JPS60171448A - Apparatus for measuring concentration of dissolved substance - Google Patents

Apparatus for measuring concentration of dissolved substance

Info

Publication number
JPS60171448A
JPS60171448A JP59027158A JP2715884A JPS60171448A JP S60171448 A JPS60171448 A JP S60171448A JP 59027158 A JP59027158 A JP 59027158A JP 2715884 A JP2715884 A JP 2715884A JP S60171448 A JPS60171448 A JP S60171448A
Authority
JP
Japan
Prior art keywords
electrode
hole
removal
cathode
anode
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP59027158A
Other languages
Japanese (ja)
Other versions
JPH0442624B2 (en
Inventor
Shunsuke Uchida
俊介 内田
Norio Nakayama
紀夫 中山
Yamato Asakura
朝倉 大和
Akihide Katsura
桂 了英
Masao Kitamura
喜多村 政夫
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Engineering Co Ltd
Hitachi Ltd
Original Assignee
Hitachi Engineering Co Ltd
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Engineering Co Ltd, Hitachi Ltd filed Critical Hitachi Engineering Co Ltd
Priority to JP59027158A priority Critical patent/JPS60171448A/en
Publication of JPS60171448A publication Critical patent/JPS60171448A/en
Publication of JPH0442624B2 publication Critical patent/JPH0442624B2/ja
Granted legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N27/00Investigating or analysing materials by the use of electric, electrochemical, or magnetic means
    • G01N27/26Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating electrochemical variables; by using electrolysis or electrophoresis
    • G01N27/403Cells and electrode assemblies
    • G01N27/404Cells with anode, cathode and cell electrolyte on the same side of a permeable membrane which separates them from the sample fluid, e.g. Clark-type oxygen sensors

Landscapes

  • Chemical & Material Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Physics & Mathematics (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • Molecular Biology (AREA)
  • Analytical Chemistry (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Immunology (AREA)
  • Pathology (AREA)
  • Investigating Or Analyzing Materials By The Use Of Electric Means (AREA)
  • Testing Resistance To Weather, Investigating Materials By Mechanical Methods (AREA)

Abstract

PURPOSE:To extend the continuously usable time of an obstruction component removal electrode by preventing the blocking of said electrode, by providing a plurality of obstruction component removal electrodes and forming each piercing hole of each removal electrode in a shape continuously or stepwise expanded toward the side of an opposed electrode. CONSTITUTION:A dissolved oxygen meter is constituted of a detector main body 16, a pressure resistant container 17 receiving said main body 16 and an external electric circuit system consisting of a voltmeter 15, an ammeter 12 and constant voltage power sources 13, 14. An oxygen pervious film 3 is provided to the surface of the detector main body 16 and an electrolyte 7 is sealed in said main body 16. An acting electrode 4 is constituted of a cathode having piercing holes. An obstruction component removal electrode having piercing holes is constituted of a post-stage cathode 6a and a front-stage cathode 6b, and both of them have piercing holes. Each piercing hole is formed so as to be expanded toward an anode 8. Specimen water is introduced from a specimen water inlet 19 and discharged from a specimen water outlet 11.

Description

【発明の詳細な説明】 〔発明の利用分野〕 本発明は溶存酸素あるいは溶存水素などの溶存物質の濃
度を測定する装置に関する。
DETAILED DESCRIPTION OF THE INVENTION [Field of Application of the Invention] The present invention relates to an apparatus for measuring the concentration of dissolved substances such as dissolved oxygen or dissolved hydrogen.

〔発明の背景〕[Background of the invention]

従来の溶存物質の濃度測定装置例えば溶存酸素計として
は特開昭57−203945号公報に記載されたものが
ある。これは第1図に示されるもので、との溶存酸素計
は検出器16を耐圧容器17に収納し、試料水入口19
より導入した試料水を通水孔5より、耐圧容器内全体に
通水して検出器全体を高圧試料水18中に浸し、内部電
解液7と試料水の間に圧力の均衡を保ち、耐圧性を向上
させるとともに、検出器及び選択(酸素)透過膜3(以
下、酸素透過膜と略す)を耐熱性樹脂を用いて製作し、
ベローズ10で電解液の熱膨張を吸収することにより耐
熱性を向上させることをねらったものである。さらに、
ベローズの眼力により検用益の内圧が増大し、酸素透過
膜が破損することを防止するために、酸素透過膜を多孔
性陰極4(以下、陰極と略す)及び金属フィルター1で
挿んで支持し、酸素透過膜を補強するものである。
A conventional device for measuring the concentration of dissolved substances, such as a dissolved oxygen meter, is described in Japanese Patent Application Laid-open No. 57-203945. This is shown in Fig. 1, in which the detector 16 is housed in a pressure-resistant container 17, and the sample water inlet 19 is
The sample water that has been introduced is passed through the entire interior of the pressure container through the water passage hole 5, and the entire detector is immersed in the high pressure sample water 18, and the pressure is maintained between the internal electrolyte 7 and the sample water, and the pressure is increased. In addition to improving the performance, the detector and selective (oxygen) permeable membrane 3 (hereinafter abbreviated as oxygen permeable membrane) are manufactured using heat-resistant resin.
This is intended to improve heat resistance by absorbing thermal expansion of the electrolyte with the bellows 10. moreover,
In order to prevent the oxygen permeable membrane from being damaged due to an increase in internal pressure due to the force of the bellows, the oxygen permeable membrane is inserted and supported by a porous cathode 4 (hereinafter abbreviated as cathode) and a metal filter 1, It reinforces the oxygen permeable membrane.

第1図の装置においては、試料水中の溶存02は先ず金
属フィルター及び酸素透過膜を透過して検出器内に入る
。陰極はAu、Pt、Ag等で製作され、定電位電源B
14及び電流計12を介して銀で製作された陽極B、9
と結線される。電解液にはK (J’ll’アルカリ性
水溶液炉水溶液れる。陰極は定電圧電源B14及び電位
差計15により、陽極Bより負な定電位に保たれ、検出
器内に入る02は、この陰極上で式(1)に従いOH−
に還元される。
In the apparatus shown in FIG. 1, dissolved O2 in the sample water first passes through a metal filter and an oxygen permeable membrane and enters the detector. The cathode is made of Au, Pt, Ag, etc., and is connected to a constant potential power source B.
anode B made of silver through 14 and ammeter 12, 9
is connected to. The electrolyte contains K (J'll' alkaline aqueous reactor solution. The cathode is kept at a constant potential that is more negative than the anode B by a constant voltage power supply B14 and a potentiometer 15. According to formula (1), OH−
will be reduced to

02+2H20+4e−→40H−・・・−”・(1)
一方、陽極上では式(2)の反応が進行し、両極間Ag
+C/=−−+AgC1+e−−−−−−−・−(21
に電流が流れる。この電流を電流計12で検出し、この
電流値から溶存02濃度を定量する。
02+2H20+4e-→40H-...-”・(1)
On the other hand, the reaction of formula (2) progresses on the anode, and the Ag
+C/=−−+AgC1+e−−−−−−・−(21
A current flows through. This current is detected by an ammeter 12, and the dissolved 02 concentration is determined from this current value.

公知例の溶存酸素計は陰極下面が電解液中に露出してお
り、電解液中の溶存02、イオン等による妨害を受け易
いため、これら全除去し、これらが陰極に拡散するのを
防止することを目的とした、妨害成分除去用電極(以下
、除去電極と略す)6を装備している。除去電極はAu
、A、g、Pt等の導電体に貫通孔を設け、この貫通孔
を通してのみ電解液の連絡が可能である構造を有し、多
孔性金属陰極の近傍に配置される。この除去電極を定電
圧電源A13を介し、陽極A8と結線し、この定電位電
源Aを用いて、陽極Aに対する除去電極の電位を陽極B
に対する陰極の電位と同電位に保持する。陽極A側から
陰極表面に拡散する溶存O21イオン等の妨害成分は、
除去電極の貫通孔内金通過する間に還元され、これらが
陰極に到達して、妨害電流を生ずることを未然に防止す
る事ができる。この時、陽極A上では式(2)に基づく
反応が進行する。
In known dissolved oxygen meters, the lower surface of the cathode is exposed in the electrolyte and is susceptible to interference by dissolved 02, ions, etc. in the electrolyte, so these should be completely removed to prevent them from diffusing into the cathode. It is equipped with an interfering component removal electrode (hereinafter abbreviated as removal electrode) 6 for the purpose of this purpose. The removal electrode is Au
, A, G, Pt, or the like, and has a structure in which an electrolytic solution can be communicated only through the through hole, and is placed near a porous metal cathode. This removal electrode is connected to the anode A8 via a constant voltage power supply A13, and using this constant potential power supply A, the potential of the removal electrode with respect to the anode A is changed to the anode B.
The potential of the cathode is maintained at the same potential as the potential of the cathode. Interfering components such as dissolved O21 ions that diffuse from the anode A side to the cathode surface are
While the metal passes through the through-hole of the removal electrode, it is reduced and can be prevented from reaching the cathode and causing interference current. At this time, a reaction based on formula (2) proceeds on the anode A.

公知例の溶存酸素計においては溶存02濃度の定量に伴
い、式(2)に従い、陽極A及び陽極B上でAgCtが
生成し、析出する。このAgCtの溶解度は、濃度の上
昇と共に増大し、炉水温度では室温の100倍程度溶解
してAg+イオンを生成する。
In the known dissolved oxygen meter, AgCt is generated and precipitated on the anodes A and B according to equation (2) as the dissolved O2 concentration is determined. The solubility of AgCt increases as the concentration increases, and at reactor water temperature it dissolves about 100 times as much as at room temperature, producing Ag+ ions.

このAg+イオンは陰極において式(3)に従いAgA
g“十e−→Ag ・・・・・・・・・(3)に還元さ
れ、この還元電流が02濃度測定の際、妨害となる。こ
のため、高温においてはとのAg+イオンを除去するこ
とが重要な問題となる。Ag+イオンは除去電極貫通孔
内で式(3)に従いAgとして電析し、除去されるが、
このとき電析したAgが貫通孔内に蓄積し、長期間測定
を実施した場合、貫通孔を閉塞して陰極と陽極8間の導
通を失なわせ、測定が不可能にガるという問題があった
This Ag+ ion is converted into AgA according to formula (3) at the cathode.
It is reduced to g"10e-→Ag (3), and this reduction current becomes an interference when measuring the 02 concentration. Therefore, at high temperatures, the Ag+ ions are removed. This is an important issue.Ag+ ions are electrodeposited as Ag in the removal electrode through-hole according to equation (3) and are removed.
At this time, the deposited Ag accumulates in the through-hole, and if measurements are carried out for a long period of time, the through-hole will be blocked and conduction between the cathode and anode 8 will be lost, making measurement impossible. there were.

〔発明の目的〕[Purpose of the invention]

本発明の目的は、連続使用可能時間全延長した溶存物質
の濃度測定装置を提供するにある。
An object of the present invention is to provide a dissolved substance concentration measuring device that can be used continuously for a longer period of time.

〔発明の概要〕[Summary of the invention]

本発明は、貫通孔を有する陰極および陽極からなり、い
ずれか一方が作用極となる測定電極、該電極間に封入さ
れた電解液および上記作用極の外側近傍に設けられた選
択透過膜および前記測定電極間に設けられ、かつ前記測
定電極と同じ極性位置となるように配置された貫通孔を
有する陰極および陽極からなる妨害成分除去用電極を主
たる構成要素とする溶存物質の濃度測定装置において、
前記測定電極の作用極側に位置する前記妨害成分除去用
電極の貫通孔が対極側に向かって連続的ないし段階的に
広められた形状を含んでいることを特徴とするみ 前記従来の除去電極は、妨害成分を高率で除去できるよ
うに、小孔径の貫通孔を有する除去電極が使用さ比る。
The present invention relates to a measuring electrode consisting of a cathode and an anode having a through hole, one of which serves as a working electrode, an electrolytic solution sealed between the electrodes, a permselective membrane provided near the outside of the working electrode, and a permselective membrane provided near the outside of the working electrode. In a dissolved substance concentration measuring device whose main component is an interfering component removal electrode consisting of a cathode and an anode having a through hole arranged between measurement electrodes and arranged to have the same polarity as the measurement electrode,
The conventional removal electrode is characterized in that the through-hole of the interfering component removal electrode located on the working electrode side of the measurement electrode includes a shape that widens continuously or stepwise toward the counter electrode side. In order to remove interfering components at a high rate, a removal electrode having a small through-hole is used.

除去電極による妨害成分の除去率(以下、除去率と略す
)は、貫通孔長さ、すなわち除去電極厚さと貫通孔半径
の比によってのみ決定され、温度及び妨害成分の種類に
依存しない。
The removal rate of interfering components by the removal electrode (hereinafter abbreviated as removal rate) is determined only by the through-hole length, that is, the ratio of the removal electrode thickness to the through-hole radius, and does not depend on the temperature or the type of interfering component.

貫通孔長さの貫通孔半径に対する比と、除去率の間の関
係を第2図に示した。第2図において、除去率Yは式(
4)で定義され、また、除去率と、貫通孔長さの貫通孔
半径に対する比との間の関係は式1式% ここにYは除去率を表わし、Ci及びcoは除去電極入
口及び出口における妨害成分の濃度を表わす。またRo
は貫通孔半径、Lは貫通孔長さを示す。第2図及び式(
5)より得られるように、貫通孔長さの貫通孔半径に対
する比が増大すると共に、除去率は上昇する。例えば高
温における溶存02濃度の測定では、高濃度のAg+イ
オンを除去することが要求されるため、貫通孔長さに比
して小さな貫通孔半径を有する除去電極が使用される。
FIG. 2 shows the relationship between the ratio of the through hole length to the through hole radius and the removal rate. In Figure 2, the removal rate Y is calculated by the formula (
4), and the relationship between the removal rate and the ratio of the through-hole length to the through-hole radius is expressed by Equation 1% where Y represents the removal rate, and Ci and co represent the removal electrode inlet and outlet. represents the concentration of interfering components at Also Ro
is the through-hole radius, and L is the through-hole length. Figure 2 and formula (
5), as the ratio of the through-hole length to the through-hole radius increases, the removal rate increases. For example, in measuring the dissolved O2 concentration at high temperatures, it is required to remove a high concentration of Ag+ ions, so a removal electrode having a through-hole radius smaller than the through-hole length is used.

陽極側より拡散するAg+イオンはこの貫通孔内面で還
元され、Agとして析出し、捕捉されるが、長期測定に
際しては、析出したAgの蓄積による貫通孔径の減少を
考慮する事が必要となる。
Ag+ ions diffusing from the anode side are reduced on the inner surface of this through-hole, precipitated as Ag, and captured, but for long-term measurements, it is necessary to take into account the decrease in the through-hole diameter due to accumulation of precipitated Ag.

第2図に示す如< 、A g ”イオンは貫通孔入口か
ら貫通孔半径の2倍の奥行きに相当する領域内でその9
9チ以上が除去され、析出する。析出したAgが貫通孔
半径を減少させるため、この領域は時間と共に貫通孔入
口付近に移動する。その結果、第3図に示す如く、Ag
は貫通孔入口部において厚く蓄積し、貫通孔の閉塞はさ
らに加速され、最終的に貫通孔はその入口部において完
全に閉塞して、溶存02濃度定量が不能となる。本発明
では解析によりこの入口部半径の経時変化は式(6)で
表わされることを見い出した。
As shown in FIG.
More than 9 pieces are removed and precipitated. Since the precipitated Ag reduces the radius of the through-hole, this region moves closer to the entrance of the through-hole with time. As a result, as shown in Figure 3, Ag
accumulates thickly at the entrance of the through-hole, further accelerating the blockage of the through-hole, and eventually the through-hole is completely blocked at the entrance, making it impossible to quantify the dissolved O2 concentration. In the present invention, it has been found through analysis that the change in the radius of the inlet portion over time is expressed by equation (6).

ここに、tは経過時間、rは時間tにおける貫通孔入口
半径、Roは時間Oにおける貫通孔初期半径MはAgの
原子量、D及びCはAg+イオンの拡散係数及び濃度、
ρはAgの密度を表わす。
Here, t is the elapsed time, r is the entrance radius of the through hole at time t, Ro is the initial radius of the through hole at time O, M is the atomic weight of Ag, D and C are the diffusion coefficient and concentration of Ag + ions,
ρ represents the density of Ag.

式(6)から貫通孔が閉塞するまでの時間Tは式(7)
で表わされる。
From equation (6), the time T until the through hole closes is given by equation (7)
It is expressed as

すなわち、Tは貫通孔半径の二乗に比例して、増大し、
Ag+イオン濃度の一乗に逆比例して、減少する。従っ
て孔径の小さい貫通孔を有する除去電極は極めて使用時
間が短かく、高温高圧型溶存酸素計の使用時間は主とし
てこの時間Tにより決定される。−例として、式(6)
を用いて計算した、炉水温度(285tZ’)において
1 mob/ L K、CL水溶液中に飽和するAg+
イオンにより、引き起こされる、0.025(?F71
の初期半径を有する貫通孔の、入口部半径の経時変化全
第4図に示した。貫通孔は30日あまりで閉塞し、この
値は電解液中Ct−イオンの消耗、酸素透過膜の劣化等
により決定される寿命よりも短い。
That is, T increases in proportion to the square of the through hole radius,
It decreases in inverse proportion to the first power of Ag+ ion concentration. Therefore, a removal electrode having a through-hole with a small diameter has an extremely short usage time, and the usage time of a high-temperature, high-pressure type dissolved oxygen meter is mainly determined by this time T. - As an example, equation (6)
1 mob/L K at reactor water temperature (285tZ'), Ag+ saturated in CL aqueous solution
caused by ions, 0.025 (?F71
The change over time of the entrance radius of a through hole having an initial radius of is shown in FIG. The through hole becomes clogged in about 30 days, and this value is shorter than the life span determined by the consumption of Ct- ions in the electrolyte, deterioration of the oxygen permeable membrane, and the like.

本発明はこの点を解消し、高率かつ、長寿命の除去電極
を供する手段として、式(7)より閉塞時間Tは、半径
の増大、あるいはAg+イオン濃度の減少により増大さ
せることが可能であることに着目して、複数個の除去電
極を供し、陰極に近接して小さな貫通孔入口部し、高率
でAg+イオン等妨害成分全除去することを目的とした
除去電極を装置し、また、陽極に近接して、大きな貫通
孔径上布し、低率でAg+イオン等妨害成分を除去し、
濃度を減少せしめたのち、陰極側に配置された高率の除
去電極に妨害成分を拡散させ、高率の除去1(11 電極の閉塞を防止し、自らはその大孔径の貫通孔上布す
るが故に閉塞しにくい除去電極上配置し、これらを同時
に同電位に印加して、いずれの除去電極の閉塞をも防ぎ
つつ高率で妨害成分除去用測定を行うことを特長とする
高温高圧型溶存酸素計を考案するに至った。
The present invention solves this problem and provides a high-efficiency and long-life removal electrode. According to equation (7), the occlusion time T can be increased by increasing the radius or decreasing the Ag + ion concentration. Focusing on one thing, we provided a plurality of removal electrodes, installed a small through hole entrance close to the cathode, and installed a removal electrode with the aim of removing all interfering components such as Ag+ ions at a high rate. , close to the anode, with a large through-hole, to remove interfering components such as Ag + ions at a low rate,
After reducing the concentration, the interfering components are diffused to the high-rate removal electrode placed on the cathode side, and the high-rate removal 1 (11) prevents clogging of the electrode and spreads itself over the large-diameter through-hole. Therefore, the high-temperature, high-pressure type dissolution is characterized by being placed on the removal electrodes that are difficult to block, and applying the same potential to them at the same time to prevent any of the removal electrodes from clogging while performing measurements for removing interfering components at a high rate. He came up with the idea of an oxygen meter.

本発明の特徴は、容器内部に電解液を充填し、この容器
表面に試料水に接して装置宴れた酸素透過膜を崩し、電
解液中、酸素透過膜近傍に陰極を配置し、同じく電解液
中、陰極より内奥部に、これと定電位電源及び電流計を
介して結線される陰極用陽極を装置し、この電解液が通
過できる事が可能である貫通孔を設けた構造?有する導
電体で製作された複数個の妨害成分除去用の電極(除去
電極)t−装置し、この除去電極より陰極用陽極に近接
して装置され、定電位電源全弁して、除去電極と結線さ
れる除去電極用陽極を装置する隔膜式溶存酸素計におい
て、陰極側に近接して、その貫通孔長に比して小さな貫
通孔半径を有する貫通孔を設け、式(4)及び式(5)
によって得られる高い妨害(10) 成分除去率を有する除去電極を配置し、陽極に近接して
、上記の陰極に近接して配置された除去電極に設けられ
た貫通孔よりも大きい半径の貫通孔を有する除去電極を
配置し、これらに定電位電源により同時に電圧を印加し
、妨害成分を除去しながら、溶存02濃度を測定するに
ある。
The characteristics of the present invention are that an electrolytic solution is filled inside a container, an oxygen permeable membrane is broken down on the surface of the container in contact with sample water, and a cathode is placed near the oxygen permeable membrane in the electrolytic solution. A structure in which a cathode anode is installed in the liquid, deep inside the cathode, and connected to this via a constant potential power source and an ammeter, and a through hole is provided through which this electrolyte can pass? A plurality of interfering component removal electrodes (removal electrodes) made of a conductive material are installed closer to the anode for the cathode than the removal electrodes, and the constant potential power supply is fully turned on to connect the removal electrodes and the removal electrodes. In a diaphragm-type dissolved oxygen meter that has an anode for a removal electrode that is connected, a through hole having a radius smaller than the length of the through hole is provided close to the cathode side, and formula (4) and formula ( 5)
High interference obtained by (10) A removal electrode having a component removal rate is arranged, and a through-hole with a radius larger than that provided in the removal electrode located close to the anode and the above-mentioned cathode. A voltage is simultaneously applied to these electrodes by a constant potential power source, and the dissolved O2 concentration is measured while removing interfering components.

〔発明の実施例〕[Embodiments of the invention]

以下、本発明の実施例を第5図から第10図までを用い
て説明する。第5図は本実施例の溶存酸素計の概略図で
ある。実施例の溶存酸素計は、検出器本体16と、これ
を収納する耐圧容器17、及び、電圧計15、電流計1
2、定屯圧覗源A13、定電圧電源B14、等の検出器
本体内の電極に結線された外部電気回路系より構成され
る。検出器本体には表面に酸素透過膜3が装置され、内
部に電解液7が封入される。作用極4は貫通孔を有する
陰極で構成される。又、貫通孔を有する妨害成分除去用
電極(以下、除去電極と略す)は後段の陰電極6a(以
下、後段除去電極と略す)と前段の陰電極6b(以下、
前段除去電極と略す)とか(11) う構成されている。9は測定電極における陽極、8け前
記除去電極と対をなす陽極である。この他、検出器には
高温試料水測定のため、検出器の耐久性を向上させるこ
とを目的とした装置が装備される。すなわち、検出器に
は電解液と連絡したベローズ10が装置され、電解液の
熱膨張を吸収する。
Embodiments of the present invention will be described below with reference to FIGS. 5 to 10. FIG. 5 is a schematic diagram of the dissolved oxygen meter of this embodiment. The dissolved oxygen meter of the embodiment includes a detector body 16, a pressure-resistant container 17 that houses the detector body, a voltmeter 15, and an ammeter 1.
2. It is composed of an external electric circuit system connected to the electrodes inside the detector body, such as a constant pressure source A13, a constant voltage power source B14, etc. An oxygen permeable membrane 3 is installed on the surface of the detector body, and an electrolytic solution 7 is sealed inside. The working electrode 4 is composed of a cathode having a through hole. Further, the interfering component removing electrode (hereinafter referred to as a removal electrode) having a through hole has a rear stage cathode 6a (hereinafter referred to as a rear stage removal electrode) and a front stage cathode 6b (hereinafter referred to as a rear stage removal electrode).
(abbreviated as "pre-stage removal electrode") or (11). 9 is an anode in the measurement electrode, and 8 is an anode that forms a pair with the above-mentioned removal electrode. In addition, the detector is equipped with a device aimed at improving the durability of the detector for measuring high-temperature sample water. That is, the detector is equipped with a bellows 10 that communicates with the electrolyte to absorb thermal expansion of the electrolyte.

まだ、酸素透過膜は多孔性金属フィルター1と多孔性の
陰極で挿んで支持し、酸素透過膜の耐久性の向上を図り
、ベローズの伸張に伴う、ベローズの張力の増大により
生ずる、′lt′!!io、内圧の増大のために、酸素
透過膜が破損することを防止する。
However, the oxygen permeable membrane is inserted and supported by a porous metal filter 1 and a porous cathode to improve the durability of the oxygen permeable membrane. ! ! io, to prevent the oxygen permeable membrane from being damaged due to an increase in internal pressure.

また、試料水は試料水入口19から耐圧容器内に入シ、
試料水出口11から流出する。耐圧容器には試料水が満
たされ、検出器全体がこの中に浸されているので、試料
水と電解液の間に圧力の均衡が常に保たれ、検出器本体
及び酸素透過膜が破損することは無い。これらの装置に
よシ、検出器は高温、高圧の試料水中においても破損す
ること無く、測定を行うことが出来る。検出器本体には
四ふつ化エチレン樹脂、ポリイミド樹脂等の耐熱性(1
2) 樹脂が使用される。酸素透過膜には四ふつ化エチレン樹
脂等の、酸素透過係数の大きな耐熱性樹脂が用いられる
。陰極、前段除去電極、及び後段除去電極は、金、白金
、銀等の高温においても腐食性の小さい金属を用いて製
作される。陽極A及び陽極Bには、高温においても分解
せず、安定、可逆的で信頼性の高いAg/AgC4電極
が用いられる。これに伴い、電解液にはCt−イオンを
含むアルカリ溶液、例えば、K Cl 1 mot/ 
l 、KOH1mot/lを含む水溶液が用いられる。
In addition, the sample water enters the pressure container from the sample water inlet 19.
The sample water flows out from the sample water outlet 11. Since the pressure container is filled with sample water and the entire detector is immersed in it, a pressure balance is always maintained between the sample water and the electrolyte, preventing damage to the detector body and oxygen permeable membrane. There is no. With these devices, the detector can perform measurements without being damaged even in high-temperature, high-pressure sample water. The main body of the detector is made of heat-resistant materials such as tetrafluoroethylene resin and polyimide resin.
2) Resin is used. A heat-resistant resin with a large oxygen permeability coefficient, such as tetrafluoroethylene resin, is used for the oxygen permeable membrane. The cathode, the first-stage removal electrode, and the second-stage removal electrode are manufactured using metals that are less corrosive even at high temperatures, such as gold, platinum, and silver. For the anodes A and B, Ag/AgC4 electrodes are used, which do not decompose even at high temperatures and are stable, reversible, and highly reliable. Along with this, the electrolyte contains an alkaline solution containing Ct- ions, for example, KCl 1 mot/
An aqueous solution containing 1 mot/l of KOH is used.

陰極は定電圧電源Bと電流計を介して陽極Bと、また、
前段除去電極及び後段除去電極は定電圧電源Aを介して
陽極Aとそれぞれ結線され、これらの定電圧電源により
、陽極Bに対する陰極電位、及び陽極Aに対する前段除
去電極、及び後段除去電極の電位は、それぞれ同電位、
好適には炉水温度において約−〇、8Vに保持される。
The cathode is connected to the anode B via a constant voltage power supply B and an ammeter, and
The front removal electrode and the rear removal electrode are connected to the anode A via a constant voltage power supply A, and by these constant voltage power supplies, the cathode potential with respect to the anode B and the potential of the front removal electrode and the rear removal electrode with respect to the anode A are as follows. , respectively the same potential,
Preferably, the reactor water temperature is maintained at about -0.8V.

試料水中の02は酸素透過膜を透過して陰極孔内の電解
液中に入り、電極孔内を拡散する間に電極孔内面で式(
1)に従い還元される。この時陽極B上では式(2)の
反応が進行し、両極間に電流が流れる。この電流を電流
計で検出し、この電流から溶存02濃度を定量する。こ
の時、式(2)に従い陽極B上で生成するAgctは高
温で溶解し、Ag”イオンを生ずる。このAg+イオン
は陰極で還元され、妨害電流を生ずるので、前段除去電
極、及び後段除去電極を用いて、これを還元除去する。
02 in the sample water passes through the oxygen permeable membrane and enters the electrolyte in the cathode hole, and while it diffuses inside the electrode hole, the formula (
1) will be refunded. At this time, the reaction of formula (2) progresses on the anode B, and a current flows between the two electrodes. This current is detected by an ammeter, and the dissolved 02 concentration is determined from this current. At this time, Agct generated on the anode B according to equation (2) is dissolved at high temperature and generates Ag'' ions.This Ag+ ion is reduced at the cathode and generates a disturbance current, so the former removal electrode and the latter removal electrode This is reduced and removed using

前段除去電極は高率でAg+を除去する事を目的とする
ため、その貫通孔半径は、貫通孔長さすなわち除去電極
厚さに比して小さく、好適には115以下となるように
製作される。この時、除去電極はその貫通孔内において
、妨害成分の99.999%以上を除去する。貫通孔半
径を小さくすることによシ、貫通孔内部の電解液の電気
抵抗が増大するので、貫通孔を多数設けてこれを減少さ
せる。
Since the purpose of the first-stage removal electrode is to remove Ag+ at a high rate, the radius of the through hole is smaller than the length of the through hole, that is, the thickness of the removal electrode, and is preferably manufactured to be 115 mm or less. Ru. At this time, the removal electrode removes 99.999% or more of the interfering components within its through hole. By reducing the radius of the through hole, the electrical resistance of the electrolyte inside the through hole increases, so this is reduced by providing a large number of through holes.

この前段除去電極は貫通孔径が小さいため、式(6)1
式(7)及び第4図により予想されるように析出したA
gによシ貫通孔が閉塞され易く、使用時間が短い。これ
を解消するため、本実施例では、検(14) 用益内に後段除去電極を設置している。後段除去電極は
、前段除去電極と、陽極A及び陽極Bの間に設置され、
前段除去電極と同電位に保持し、前段除去電極と同時に
使用する。後段除去電極は、陽極側電解液中から陰極方
向へ拡散するAg+イオン等の妨害成分を、前段除去電
極よシも低率で除去し、その濃度を減少させた後、高率
の前段除去電極側へ拡散させる機能を有する。後段除去
電極の除去率は比較的小さく、好適には95俤程度のも
のが使用される。従って貫通孔径は比較的大きく、好適
には貫通孔長の1.25倍程度の大きさをもつものが設
けられる。式(7)に示されるように、貫通孔の閉塞時
間は貫通孔半径の2乗に比例して増大し、壕だ、Ag+
イオン濃度の1乗に逆比例して増大する。従って、後段
除去電極と前段除去電極とを同時に使用することにより
、前者は貫通孔半径が増大する効果によって、また、後
者はAg+イオン濃度が減少する効果によって、それぞ
れ使用時間を大幅に延長し、かつ、萬い除去率でAg+
イオン等妨害成分を除去することが、同(15) 、時に可能となる。第6図に半径0.2 cm、厚さ0
.25cmの貫通孔を有する後段除去電極と、半径0.
025鋸、厚さ0.125mの貫通孔径を有する前段除
去電極とを同時に炉水温贋で使用した場合におけるそれ
ぞれの電極の貫通孔半径の経時変化を示した。
Since this pre-stage removal electrode has a small through-hole diameter, Equation (6) 1
A precipitated as expected from equation (7) and FIG.
g, the through hole is easily blocked and the usage time is short. In order to solve this problem, in this embodiment, a post-removal electrode is installed in the inspection (14) utility area. The rear removal electrode is installed between the front removal electrode, anode A and anode B,
It is held at the same potential as the previous removal electrode and used at the same time as the previous removal electrode. The second-stage removal electrode removes interfering components such as Ag+ ions that diffuse from the anode electrolyte toward the cathode at a low rate as well as the first-stage removal electrode, and after reducing the concentration, the second-stage removal electrode It has the function of spreading to the side. The removal rate of the post-removal electrode is relatively small, and preferably about 95 electrodes are used. Therefore, the diameter of the through hole is relatively large, preferably about 1.25 times the length of the through hole. As shown in equation (7), the closure time of the through hole increases in proportion to the square of the through hole radius,
It increases in inverse proportion to the first power of the ion concentration. Therefore, by using the rear removal electrode and the front removal electrode at the same time, the usage time of the former is greatly extended due to the effect of increasing the through hole radius, and the latter is due to the effect of decreasing the Ag + ion concentration, respectively. And, the removal rate is Ag+
It is sometimes possible to remove interfering components such as ions (15). Figure 6 shows a radius of 0.2 cm and a thickness of 0.
.. A rear removal electrode with a 25 cm through hole and a radius of 0.
025 saw and a pre-stage removal electrode having a through-hole diameter of 0.125 m in thickness are used at the same time at an incorrect reactor water temperature, and the change over time in the through-hole radius of each electrode is shown.

後段除去電極の使用時間は2000日以上、また、前段
除去電極の使用時間は600日以上、すなわち第3図に
示した、公知例の除去電極の使用時間の20倍以上に増
大する。
The use time of the post-stage removal electrode is 2000 days or more, and the use time of the pre-stage removal electrode is 600 days or more, that is, the use time is more than 20 times that of the known example removal electrode shown in FIG.

本実施例においては、前段除去電極の他、後段除去電極
を1個のみ使用したが、第7図に示す如く複数個の後段
除去電極を、貫通孔径の大きなものを陽極側として配置
し、使用することも可能である。第7図において、後段
除去電極A6Cは、前段除去電極よシも大きな貫通孔を
有し、前段除去電極よりも陽極B8側に、また、後段除
去電極B6dは後段除去電極Aよりもさらに大きな貫通
孔を有し、後段除去電極Aよりも陽極B側に配置され、
これらは定電圧電源13で同電位に保持され、同時に使
用される。この電極系を用いた場合、(16) さらに各電極の使用時間を延長する事が可能である。第
7図は後段電極を二個使用しているが、これよシ多数の
後段電極を使用することも可能である。また、第7図の
例では、独立した前段除去電極、及び後段除去電極を同
時に同電位に保持して使用しているが、これらを第8図
に示す如く互いに直接、接触させ一個の電極として使用
すること、あるいは第9図に示す如く同一の金属板に、
陽極側から陰極側に向かって半径が階段状に減少する貫
通孔を設け、同一電極で、前段除去電極と複数個の後段
除去電極を使用した場合と同じ機能を有する電極を用い
ること、及びこの極板として、第10図に示すような連
続的に半径の変化する貫通孔を有する電極、等を使用す
ることも可能である。
In this example, in addition to the front stage removal electrode, only one rear stage removal electrode was used, but as shown in FIG. It is also possible to do so. In FIG. 7, the rear removal electrode A6C has a larger through hole than the front removal electrode, and is closer to the anode B8 than the front removal electrode, and the rear removal electrode B6d has an even larger penetration hole than the rear removal electrode A. It has a hole and is arranged closer to the anode B than the post-removal electrode A,
These are held at the same potential by a constant voltage power supply 13 and used simultaneously. When this electrode system is used, (16) it is possible to further extend the usage time of each electrode. Although two rear stage electrodes are used in FIG. 7, it is also possible to use a larger number of rear stage electrodes. In addition, in the example shown in Figure 7, the independent front-stage removal electrode and rear-stage removal electrode are used while being held at the same potential at the same time, but as shown in Figure 8, they are brought into direct contact with each other and used as a single electrode. or on the same metal plate as shown in Figure 9.
Provide a through hole whose radius decreases stepwise from the anode side to the cathode side, and use an electrode that has the same function as when using the same electrode as a front stage removal electrode and a plurality of rear stage removal electrodes, and As the electrode plate, it is also possible to use an electrode having a through hole whose radius changes continuously as shown in FIG. 10.

本実施例においては、陽極A及び陽極BとしてAg/A
gct電極を用いた例につbて説明したが、本発明の前
段除去電極、及び後段除去電極を用いてAg+イオン等
の妨害成分を除去する手法は、他の高温において安定、
可逆的で信頼性の高い電極、例えば、Ag/AgBr、
Ag/AgI、Ag/AgaPO4,P b/ PbS
O4,Ag/、Ag2SO4等の電極を使用した場合に
も有効である。
In this example, Ag/A is used as anode A and anode B.
Although an example using a GCT electrode has been described, the method of removing interfering components such as Ag+ ions using the front-stage removal electrode and the rear-stage removal electrode of the present invention is stable at other high temperatures,
Reversible and reliable electrodes, e.g. Ag/AgBr,
Ag/AgI, Ag/AgaPO4, Pb/PbS
It is also effective when using electrodes such as O4, Ag/, Ag2SO4, etc.

以上、本実施例によれば、高温、高圧型溶存酸素計の連
続測定可能時間を従来の20日〜30日程度から、20
倍以上、すなわち600日以上に延長することが可能と
なる効果がある。
As described above, according to this embodiment, the continuous measurable time of the high-temperature, high-pressure dissolved oxygen meter is reduced from the conventional 20 to 30 days to 20 days.
This has the effect of making it possible to extend the period by more than double, that is, to more than 600 days.

測定電極の作用極側に配置される除去電極の他の例を第
11〜14図に示す。また、図示してbないが、貫通孔
の断面形状は円形以外にも、例えば3角形、4角形ある
いはその他の任意の形状を選ぶことができる。
Other examples of the removal electrode arranged on the working electrode side of the measurement electrode are shown in FIGS. 11-14. Further, although not shown in the drawings, the cross-sectional shape of the through hole may be triangular, quadrangular, or any other shape other than circular.

本実施例では03濃度測定装置に同じ説明したが、本発
明は他の溶存物質例えばH2、1428゜H2O2ある
いけ金属イオン等の濃度測定装置に適用することも可能
である。また、本実施例では陰極を作用極としたが、0
2以外の溶存物質に対しては陽極を作用極とすることも
可能である。
In this embodiment, the same explanation has been given for the 03 concentration measuring device, but the present invention can also be applied to a concentration measuring device for measuring other dissolved substances such as H2, 1428° H2O2, or metal ions. In addition, in this example, the cathode was used as the working electrode, but 0
For dissolved substances other than 2, it is also possible to use the anode as a working electrode.

〔発明の効果〕〔Effect of the invention〕

本発明の一実施例の装置による高温高圧型溶存酸素計の
場合、連続測定可能時間を従来の20〜30日程度から
、600日以上に延長しうるので200日〜1年程度連
続的に測定可能な性能を有することが不可欠である軽水
炉1重水炉等、実プラント用計測装置として高温高圧型
溶存酸素計を適用し、実用化全図ることが可能となる。
In the case of the high-temperature, high-pressure dissolved oxygen meter using the device of one embodiment of the present invention, the continuous measurement time can be extended from the conventional 20 to 30 days to more than 600 days, so continuous measurement can be performed for about 200 days to one year. It will be possible to apply the high-temperature, high-pressure dissolved oxygen meter as a measurement device for actual plants such as light water reactors and heavy water reactors, where it is essential to have the highest possible performance, and to put it into practical use.

軽水炉、及び重水炉においては炉水中に02の他、I4
202が存在し、試料水冷却操作中に)Jiosが02
に熱分解してO!濃度が変化するため、試料水を冷却す
ることなく直接02濃度を測定することが炉水水質管理
上重要である。本発明によれば、実プラントにおいて、
この目的を達しうる実用的な検出器を提供することが可
能となり、炉水水質管理及び炉水中にH2を注入し、炉
水中溶存02濃度低減を図る際の制御を行ううえで、極
めて有力な手段を供しうる。
In addition to 02, I4 is present in the reactor water in light water reactors and heavy water reactors.
202 is present and during the sample water cooling operation) Jios is 02
Pyrolyzed into O! Since the concentration changes, it is important for reactor water quality management to directly measure the 02 concentration without cooling the sample water. According to the present invention, in an actual plant,
It has become possible to provide a practical detector that can achieve this purpose, and it is extremely effective in controlling the quality of reactor water and injecting H2 into the reactor water to reduce the dissolved O2 concentration in the reactor water. can provide the means.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は従来の高温高圧型溶存酸素計の基本構造を示す
縦断面概略図、第2図は除去電極貫通孔長さの貫通孔半
径に対する比と貫通孔における妨害成分除去率を示すグ
ラフである。第3図は除去(19) 電極貫通孔におけるAg喧析の模様を示す除去電極の断
面図、第4図は除去電極の貫通孔入口部半径の経時変化
を示すグラフである。第5図は本発明の一実施例になる
濃度測定装置の構造を示す断面略図であり、第6図は本
実施例を用いた場合の前段除去電極及び後段除去電極貝
通孔入口半径の経時変化を示す図である。第7図から第
14図は本発明の測定装置に用いた除去電極の構造を示
す断面図である。 1・・・金属フィルター、2・・・台座、3・・・選択
(酸素)透過膜、4・・・陰極、5・・・通水孔、6・
・・妨害成分除去用電極(除去電極)、6a・・・妨害
成分除去用電極の後段電極(後段除去電極)、6b・・
・妨害成分除去用電極の前段電極(前段除去電極)、6
C・・・後段除去電極A、6d・・・後段除去電極B、
7・・・電解液、8・・・陽極A、9・・・陽極B11
0・・・ベローズ、11・・・試料水出口、12・・・
電流計、13・・・定電位電源A114・・・定電位電
源B115・・・電圧計、16・・・検出器本体、17
・・・耐圧容器、18・・・試料水、19・・・試料水
入口、20・・・貫通孔、21・・・析(20) 出鋼。 911 芋 II!1 躬 2 口 (弧e才函Jlさう/(」を石完孔十イを)芋 3 図 竿 4 閃 o 10 20 30 40 軽 通 ”FM(日う ギ k 図 第 6 の 系を iダし 日今 間 (日 ) 第9図 ↑ ↑ Aり+ Aり1 芋 10 図 ↑ I A5+ 八り1 ピy−ノl 図 イγ 用庫会イ刈 ¥; ノ2fi イ乍 目] オ→にイリリ 灯、牟タ イ利 第1頁の続き 0発 明 者 桂 了 英 日立市森山町1究所内 0発 明 者 喜多村 政夫 日立市森山町1[究所内
Figure 1 is a schematic longitudinal cross-sectional view showing the basic structure of a conventional high-temperature, high-pressure dissolved oxygen analyzer, and Figure 2 is a graph showing the ratio of the removal electrode through-hole length to the through-hole radius and the removal rate of interfering components in the through-hole. be. FIG. 3 is a cross-sectional view of the removed electrode showing the pattern of Ag crowding in the removed (19) electrode through-hole, and FIG. 4 is a graph showing the change over time in the radius of the through-hole entrance of the removed electrode. FIG. 5 is a schematic cross-sectional view showing the structure of a concentration measuring device according to an embodiment of the present invention, and FIG. 6 is a diagram of the entrance radius of the shell through-hole of the front-stage removal electrode and the rear-stage removal electrode over time when this embodiment is used. It is a figure showing a change. 7 to 14 are cross-sectional views showing the structure of the removal electrode used in the measuring device of the present invention. DESCRIPTION OF SYMBOLS 1...Metal filter, 2...Pedestal, 3...Selective (oxygen) permeable membrane, 4...Cathode, 5...Water hole, 6...
... Electrode for removing interference components (removal electrode), 6a... Electrode after the electrode for removing interference components (removal electrode), 6b...
・Pre-stage electrode of the interfering component removal electrode (pre-stage removal electrode), 6
C... Post-stage removal electrode A, 6d... Post-stage removal electrode B,
7... Electrolyte, 8... Anode A, 9... Anode B11
0...Bellows, 11...Sample water outlet, 12...
Ammeter, 13... Constant potential power source A114... Constant potential power source B115... Voltmeter, 16... Detector body, 17
...Pressure vessel, 18...Sample water, 19...Sample water inlet, 20...Through hole, 21...Analysis (20) Steel tapping. 911 Potato II! 1 躬 2 口(Arc e Saikan Jl sau/(" stone complete hole 10 i wo) Imo 3 Zurod 4 Sen o 10 20 30 40 Light Tsu" FM (Japanese Ugi k Diagram No. 6 system i Dashi day to day (day) Figure 9↑ ↑ Ari + Ari 1 Potato 10 Figure ↑ I A5 + Eight 1 Py-nol Figure I γ Yokokai Ikari ¥; ノ2fi I乍目] O →Continued from page 1 of Iriri lamp, Mutai Li

Claims (1)

【特許請求の範囲】 1、貫通孔を有する陰極および陽極からなり、いずれか
一方が作用極となる測定電極、該電極間に封入された電
解液および上記作用極の外側近傍に設けられた選択透過
膜および前記測定電極間に設けられ、かつ前記測定電極
と同じ極性位置となるように配置された貫通孔を有する
陰極および陽極からなる妨害成分除去用電極を主たる構
成要素とする溶存物質の濃度測定装置において、前記測
定電極の作用極側に位置する前記妨害成分除去用電極の
貫通孔が対極側に向かって連続的ないし段階的に広めら
れた形状を含んでいることを特徴とする溶存物質の濃度
測定装置。 2、作用極側に配置する前記妨害成分除去用電極は一体
成形品であることを特徴とする特許請求の範囲第1項記
載の溶存物質の濃度測定装置。 3、作用極側に配置する前記妨害成分除去用電極は複数
個の成形品の組合せによって構成したことを特徴とする
特許請求の範囲第1項記載の溶存物質の濃度測定装置。
[Claims] 1. A measuring electrode consisting of a cathode and an anode having a through hole, one of which serves as a working electrode, an electrolytic solution sealed between the electrodes, and a selection electrode provided near the outside of the working electrode. Concentration of dissolved substances whose main component is an interfering component removal electrode consisting of a permeable membrane and an anode and a cathode that is provided between the measurement electrode and has a through hole arranged so as to have the same polarity as the measurement electrode. In the measuring device, the through hole of the interfering component removing electrode located on the working electrode side of the measuring electrode has a shape that expands continuously or stepwise toward the counter electrode side. concentration measuring device. 2. The dissolved substance concentration measuring device according to claim 1, wherein the interfering component removing electrode disposed on the working electrode side is an integrally molded product. 3. The dissolved substance concentration measuring device according to claim 1, wherein the interfering component removing electrode disposed on the working electrode side is constructed by a combination of a plurality of molded products.
JP59027158A 1984-02-17 1984-02-17 Apparatus for measuring concentration of dissolved substance Granted JPS60171448A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP59027158A JPS60171448A (en) 1984-02-17 1984-02-17 Apparatus for measuring concentration of dissolved substance

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP59027158A JPS60171448A (en) 1984-02-17 1984-02-17 Apparatus for measuring concentration of dissolved substance

Publications (2)

Publication Number Publication Date
JPS60171448A true JPS60171448A (en) 1985-09-04
JPH0442624B2 JPH0442624B2 (en) 1992-07-14

Family

ID=12213246

Family Applications (1)

Application Number Title Priority Date Filing Date
JP59027158A Granted JPS60171448A (en) 1984-02-17 1984-02-17 Apparatus for measuring concentration of dissolved substance

Country Status (1)

Country Link
JP (1) JPS60171448A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63256833A (en) * 1987-03-31 1988-10-24 ライボルト・アクチエンゲゼルシヤフト Method and device for inspecting leakage of system filled with steam or liquid or both steam and liquid
US5233860A (en) * 1990-12-30 1993-08-10 Horiba, Ltd. Water measuring system with improved calibration
JP2006098393A (en) * 2004-08-16 2006-04-13 General Electric Co <Ge> Laminated diaphragm for diffusion-limited gas sensor less likely to be affected by pressure fluctuation
JP2013156206A (en) * 2012-01-31 2013-08-15 Keio Gijuku Multielectrode type electrochemical measuring device for detecting metal in specimen

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63256833A (en) * 1987-03-31 1988-10-24 ライボルト・アクチエンゲゼルシヤフト Method and device for inspecting leakage of system filled with steam or liquid or both steam and liquid
US5233860A (en) * 1990-12-30 1993-08-10 Horiba, Ltd. Water measuring system with improved calibration
JP2006098393A (en) * 2004-08-16 2006-04-13 General Electric Co <Ge> Laminated diaphragm for diffusion-limited gas sensor less likely to be affected by pressure fluctuation
JP2013156206A (en) * 2012-01-31 2013-08-15 Keio Gijuku Multielectrode type electrochemical measuring device for detecting metal in specimen

Also Published As

Publication number Publication date
JPH0442624B2 (en) 1992-07-14

Similar Documents

Publication Publication Date Title
CA1039810A (en) Dissolved oxygen probe
JPH0743485A (en) Electrolyzer of water
US3622488A (en) Apparatus for measuring sulfur dioxide concentrations
DE1498589A1 (en) Method and device for gas analysis
JPS638423B2 (en)
US4036724A (en) Device for the continuous determination of carbon monoxide content of air
JPS60171448A (en) Apparatus for measuring concentration of dissolved substance
US3258411A (en) Method and apparatus for measuring the carbon monoxide content of a gas stream
US3314864A (en) Gas analysis
EP0096417B1 (en) Apparatus for measuring dissolved hydrogen concentration
US3315270A (en) Dissolved oxidant analysis
US4235689A (en) Apparatus for detecting traces of a gas
CA2515144A1 (en) Method for the detection of carbon monoxide in a hydrogen-rich gas stream
US5481181A (en) Real-time toxic metals monitor device and method
US3315271A (en) Cell for dissolved oxidant analysis
FR2629205A1 (en) DEVICE AND METHOD FOR MEASURING THE CONCENTRATION OF HYDROGEN IN WATER
JP3662692B2 (en) Electrolyzed water generator
Hahn Application of the thallium electrode for the measurement of partial pressure of oxygen in medicine and physiology (pH effect)
GB1397269A (en) Apparatus for continuous electrochemical metering of substance concentrations in gaseous media
Nakayama et al. Pressure Balanced Type Membrane Covered Polarographic Oxygen Detectors for Use in High Temperature-High Pressure Water,(II) Effects of Environmental Factors on Detector Performance in Water at 285° C
JPS62220856A (en) Flow coulometric detector
JP2013015506A (en) Ammoniac nitrogen measurement method of coulometric titration system, and device thereof
JP2000074871A (en) Electrochemical sensor
JPS63173947A (en) Electrolytic cell
JP2000009676A (en) Water quality detector