A JP 2014236812 A JP2014236812 A JP 2014236812A JP 2015105440 A JP2015105440 A JP 2015105440A
Authority
JP
Japan
Prior art keywords
copper foil
layer
treatment layer
treated
treated copper
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2014236812A
Other languages
Japanese (ja)
Inventor
晃正 森山
Akimasa Moriyama
晃正 森山
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JX Nippon Mining and Metals Corp
Original Assignee
JX Nippon Mining and Metals Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by JX Nippon Mining and Metals Corp filed Critical JX Nippon Mining and Metals Corp
Priority to JP2014236812A priority Critical patent/JP2015105440A/en
Publication of JP2015105440A publication Critical patent/JP2015105440A/en
Pending legal-status Critical Current

Links

Abstract

PROBLEM TO BE SOLVED: To provide: a surface treated copper foil capable of favorably suppressing transmission loss even when used for a high frequency circuit board; a laminate; a printed wiring board; a printed circuit board; and an electronic apparatus.SOLUTION: The surface treated copper foil has a surface treated layer formed on at least one surface. The surface treated layer includes a roughened layer, and the total coating weight of Co, Ni and Fe in the surface treated layer is 986 μg/dmor less, preferably 300 μg/dmor less and more preferably 0 μg/dm. The surface treated layer has a Zn metal layer or an alloyed layer including Zn. A ratio of a three-dimensional surface area to a two-dimensional surface area measured on the surface of the surface treated layer by a laser microscope is 1.0-1.9, and the surface roughness Rz JIS of the at least one surface is 2.2 μm or less.

Description

本発明は、表面処理銅箔、積層板、プリント配線板、プリント回路板及び電子機器に関し、特に高周波回路基板用途に適する表面処理銅箔、積層板、プリント配線板、プリント回路板及び電子機器に関する。   The present invention relates to a surface-treated copper foil, a laminated board, a printed wiring board, a printed circuit board, and an electronic device, and more particularly to a surface-treated copper foil, a laminated board, a printed wiring board, a printed circuit board, and an electronic device suitable for high-frequency circuit board applications. .

プリント配線板はここ半世紀に亘って大きな進展を遂げ、今日ではほぼすべての電子機器に使用されるまでに至っている。近年の電子機器の小型化、高性能化ニーズの増大に伴い搭載部品の高密度実装化や信号の高周波化が進展し、プリント配線板に対して優れた高周波対応が求められている。   Printed wiring boards have made great progress over the last half century and are now used in almost all electronic devices. In recent years, with the increasing demand for miniaturization and high performance of electronic devices, high density mounting of mounted components and high frequency of signals have progressed, and excellent high frequency response is required for printed wiring boards.

高周波用基板には、出力信号の品質を確保するため、伝送損失の低減が求められている。伝送損失は、主に、樹脂(基板側)に起因する誘電体損失と、導体(銅箔側)に起因する導体損失からなっている。誘電体損失は、樹脂の誘電率及び誘電正接が小さくなるほど減少する。高周波信号において、導体損失は、周波数が高くなるほど電流は導体の表面しか流れなくなるという表皮効果によって電流が流れる断面積が減少し、抵抗が高くなることが主な原因となっている。   The high frequency board is required to reduce transmission loss in order to ensure the quality of the output signal. The transmission loss mainly consists of a dielectric loss due to the resin (substrate side) and a conductor loss due to the conductor (copper foil side). The dielectric loss decreases as the dielectric constant and dielectric loss tangent of the resin decrease. In a high-frequency signal, the conductor loss is mainly caused by a decrease in the cross-sectional area through which the current flows due to the skin effect that only the surface of the conductor flows as the frequency increases, and the resistance increases.

高周波用銅箔の伝送損失を低減させる技術としては、例えば、特許文献1に、金属箔表面の片面又は両面に、銀又は銀合金属を被覆し、該銀又は銀合金被覆層の上に、銀又は銀合金以外の被覆層が前記銀又は銀合金被覆層の厚さより薄く施されている高周波回路用金属箔が開示されている。そして、これによれば、衛星通信で使用されるような超高周波領域においても表皮効果による損失を小さくした金属箔を提供することができると記載されている。   As a technique for reducing the transmission loss of the high-frequency copper foil, for example, in Patent Document 1, silver or a silver alloy metal is coated on one or both surfaces of the metal foil surface, and on the silver or silver alloy coating layer, A metal foil for a high frequency circuit is disclosed in which a coating layer other than silver or silver alloy is applied thinner than the thickness of the silver or silver alloy coating layer. And according to this, it is described that it is possible to provide a metal foil in which the loss due to the skin effect is reduced even in an ultra-high frequency region used in satellite communications.

また、特許文献2には、圧延銅箔の再結晶焼鈍後の圧延面でのX線回折で求めた(200)面の積分強度(I(200))が、微粉末銅のX線回折で求めた(200)面の積分強度(I0(200))に対し、I(200)/I0(200)>40であり、該圧延面に電解めっきによる粗化処理を行った後の粗化処理面の算術平均粗さ(以下、Raとする)が0.02μm〜0.2μm、十点平均粗さ(以下、Rzとする)が0.1μm〜1.5μmであって、プリント回路基板用素材であることを特徴とする高周波回路用粗化処理圧延銅箔が開示されている。そして、これによれば、1GHzを超える高周波数下での使用が可能なプリント回路板を提供することができると記載されている。 Patent Document 2 discloses that the integrated intensity (I (200)) of (200) plane obtained by X-ray diffraction on the rolled surface after recrystallization annealing of the rolled copper foil is the X-ray diffraction of fine powder copper. The obtained integrated strength (I 0 (200)) of the (200) plane is I (200) / I 0 (200)> 40, and the rolled surface is subjected to roughening treatment by electrolytic plating. The arithmetic average roughness (hereinafter referred to as Ra) of the chemical treatment surface is 0.02 μm to 0.2 μm, the ten-point average roughness (hereinafter referred to as Rz) is 0.1 μm to 1.5 μm, and the printed circuit A roughened rolled copper foil for high-frequency circuits, which is a substrate material, is disclosed. And it is described that according to this, the printed circuit board which can be used under the high frequency exceeding 1 GHz can be provided.

さらに、特許文献3には、銅箔の表面の一部がコブ状突起からなる表面粗度が2〜4μmの凹凸面であることを特徴とする電解銅箔が開示されている。そして、これによれば、高周波伝送特性に優れた電解銅箔を提供することができると記載されている。   Furthermore, Patent Document 3 discloses an electrolytic copper foil characterized in that a part of the surface of the copper foil is an uneven surface having a surface roughness of 2 to 4 μm made of bump-shaped protrusions. And according to this, it describes that the electrolytic copper foil excellent in the high frequency transmission characteristic can be provided.

特許第4161304号公報Japanese Patent No. 4161304 特許第4704025号公報Japanese Patent No. 4770425 特開2004−244656号公報JP 2004-244656 A

導体(銅箔側)に起因する導体損失は、上述のように表皮効果によって抵抗が大きくなることに起因するが、この抵抗は、銅箔自体の抵抗のみならず、銅箔表面において樹脂基板との接着性を確保するために行われる粗化処理によって形成された表面処理層の抵抗の影響もあること、具体的には、銅箔表面の粗さが導体損失の主たる要因であり、粗さが小さいほど伝送損失が減少することが知られている。   The conductor loss due to the conductor (copper foil side) is caused by the increase in resistance due to the skin effect as described above. This resistance is not only the resistance of the copper foil itself but also the resin substrate on the copper foil surface. There is also the influence of the resistance of the surface treatment layer formed by the roughening process performed to ensure the adhesion of the copper, specifically, the roughness of the copper foil surface is the main factor of the conductor loss, the roughness It is known that the transmission loss decreases as the value decreases.

また、銅箔の表面処理として粗化処理を行う場合、Cu−Ni合金処理やCu−Co−Ni合金処理を用い、耐熱処理及び防錆処理を行う場合、Ni−Zn合金処理やCo−Ni合金処理を用いることが一般的である。   Moreover, when performing a roughening process as a surface treatment of copper foil, using a Cu-Ni alloy process or a Cu-Co-Ni alloy process, and performing a heat-resistant process and a rust prevention process, Ni-Zn alloy process or Co-Ni It is common to use alloy processing.

しかしながら、上記粗化処理、耐熱処理及び防錆処理で一般的に用いるCo及びNi、さらにFeは、常温で強磁性を示す金属であり、表面処理層中に成分として含まれる場合、磁性の影響により導体内の電流分布ならびに磁界分布が影響を受け、銅箔の伝送特性が悪化する問題が生じる。   However, Co and Ni commonly used in the above roughening treatment, heat treatment and rust prevention treatment, and Fe, are metals that exhibit ferromagnetism at room temperature, and when they are contained as components in the surface treatment layer, the influence of magnetism As a result, the current distribution and the magnetic field distribution in the conductor are affected, and the transmission characteristics of the copper foil deteriorate.

本発明は、高周波回路基板に用いても伝送損失が良好に抑制される表面処理銅箔、積層板、プリント配線板、プリント回路板及び電子機器を提供することを目的とする。   It is an object of the present invention to provide a surface-treated copper foil, a laminated board, a printed wiring board, a printed circuit board, and an electronic device in which transmission loss is satisfactorily suppressed even when used for a high-frequency circuit board.

本発明者は、伝送特性に与える強磁性金属の影響を抑制するために、銅箔の表面処理層におけるCo、Ni、Feの合計付着量を所定量以下に制御し、且つ、代わりの成分として常温で強磁性を示さないZnを含有させることで高周波伝送損失をさらに低減できることを見出した。さらに、従来の高周波用銅箔で管理されていた表面粗さRzに加えて、樹脂(誘電体)との接触面積をより正確に表す三次元表面積の二次元表面積に対する比が伝送損失に顕著な影響を与えることを見出した。   In order to suppress the influence of the ferromagnetic metal on the transmission characteristics, the inventor controls the total adhesion amount of Co, Ni, and Fe in the surface treatment layer of the copper foil to a predetermined amount or less, and as an alternative component It was found that high-frequency transmission loss can be further reduced by containing Zn that does not exhibit ferromagnetism at room temperature. Furthermore, in addition to the surface roughness Rz managed by the conventional high-frequency copper foil, the ratio of the three-dimensional surface area to the two-dimensional surface area that more accurately represents the contact area with the resin (dielectric material) is prominent in transmission loss. I found it to have an impact.

以上の知見を基礎として完成された本発明は一側面において、少なくとも一方の表面に表面処理層が形成された表面処理銅箔であって、前記表面処理層が粗化処理層を含み、前記表面処理層におけるCo、Ni、Feの合計付着量が300μg/dm2以下であり、前記表面処理層がZn金属層又はZnを含む合金処理層を有し、前記表面処理層表面におけるレーザー顕微鏡で測定された二次元表面積に対する三次元表面積の比が1.0〜1.9であり、少なくとも一方の表面の表面粗さRz JISが2.2μm以下である表面処理銅箔である。 The present invention completed on the basis of the above knowledge is, in one aspect, a surface-treated copper foil in which a surface-treated layer is formed on at least one surface, the surface-treated layer including a roughened layer, and the surface The total adhesion amount of Co, Ni, and Fe in the treatment layer is 300 μg / dm 2 or less, the surface treatment layer has a Zn metal layer or an alloy treatment layer containing Zn, and measured with a laser microscope on the surface of the surface treatment layer The surface-treated copper foil has a ratio of a three-dimensional surface area to a two-dimensional surface area of 1.0 to 1.9 and a surface roughness Rz JIS of at least one surface of 2.2 μm or less.

本発明の表面処理銅箔は一実施形態において、前記表面処理層におけるCo、Ni、Feの合計付着量が0μg/dm2である。 In one embodiment of the surface-treated copper foil of the present invention, the total adhesion amount of Co, Ni, and Fe in the surface-treated layer is 0 μg / dm 2 .

本発明の表面処理銅箔は別の一実施形態において、両表面に前記表面処理層が形成されており、前記両表面の表面粗さRz JISが2.2μm以下である。   In another embodiment of the surface-treated copper foil of the present invention, the surface-treated layers are formed on both surfaces, and the surface roughness Rz JIS of both surfaces is 2.2 μm or less.

本発明の表面処理銅箔は別の一側面において、少なくとも一方の表面に表面処理層が形成された表面処理銅箔であって、前記表面処理層におけるCo、Ni、Feの合計付着量が986μg/dm2以下であり、前記表面処理層がZn金属層又はZnを含む合金処理層を有し、前記表面処理層表面におけるレーザー顕微鏡で測定された二次元表面積に対する三次元表面積の比が1.0〜1.9であり、少なくとも一方の表面の表面粗さRz JISが0.6μm以下である表面処理銅箔である。 In another aspect, the surface-treated copper foil of the present invention is a surface-treated copper foil in which a surface-treated layer is formed on at least one surface, and a total adhesion amount of Co, Ni, and Fe in the surface-treated layer is 986 μg. / Dm 2 or less, the surface treatment layer has a Zn metal layer or an alloy treatment layer containing Zn, and the ratio of the three-dimensional surface area to the two-dimensional surface area measured by a laser microscope on the surface of the surface treatment layer is 1. This is a surface-treated copper foil having a surface roughness Rz JIS of 0.6 μm or less at 0 to 1.9.

本発明の表面処理銅箔は更に別の一実施形態において、前記表面処理層が粗化処理層を含む。   In another embodiment of the surface-treated copper foil of the present invention, the surface-treated layer includes a roughened layer.

本発明の表面処理銅箔は更に別の一実施形態において、両表面に前記表面処理層が形成されており、前記両表面の表面粗さRz JISが0.6μm以下である。   In yet another embodiment of the surface-treated copper foil of the present invention, the surface-treated layers are formed on both surfaces, and the surface roughness Rz JIS of both surfaces is 0.6 μm or less.

本発明の表面処理銅箔は更に別の一実施形態において、前記粗化処理層におけるCuの付着量が0.10g/dm2以下である。 In still another embodiment of the surface-treated copper foil of the present invention, the amount of Cu deposited on the roughened layer is 0.10 g / dm 2 or less.

本発明の表面処理銅箔は更に別の一実施形態において、前記表面処理層において、前記粗化処理層上に前記Zn金属層又はZnを含む合金処理層が設けられている。   In still another embodiment of the surface-treated copper foil of the present invention, in the surface-treated layer, the Zn metal layer or an alloy-treated layer containing Zn is provided on the roughened layer.

本発明の表面処理銅箔は更に別の一実施形態において、前記Znを含む合金処理層がCu−Zn合金層である。   In still another embodiment of the surface-treated copper foil of the present invention, the alloy-treated layer containing Zn is a Cu—Zn alloy layer.

本発明の表面処理銅箔は更に別の一実施形態において、前記表面処理層におけるZnの付着量が5mg/dm2以下である。 In still another embodiment of the surface-treated copper foil of the present invention, the amount of Zn deposited on the surface-treated layer is 5 mg / dm 2 or less.

本発明の表面処理銅箔は更に別の一実施形態において、前記表面処理層において、前記Zn金属層又はZnを含む合金処理層上にクロメート処理層が設けられている。   In still another embodiment of the surface-treated copper foil of the present invention, a chromate treatment layer is provided on the surface treatment layer on the Zn metal layer or the alloy treatment layer containing Zn.

本発明の表面処理銅箔は更に別の一実施形態において、前記クロメート処理層上にシランカップリング処理層が設けられている。   In another embodiment of the surface-treated copper foil of the present invention, a silane coupling treatment layer is provided on the chromate treatment layer.

本発明の表面処理銅箔は更に別の一実施形態において、前記表面処理層におけるCu、Zn、Co、Ni、Feの合計付着量が0.10g/dm2以下である。 In still another embodiment of the surface-treated copper foil of the present invention, the total adhesion amount of Cu, Zn, Co, Ni, and Fe in the surface-treated layer is 0.10 g / dm 2 or less.

本発明の表面処理銅箔は更に別の一実施形態において、フレキシブルプリント配線板用である。   In still another embodiment, the surface-treated copper foil of the present invention is for a flexible printed wiring board.

本発明の表面処理銅箔は更に別の一実施形態において、5GHz以上の高周波回路基板用である。   In yet another embodiment, the surface-treated copper foil of the present invention is for a high-frequency circuit board of 5 GHz or more.

本発明は更に別の一側面において、本発明の表面処理銅箔と樹脂基板とを積層して構成した積層板である。   In still another aspect of the present invention, the present invention is a laminated plate configured by laminating the surface-treated copper foil of the present invention and a resin substrate.

本発明は更に別の一側面において、本発明の積層板を材料としたプリント配線板である。   In yet another aspect, the present invention is a printed wiring board made from the laminated board of the present invention.

本発明は更に別の一側面において、本発明の積層板を材料としたプリント回路板である。   In still another aspect, the present invention is a printed circuit board made from the laminate of the present invention.

本発明は更に別の一側面において、本発明のプリント回路板を用いた電子機器である。   In still another aspect, the present invention is an electronic device using the printed circuit board of the present invention.

本発明によれば、高周波回路基板に用いても伝送損失が良好に抑制される表面処理銅箔、積層板、プリント配線板、プリント回路板及び電子機器を提供することができる。   According to the present invention, it is possible to provide a surface-treated copper foil, a laminated board, a printed wiring board, a printed circuit board, and an electronic device in which transmission loss is satisfactorily suppressed even when used for a high-frequency circuit board.

実施例及び比較例に係るCo、Ni、Feの合計付着量と、表面粗さRzとの関係を示すグラフである。It is a graph which shows the relationship between the total adhesion amount of Co, Ni, and Fe which concerns on an Example and a comparative example, and surface roughness Rz. 実施例及び比較例に係るCo、Ni、Feの合計付着量と、二次元表面積に対する三次元表面積の比との関係を示すグラフである。It is a graph which shows the relationship between the total adhesion amount of Co, Ni, and Fe which concerns on an Example and a comparative example, and the ratio of the three-dimensional surface area with respect to a two-dimensional surface area. 実施例及び比較例に係るCo、Ni、Fe、Cu、Znの合計付着量と、伝送損失との関係を示すグラフである。It is a graph which shows the relationship between the total adhesion amount of Co, Ni, Fe, Cu, and Zn which concerns on an Example and a comparative example, and transmission loss.

(銅箔基材)
本発明に用いることのできる銅箔基材の形態に特に制限はないが、典型的には圧延銅箔や電解銅箔の形態で用いることができる。一般的には、電解銅箔は硫酸銅めっき浴からチタンやステンレスのドラム上に銅を電解析出して製造され、圧延銅箔は圧延ロールによる塑性加工と熱処理を繰り返して製造される。屈曲性が要求される用途には圧延銅箔を適用することが多い。
銅箔基材の材料としてはプリント配線板の導体パターンとして通常使用されるタフピッチ銅や無酸素銅といった高純度の銅の他、例えばSn入り銅、Ag入り銅、Cr、Zr又はMg等を添加した銅合金、Ni及びSi等を添加したコルソン系銅合金のような銅合金も使用可能である。なお、本明細書において用語「銅箔」を単独で用いたときには銅合金箔も含むものとする。高周波回路基板用の銅箔として銅合金箔を用いる場合は、銅に比して電気抵抗率が顕著に上昇しないものがよい。
なお、銅箔基材の板厚は特に限定する必要は無いが、例えば1〜300μm、あるいは3〜100μm、あるいは5μm〜70μm、あるいは6μm〜35μm、あるいは9μm〜18μmである。
(Copper foil base material)
Although there is no restriction | limiting in particular in the form of the copper foil base material which can be used for this invention, Typically, it can use with the form of rolled copper foil or electrolytic copper foil. In general, the electrolytic copper foil is produced by electrolytic deposition of copper from a copper sulfate plating bath onto a drum of titanium or stainless steel, and the rolled copper foil is produced by repeating plastic working and heat treatment with a rolling roll. Rolled copper foil is often used for applications that require flexibility.
In addition to high-purity copper such as tough pitch copper and oxygen-free copper, which are usually used as conductor patterns for printed wiring boards, for example, Sn-containing copper, Ag-containing copper, Cr, Zr or Mg are added as the copper foil base material. It is also possible to use a copper alloy such as a copper alloy, a Corson copper alloy to which Ni, Si and the like are added. In addition, when the term “copper foil” is used alone in this specification, a copper alloy foil is also included. When a copper alloy foil is used as the copper foil for the high-frequency circuit board, it is preferable that the electrical resistivity does not increase remarkably as compared with copper.
The plate thickness of the copper foil base material is not particularly limited, but is, for example, 1 to 300 μm, alternatively 3 to 100 μm, alternatively 5 μm to 70 μm, alternatively 6 μm to 35 μm, alternatively 9 μm to 18 μm.

(表面処理層)
銅箔基材の表面には、粗化処理層、防錆層、耐熱層、シランカップリング処理層から選択される一種以上の層による表面処理層が形成されていることが好ましい。本発明の表面処理層は、このように樹脂との接着面(M面)に形成されていてもよく、接着面(M面)と反対側の面(S面)に形成されていてもよく、両面に形成されていてもよい。
粗化処理は、例えば、銅又は銅合金で粗化粒子を形成することにより行うことができる。粗化処理は微細なものであってもよい。また、粗化処理の後、かぶせめっき処理を行ってもよい。これらの粗化処理、防錆処理、耐熱処理、シラン処理、処理液への浸漬処理やめっき処理で形成される表面処理層は、Cu,Ni,Fe,Co,Zn,Cr,Mo,W,P,As,Ag,Sn,Geからなる群から選択されたいずれかの単体又はいずれか1種以上の合金、または有機物を含んでもよい。
(Surface treatment layer)
It is preferable that a surface treatment layer of at least one layer selected from a roughening treatment layer, a rust prevention layer, a heat resistance layer, and a silane coupling treatment layer is formed on the surface of the copper foil base material. The surface treatment layer of the present invention may thus be formed on the adhesive surface (M surface) with the resin, or may be formed on the surface opposite to the adhesive surface (M surface) (S surface). It may be formed on both sides.
The roughening treatment can be performed, for example, by forming roughened particles with copper or a copper alloy. The roughening process may be fine. Moreover, you may perform a covering plating process after a roughening process. Surface treatment layers formed by these roughening treatment, rust prevention treatment, heat treatment, silane treatment, immersion treatment in a treatment solution and plating treatment are Cu, Ni, Fe, Co, Zn, Cr, Mo, W, Any single substance selected from the group consisting of P, As, Ag, Sn, and Ge, or any one or more alloys or organic substances may be included.

伝送特性に与える強磁性金属の影響を抑制するために、銅箔の表面処理層におけるCo、Ni、Feの合計付着量を、後述のように所定量以下に制御し、且つ、代わりの成分として常温で強磁性を示さないZnを含有させることで高周波伝送損失をさらに低減できる。このため、表面処理層は、Zn金属層又はZnを含む合金処理層を有している。また、Znを含む合金処理層は、Cu−Zn合金層であってもよい。Cu−Zn合金層とすることで、Zn単独の金属層とするよりも耐熱性と耐薬品性を向上させることができる。   In order to suppress the influence of the ferromagnetic metal on the transmission characteristics, the total adhesion amount of Co, Ni and Fe in the surface treatment layer of the copper foil is controlled to a predetermined amount or less as described later, and as an alternative component By including Zn that does not exhibit ferromagnetism at room temperature, high-frequency transmission loss can be further reduced. For this reason, the surface treatment layer has a Zn metal layer or an alloy treatment layer containing Zn. Further, the alloy treatment layer containing Zn may be a Cu—Zn alloy layer. By setting it as a Cu-Zn alloy layer, heat resistance and chemical resistance can be improved rather than setting it as the metal layer of Zn single.

表面処理層が粗化処理層、防錆層、耐熱層、シランカップリング処理層のいずれかを用いて形成する場合、それらの順序は特に限定されないが、例えば、銅箔表面に粗化処理層を形成し、当該粗化処理層上に、防錆・耐熱層としてZn金属層又はZnを含む合金処理層を設けても良い。また、Zn金属層又はZnを含む合金処理層上には、クロメート処理層を設けても良い。さらに、クロメート処理層上には、シランカップリング処理層を設けても良い。   When the surface treatment layer is formed using any of a roughening treatment layer, a rust prevention layer, a heat-resistant layer, and a silane coupling treatment layer, their order is not particularly limited. For example, the roughening treatment layer is formed on the copper foil surface. And a Zn metal layer or an alloy treatment layer containing Zn may be provided as a rust-proof and heat-resistant layer on the roughening treatment layer. Further, a chromate treatment layer may be provided on the Zn metal layer or the alloy treatment layer containing Zn. Furthermore, a silane coupling treatment layer may be provided on the chromate treatment layer.

(金属付着量)
本発明の表面処理銅箔は、表面処理層において、Co、Ni、Feの合計付着量が1000μg/dm2以下に制御されている。本発明の表面処理銅箔は、このように、伝送損失の原因となる、透磁率が比較的高く導電率が比較的低いCo、Ni、Feの付着量が制御されているため、高周波伝送損失を低減することができる。表面処理層におけるCo、Ni、Feの合計付着量は、好ましくは500μg/dm2以下であり、より好ましくは300μg/dm2以下であり、更により好ましくは0μg/dm2(分析の定量下限値以下を示す)である。
(Metal adhesion amount)
In the surface-treated copper foil of the present invention, the total adhesion amount of Co, Ni, and Fe is controlled to 1000 μg / dm 2 or less in the surface treatment layer. Thus, the surface-treated copper foil of the present invention has a high-frequency transmission loss because the amount of Co, Ni, and Fe having a relatively high permeability and a relatively low conductivity is controlled, which causes transmission loss. Can be reduced. The total adhesion amount of Co, Ni, and Fe in the surface treatment layer is preferably 500 μg / dm 2 or less, more preferably 300 μg / dm 2 or less, and even more preferably 0 μg / dm 2 (lower limit of quantification of analysis). The following is shown).

表面処理層が粗化処理層を含む場合、当該粗化処理層におけるCuの付着量が0.10g/dm2以下であるのが好ましい。このような構成によれば、高周波伝送損失をより低減できる。粗化処理層におけるCuの付着量は0.09g/dm2以下であるのがより好ましく、0.08g/dm2以下であるのが更により好ましく、典型的には0.04〜0.08g/dm2である。 When the surface treatment layer includes a roughening treatment layer, the adhesion amount of Cu in the roughening treatment layer is preferably 0.10 g / dm 2 or less. According to such a configuration, high-frequency transmission loss can be further reduced. The adhesion amount of Cu in the roughened layer is more preferably 0.09 g / dm 2 or less, still more preferably 0.08 g / dm 2 or less, typically 0.04 to 0.08 g. / Dm 2 .

表面処理層におけるZnの付着量は5mg/dm2以下であるのが好ましい。このような構成によれば、耐薬品性が向上し、耐熱性が良好となる。表面処理層におけるZnの付着量は4.5mg/dm2以下であるのがより好ましく、4mg/dm2以下であるのが更に好ましく、典型的には0.1〜4.5mg/dm2である。 The amount of Zn deposited on the surface treatment layer is preferably 5 mg / dm 2 or less. According to such a configuration, chemical resistance is improved and heat resistance is improved. The adhesion amount of Zn in the surface treatment layer is more preferably 4.5 mg / dm 2 or less, still more preferably 4 mg / dm 2 or less, typically 0.1 to 4.5 mg / dm 2 . is there.

表面処理層におけるCu、Zn、Co、Ni、Feの合計付着量は0.10g/dm2以下であるのが好ましい。このような構成によれば、高周波伝送損失をより低減できる。表面処理層におけるCu、Zn、Co、Ni、Feの合計付着量は0.09g/dm2以下であるのがより好ましく、0.08g/dm2以下であるのが更に好ましく、典型的には0.04〜0.08g/dm2である。 The total adhesion amount of Cu, Zn, Co, Ni, and Fe in the surface treatment layer is preferably 0.10 g / dm 2 or less. According to such a configuration, high-frequency transmission loss can be further reduced. The total adhesion amount of Cu, Zn, Co, Ni, and Fe in the surface treatment layer is more preferably 0.09 g / dm 2 or less, further preferably 0.08 g / dm 2 or less, typically 0.04 to 0.08 g / dm 2 .

(表面粗さRz)
銅箔表面の粗さは導体損失の主たる要因であり、粗さが小さいほど伝送損失が減少する。このような観点から、本発明の表面処理銅箔は、少なくとも一方の表面の表面粗さRz JISが2.2μm以下に制御されており、伝送損失を良好に減少させることができる。また、両表面の表面粗さRz JISが2.2μm以下であるのが好ましい。このような構成によれば、高周波伝送損失をより低減できる。
表面粗さRz JISは、より好ましくは1.5μm以下であり、更に好ましくは1.2μm以下であり、典型的には0.5〜2.2μmである。
(Surface roughness Rz)
The roughness of the copper foil surface is a main factor of the conductor loss, and the transmission loss decreases as the roughness decreases. From such a viewpoint, the surface-treated copper foil of the present invention has a surface roughness Rz JIS of at least one surface controlled to 2.2 μm or less, and can reduce transmission loss satisfactorily. Moreover, it is preferable that surface roughness RzJIS of both surfaces is 2.2 micrometers or less. According to such a configuration, high-frequency transmission loss can be further reduced.
The surface roughness Rz JIS is more preferably 1.5 μm or less, still more preferably 1.2 μm or less, and typically 0.5 to 2.2 μm.

(表面積比)
従来の高周波用銅箔で管理されていた表面粗さRzに加えて、高周波伝送損失に影響を与える樹脂(誘電体)との接触面積をより正確に表す三次元表面積の二次元表面積に対する比を適切な範囲に制御する必要がある。このような観点から、本発明の表面処理銅箔は、表面処理層表面におけるレーザー顕微鏡で測定された二次元表面積に対する三次元表面積の比が1.0〜1.9に制御されており、高周波回路基板に用いても伝送損失がさらに良好に抑制される。当該表面積比が1.0未満の値には定義上なり得ず、1.9を超えると高周波伝送損失が大きくなるという問題が生じるおそれがある。当該表面積比は、好ましくは1.0〜1.9であり、より好ましくは1.0〜1.6であり、更により好ましくは1.3〜1.6である。
(Surface area ratio)
In addition to the surface roughness Rz managed by conventional high-frequency copper foil, the ratio of the three-dimensional surface area to the two-dimensional surface area more accurately represents the contact area with the resin (dielectric) that affects high-frequency transmission loss. It is necessary to control to an appropriate range. From such a viewpoint, in the surface-treated copper foil of the present invention, the ratio of the three-dimensional surface area to the two-dimensional surface area measured by the laser microscope on the surface of the surface-treated layer is controlled to 1.0 to 1.9, and the high-frequency Even if it is used for a circuit board, transmission loss can be further suppressed. If the surface area ratio is less than 1.0, it cannot be defined, and if it exceeds 1.9, there is a possibility that a high-frequency transmission loss increases. The surface area ratio is preferably 1.0 to 1.9, more preferably 1.0 to 1.6, and even more preferably 1.3 to 1.6.

(表面処理銅箔の製造方法)
本発明において、銅箔基材(圧延銅箔又は電解銅箔)の一方の表面或いは両表面には、酸洗後の銅箔の表面にふしこぶ状の電着を行う粗化処理が施されることが好ましい。粗化処理により樹脂(誘電体)との密着性(引き剥がし強度)を得る。本発明においては、この粗化処理は例えばCu,Ni,Fe,Co,Zn,Cr,Mo,W,P,As,Ag,Sn,Geからなる群から選択されたいずれかの単体又はいずれか1種以上の合金のめっき、または有機物による表面処理等により行うことができる。粗化前の前処理として通常の銅めっき等が行われることがあり、粗化後には表面処理として、耐熱性、耐薬品性を付与するために上記金属でかぶせめっきを行うこともある。なお、粗化処理を行わずにCu,Ni,Fe,Co,Zn,Cr,Mo,W,P,As,Ag,Sn,Geからなる群から選択されたいずれかの単体又はいずれか1種以上の合金のめっきを行ってもよい。その後、表面処理として、耐熱性、耐薬品性を付与するために上記金属でかぶせめっきを行うこともある。粗化処理を行う場合には、樹脂との密着強度が高くなるという利点がある。また、粗化処理を行わない場合には、表面処理銅箔の製造工程が簡略化されるため生産性が向上すると共に、コストを低減することができ、また粗さを小さくすることができるという利点がある。圧延銅箔と電解銅箔とでは処理の内容を幾分異にすることもある。このような銅箔表面のめっき処理の液組成、めっき時間、電流密度を調整することで、本発明に係る表面処理層におけるCo、Ni、Feの合計付着量を制御し、表面処理層においてZn金属層又はZnを含む合金処理層を形成し、表面処理層表面におけるレーザー顕微鏡で測定された二次元表面積に対する三次元表面積の比を制御し、さらに表面粗さRz JISを制御することができる。
(Method for producing surface-treated copper foil)
In the present invention, one surface or both surfaces of a copper foil base material (rolled copper foil or electrolytic copper foil) is subjected to a roughening treatment for performing fist-like electrodeposition on the surface of the copper foil after pickling. It is preferable. By roughening treatment, adhesion (peeling strength) with the resin (dielectric) is obtained. In the present invention, the roughening treatment is performed by, for example, any single element selected from the group consisting of Cu, Ni, Fe, Co, Zn, Cr, Mo, W, P, As, Ag, Sn, and Ge. It can be performed by plating one or more alloys, or surface treatment with an organic substance. Ordinary copper plating or the like may be performed as a pretreatment before roughening, and after the roughening, the plating may be performed with the above metal to impart heat resistance and chemical resistance. It should be noted that any single element or any one selected from the group consisting of Cu, Ni, Fe, Co, Zn, Cr, Mo, W, P, As, Ag, Sn, and Ge without roughening treatment. The above alloy may be plated. Then, as surface treatment, in order to give heat resistance and chemical resistance, it may cover and coat with the said metal. When the roughening treatment is performed, there is an advantage that the adhesion strength with the resin is increased. In addition, when the roughening treatment is not performed, the manufacturing process of the surface-treated copper foil is simplified, so that the productivity is improved, the cost can be reduced, and the roughness can be reduced. There are advantages. The content of treatment may be somewhat different between the rolled copper foil and the electrolytic copper foil. By adjusting the liquid composition, plating time, and current density of the plating treatment on the surface of such copper foil, the total adhesion amount of Co, Ni, and Fe in the surface treatment layer according to the present invention is controlled, and Zn in the surface treatment layer is controlled. A metal layer or an alloy-treated layer containing Zn can be formed, the ratio of the three-dimensional surface area to the two-dimensional surface area measured with a laser microscope on the surface of the surface-treated layer can be controlled, and the surface roughness Rz JIS can be controlled.

また、表面粗さRzが前述の範囲となる電解銅箔は以下の方法で作製することができる。
<電解液組成>
銅:90〜110g/L
硫酸:90〜110g/L
塩素:50〜100ppm
レベリング剤1(ビス(3スルホプロピル)ジスルフィド):10〜30ppm
レベリング剤2(アミン化合物):10〜30ppm
上記のアミン化合物には以下の化学式のアミン化合物を用いることができる。
Moreover, the electrolytic copper foil whose surface roughness Rz is in the above-described range can be produced by the following method.
<Electrolyte composition>
Copper: 90-110 g / L
Sulfuric acid: 90-110 g / L
Chlorine: 50-100ppm
Leveling agent 1 (bis (3sulfopropyl) disulfide): 10 to 30 ppm
Leveling agent 2 (amine compound): 10 to 30 ppm
As the amine compound, an amine compound having the following chemical formula can be used.

(上記化学式中、R1及びR2はヒドロキシアルキル基、エーテル基、アリール基、芳香族置換アルキル基、不飽和炭化水素基、アルキル基からなる一群から選ばれるものである。) (In the above chemical formula, R 1 and R 2 are selected from the group consisting of a hydroxyalkyl group, an ether group, an aryl group, an aromatic substituted alkyl group, an unsaturated hydrocarbon group, and an alkyl group.)

<製造条件>
電流密度:70〜100A/dm2
電解液温度:50〜60℃
電解液線速:3〜5m/sec
電解時間:0.5〜10分間
<Production conditions>
Current density: 70 to 100 A / dm 2
Electrolyte temperature: 50-60 ° C
Electrolyte linear velocity: 3-5 m / sec
Electrolysis time: 0.5 to 10 minutes

本発明の表面処理銅箔を、表面処理層側から樹脂基板に貼り合わせて積層板を製造することができる。樹脂基板はプリント配線板やプリント回路板等に適用可能な特性を有するものであれば特に制限を受けないが、例えば、リジッドPWB用に紙基材フェノール樹脂、紙基材エポキシ樹脂、合成繊維布基材エポキシ樹脂、フッ素樹脂含浸クロス、ガラス布・紙複合基材エポキシ樹脂、ガラス布・ガラス不織布複合基材エポキシ樹脂及びガラス布基材エポキシ樹脂等を使用し、フレキシブルプリント基板(FPC)用にポリエステルフィルムやポリイミドフィルム、液晶ポリマー(LCP)フィルム、フッ素樹脂およびフッ素樹脂・ポリイミド複合材等を使用する事ができる。なお、液晶ポリマー(LCP)は誘電損失が小さいため、高周波回路用途のプリント配線板やプリント回路板には液晶ポリマー(LCP)フィルムを用いることが好ましい。   The surface-treated copper foil of the present invention can be bonded to a resin substrate from the surface-treated layer side to produce a laminate. The resin substrate is not particularly limited as long as it has characteristics applicable to a printed wiring board, a printed circuit board, etc. For example, a paper base phenolic resin, a paper base epoxy resin, a synthetic fiber cloth for rigid PWB Substrate epoxy resin, fluororesin impregnated cloth, glass cloth / paper composite base epoxy resin, glass cloth / glass nonwoven fabric composite base epoxy resin, glass cloth base epoxy resin, etc., for flexible printed circuit boards (FPC) Polyester film, polyimide film, liquid crystal polymer (LCP) film, fluororesin and fluororesin / polyimide composite material can be used. Since liquid crystal polymer (LCP) has a small dielectric loss, it is preferable to use a liquid crystal polymer (LCP) film for a printed wiring board or a printed circuit board for high frequency circuits.

貼り合わせの方法は、リジッドPWB用の場合、ガラス布などの基材に樹脂を含浸させ、樹脂を半硬化状態まで硬化させたプリプレグを用意する。銅箔をプリプレグに重ねて加熱加圧させることにより行うことができる。FPCの場合、液晶ポリマーやポリイミドフィルム等の基材に接着剤を介して、又は、接着剤を使用せずに高温高圧下で銅箔に積層接着して、又は、ポリイミド前駆体を塗布・乾燥・硬化等を行うことで積層板を製造することができる。   In the case of the rigid PWB, a prepreg is prepared by impregnating a base material such as a glass cloth with a resin and curing the resin to a semi-cured state. It can be performed by stacking a copper foil on a prepreg and heating and pressing. In the case of FPC, a liquid crystal polymer or a polyimide film is bonded to a copper foil under high temperature and pressure without using an adhesive, or a polyimide precursor is applied and dried via an adhesive. -A laminated board can be manufactured by performing hardening etc.

本発明の積層板は各種のプリント配線板(PWB)やプリント回路板に使用可能であり、特に制限されるものではない。プリント配線板としては、例えば、導体パターンの層数の観点からは片面PWB、両面PWB、多層PWB(3層以上)に適用可能であり、絶縁基板材料の種類の観点からはリジッドPWB、フレキシブルPWB(FPC)、リジッド・フレックスPWBに適用可能である。   The laminate of the present invention can be used for various printed wiring boards (PWB) and printed circuit boards, and is not particularly limited. As a printed wiring board, for example, it can be applied to single-sided PWB, double-sided PWB, and multilayer PWB (three or more layers) from the viewpoint of the number of layers of the conductor pattern, and rigid PWB and flexible PWB from the viewpoint of the type of insulating substrate material. (FPC) and rigid flex PWB.

実施例1〜10及び比較例1〜6の銅箔基材として、厚さ18μmの圧延銅箔(JX日鉱日石金属製C1100)、又は、厚さ18μmの電解銅箔を用意した。
次に、表面処理として、表1〜2に示す条件でめっきを行った。実施例1〜4は前記方法で製作した電解銅箔の析出面(Rz0.6μm)に表面処理を行い、実施例5〜7および比較例1、4〜6は前記電解銅箔のドラム面(Rz1.5μm)に表面処理を行った。比較例2、3はレベリング剤を含まない電解液で製作した電解銅箔の析出面(Rz2.0μm)に表面処理を行った。また、実施例8〜10は所定の表面粗さに制御された圧延銅箔に表面処理を行った。表1は、各めっき液1〜10の液組成、pH、温度、電流密度を示している。表2は、表記の浴組成及び時間で、めっき処理1〜3を順に行ったことを示している。なお、このめっきの後にZn、Niまたはそれらの合金めっき、およびクロメート処理によって耐熱性を確保し、さらにシランカップリング剤を塗布することでピール強度を向上させた。
シランカップリング剤の塗布条件は以下の通りである。
・3−メタクリロキシプロピルトリメトキシシラン
・シラン濃度:0.6vol%(残部:水)
・処理温度:30〜40℃
・処理時間:5秒
・シラン処理後の乾燥:100℃×3秒
なお、実施例1、9の表面処理は平滑めっき処理(粗化処理でない表面処理)に相当し、それ以外の実施例および比較例における表面処理は粗化処理に相当する。
As copper foil base materials of Examples 1 to 10 and Comparative Examples 1 to 6, a rolled copper foil having a thickness of 18 μm (C1100 made by JX Nippon Mining & Metals) or an electrolytic copper foil having a thickness of 18 μm was prepared.
Next, plating was performed under the conditions shown in Tables 1 and 2 as the surface treatment. In Examples 1 to 4, surface treatment was performed on the deposition surface (Rz 0.6 μm) of the electrolytic copper foil produced by the above-described method, and Examples 5 to 7 and Comparative Examples 1 and 4 to 6 were drum surfaces of the electrolytic copper foil ( Rz 1.5 μm) was surface treated. In Comparative Examples 2 and 3, surface treatment was performed on the deposition surface (Rz 2.0 μm) of the electrolytic copper foil manufactured with the electrolytic solution containing no leveling agent. In Examples 8 to 10, surface treatment was performed on a rolled copper foil controlled to have a predetermined surface roughness. Table 1 shows the solution composition, pH, temperature, and current density of each of the plating solutions 1-10. Table 2 shows that the plating processes 1 to 3 were sequentially performed with the indicated bath composition and time. In addition, after this plating, heat resistance was ensured by Zn, Ni or their alloy plating, and chromate treatment, and further peel strength was improved by applying a silane coupling agent.
The application conditions of the silane coupling agent are as follows.
・ 3-Methacryloxypropyltrimethoxysilane ・ Silane concentration: 0.6 vol% (remainder: water)
-Processing temperature: 30-40 ° C
Treatment time: 5 seconds Drying after silane treatment: 100 ° C. × 3 seconds The surface treatment of Examples 1 and 9 corresponds to smooth plating treatment (surface treatment not roughening treatment), and other examples and The surface treatment in the comparative example corresponds to a roughening treatment.

上述のようにして作製した実施例及び比較例の各サンプルについて、各種評価を下記の通り行った。   Various evaluation was performed as follows about each sample of the Example and comparative example which were produced as mentioned above.

<付着量の測定>
表面処理層のCu以外の各種金属の付着量の測定については、50mm×50mmの銅箔表面の皮膜をHNO3(2重量%)とHCl(5重量%)を混合した溶液に溶解し、その溶液中の金属濃度をICP発光分光分析装置(エスアイアイ・ナノテクノロジー株式会社製、SFC−3100)にて定量し、単位面積当たりの金属量(μg/dm2)を算出して導いた。このとき、測定したい面と反対面の金属付着量が混入しないよう、必要に応じてマスキングを行い、分析を行った。なお、測定は前述のZn、Co、Ni、Feまたはそれらの合金めっき、およびクロメート処理、さらにシランカップリング処理を行った後のサンプルについて行った。表面処理層のCuの付着量の測定については、100mm×100mmサイズの表面処理銅箔の重量から、前記方法で測定した当該面積あたりのCu以外の各種金属の付着量ならびに表面処理前銅箔の当該面積あたりの重量を差し引いて求めた。
<Measurement of adhesion amount>
For the measurement of the adhesion amount of various metals other than Cu in the surface treatment layer, the film on the surface of the copper foil of 50 mm × 50 mm was dissolved in a solution in which HNO 3 (2 wt%) and HCl (5 wt%) were mixed. The metal concentration in the solution was quantified with an ICP emission spectroscopic analyzer (manufactured by SII NanoTechnology Inc., SFC-3100), and the amount of metal per unit area (μg / dm 2 ) was calculated and derived. At this time, the analysis was performed by masking as necessary so that the metal adhesion amount on the surface opposite to the surface to be measured was not mixed. In addition, the measurement was performed about the sample after performing the above-mentioned Zn, Co, Ni, Fe or those alloy plating, chromate treatment, and also silane coupling treatment. Regarding the measurement of the adhesion amount of Cu on the surface treatment layer, from the weight of the surface-treated copper foil having a size of 100 mm × 100 mm, the adhesion amount of various metals other than Cu per area measured by the above method and the copper foil before surface treatment The weight per area was subtracted.

<表面粗さRzの測定>
株式会社小阪研究所製接触粗さ計SP−11を使用してJIS B0601−1994に準拠して十点平均粗さを表面処理面について測定した。測定基準長さ0.8mm、評価長さ4mm、カットオフ値0.25mm、送り速さ0.1mm/秒の条件で測定位置を変えて10回行い、10回の測定での値を求めた。また、実施例及び比較例で用いた各電解銅箔及び圧延銅箔について、表面処理前の粗さRzについてもあらかじめ測定しておいた。
<Measurement of surface roughness Rz>
Using a contact roughness meter SP-11 manufactured by Kosaka Laboratory, the 10-point average roughness was measured for the surface-treated surface in accordance with JIS B0601-1994. The measurement position was changed 10 times under the conditions of a measurement standard length of 0.8 mm, an evaluation length of 4 mm, a cut-off value of 0.25 mm, and a feed rate of 0.1 mm / second, and values obtained by 10 measurements were obtained. . Moreover, about each electrolytic copper foil and rolled copper foil used by the Example and the comparative example, it measured beforehand about the roughness Rz before surface treatment.

<表面積比の測定>
3次元表面積は、オリンパス株式会社製レーザー顕微鏡LEXT OLS4000(レーザー波長405nm、微分干渉方式)を用いて、表面処理銅箔の析出面における、2次元表面積が66455μm2の領域について測定した。測定された3次元表面積を2次元表面積で除した値を表面積比とした。
<Measurement of surface area ratio>
The three-dimensional surface area was measured for a region having a two-dimensional surface area of 66455 μm 2 on the precipitation surface of the surface-treated copper foil, using a laser microscope LEXT OLS4000 (laser wavelength 405 nm, differential interference method) manufactured by Olympus Corporation. A value obtained by dividing the measured three-dimensional surface area by the two-dimensional surface area was defined as a surface area ratio.

<伝送損失の測定>
18μm厚の各サンプルについて、市販の液晶ポリマー樹脂((株)クラレ製Vecstar CTZ−50μm)と貼り合わせた後、エッチングで特性インピーダンスが50Ωとなるようマイクロストリップ線路を形成し、HP社製のネットワークアナライザーHP8720Cを用いて透過係数を測定し、周波数20GHzでの伝送損失を求めた。周波数20GHzにおける伝送損失の評価として、5.0dB/10cm未満を◎、5.0dB/10cm以上且つ6.0dB/10cm未満を○、6.0dB/10cm以上を×とした。伝送損失の大きさは使用する樹脂の比誘電率、誘電正接、厚みに左右されるため、一般用プリント配線版に使用される銅箔(比較例2で用いた銅箔)に対して顕著な伝送損失低減効果があるものとして上記の判定基準とした。
試験結果を表3に示す。
<Measurement of transmission loss>
For each sample with a thickness of 18 μm, after bonding with a commercially available liquid crystal polymer resin (Vecstar CTZ-50 μm manufactured by Kuraray Co., Ltd.), a microstrip line is formed by etching so that the characteristic impedance becomes 50Ω, and a network made by HP The transmission coefficient was measured using an analyzer HP8720C, and the transmission loss at a frequency of 20 GHz was determined. As an evaluation of transmission loss at a frequency of 20 GHz, 未 満 is less than 5.0 dB / 10 cm, ◯ is 5.0 dB / 10 cm or more and less than 6.0 dB / 10 cm, and x is 6.0 dB / 10 cm or more. Since the magnitude of the transmission loss depends on the relative dielectric constant, dielectric loss tangent, and thickness of the resin used, it is prominent with respect to the copper foil used in the general printed wiring board (copper foil used in Comparative Example 2). The above criteria were used because of the transmission loss reduction effect.
The test results are shown in Table 3.

(評価結果)
実施例1〜10は、いずれも、表面処理層におけるCo、Ni、Feの合計付着量が1000μg/dm2以下であり、表面処理層がZn金属層又はZnを含む合金処理層を有し、表面積比が1.0〜1.9であり、表面粗さRz JISが2.2μm以下であった。このため、実施例1〜10は、いずれも伝送損失が良好に抑制されていた。
比較例1は、表面積比が1.9を超えたため、伝送損失が大きかった。
比較例2は、表面粗さRz JISが2.2μmを超え、表面積比が1.9を超えたため、伝送損失が大きかった。
比較例3は、表面粗さRz JISが2.2μmを超えたため、伝送損失が大きかった。
比較例4〜6は、実施例7のめっき処理3をCo、Ni、Feを含むものに変更したものであり、表面処理層におけるCo、Ni、Feの合計付着量が1000μg/dm2を超えたため、実施例7よりも伝送損失が大きかった。
図1に、実施例及び比較例に係るCo、Ni、Feの合計付着量と、表面粗さRzとの関係を示すグラフを示す。図2に、実施例及び比較例に係るCo、Ni、Feの合計付着量と、二次元表面積に対する三次元表面積の比との関係を示すグラフを示す。図3に、実施例及び比較例に係るCo、Ni、Fe、Cu、Znの合計付着量と、伝送損失との関係を示すグラフを示す。
(Evaluation results)
In each of Examples 1 to 10, the total adhesion amount of Co, Ni, and Fe in the surface treatment layer is 1000 μg / dm 2 or less, the surface treatment layer has a Zn metal layer or an alloy treatment layer containing Zn, The surface area ratio was 1.0 to 1.9, and the surface roughness Rz JIS was 2.2 μm or less. For this reason, in all of Examples 1 to 10, the transmission loss was satisfactorily suppressed.
Comparative Example 1 had a large transmission loss because the surface area ratio exceeded 1.9.
In Comparative Example 2, since the surface roughness Rz JIS exceeded 2.2 μm and the surface area ratio exceeded 1.9, the transmission loss was large.
In Comparative Example 3, since the surface roughness Rz JIS exceeded 2.2 μm, the transmission loss was large.
In Comparative Examples 4 to 6, the plating treatment 3 of Example 7 was changed to one containing Co, Ni, and Fe, and the total adhesion amount of Co, Ni, and Fe in the surface treatment layer exceeded 1000 μg / dm 2 . Therefore, the transmission loss was larger than that in Example 7.
In FIG. 1, the graph which shows the relationship between the total adhesion amount of Co, Ni, and Fe which concerns on an Example and a comparative example, and surface roughness Rz is shown. In FIG. 2, the graph which shows the relationship between the total adhesion amount of Co, Ni, and Fe which concerns on an Example and a comparative example, and the ratio of the three-dimensional surface area with respect to a two-dimensional surface area is shown. In FIG. 3, the graph which shows the relationship between the total adhesion amount of Co, Ni, Fe, Cu, and Zn which concerns on an Example and a comparative example, and transmission loss is shown.

Claims (19)

少なくとも一方の表面に表面処理層が形成された表面処理銅箔であって、
前記表面処理層が粗化処理層を含み、
前記表面処理層におけるCo、Ni、Feの合計付着量が300μg/dm2以下であり、前記表面処理層がZn金属層又はZnを含む合金処理層を有し、前記表面処理層表面におけるレーザー顕微鏡で測定された二次元表面積に対する三次元表面積の比が1.0〜1.9であり、
少なくとも一方の表面の表面粗さRz JISが2.2μm以下である表面処理銅箔。
A surface-treated copper foil having a surface-treated layer formed on at least one surface,
The surface treatment layer includes a roughening treatment layer,
The total adhesion amount of Co, Ni, and Fe in the surface treatment layer is 300 μg / dm 2 or less, the surface treatment layer has a Zn metal layer or an alloy treatment layer containing Zn, and a laser microscope on the surface of the surface treatment layer The ratio of the three-dimensional surface area to the two-dimensional surface area measured at 1.0 to 1.9,
The surface-treated copper foil whose surface roughness Rz JIS of at least one surface is 2.2 micrometers or less.
前記表面処理層におけるCo、Ni、Feの合計付着量が0μg/dm2である請求項1に記載の表面処理銅箔。 The surface-treated copper foil according to claim 1, wherein a total adhesion amount of Co, Ni, and Fe in the surface treatment layer is 0 μg / dm 2 . 両表面に前記表面処理層が形成されており、前記両表面の表面粗さRz JISが2.2μm以下である請求項1又は2に記載の表面処理銅箔。   The surface-treated copper foil according to claim 1 or 2, wherein the surface-treated layers are formed on both surfaces, and the surface roughness Rz JIS of the both surfaces is 2.2 µm or less. 少なくとも一方の表面に表面処理層が形成された表面処理銅箔であって、
前記表面処理層におけるCo、Ni、Feの合計付着量が986μg/dm2以下であり、前記表面処理層がZn金属層又はZnを含む合金処理層を有し、前記表面処理層表面におけるレーザー顕微鏡で測定された二次元表面積に対する三次元表面積の比が1.0〜1.9であり、
少なくとも一方の表面の表面粗さRz JISが0.6μm以下である表面処理銅箔。
A surface-treated copper foil having a surface-treated layer formed on at least one surface,
The total adhesion amount of Co, Ni, and Fe in the surface treatment layer is 986 μg / dm 2 or less, the surface treatment layer has a Zn metal layer or an alloy treatment layer containing Zn, and a laser microscope on the surface of the surface treatment layer The ratio of the three-dimensional surface area to the two-dimensional surface area measured at 1.0 to 1.9,
The surface-treated copper foil whose surface roughness Rz JIS of at least one surface is 0.6 micrometer or less.
前記表面処理層が粗化処理層を含む請求項4に記載の表面処理銅箔。   The surface-treated copper foil of Claim 4 in which the said surface treatment layer contains a roughening process layer. 両表面に前記表面処理層が形成されており、前記両表面の表面粗さRz JISが0.6μm以下である請求項4又は5に記載の表面処理銅箔。   The surface-treated copper foil according to claim 4 or 5, wherein the surface-treated layers are formed on both surfaces, and the surface roughness Rz JIS of the both surfaces is 0.6 µm or less. 前記粗化処理層におけるCuの付着量が0.10g/dm2以下である請求項1〜3、5及び6のいずれか一項に記載の表面処理銅箔。 The surface-treated copper foil as described in any one of Claims 1-3, 5 and 6 whose adhesion amount of Cu in the said roughening process layer is 0.10 g / dm < 2 > or less. 前記表面処理層において、前記粗化処理層上に前記Zn金属層又はZnを含む合金処理層が設けられている請求項1〜3及び5〜7のいずれか一項に記載の表面処理銅箔。   In the said surface treatment layer, the surface treatment copper foil as described in any one of Claims 1-3 and 5-7 in which the alloy treatment layer containing the said Zn metal layer or Zn is provided on the said roughening treatment layer. . 前記Znを含む合金処理層がCu−Zn合金層である請求項1〜8のいずれか一項に記載の表面処理銅箔。   The surface-treated copper foil according to any one of claims 1 to 8, wherein the alloy-treated layer containing Zn is a Cu-Zn alloy layer. 前記表面処理層におけるZnの付着量が5mg/dm2以下である請求項1〜9のいずれか一項に記載の表面処理銅箔。 The surface-treated copper foil as described in any one of Claims 1-9 whose adhesion amount of Zn in the said surface treatment layer is 5 mg / dm < 2 > or less. 前記表面処理層において、前記Zn金属層又はZnを含む合金処理層上にクロメート処理層が設けられている請求項1〜10のいずれか一項に記載の表面処理銅箔。   The surface-treated copper foil as described in any one of Claims 1-10 in which the chromate treatment layer is provided on the alloy treatment layer containing the said Zn metal layer or Zn in the said surface treatment layer. 前記クロメート処理層上にシランカップリング処理層が設けられている請求項11に記載の表面処理銅箔。   The surface-treated copper foil according to claim 11, wherein a silane coupling treatment layer is provided on the chromate treatment layer. 前記表面処理層におけるCu、Zn、Co、Ni、Feの合計付着量が0.10g/dm2以下である請求項1〜12のいずれか一項に記載の表面処理銅箔。 The surface treatment copper foil as described in any one of Claims 1-12 whose total adhesion amount of Cu, Zn, Co, Ni, and Fe in the said surface treatment layer is 0.10 g / dm < 2 > or less. フレキシブルプリント配線板用である請求項1〜13のいずれか一項に記載の表面処理銅箔。   It is an object for flexible printed wiring boards, The surface-treated copper foil as described in any one of Claims 1-13. 5GHz以上の高周波回路基板用である請求項1〜13のいずれか一項に記載の表面処理銅箔。   The surface-treated copper foil according to any one of claims 1 to 13, which is for a high-frequency circuit board of 5 GHz or more. 請求項1〜13のいずれか一項に記載の表面処理銅箔と樹脂基板とを積層して構成した積層板。   The laminated board comprised by laminating | stacking the surface treatment copper foil and resin substrate as described in any one of Claims 1-13. 請求項16に記載の積層板を材料としたプリント配線板。   A printed wiring board made of the laminated board according to claim 16. 請求項16に記載の積層板を材料としたプリント回路板。   A printed circuit board made of the laminate according to claim 16. 請求項18に記載のプリント回路板を用いた電子機器。   An electronic device using the printed circuit board according to claim 18.
JP2014236812A 2014-11-21 2014-11-21 Surface treated copper foil, laminate, printed wiring board, printed circuit board and electronic apparatus Pending JP2015105440A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2014236812A JP2015105440A (en) 2014-11-21 2014-11-21 Surface treated copper foil, laminate, printed wiring board, printed circuit board and electronic apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2014236812A JP2015105440A (en) 2014-11-21 2014-11-21 Surface treated copper foil, laminate, printed wiring board, printed circuit board and electronic apparatus

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP2013248691A Division JP5710737B1 (en) 2013-11-29 2013-11-29 Surface-treated copper foil, laminated board, printed wiring board, printed circuit board, and electronic equipment

Publications (1)

Publication Number Publication Date
JP2015105440A true JP2015105440A (en) 2015-06-08

Family

ID=53435746

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2014236812A Pending JP2015105440A (en) 2014-11-21 2014-11-21 Surface treated copper foil, laminate, printed wiring board, printed circuit board and electronic apparatus

Country Status (1)

Country Link
JP (1) JP2015105440A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2018090903A (en) * 2016-12-05 2018-06-14 Jx金属株式会社 Surface-treated copper foil, copper foil with carrier, laminate, method for producing printed wiring board, and method for producing electronic device
KR20190075054A (en) 2016-12-14 2019-06-28 후루카와 덴키 고교 가부시키가이샤 Surface treated copper foil and copper clad laminate
JP2020509224A (en) * 2017-07-31 2020-03-26 サーキット フォイル ルクセンブルグ エス.エイ.アール.エル.Circuit Foil Luxembourg S.A.R.L. Surface treated copper foil and copper-clad laminate
US10820414B2 (en) 2016-12-05 2020-10-27 Jx Nippon Mining & Metals Corporation Surface treated copper foil, copper foil with carrier, laminate, method for manufacturing printed wiring board, and method for manufacturing electronic device
US11700697B2 (en) 2018-01-30 2023-07-11 Murata Manufacturing Co., Ltd. Multilayer substrate and antenna element

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2018090903A (en) * 2016-12-05 2018-06-14 Jx金属株式会社 Surface-treated copper foil, copper foil with carrier, laminate, method for producing printed wiring board, and method for producing electronic device
TWI705738B (en) * 2016-12-05 2020-09-21 日商Jx金屬股份有限公司 Surface-treated copper foil, copper foil with a carrier, laminates, methods for manufacturing printed wiring boards, and methods for manufacturing electronic devices
US10820414B2 (en) 2016-12-05 2020-10-27 Jx Nippon Mining & Metals Corporation Surface treated copper foil, copper foil with carrier, laminate, method for manufacturing printed wiring board, and method for manufacturing electronic device
JP2023037628A (en) * 2016-12-05 2023-03-15 Jx金属株式会社 Surface-treated copper foil, copper foil with carrier, laminate, method for producing printed wiring board, and method for producing electronic device
JP7409760B2 (en) 2016-12-05 2024-01-09 Jx金属株式会社 Method for manufacturing surface-treated copper foil, copper foil with carrier, laminate, printed wiring board, and manufacturing method for electronic equipment
KR20190075054A (en) 2016-12-14 2019-06-28 후루카와 덴키 고교 가부시키가이샤 Surface treated copper foil and copper clad laminate
JP2020509224A (en) * 2017-07-31 2020-03-26 サーキット フォイル ルクセンブルグ エス.エイ.アール.エル.Circuit Foil Luxembourg S.A.R.L. Surface treated copper foil and copper-clad laminate
US11700697B2 (en) 2018-01-30 2023-07-11 Murata Manufacturing Co., Ltd. Multilayer substrate and antenna element

Similar Documents

Publication Publication Date Title
JP5710737B1 (en) Surface-treated copper foil, laminated board, printed wiring board, printed circuit board, and electronic equipment
JP2023133413A (en) Surface-treated copper foil, copper-clad laminate, and printed-wiring board
JP6182584B2 (en) Surface-treated copper foil for printed wiring board, copper-clad laminate for printed wiring board, and printed wiring board
KR102274906B1 (en) Copper foil and copper clad laminate having the same
JP4682271B2 (en) Copper foil for printed wiring boards
KR101607381B1 (en) Copper foil for high frequency circuit, copper clad laminate for high frequency circuit, printed wiring board for high frequency circuit, copper foil attached with carrier for high frequency circuit, electronic device, and method for manufacturing printed wiring board
PH12017000015A1 (en) Copper foil, copper-clad laminate board, method for producing printed wiring board, method for poducing electronic apparatus, method for producing transmission channel, and method for producing antenna
JP6111017B2 (en) Copper foil for printed wiring board, laminate using the same, printed wiring board, and electronic component
KR101736537B1 (en) Copper foil for high frequency circuit, copper clad laminate for high frequency circuit, printed wiring board for high frequency circuit, copper foil attached with carrier for high frequency circuit, electronic device, and method for manufacturing printed wiring board
JP2015105440A (en) Surface treated copper foil, laminate, printed wiring board, printed circuit board and electronic apparatus
JP2013155415A (en) Surface-treated copper foil for high frequency transmission, laminated plate for high frequency transmission, and printed wiring board for high frequency transmission
JP6722452B2 (en) Surface-treated copper foil, copper-clad laminate obtained by using the surface-treated copper foil, and printed wiring board
JP5576514B2 (en) Surface-treated copper foil, laminated board, printed wiring board and printed circuit board
JP5997080B2 (en) Copper foil with carrier, method for producing copper foil with carrier, printed wiring board, printed circuit board, copper-clad laminate, and method for producing printed wiring board
JPWO2011001551A1 (en) Copper foil for printed wiring boards
TW202030379A (en) Surface-treated copper foil, copper-cladded laminate plate, and printed wiring board
JP6140481B2 (en) Copper foil with carrier, method for producing copper foil with carrier, printed wiring board, printed circuit board, copper-clad laminate, and method for producing printed wiring board
JP5373453B2 (en) Copper foil for printed wiring boards
JP2011129685A (en) Environmentally friendly copper foil for printed wiring board
JP2010258398A (en) Copper foil for printed circuit board
JP2011014651A (en) Copper foil for printed wiring board
JP6329727B2 (en) Copper foil with carrier, method for producing copper foil with carrier, printed wiring board, printed circuit board, copper-clad laminate, and method for producing printed wiring board
JP2011009453A (en) Copper foil for printed wiring board
JP2011210993A (en) Copper foil for printed wiring board and layered body which have superior etching property
JP2011012297A (en) Copper foil for printed circuit board