JP2004325201A - Electrode potential measuring probe and continuous electrolyzation apparatus of metal foil with the same - Google Patents

Electrode potential measuring probe and continuous electrolyzation apparatus of metal foil with the same Download PDF

Info

Publication number
JP2004325201A
JP2004325201A JP2003119202A JP2003119202A JP2004325201A JP 2004325201 A JP2004325201 A JP 2004325201A JP 2003119202 A JP2003119202 A JP 2003119202A JP 2003119202 A JP2003119202 A JP 2003119202A JP 2004325201 A JP2004325201 A JP 2004325201A
Authority
JP
Japan
Prior art keywords
electrode
solution
casing
electrode potential
probe
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2003119202A
Other languages
Japanese (ja)
Inventor
Toshiaki Ono
俊昭 小野
Hideaki Noguchi
英昭 野口
Yasuo Komoda
康夫 薦田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsui Mining and Smelting Co Ltd
Original Assignee
Mitsui Mining and Smelting Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsui Mining and Smelting Co Ltd filed Critical Mitsui Mining and Smelting Co Ltd
Priority to JP2003119202A priority Critical patent/JP2004325201A/en
Publication of JP2004325201A publication Critical patent/JP2004325201A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Electrolytic Production Of Metals (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide an electrode potential measuring probe for regularly monitoring a surface state of an electrode used for continuous electrolyzation and also monitoring product quality. <P>SOLUTION: The electrode potential measuring probe captures a potential change of the electrode during electrolyzation by bring the electrode into contact with either a cathode or an anode outwardly protruding from a solution when an electrolytic method is implemented, and is employed and provided with a casing with an opening at one end and a reference electrode fixing part and a solution inflow hole at the other end, a reference electrode having a potential measuring liquid junction on a primary side and a terminal connected to a potentiometer on a secondary side and inserted into the casing, and a water absorbing flexible material disposed at the opening and constituting a contact part with the electrode surface. <P>COPYRIGHT: (C)2005,JPO&NCIPI

Description

【0001】
【産業上の利用分野】
本件発明は、電極電位測定用プローブに関する。特に、メッキ処理、電解銅箔等の金属箔の連続電解を行う際の、電極材料の表面状態を管理するための電極電位測定に用いるものである。
【0002】
【従来の技術】
従来から、金属メッキは電解液中で被メッキ対象物を陰極に分極し、その表面にメッキ被膜を形成する方法が一般に採用されてきた。また、電解銅箔に代表される金属箔の連続製造は、カソード分極したドラム形状の回転陰極の表面に銅成分を析出させ、箔状にして連続的に引き剥がす方法が採用されてきた。
【0003】
このような金属メッキプロセス及び金属箔の連続製造等の工業的マスプロダクションを目的とした電解操業では、電流を制御するのみであり、電位差による制御は殆ど行われていなかった。従って、以下に示す特許文献1及び特許文献2に開示の内容でも、電流値のみが開示されており、電位差に関しては何ら記述はなされていない。
【0004】
【特許文献1】
特開平5−279896号公報
【特許文献2】
特開平7−202367号公報
【0005】
一方、電解法を採用したメッキ若しくは金属箔の連続製造プロセスでの電解槽中に参照電極をいれ、溶液の電位差測定を行うのは、殆ど不可能なものであった。即ち、アノードからの酸素発生が活発になる領域での通電操業を行うと、発生酸素によるバブリングが起こり、しかも、参照電極がメッキ槽内への循環溶液の流れの影響を受け、実体とは異なる電位差が測定されたり、しかも測定電位差が安定しないという現象が発生するのである。そこで、特許文献3に開示されたような技術的思想を応用して、電解に用いている溶液を一旦外部のチャンバー内に滞留させ、そこで溶液の電位差を測定することで、電解操業の安定化を図ることも考えられる。
【0006】
金属学的な見地から見れば、メッキ金属の析出量、電解法で得られる金属箔の物性等を厳密に管理するためには、電解時に用いる電極材質、溶液濃度、溶液pH等を考慮して、分極曲線のターフェル勾配を測定し、電位差を持って析出状態の管理を行うことが望ましいのは当業者間の常識であると考えられる。特に溶液濃度等の成分変化に対しては迅速な対応が求められる。よって、溶液の電位差管理が非常に重要であると言える。
【0007】
【特許文献3】
特開平10−282036号公報
【0008】
【発明が解決しようとする課題】
しかしながら、電解法を用いて、メッキ金属の析出、金属箔の連続製造等を行っていくと、電極の表面状態が、電解に用いる時間の経過と共に酸化が進行したり、水素化物が形成されたり、電解液による浸食での表面粗度の変化を生じる現象が起こる。
【0009】
上記したように電極表面の状態が変化してくれば、電解液の液温、濃度等をいかに良好に管理したとしても、均一なメッキ被膜を得たり、良好な物性を持つ金属箔の製造は困難なものとなる。
【0010】
以上のことから、当業者間では、電解に用いる電極表面の状態を常に把握することができ、製品品質の安定化につなげることの可能な管理装置及び管理方法が望まれてきたのである。
【0011】
【課題を解決するための手段】
そこで、本件発明者等は、鋭意研究の結果、以下に示すような構成の電極電位測定用プローブを持って、電極の電位差を測定することが可能となることが判明したのである。
【0012】
<電極電位測定用プローブ> 本件発明に係る電極電位測定用プローブは、電解法で金属成分を電極上に析出させる場合の溶液外に突出した陰極又は陽極のいずれかに接触させることで電解中の電位差変化を捉えるための電極電位測定用プローブであって、当該電極電位測定用プローブは、一端側に開口端及び他端側に参照電極固定部並びに溶液流入孔を備えるケーシングと、一次側が電位測定用の絡液部であり二次側が電位差計との接続端子部であり且つ前記ケーシング内に挿入可能な参照電極と、前記開口端に配して電極への接触部を構成する吸水性軟質素材とからなるものである。以下、図1を参照しつつ説明する。
【0013】
ここで、「電解法で金属成分を電極上に析出させる場合の溶液外に突出した陰極又は陽極のいずれかに接触させることで電解中の電位差変化を捉えるための電極電位測定用プローブであって、」とあることから、本件発明に係る電極電位測定用プローブは電解液中に配置して、電極電位を測るのではなく、バブリング等の影響の無い溶液外に突出した陰極又は陽極のいずれかの一部分に接触させるようにして用いるのである。
【0014】
最初に電極電位を構成する「ケーシング」に関して説明する。このケーシングは、その一端側に開口端及び他端側に参照電極固定部並びに溶液流入孔を備えるものである。即ち、このケーシングとは、電極電位測定用プローブの本体を意味するものであり、電極電位測定用プローブとしての使用時には、溶液流入孔を通じて内部に溶液を導入し一時的に貯液する事になるのである。ケーシングが下記に示すような機能を果たす限り、ケーシング自体の形状に関しては任意である。
【0015】
ケーシングの素材には、金属材、プラスチック材等であり特に限定はなく、内部に貯液する溶液の種類に応じて、材質を変更することが可能である。例えば、一部にフッ酸系の溶液を含む場合には、プラスチック系の材質を採用する等である。しかしながら、ケーシング内部の溶液が結晶化を起こしていないか等の異常を早期に発見するためには、外部から内部の様子が観察可能なガラス、プラスチック等の透明素材を用いることが好ましい。
【0016】
そして、前記ケーシングの一端側の開口端に吸水性軟質素材を配して電極表面への接触部とするのである。この開口端の径は、溶液の流出量を考慮して適宜定めればよいものであり、特段の限定を要するものではない。また、ここで言う吸水性軟質素材には、流出する溶液量を適正な範囲に維持でき、溶液による変質損傷を起こさず、しかも電極表面に損傷を与えないものでなければならない。そのような条件を満たしている限り、素材に関しては特に限定はない。例えば、プラスチック素材で出来たスポンジ材、濾紙に用いるような紙材等を用いることが可能である。
【0017】
次に、参照電極とは、一般的に知られたように、一次側には絡液部を備え、二次側には電位差計と接続するための接続端子部を備えている。ここで言う参照電極は、特に種類を限定した物ではなく、従来に存在するカロメル電極、硫酸第1水銀電極、塩化銀電極等全ての参照電極が使用可能な概念として記載している。この参照電極は、ケーシングの参照電極固定部に、少なくとも一次側の絡液部がケーシング内に挿入した状態で、貯液内に浸漬するように固定配置されるのである。このときの固定方法に関しても、特に限定はなく、上述した状態で参照電極を配置できればよいのである。しかしながら、固定手段には、金属材を用いることも可能であるが、ゴム、プラスチック等の溶液による腐食を防止できる材料を用いることが好ましい。
【0018】
以上のようにして、ケーシング内の貯液中に参照電極の絡液部が浸漬するように溶液流入孔を通じてケーシング内部に電解液を導入し一時的に貯液し、前記接触部から貯液が緩やかに流出するような電極電位測定用プローブとなるのである。このように接触部から貯液が流れ出すことで、溶液を循環させタイムラグの少ない電極電位の測定が可能となるとともに、電解銅箔の製造に用いる電解ドラムの如き可動電極の場合には、電極面との摩擦係数を減らす潤滑効果を得て、電極面への損傷を防ぐのである。
【0019】
更に、ケーシング内部に導入し一時的に貯液する電解液の液温が高く濃度も高い場合には、ケーシング内で液温が低下することによる再結晶化を引き起こすことも考えられる。従って、ケーシング内部の貯液の温度が低下しないように、貯液の保温手段を設けることが好ましい。この保温手段とは、結果として貯液の液温を低下させない手段として、ケーシング自体を保温するか、貯液を加温する手段を設けることも可能である。例えば、ケーシングの周囲を断熱材で被覆、ケーシングの周囲に加熱体を配置、ケーシング内部に発熱体を内蔵する等である。
【0020】
以上に述べてきた電極電位測定用プローブのケーシング内には、単に「溶液」を導入すると記載している。この意味は、必ずしも電解に用いている電解液自体を用いる必要のないことを意味しているのである。なぜなら、本件発明に係る電極電位測定用プローブは、電解液自体の電位差を測定しているのではなく、電極自体の変化を捉えるために電極の電位を測定しているのである。従って、前述したように、濃度及び液温の高い溶液を無理に導入する必要はなく、電解液に用いていると同種の含有物質を含み再結晶化の起こらない程度の濃度の希釈溶液を用い、電極電位の変動として捉えることが可能なのである。このときの変動の仕方と、それに対応して得られる製品品質との対応を経験的に把握していれば、本件発明に係る電極電位測定用プローブで得られる電位差を十分に製品の品質管理指標として使用することが出来るのである。
【0021】
<本件発明に係る電極電位測定用プローブを備えた金属箔の連続電解装置> 上述してきた電極電位測定用プローブは、その使用方法からして、金属箔の連続電解装置に応用使用することが最も優れた利用形態であると考えられる。
【0022】
一般的に電解銅箔に代表される金属箔の連続電解装置について、ここで簡単に説明することとする。金属箔の連続製造装置の持つ基本的構造は、図2に示すように、ドラム形状をした回転陰極11と、その回転陰極11の形状に沿って対向配置する鉛系若しくは不溶性陽極12との間に、金属イオンを含んだ溶液を流し、電解反応を利用して金属成分を回転陰極11のドラム表面に析出させるものである。そして、このときに析出した金属が箔状態となり、回転陰極11から剥ぎ取りロール13を介して連続的に引き剥がして巻き取ることで金属箔ロール14とするのである。このとき回転陰極11から剥ぎ取った銅箔の面を光沢面と称し、反対面の艶消し面を粗面と称する。
【0023】
このとき、図2に一例として記載したような状態で、回転陰極11の表面に電極電位測定用プローブ1の吸水性軟質素材を配した接触面を押し当てることで、電極表面に損傷を与えることなく、リアルタイムで陰極における電極電位差の測定が可能となり、陰極の表面状態、電解状態の安定状態を常時監視することが可能となるのである。
【0024】
【発明の実施の形態】
以下、本件発明の実施形態に関して説明する。この実施形態では、図2に示したと同様にして、電解銅箔の製造装置に電極電位測定用プローブ1をクランプ15で固定して設置して、電極電位差の測定を連続して行った結果を示すこととする。
【0025】
まず、この実施形態で使用した電極電位測定用プローブ1の詳細な構成に関して説明する。この電極電位測定用プローブ1のケーシング2は、内径が13mm、長さ100mm、その一端側の開口端3の内径が7mmの開口端3に向けてテーパを持つ形状のプラスチックの透明素材を用いて、内径が4mmの溶液流入孔5を備えるものを用いた。そして、ケーシング2の一端側の開口端3に配する吸水性軟質素材には、濾紙として用いる材質の紙を図1に示すような形状に加工して用いたのである。一方、参照電極8には、外径が10.5mmの図1に示す如き円筒状のSCE電極を用い、この参照電極8を参照電極固定部4としてゴムリングを用い、当該ゴムリングの穴に貫通させた状態で配置し、そのゴムリングを図1に示すようにケーシング2の他端側に嵌めこんで固定した。
【0026】
以上のようにして、溶液槽16から電解銅箔の製造に用いている硫酸銅溶液を1/2濃度に希釈した溶液を流路17を経てケーシング2の溶液流入孔5から1ml/分の流量でケーシング2内に流入させ、ケーシング2内で参照電極8の絡液部9が貯液6’に浸漬するようにし、前記接触部Cから貯液6’が流入量に応じて緩やかに流出するようにした。
【0027】
そして、参照電極8の接続端子部10を電位差計18に結線し、電位差を検出し記録計19に常時出力するものとした。以下、この実施形態での電極電位測定を行った結果に関して説明する。なお、電解銅箔の製造に用いた回転陰極11の電着面にはチタンを用い、陽極12には不溶性陽極(DSA)を用いた。
【0028】
電極電位差と研磨との関係 電解銅箔の製造現場では、製造される電解銅箔の回転陰極との引き剥がし面の粗度が大きくなると、回転陰極11の電着面をバフ研磨することが通常行われている。従って、▲1▼バフ研磨を必要とする時点の電極電位差と▲2▼バフ研磨後の電極電位差とを比較し、図3に示した。この図3から分かるように、▲1▼の電位差が非常に大きくなり、▲2▼の電位差が小さくなることが極めて明瞭に把握できるのである。従って、電位差の変化と得られる電解銅箔の表面粗度との関係を把握しておけば、得られた電解銅箔での表面粗さ測定を行うことなく、この電極電位差をもって研磨するタイミングを決定できることになるのである。
【0029】
バフ研磨後の電極電位差の経時変化 バフ研磨直後の電極電位差は小さなものとなるが、電位差が小さなものであれば、良好な品質を持つ電解銅箔が得られるとは言えないことが経験的に判明している。従来、このことは解決を諦められてきたが、本件発明に係る電極電位測定用プローブを用いることで、電極電位差の変化状況を捉えられるようになり、新たなことが判明してきたのである。
【0030】
図4を見ると、バフ研磨直後から、連続して電解銅箔製造を行ったときの電極電位差の経時的変化を示している。この結果によれば、バフ研磨直後から電解を継続すると、当初高かった電位差が徐々に低下してきて、4時間経過後に電位差の値が安定してくるのである。
【0031】
そこで、本件発明者等が、その時間経過に伴って得られた電解銅箔の物性として、光沢面及び粗面の粗度、常態引張り強さ及び伸び率、180℃の加熱雰囲気中で測定する熱間引張り強さ及び伸び率、の各特性を測定してみた。その結果、いずれの物性も、連続電解時間が4時間を経過するまでは安定せず、4時間を経過し本件発明に係る電極電位測定用プローブの検出した電極電位差の値が安定化するのに併せて、各物性の値も安定化してくることが分かったのである。
【0032】
また、更に電解銅箔に見られるマイクロポロシティの発生個数は、本件発明に係る電極電位測定用プローブの検出した電極電位差の値が大きくなるほどマイクロポロシティの発生個数も多くなる傾向が顕著に確認できたのである。
【0033】
従って、本件発明に係る電極電位測定用プローブの検出した電極電位差の値は、非常に信頼性の高いものであり、この値の変動を電解銅箔の物性変化及びマイクロポロシティ発生のモニタとして使用することが可能である事が分かるのである。
【0034】
【発明の効果】
以上に述べたのように本件発明に係る本件発明に係る電極電位測定用プローブは、非常にシンプルで生産するのも多大な費用を要するものではないにもかかわらず、可動電極の表面にでも接触させ連続的に電極電位差を測定することが可能となる。このような方法で、電極電位を常時監視できるようになることにより、電極自体の変質を検知し、その電位差をもって電極表面に形成される金属箔若しくはメッキ被膜等の物性を事後的検査を行うことなく、類推することも可能となるのである。
【図面の簡単な説明】
【図1】本件発明に係る電極電位測定用プローブの概略断面図。
【図2】本件発明に係る電極電位測定用プローブを金属箔の連続製造装置に取り付けたイメージを示した図。
【図3】電極電位差と研磨との関係を表した図。
【図4】バフ研磨後の電極電位差の経時変化を表した図。
【符号の説明】
1 電極電位測定用プローブ
2 ケーシング
3 開口端
4 参照電極固定部
5 溶液流入孔
6 溶液
7 吸水性軟質材
8 参照電極
9 液絡部
10 接続端子部
11 回転陰極
12 陽極
13 剥ぎ取りロール
14 金属箔ロール
15 クランプ
16 溶液槽
17 流路
18 電位差計
19 記録計
C 接触部
S 電極表面
[0001]
[Industrial applications]
The present invention relates to a probe for measuring an electrode potential. In particular, it is used for electrode potential measurement for controlling the surface state of the electrode material when performing a plating process and continuous electrolysis of a metal foil such as an electrolytic copper foil.
[0002]
[Prior art]
Conventionally, metal plating generally employs a method in which an object to be plated is polarized into a cathode in an electrolytic solution and a plating film is formed on the surface thereof. In the continuous production of a metal foil represented by an electrolytic copper foil, a method has been adopted in which a copper component is deposited on the surface of a cathode-polarized drum-shaped rotating cathode, and the resultant is foil-shaped and continuously peeled off.
[0003]
In the electrolytic operation for the purpose of industrial mass production such as the metal plating process and the continuous production of metal foil, only the current is controlled, and the control based on the potential difference is hardly performed. Therefore, only the current value is disclosed in the contents disclosed in Patent Literature 1 and Patent Literature 2 described below, and no description is made regarding the potential difference.
[0004]
[Patent Document 1]
JP-A-5-279896 [Patent Document 2]
JP-A-7-202367
On the other hand, it has been almost impossible to measure a potential difference of a solution by placing a reference electrode in an electrolytic cell in a continuous production process of plating or metal foil employing an electrolytic method. That is, when the energization operation is performed in a region where oxygen generation from the anode is active, bubbling due to generated oxygen occurs, and the reference electrode is affected by the flow of the circulating solution into the plating tank, which is different from the actual substance. The phenomenon that the potential difference is measured and that the measured potential difference is not stable occurs. Therefore, applying the technical idea disclosed in Patent Document 3, the solution used for electrolysis is temporarily retained in an external chamber, and the potential difference of the solution is measured there, thereby stabilizing the electrolytic operation. It is also possible to plan.
[0006]
From a metallurgical point of view, in order to strictly control the amount of plating metal deposited, the physical properties of the metal foil obtained by electrolysis, etc., consider the electrode material used during electrolysis, the solution concentration, the solution pH, etc. It is considered common knowledge among those skilled in the art that it is desirable to measure the Tafel slope of the polarization curve and control the deposition state with a potential difference. In particular, a quick response is required for a component change such as a solution concentration. Therefore, it can be said that the potential difference management of the solution is very important.
[0007]
[Patent Document 3]
Japanese Patent Application Laid-Open No. 10-282036
[Problems to be solved by the invention]
However, when the plating metal is deposited and the metal foil is continuously manufactured using the electrolysis method, the surface state of the electrode may be oxidized or hydride may be formed with the lapse of time used for the electrolysis. Then, a phenomenon occurs in which the surface roughness changes due to erosion by the electrolytic solution.
[0009]
As described above, if the state of the electrode surface changes, no matter how well the solution temperature, concentration, etc. of the electrolytic solution are controlled, it is necessary to obtain a uniform plating film or to produce a metal foil having good physical properties. It will be difficult.
[0010]
From the above, those skilled in the art have demanded a management device and a management method that can constantly grasp the state of the electrode surface used for electrolysis and can stabilize product quality.
[0011]
[Means for Solving the Problems]
Therefore, the inventors of the present invention have conducted intensive studies and found that it is possible to measure the potential difference between the electrodes by using an electrode potential measuring probe having the following configuration.
[0012]
<Electrode potential measurement probe> The electrode potential measurement probe according to the present invention is used during electrolysis by contacting either a cathode or an anode protruding out of a solution when a metal component is deposited on an electrode by an electrolysis method. An electrode potential measurement probe for detecting a change in potential difference, the electrode potential measurement probe having a casing having an open end at one end and a reference electrode fixing portion and a solution inflow hole at the other end, and a potential measurement at a primary side. A reference electrode that can be inserted into the casing, and a water-absorbing soft material that is disposed at the open end and constitutes a contact portion to the electrode. It consists of: Hereinafter, description will be made with reference to FIG.
[0013]
Here, "the electrode potential measurement probe for capturing the change in potential difference during electrolysis by contacting either the cathode or the anode protruding out of the solution when the metal component is deposited on the electrode by electrolysis, Therefore, the probe for measuring the electrode potential according to the present invention is disposed in the electrolytic solution and does not measure the electrode potential, but either the cathode or the anode protruding out of the solution without the influence of bubbling or the like. It is used so as to contact a part of the
[0014]
First, the “casing” constituting the electrode potential will be described. This casing has an open end at one end and a reference electrode fixing portion and a solution inflow hole at the other end. That is, this casing means the main body of the probe for measuring the electrode potential, and when used as the probe for measuring the electrode potential, the solution is introduced into the inside through the solution inflow hole and temporarily stored. It is. The shape of the casing itself is arbitrary as long as the casing fulfills the following functions.
[0015]
The material of the casing is a metal material, a plastic material, or the like, and is not particularly limited. The material can be changed according to the type of the solution stored inside. For example, when a hydrofluoric acid-based solution is partially contained, a plastic-based material is used. However, in order to quickly detect an abnormality such as whether the solution in the casing has crystallized, it is preferable to use a transparent material such as glass or plastic from which the inside can be observed from the outside.
[0016]
Then, a water-absorbing soft material is disposed at an opening end on one end side of the casing to make a contact portion with the electrode surface. The diameter of the open end may be appropriately determined in consideration of the outflow amount of the solution, and does not need to be particularly limited. In addition, the soft water-absorbing material mentioned here must be capable of maintaining the amount of the solution flowing out within an appropriate range, not causing deterioration due to the solution, and not damaging the electrode surface. There is no particular limitation on the material as long as such conditions are satisfied. For example, a sponge material made of a plastic material, a paper material used for filter paper, and the like can be used.
[0017]
Next, as is generally known, the reference electrode is provided with a liquid junction portion on the primary side and a connection terminal portion for connecting to a potentiometer on the secondary side. The reference electrode referred to here is not particularly limited in type, and is described as a concept that can be used for all reference electrodes such as a conventional calomel electrode, a mercuric sulfate first electrode, and a silver chloride electrode. The reference electrode is fixedly disposed on the reference electrode fixing portion of the casing so that at least the primary liquid junction portion is inserted into the casing so as to be immersed in the liquid storage. There is no particular limitation on the fixing method at this time, as long as the reference electrode can be arranged in the above-described state. However, a metal material can be used for the fixing means, but it is preferable to use a material such as rubber or plastic that can prevent corrosion by a solution.
[0018]
As described above, the electrolytic solution is introduced into the casing through the solution inlet so that the liquid junction portion of the reference electrode is immersed in the liquid stored in the casing, and temporarily stored, and the liquid is stored from the contact portion. It becomes a probe for measuring the electrode potential that flows out slowly. By flowing the liquid from the contact portion in this way, the solution can be circulated and the electrode potential can be measured with a small time lag, and in the case of a movable electrode such as an electrolytic drum used for producing an electrolytic copper foil, the electrode surface can be measured. This provides a lubricating effect that reduces the coefficient of friction between the electrodes and prevents damage to the electrode surface.
[0019]
Furthermore, when the temperature of the electrolytic solution introduced into the casing and temporarily stored therein is high and the concentration is high, recrystallization may be caused due to a decrease in the solution temperature in the casing. Therefore, it is preferable to provide means for keeping the liquid stored so that the temperature of the liquid stored inside the casing does not decrease. As the heat retaining means, as a means for preventing the liquid temperature of the stored liquid from being lowered as a result, it is possible to provide a means for keeping the temperature of the casing itself or a means for heating the stored liquid. For example, the periphery of the casing is covered with a heat insulating material, a heating element is arranged around the casing, and a heating element is built in the casing.
[0020]
It is described that a "solution" is simply introduced into the casing of the electrode potential measuring probe described above. This means that it is not always necessary to use the electrolytic solution itself used for electrolysis. This is because the electrode potential measuring probe according to the present invention does not measure the potential difference of the electrolytic solution itself, but measures the potential of the electrode in order to detect a change in the electrode itself. Therefore, as described above, it is not necessary to forcibly introduce a solution having a high concentration and a high solution temperature, and use a dilute solution having a concentration that does not cause recrystallization because the same kind of contained substance is used in the electrolytic solution. , It can be considered as a change in electrode potential. If the way of variation at this time and the correspondence between the product quality obtained in response thereto are empirically grasped, the potential difference obtained by the electrode potential measurement probe according to the present invention can be sufficiently determined by the product quality control index. It can be used as
[0021]
<Continuous Electrolysis Apparatus for Metal Foil Provided with Probe for Measuring Electrode Potential According to the Present Invention> The above-described probe for measuring electrode potential is most likely to be applied to a metal foil continuous electrolysis apparatus because of its usage. This is considered to be an excellent use form.
[0022]
In general, a continuous electrolysis apparatus for a metal foil typified by an electrolytic copper foil will be briefly described here. As shown in FIG. 2, the basic structure of the continuous production apparatus for metal foil is that a rotating cathode 11 in the form of a drum and a lead-based or insoluble anode 12 disposed opposite to the rotating cathode 11 according to the shape of the rotating cathode 11. Then, a solution containing metal ions is caused to flow, and a metal component is deposited on the drum surface of the rotating cathode 11 by utilizing an electrolytic reaction. Then, the metal deposited at this time becomes a foil state, and is continuously peeled off from the rotating cathode 11 via the peeling roll 13 and wound up to form the metal foil roll 14. At this time, the surface of the copper foil peeled off from the rotating cathode 11 is referred to as a glossy surface, and the opposite matte surface is referred to as a rough surface.
[0023]
At this time, in the state described as an example in FIG. 2, the contact surface where the water-absorbing soft material of the electrode potential measuring probe 1 is arranged is pressed against the surface of the rotating cathode 11 to damage the electrode surface. Instead, the electrode potential difference at the cathode can be measured in real time, and the surface state of the cathode and the stable state of the electrolytic state can be constantly monitored.
[0024]
BEST MODE FOR CARRYING OUT THE INVENTION
Hereinafter, embodiments of the present invention will be described. In this embodiment, in the same manner as shown in FIG. 2, the electrode potential measuring probe 1 is fixed and installed in the apparatus for manufacturing an electrodeposited copper foil with the clamp 15, and the result of continuously measuring the electrode potential difference is shown. It will be shown.
[0025]
First, a detailed configuration of the electrode potential measuring probe 1 used in this embodiment will be described. The casing 2 of the electrode potential measuring probe 1 is made of a plastic transparent material having an inner diameter of 13 mm, a length of 100 mm, and a tapered shape toward the open end 3 having an open end 3 at one end having an inner diameter of 7 mm. And a solution inlet hole 5 having an inner diameter of 4 mm was used. As the water-absorbing soft material disposed at the opening end 3 on one end side of the casing 2, paper of a material used as a filter paper was processed into a shape as shown in FIG. On the other hand, as the reference electrode 8, a cylindrical SCE electrode having an outer diameter of 10.5 mm as shown in FIG. 1 is used, and the reference electrode 8 is a rubber ring as the reference electrode fixing portion 4. It was arranged in a state of being penetrated, and the rubber ring was fitted and fixed to the other end side of the casing 2 as shown in FIG.
[0026]
As described above, the solution obtained by diluting the copper sulfate solution used for the production of the electrolytic copper foil to a half concentration from the solution tank 16 through the flow path 17 through the solution inflow hole 5 of the casing 2 at a flow rate of 1 ml / min. So that the liquid junction 9 of the reference electrode 8 is immersed in the liquid storage 6 ′ in the casing 2, and the liquid storage 6 ′ flows out of the contact portion C gently according to the inflow amount. I did it.
[0027]
Then, the connection terminal portion 10 of the reference electrode 8 is connected to a potentiometer 18 to detect the potential difference and to always output the potential difference to a recorder 19. Hereinafter, the result of the measurement of the electrode potential in this embodiment will be described. In addition, titanium was used for the electrodeposited surface of the rotating cathode 11 used for manufacturing the electrolytic copper foil, and an insoluble anode (DSA) was used for the anode 12.
[0028]
Relationship between Electrode Potential Difference and Polishing In the production site of electrolytic copper foil, when the roughness of the peeled surface of the produced electrolytic copper foil with the rotating cathode becomes large, it is usual to buff the electrodeposited surface of the rotating cathode 11. Is being done. Accordingly, FIG. 3 shows a comparison between (1) the electrode potential difference at the time when buffing is required and (2) the electrode potential difference after buffing. As can be seen from FIG. 3, it can be clearly understood that the potential difference of (1) becomes very large and the potential difference of (2) becomes small. Therefore, if the relationship between the change in the potential difference and the surface roughness of the obtained electrolytic copper foil is grasped, the timing for polishing with this electrode potential difference can be determined without measuring the surface roughness of the obtained electrolytic copper foil. You can decide.
[0029]
Time-dependent change in electrode potential difference after buffing Although the electrode potential difference immediately after buffing is small, it is empirical that if the potential difference is small, it cannot be said that electrolytic copper foil with good quality can be obtained. It is known. Conventionally, this problem has been abandoned, but the use of the electrode potential measuring probe according to the present invention makes it possible to grasp the changing state of the electrode potential difference, and it has been found new.
[0030]
FIG. 4 shows a temporal change of the electrode potential difference when the production of the electrolytic copper foil is performed continuously immediately after the buffing. According to this result, when the electrolysis is continued immediately after the buffing, the potential difference that was initially high gradually decreases, and the value of the potential difference becomes stable after 4 hours.
[0031]
Therefore, the present inventors measure the physical properties of the electrolytic copper foil obtained with the passage of time, such as the roughness of the glossy surface and the rough surface, the tensile strength and the elongation in the normal state, and the measurement in a 180 ° C. heating atmosphere. The properties of hot tensile strength and elongation were measured. As a result, none of the physical properties was stabilized until the continuous electrolysis time passed 4 hours, and the value of the electrode potential difference detected by the electrode potential measurement probe according to the present invention was stabilized after 4 hours passed. At the same time, it was found that the values of each physical property also became stable.
[0032]
In addition, the number of generated microporosity found in the electrolytic copper foil, the tendency that the number of generated microporosity also increased as the value of the electrode potential difference detected by the electrode potential measuring probe according to the present invention increased was remarkably confirmed. It is.
[0033]
Therefore, the value of the electrode potential difference detected by the electrode potential measuring probe according to the present invention is very reliable, and a change in this value is used as a monitor for the change in the physical properties of the electrolytic copper foil and the occurrence of microporosity. It turns out that things are possible.
[0034]
【The invention's effect】
As described above, the electrode potential measuring probe according to the present invention according to the present invention is very simple and does not require much cost to produce. This makes it possible to continuously measure the electrode potential difference. In this way, it is possible to constantly monitor the electrode potential, detect the deterioration of the electrode itself, and perform post-mortem inspection of the physical properties of the metal foil or plating film formed on the electrode surface with the potential difference. Instead, it is possible to make analogies.
[Brief description of the drawings]
FIG. 1 is a schematic sectional view of a probe for measuring an electrode potential according to the present invention.
FIG. 2 is a view showing an image in which the electrode potential measuring probe according to the present invention is attached to a continuous apparatus for manufacturing a metal foil.
FIG. 3 is a diagram showing a relationship between an electrode potential difference and polishing.
FIG. 4 is a diagram showing a change with time of an electrode potential difference after buffing.
[Explanation of symbols]
Reference Signs List 1 electrode potential measurement probe 2 casing 3 open end 4 reference electrode fixing part 5 solution inflow hole 6 solution 7 water-absorbing soft material 8 reference electrode 9 liquid junction part 10 connection terminal part 11 rotating cathode 12 anode 13 stripping roll 14 metal foil Roll 15 Clamp 16 Solution tank 17 Flow path 18 Potentiometer 19 Recorder C Contact area S Electrode surface

Claims (3)

電解法で金属成分を電極上に析出させる場合の溶液外に突出した陰極又は陽極のいずれかに接触させることで電解中の電極の電位差変化を捉えるための電極電位測定用プローブであって、
当該電極電位測定用プローブは、一端側に開口端及び他端側に参照電極固定部並びに溶液流入孔を備えるケーシングと、一次側が電位測定用の絡液部であり二次側が電位差計との接続端子部であり且つ前記ケーシング内に挿入可能な参照電極と、前記開口端に配して電極表面への接触部を構成する吸水性軟質素材とからなり、
前記ケーシングの一端側の開口端に吸水性軟質素材を配して電極表面への接触部とし、他端側から前記参照電極の一次側の絡液部から前記ケーシング内に挿入し、二次側の接続端子部が電位差計と接続可能なように参照電極固定部に配置し、
貯液中に参照電極の絡液部が浸漬するように溶液流入孔を通じてケーシング内部に電解液を導入し一時的に貯液し、前記接触部から貯液が緩やかに流出するようにしたことを特徴とした電極電位測定用プローブ。
An electrode potential measurement probe for capturing a change in potential difference of the electrode during electrolysis by contacting either the cathode or the anode protruding out of the solution when the metal component is deposited on the electrode by the electrolytic method,
The electrode potential measurement probe has a casing having an open end at one end and a reference electrode fixing portion and a solution inflow hole at the other end, and a primary side connected to a liquid junction for potential measurement and a secondary side connected to a potentiometer. A reference electrode that is a terminal part and can be inserted into the casing, and is made of a water-absorbing soft material disposed at the open end to constitute a contact part to the electrode surface,
A water-absorbing soft material is arranged at an opening end on one end side of the casing to be a contact portion with the electrode surface, and inserted into the casing from the liquid junction portion on the primary side of the reference electrode from the other end side, Is arranged on the reference electrode fixing part so that the connection terminal part of can be connected to the potentiometer,
That the electrolyte is introduced into the casing through the solution inflow hole so that the liquid junction of the reference electrode is immersed in the liquid and temporarily stored, and the liquid is allowed to slowly flow out of the contact portion. Characteristic probe for measuring electrode potential.
前記ケーシングが貯液の保温手段を備えている請求項1に記載の電極電位測定用プローブ。The probe for measuring an electrode potential according to claim 1, wherein the casing comprises a means for keeping the liquid stored. ドラム形状をした回転陰極と、その回転陰極の形状に沿って対向配置する陽極との間に、金属イオンを含んだ溶液を流し、電解反応を利用して金属成分を回転陰極のドラム表面に析出させ、析出した金属を箔状態として連続的に引き剥がすものである金属箔製造装置において、
前記回転陰極の溶液外に暴露したドラム表面に対し、請求項1又は請求項2に記載の電極電位測定用プローブを取り付けたことを特徴とする金属箔連続製造装置。
A solution containing metal ions flows between the drum-shaped rotating cathode and the anode arranged along the shape of the rotating cathode, and metal components are deposited on the drum surface of the rotating cathode using an electrolytic reaction. In the metal foil manufacturing apparatus that is to peel off the deposited metal continuously in a foil state,
An apparatus for continuously manufacturing a metal foil, wherein the electrode potential measuring probe according to claim 1 or 2 is attached to the surface of the drum exposed outside the solution of the rotating cathode.
JP2003119202A 2003-04-24 2003-04-24 Electrode potential measuring probe and continuous electrolyzation apparatus of metal foil with the same Pending JP2004325201A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003119202A JP2004325201A (en) 2003-04-24 2003-04-24 Electrode potential measuring probe and continuous electrolyzation apparatus of metal foil with the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003119202A JP2004325201A (en) 2003-04-24 2003-04-24 Electrode potential measuring probe and continuous electrolyzation apparatus of metal foil with the same

Publications (1)

Publication Number Publication Date
JP2004325201A true JP2004325201A (en) 2004-11-18

Family

ID=33498483

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003119202A Pending JP2004325201A (en) 2003-04-24 2003-04-24 Electrode potential measuring probe and continuous electrolyzation apparatus of metal foil with the same

Country Status (1)

Country Link
JP (1) JP2004325201A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2014110958A1 (en) * 2013-01-21 2014-07-24 福建清景铜箔有限公司 Method and system for producing electrolytic copper foil by using reverse flow of copper sulfate solution

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2014110958A1 (en) * 2013-01-21 2014-07-24 福建清景铜箔有限公司 Method and system for producing electrolytic copper foil by using reverse flow of copper sulfate solution

Similar Documents

Publication Publication Date Title
US8329024B2 (en) Electrochemical device and method for long-term measurement of hypohalites
Bockelmann et al. Passivation of zinc anodes in alkaline electrolyte: part II. Influence of operation parameters
US3564347A (en) Electrochemical timer
JP2009282011A (en) Reference electrode having automatic calibration function, and electrochemical potential automatic correction device using it
CN108611599B (en) Method and device for cleaning mask
JP2004325201A (en) Electrode potential measuring probe and continuous electrolyzation apparatus of metal foil with the same
Brown et al. The effect of surface roughness on the hydrogen evolution reaction kinetics with mild steel and nickel cathodes
JPH11188364A (en) Electrolytic apparatus
WO2017078125A1 (en) Electrolytic copper foil, and lithium ion secondary battery using same
US4153521A (en) Method of automatic control and optimization of electrodeposition conditions
US20220091064A1 (en) Silver-silver sulfide reference electrode
Janssen et al. Electrolysis of an acidic NaCl solution with a graphite anode—IV. Chlorine evolution at a graphite electrode after switching off current
Dumont et al. Dissolution and passivation processes in the corrosion of copper and nickel in KF. 2HF at 85 C
KR102144334B1 (en) Hydrogen peroxide detection sensor and method for fabricating the working electrode of the same
JPH02179898A (en) Method and apparatus for visibly detecting and inspecting electrode having activated layer
US4929323A (en) Apparatus for removing electroplating metal deposited onto surface of conductor roll
US4502214A (en) Method of making reference electrode
Mogi et al. CHIRALITY OF MAGNETOELECTRODEPOSITED Cu FILMS.
US5285162A (en) Galvanic current measuring method and apparatus for monitoring build-up of biological deposits on surfaces of dissimilar metal electrodes immersed in water
JP4174888B2 (en) Anodized film
JPH0885894A (en) Electrode
JP2019184364A (en) Device for determining corrosion of water and method for determining corrosion of water
JP2001342589A (en) Method and apparatus for manufacturing copper foil
JPS60171448A (en) Apparatus for measuring concentration of dissolved substance
JP2011053017A (en) Method of managing concentration of additive