JP3662692B2 - Electrolyzed water generator - Google Patents

Electrolyzed water generator Download PDF

Info

Publication number
JP3662692B2
JP3662692B2 JP31533996A JP31533996A JP3662692B2 JP 3662692 B2 JP3662692 B2 JP 3662692B2 JP 31533996 A JP31533996 A JP 31533996A JP 31533996 A JP31533996 A JP 31533996A JP 3662692 B2 JP3662692 B2 JP 3662692B2
Authority
JP
Japan
Prior art keywords
water
electrolyzed
electrolyzed water
electrode
working electrode
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP31533996A
Other languages
Japanese (ja)
Other versions
JPH10151462A (en
Inventor
壽一 西川
康弘 才原
弘之 野口
源喜 中野
豊 裏谷
利久 平井
智行 池ケ谷
芳紀 柳田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Electric Works Co Ltd
DKK TOA Corp
Original Assignee
DKK TOA Corp
Matsushita Electric Works Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by DKK TOA Corp, Matsushita Electric Works Ltd filed Critical DKK TOA Corp
Priority to JP31533996A priority Critical patent/JP3662692B2/en
Publication of JPH10151462A publication Critical patent/JPH10151462A/en
Application granted granted Critical
Publication of JP3662692B2 publication Critical patent/JP3662692B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Water Treatment By Electricity Or Magnetism (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、連続してアルカリ性水と酸性水を電解生成する電解槽と、水道原水やその浄水、あるいは電解槽で生成されたアルカリ性や酸性の電解水などの水質を電気化学的に測定する水質測定器とを設けて形成される電解水生成装置に関するものである。
【0002】
【従来の技術】
電解槽2と電気化学的水質測定器20とを設けた電解水生成装置として、図8に示す構造のものが従来から知られている。図8に示す電解水生成装置は電解槽2、浄水装置3、電解質供給装置4などから構成されるいわゆるアルカリイオン整水器であり、電解槽2は隔膜5により、電極6が配置された電極室7と、電極8が配置された電極室9とに槽内部を区画して形成してある。
【0003】
そして水道水が一般に使用される原水は、まず浄水装置3を通して浄化される。浄水装置3は原水に含まれる有機物、無機物あるいは次亜塩素酸などの臭気成分を除去するものであり、通常、抗菌活性炭フィルタ及び中空糸膜などのマイクロフィルターにて構成されている。次に、浄水装置3から流出した浄水は、電極室9に直接連通した流入路11と、電極室7に連通した流入路10とに分流されて電解槽2に流入される。このように電解槽2に流入される水には、電極室7,9の上流において接続された電解質供給装置4から電解を促進する電解質が連続的に供給されるようになっている。電解質としては乳酸カルシウムまたはグリセロリン酸カルシウムなどのカルシウム塩が使用される。
【0004】
上記のように電解槽2に水を連続的に流しながら、電極6に陽極の電解電圧を印加すると共に電極8に陰極の電解電圧を印加して電気分解することによって、電極室9にアルカリ性水(いわゆるアルカリイオン水)が、電極室7に酸性水(いわゆる酸性イオン水)が生成される。このように生成されたアルカリ性水は流出路12から、酸性水は流出路13から別々の流路を通って吐出される。
【0005】
上記のようにして電解槽2で電気分解して得られたアルカリ性や酸性の電解水の水質は、電気分解のために供給した電気量に応じてpH値がファラデーの法則に従うため、従来では、電気分解に要した電気量から逆算して推定されていた。しかし、電解槽2で生成された電解水の水質は、電気分解のために供給した電気量の他に、電解槽2への水の通水流量、電解槽2での水の滞留時間、電解槽2への水の流入流量と電解槽2の容積の比などにも依存する。例えば電解槽2での水の滞留時間が長ければ長い程、電解効率が上がり、電解効率が100%に満たない場合(一般には連続通水式の電解水生成装置では電解効率は10%程度である)、電解された水と未電解の水との存在比率により生成された電解水の水質が変わることになる。また水に含まれている溶存成分、特に各種のイオン種や、炭酸水素イオンなどの緩衝性を有する溶存ガスなどによっても、電解後の水質が影響を受ける。
【0006】
このように、電解水生成装置で得られる電解水の水質は、電解槽2内での印加電圧は勿論、電解槽2に流入する水の量や原水水質等によっても大きな影響を受けるものであり、電気分解に要した電気量から逆算した推定値では水質を把握することができない。そこで、図8のように、アルカリ性水の流出路12や酸性水の流出路13に水質測定装置20を設け、電解水の水質を直接測定することが行なわれている。
【0007】
ここで、電解槽2から流出する電解水は数cm/sec〜数10cm/sec程度の流速があり、電解水をリアルタイムで連続的に測定するには、測定に要する時間がタイムラグにならない測定原理で水質の計測を行なう必要があるが、電気化学的測定原理を利用した水質測定装置20は、作用電極を通過する検水溶液に直接接触して水質測定を行なうことが可能であり、従って、電解水生成装置における水質測定装置20としては電気化学的測定器が最も適しており、このような電気化学的水質測定器20を用いてpH、酸化還元電位、各種イオン濃度を測定するようにしている。例えば、実開昭56−172391号公報に記載されている電解水生成装置には、電気化学的水質測定装置としてpHセンサを設け、生成された電解水のpH値を表示するようにしてある。また、特開平5−64785号公報に記載されている電解水生成装置では、電気化学的水質測定装置としてpHセンサを設け、pHセンサの出力信号に基いて、目標設定pH値に対するその偏差pHに対応した電解電圧や流量を増減させるフイードバック制御を行うようにしている。
【0008】
電気化学的測定原理を利用した水質測定装置は、作用電極(検知電極)と比較電極で構成される電極を具備して形成されるものであり、水質変化による作用電極と比較電極の間の電位差あるいは電流変化を検知することによって、水質を測定するようにしたものであり、電気化学的水質測定装置20の構造の概略を図9〜図11に示す。
【0009】
図9はpHセンサ、図10は酸化還元電位センサを示すものであり、飽和もしくは3.3M(mol/L)の塩化カリウム溶液等の内部溶液16を封入する封入部18と、電解水が通水される検水部17との間に液絡部保持部材24が設けてあり、液絡部保持部材24にアルミナ系セラミックスなどの多孔質材で形成される液絡部(塩橋)22を保持させてある。尚、内部溶液16には塩化カリウムの安定な溶出及び結晶化防止のためにカルボキシメチルセルロースやヒドロキシエチルセルロースなどのセルロース系増粘剤を添加することもある。比較電極部21の電極としては銀/塩化銀電極が通常使用され、比較電極部21は内部溶液16に浸漬してある。図9及び図10において14は検知された電位差を増幅する電位差増幅アンプ、15は内部溶液補充口、30は流入口、31は流出口であり、検水である電解水は流入口30から検水部17に入り、流出口31から流出するように検水部17内を流れるようになっている。
【0010】
また検知用作用電極部28としては、図9のpHセンサでは内部電極26aをガラス感応膜27内に封入したものとして形成してあり、また図10の酸化還元電位センサでは白金又は金などの不反応性金属電極26bを用い、白金線等のリード線44を被覆した熱収縮テフロンチューブ又はガラスなどの絶縁被覆部29の先端にこの電極26bを取り付けたものとして形成してある。この作用電極部28はその下部を液絡部保持部材24を通して検水部17内に臨ませてある。
【0011】
図11はpHセンサと酸化還元電位センサとを一体化させた構造のものであり、比較電極21をpHセンサと酸化還元電位センサとで共通して用い、pHと酸化還元電位の両方を測定することができるようにしたタイプのものである。
【0012】
【発明が解決しようとする課題】
しかし、上記のような作用電極部28を検水部17に臨ませた電気化学的水質測定装置20には次のような問題があった。
電解槽2で水が電気分解されると、電極8が陰極の電極室9では
2H2 O+2e- →2OH- +H2
電極6が陽極の電極室7では
2H2 O→4H+ +O2 +4e-
2Cl- →Cl2 +2e-
の反応が起こり、アルカリ性水と酸性水が生成されると同時に、水素や酸素、塩素も発生し、水素や酸素はガス成分として電解水に含まれる。
【0013】
そしてこのようなガス成分の気泡を同伴した電解水を検水部17に通して計測する際に、電解水中の気泡が作用電極部28の表面に付着し、電極に対する電解水の作用が気泡でブロックされ、異常な出力が出て正確な測定ができないという問題があった。
また検水部17に通される流量が少ない場合には、電解水中のガス成分が検水部17内に滞留し易くなり、この結果、比較電極部21を内部溶液16を介して検水である電解水と電気的に導通させる塩橋の役割を果たす液絡部22が気泡の層で覆われて断線状態になり、計測が不能になるおそれがあるという問題もあった。
【0014】
本発明は上記の点に鑑みてなされたものであり、作用電極への気泡付着による影響を受けることなく安定して水質測定ができる電解水生成装置を提供し、さらに流量の少ない場合でも気泡の滞留による影響を受けることなく安定して水質測定ができる電解水生成装置を提供することを目的とするものである。
【0015】
【課題を解決するための手段】
本発明の請求項1に係る電解水生成装置は、水を電気分解することによりアルカリ性水と酸性水を生成し、この生成されたアルカリ性と酸性の電解水を各別に流出させる電解槽と、電解槽の下流側に配設され、電解槽で生成された電解水の水質を電気化学的に測定する水質測定装置とを具備して形成される電解水生成装置において、電解水が通水される検水部、下部を検水部内に臨ませて配設される作用電極部、内部溶液を封入する封入部、封入部内に配設される比較電極部、検水部と封入部の間の多孔質の液絡部を具備して水質測定装置を形成し、作用電極部の検水部内の下部を、円錐台形、円錐形、斜めカットした断面三角形のいずれかの形状で下方へ凸となる凸形状に形成して成ることを特徴とするものである。
【0016】
また請求項2の発明は、検水部内での横方向の水流に作用電極部の下部の電極が当たる位置に、作用電極部を配置して成ることを特徴とするものである。
また請求項3の発明は、検水部の天井面を流入口側から流出口側へ上向き傾斜する傾斜面に形成して成ることを特徴とするものである。
また請求項4の発明は、検水部を通過する水に壁面流を生じさせるための挿入部材を検水部内に設けて成ることを特徴とするものである。
【0017】
本発明の請求項5係る電解水生成装置は、水を電気分解することによりアルカリ性水と酸性水を生成し、この生成されたアルカリ性と酸性の電解水を各別に流出させる電解槽と、電解槽の下流側に配設され、電解槽で生成された電解水の水質を電気化学的に測定する水質測定装置とを具備して形成される電解水生成装置において、電解水が通水される検水部、下部が検水部内に臨ませて配設される作用電極部、内部溶液を封入する封入部、封入部内に配設される比較電極部、検水部と封入部の間の多孔質の液絡部を具備して水質測定装置を形成し、電解槽から水質測定装置の検水部への流路に、水質測定装置の上流側で分岐すると共に水質測定装置の下流側の流路に接続されるバイパス経路を設け、バイパス経路にオリフィスを設けると共にオリフィスをその断面積S1 が検水部へ流入する流路の断面積S2 に対してS1 /S2 <0.8となるように形成して成ることを特徴とするものである。
【0018】
【発明の実施の形態】
以下、本発明の実施の形態を説明する。
図2は電解水生成装置の一例を示すものであり、電解槽2、浄水装置3、電解質供給装置4、水路切換弁32、及び電気化学的水質測定装置20等をハウジング33に納めたものとして構成されている。浄水装置3は抗菌活性炭からなる濾過材34と中空糸膜からなる濾過材35とを備えたものであり、この2種類の濾過材34,35はそれぞれ単一のカートリッジに納めてあって、カートリッジごと交換することができるようにしてある。
【0019】
電解槽2内は、電極6が設置された電極室7と、電極8が設置された電極室9とに隔膜5で区画されており、底部側に流入路10,11を、上部側に流出路12,13を備えている。これら流出路12,13は、水路切換弁32を介して吐出管36,37に接続されている。ここにおいて、流入路10と流出路13は一方の電極6を囲む隔膜5内の電極室7に連通し、流入路11と流出路12は他方の電極8を囲む電極室9に連通しているのであるが、流入路10は流入路11よりも細くされていて、電極7側に流れ込む流量が電極8側に流れ込む流量より1:3乃至1:4位の比率で少なくなるように調整されている。また上記水路切換弁32は、流出路12と吐出管36とを連通させる時、流出路13と吐出管37とを連通させ、流出路12と吐出管37とを連通させる時、流出路13と吐出管36とを連通させるように電磁ロータリー弁もしくはモータ式切換弁で構成されている。
【0020】
また、水道蛇口42に接続した切り替えレバーユニット43と浄水装置3の間にはサーミスタ39と定流量弁41が接続され、また、浄水装置3と電解槽2の間には流量検知センサ38と電磁弁40とが配置されており、電磁弁40と上記流入路10、11を個別に接続する配管のうち、流入路10に至る管の途中に電解質供給装置4(カルシウム剤添加筒)が配置されている。電磁弁40は排水口44につながっており、流量検知センサ38により通水を止めて一定時間すると開いて、電解槽2内やその他の配管系内の残留水を排出口44から排出するようにしてある。前記の吐出管37の途中には、電気化学的水質測定装置20が配置されている。この電気化学的水質測定装置20については後で詳述する。
【0021】
次に水道水から電解水を生成させるときの水の流れについて説明する。水道蛇口42に接続した切り扱えレバーユニット43を、浄水装置3側に水が流れるように切り換えると、浄水装置3及び電解質供給装置4を通して流入路10、11から電解槽2内に水が導入され、電気分解されるわけであるが、電解槽2内の電解電圧の印加は流量検知センサ38により検知された場合に開始される。
【0022】
そして、アルカリ性水を得たい旨の指示がなされているならば、電解槽2内の電極6が陽極に、電極8が陰極となるように電解電圧が印加され、流出路12側にアルカリ性水が、流出路13側に酸性水が得られる。この時水路切換弁32は流出路12と吐出管37とを連通させると共に流出路13と吐出管36とを連通させる状態に設定されており、アルカリ性水が吐出管37側に、酸性水が吐出管36側に吐出される。
【0023】
また酸性水が得たい旨の指示がなされているときは、指示された酸性水の電解度合に応じて次の2つの水の流れとなる。先ず、弱酸性水の場合には、電解槽2の電極6が陰極に、電極8が陽極になるように電解電圧が印加され、流出路13側にアルカリ性水、流出路12側に(弱)酸性水が得られる。この時、水路切換弁32は上記と状態と同じに設定されており、(弱)酸性水が吐出管37に、アルカリ性水が吐出管36側に吐出される。
【0024】
強酸性イオン水の場合は、電解槽2内の電極6が陽極に、電極8が陰極となるように電解電圧が印加され、流出路12側にアルカリ性水が、流出路13側に酸性水が得られる。この時、水路切替弁32は流出路12と吐出管36とを連通させると共に流出路13と吐出管37とを連通させる状態に切り替えられており、(強)酸性水が吐出管37に、アルカリ性水が吐出管36側に吐出される。このように、強酸性水を吐出管37から吐出させる場合に、電極6を陽極とするのは、前述のように、電極6側への流入路10を電極8側の流入路11より絞って流入量を少なくしているために、強酸性水を得ることが容易となっているためである。
【0025】
上記のように電解槽2で生成されて吐出管37より吐出される電解水は、電解槽2と吐出管37との間に配置される電気化学的水質測定装置20によって水質が測定される。
電気化学的水質測定装置20として、図1に示すような電解水の酸化還元電位を測定するものについて説明する。
【0026】
この電気化学的水質測定装置20は、電位差検出方式の電気化学センサであり、電極が作用電極(検知電極)28と比較電極21、及び液絡部22とで構成され、水質変化による作用電極28と比較電極21の電位差あるいは電流の変化を検出するものである。本実施の形態では電気化学的水質測定装置20の構造を酸化還元電位を測定するもので説明するが、図9〜図11に示したように、PH、或は各種イオン濃度や溶存ガスなどの水中溶存成分を測定するものも基本的には同様な構造である。
【0027】
筒状に形成されるセンサ本体1の下部内には、封入部18と検水部17とを仕切るように液絡部保持部材24が設けてあり、液絡部保持部材24にアルミナ系セラミックスなどの多孔質材で形成される液絡部(塩橋)22を保持させてある。液絡部保持部材24はシリコンなどの絶縁材料によって形成してある。封入部18には飽和もしくは3.3M(mol/L)の塩化カリウム(KCl)溶液等の内部溶液16が封入してあり、この内部溶液16にはKClの安定な溶出のために溶液が4000cps以上(通常は10000cps程度が好ましい)となるようにカルボキシメチルセルロースやヒドロキシエチルセルロースなどのセルロース系増粘剤が添加してある。比較電極部21は電極を銀/塩化銀電極で形成してあり、内部溶液16に浸漬してある。図1において14は検知された電位差を増幅する電位差増幅アンプ、15は内部溶液補充口、30は検水部17の下部に設けた流入口、31は検水部17の上部に設けた流出口であり、検水である電解水は流入口30から検水部17の下部内に入り、上部の流出口31から流出するように検水部17内を流れるようになっている。
【0028】
また作用電極部28は、熱収縮性テフロンチューブで白金線等のリード線44を被覆し、あるいはガラスにリード線44を封入して絶縁被覆部29を形成すると共に、絶縁被覆部29の下端に白金又は金などの不反応性金属電極26bをリード線44と接続して設けることによって形成されるものであり、この作用電極28は電極26bを設けた下部が検水部17内に位置するように、液絡部保持部材24を通して取り付けてある。そして作用電極部28の下端部は、図3(a)に示すように下方へ凸となる形状に、すなわち下端部が細くなる形状に形成してある(請求項1)。
【0029】
しかして、電解槽2で生成された電解水は流入口30から検水部17に流入し、流出部31から流出される。そして電解水が検水部17を通過する際に、酸化還元電位が計測される。ここで、上記のように、作用電極部28の電極26bを設けた下端部は下方へ凸形状に形成してあるので、気泡が作用電極部28の下端部の電極26bの表面に付着しても、気泡の浮力が凸形状に沿って外側方へ作用し、気泡は浮上して作用電極部28の下端部から外れ易くなる。しかも作用電極部28の下端部の回りの水流も凸形状に沿って外側方(上方)へ向かった流れが生じ、気泡がこの水流に同伴されて作用電極部28の下端部に付着し難くなる。このようにして、作用電極28の下部に気泡が付着することを防いで、電極26bの表面が気泡で覆われなくなるものであり、気泡の付着による影響を受けることなく安定して水質測定を行なうことができるものである。
【0030】
作用電極部28の下部を凸形状に形成するにあたっては、作用電極部28の下端部を図3(a)のように下端のエッジをC面取りして円錐台形に形成する他、図3(b)のように円錐形に形成したり、図3(c)のように斜めカット形状に形成したりすることができる
【0031】
ここで、図1に示すように、検水部17の液絡部保持部材24の下面として形成される天井面17aは、検水部17の下部に設けられる流入口30側から検水部17の上部に設けられる流出口31側へ上向き傾斜する傾斜面として形成してある(請求項3)。検水部17の天井面17aをこのような傾斜面に形成することによって、流入口30から検水部17の下部に流入した電解水は傾斜する天井面17aに沿ってスムーズに上昇して検水部17内を流れ、上部の流出口31から流出させることができる。従って、水量が少ない場合でも、気泡は検水部17内で下から上へスムーズに流れる水流に同伴され、気泡を流出口31からスムーズに流出させることができるものであり、気泡の滞留による影響を受けることなく安定して水質測定を行なうことができるものである。
【0032】
図4は請求項2の発明の実施の形態を示すものであり、検水部17の対向する一方の側面に流入口30を設けると共に他方の側面に流出口31を設け、電解水が検水部17内を流入口30側から流出口31側へと横方向(水平方向)に流れるようにしてあり、作用電極部28の下端に面する電極26aの面がこの横方向の水流に当たるように作用電極部28が設けてある。このものでは、横方向の水流に気泡が同伴されて流れ、作用電極部28の下端部の電極26aに気泡が付着することを防ぐことができ、気泡付着による影響を受けることなく安定して水質測定を行なうことができるものである。
【0033】
図5は請求項4の発明の実施の形態を示すものであり、検水部17の下部に設けられる流入口30と検水部17の上部に設けられる流出口31の間において、検水部17内に球状あるいは円柱状あるいは板状などの挿入部材19が挿入してある。このように検水部17内に挿入部材19を設けると、流入口30から検水部17内に流入した電解水は挿入部材19の外面と検水部17の内壁との間を通過して流出口31側へと、検水部17の内壁に沿って流れ、検水部17内の電解水は検水部17の壁面に沿う壁面流となるものであり、流入口30から流出口31へと水流が短絡することがなくなる。従って、水量が少ない場合でも、壁面流となった水流に同伴されて天井壁面に溜まる気泡は流出口31へとスムーズに排出され、検水部17内に気泡が滞留することがなくなるものであり、気泡の滞留による影響を受けることなく安定して水質測定を行なうことができるものである。
【0034】
図6は請求項5の発明の実施の形態を示すものである。すなわち、電解槽2と水質測定装置20との間の流路45が流入口30の外周にはめ込んで接続してあり、水質測定装置20と吐出管37との間の流路46が流出口31に接続してある。そして水質測定装置20の上流側において流路45の上部からバイパス経路47が分岐してあり、このバイパス経路47は水質測定装置20の下流側において流路45の上方位置で流路46に接続してある。またこのバイパス経路47の内周にはオリフィス48を設けて内径を絞ってある。オリフィス48は、オリフィス48の内周の断面積をS1 とし、バイパス経路47の分岐箇所から流入口30に至るまでの間の経路で最も内径の小さい部分(図6では流入口30)の内周の断面積をS2 とすると、S1 /S2 <0.8となるように、その内径を設定してある。
【0035】
このものにあって、電解槽2で生成された電解水は流路45を通過して流入口30から検水部17に入り、流出口31から流路46へ出て吐出管37から吐出されるが、電解槽2から水質測定装置20への途中で大きくなった気泡をバイパス経路47を通じて流路45から流路46へと逃がすことができ、気泡が検水部17に入って検水部17内に滞留することを防ぐことができるものである。そしてこの場合、電解水の流量が少ないときには、流路45からバイパス経路47を通過して流路46へと短絡してしまい、検水部17へ水が流れなくなり、検水部17内に却って気泡が滞留してしまうおそれがある。このためにバイパス経路47にオリフィス48を設け、バイパス経路47を通過して流路45から流路46へと短絡することを防ぐようにしている。
【0036】
図7は上記のS1 とS2 の比を各種設定して実験を行なったときの、検水部17に水が流れなくなって気泡が滞留し、測定エラーが発生した確率を示すものであり、毎分0.3リットルの水量で行なったときの結果を「○」でプロットし、毎分0.5リットルの水量で行なったときの結果を「△」でプロットして示す。図7にみられるように、S1 /S2 <0.8とすることによって、水流の短絡がなくなって測定エラーの発生がなくなることが確認される。オリフィス48の内径が小さい程、水流の短絡を防ぐ効果が高いが、気泡を逃がす効果とのバランスを考慮すると、0.3<S1 /S2 <0.8となる範囲でオリフィス48を形成するのが好ましい。
【0037】
【発明の効果】
上記のように本発明の請求項1に係る電解水生成装置は、水を電気分解することによりアルカリ性水と酸性水を生成し、この生成されたアルカリ性と酸性の電解水を各別に流出させる電解槽と、電解槽の下流側に配設され、電解槽で生成された電解水の水質を電気化学的に測定する水質測定装置とを具備して形成される電解水生成装置において、電解水が通水される検水部、下部を検水部内に臨ませて配設される作用電極部、内部溶液を封入する封入部、封入部内に配設される比較電極部、検水部と封入部の間の多孔質の液絡部を具備して水質測定装置を形成し、作用電極部の検水部内の下部を、円錐台形、円錐形、斜めカットした断面三角形のいずれかの形状で下方へ凸となる凸形状に形成するようにしたので、気泡が作用電極部の下部に付着しても凸形状に沿って浮上して外れ易くなると共に、作用電極部の下部の回りの水流は凸形状に沿った流れになって、気泡がこの水流に同伴されて付着し難くなり、この結果、気泡の付着による影響を受けることなく安定して水質測定を行なうことができるものである。
【0038】
また請求項2の発明は、検水部内での横方向の水流に作用電極部の下部の電極が当たる位置に、作用電極部を配置するようにしたので、横方向の水流に気泡が同伴されて流れ、作用電極部の下部の電極に気泡が付着することを防ぐことができ、気泡の付着による影響を受けることなく安定して水質測定を行なうことができるものである。
【0039】
また請求項3の発明は、検水部の天井面を流入口側から流出口側へ上向き傾斜する傾斜面に形成するようにしたので、流入口から検水部に流入した電解水は傾斜する天井面に沿ってスムーズに検水部内を流れて流入口から流出し、水量が少ない場合でも、気泡はこのスムーズに流れる水流に同伴されて流出口から流出されるものであり、気泡の滞留による影響を受けることなく安定して水質測定を行なうことができるものである。
【0040】
また請求項4の発明は、検水部を通過する水に壁面流を生じさせるための挿入部材を検水部内に設けるようにしたので、検水部内の水流が流入口から流出口へと短絡することがなくなり、水量が少ない場合でも、壁面流となった水流に同伴されて気泡は流出口へとスムーズに排出されるものであって、検水部内に気泡が滞留することがなくなるものであり、気泡の滞留による影響を受けることなく安定して水質測定を行なうことができるものである。
【0041】
また請求項5の発明は、電解槽から水質測定装置の検水部への流路に、水質測定装置の上流側で分岐すると共に水質測定装置の下流側の流路に接続されるバイパス経路を設け、バイパス経路にオリフィスを設けると共にオリフィスをその断面積S1 が検水部へ流入する流路の断面積S2 に対してS1 /S2 <0.8となるように形成したので、気泡をバイパス経路を通じて水質測定装置の上流側の流路から水質測定装置の下流側の流路へと逃がすことができ、気泡が検水部に入って滞留することを防ぐことができるものであり、しかも流量が少ないときに電解水がバイパス経路を通過して短絡し、検水部に水が流れなくなることをオリフィスで防ぐことができるものであり、この結果、水量が少ない場合でも検水部内に気泡が滞留することがなくなって、気泡の滞留による影響を受けることなく安定して水質測定を行なうことができるものである。
【図面の簡単な説明】
【図1】本発明で用いる水質測定装置の実施の形態の一例を示す断面図である。
【図2】本発明に係る電解水生成装置の実施の形態の一例の概略構成を示す断面図である。
【図3】本発明の請求項1の発明の実施の各種の形態を示すものであり、(a),(b),(c),(d),(e)はそれぞれ作用電極部の一部の断面図である。
【図4】請求項2の発明の実施の形態を示す断面図である。
【図5】請求項4の発明の実施の形態を示す断面図である。
【図6】請求項5の発明の実施の形態を示す断面図である。
【図7】請求項5の発明における、オリフィス径と気泡滞留による測定エラーの確率との関係を示すグラフである。
【図8】従来の電解水生成装置の一例の概略構成を示す断面図である。
【図9】従来の水質測定装置(pHセンサ)の一例の断面図である。
【図10】従来の水質測定装置(酸化還元電位センサ)の一例の断面図である。
【図11】従来の水質測定装置(pHセンサと酸化還元電位センサの一体化タイプ)の一例の断面図である。
【符号の説明】
2 電解槽
16 内部溶液
17 検水部
17a 天井面
18 封入部
19 挿入部材
20 水質測定装置
21 比較電極部
22 液絡部
28 作用電極部
30 流入口
31 流出口
45 流路
46 流路
47 バイパス経路
48 オリフィス
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to an electrolytic cell that continuously generates electrolytic water of alkaline water and acidic water, and water quality that electrochemically measures water quality such as raw water for tap water or purified water thereof, or alkaline or acidic electrolytic water generated in an electrolytic cell. The present invention relates to an electrolyzed water generating device formed by providing a measuring device.
[0002]
[Prior art]
As an electrolyzed water generating apparatus provided with the electrolyzer 2 and the electrochemical water quality measuring device 20, one having a structure shown in FIG. 8 is conventionally known. The electrolyzed water generating device shown in FIG. 8 is a so-called alkali ion water conditioner composed of an electrolyzer 2, a water purifier 3, an electrolyte supply device 4, and the like. The electrolyzer 2 is an electrode in which an electrode 6 is disposed by a diaphragm 5. The inside of the tank is divided into a chamber 7 and an electrode chamber 9 in which an electrode 8 is arranged.
[0003]
And the raw water in which tap water is generally used is first purified through the water purifier 3. The water purifier 3 removes odorous components such as organic substances, inorganic substances or hypochlorous acid contained in the raw water, and is usually constituted by a microfilter such as an antibacterial activated carbon filter and a hollow fiber membrane. Next, the purified water that has flowed out of the water purification device 3 is divided into an inflow path 11 that communicates directly with the electrode chamber 9 and an inflow path 10 that communicates with the electrode chamber 7 and flows into the electrolytic cell 2. In this way, the water flowing into the electrolytic cell 2 is continuously supplied with an electrolyte that promotes electrolysis from the electrolyte supply device 4 connected upstream of the electrode chambers 7 and 9. As the electrolyte, a calcium salt such as calcium lactate or calcium glycerophosphate is used.
[0004]
As described above, while electrolytically supplying water to the electrolytic cell 2, an electrolytic voltage of the anode is applied to the electrode 6 and an electrolytic voltage of the cathode is applied to the electrode 8 to perform electrolysis, whereby alkaline water is supplied to the electrode chamber 9. Acidic water (so-called acidic ionized water) is generated in the electrode chamber 7 (so-called alkaline ionized water). The alkaline water thus generated is discharged from the outflow passage 12 and the acidic water is discharged from the outflow passage 13 through separate flow paths.
[0005]
Since the pH value of alkaline or acidic electrolyzed water obtained by electrolysis in the electrolytic cell 2 as described above follows the Faraday law according to the amount of electricity supplied for electrolysis, conventionally, It was estimated from the amount of electricity required for electrolysis. However, the quality of the electrolyzed water generated in the electrolyzer 2 is not limited to the amount of electricity supplied for electrolysis, the flow rate of water to the electrolyzer 2, the residence time of water in the electrolyzer 2, electrolysis It also depends on the ratio of the flow rate of water into the tank 2 and the volume of the electrolytic tank 2. For example, the longer the residence time of water in the electrolytic cell 2, the higher the electrolysis efficiency, and the electrolysis efficiency is less than 100% (in general, the electrolysis efficiency is about 10% in a continuous water electrolyzed water generator). The quality of the electrolyzed water produced varies depending on the abundance ratio of electrolyzed water and unelectrolyzed water. The water quality after electrolysis is also affected by dissolved components contained in water, particularly various ion species and dissolved gases having buffering properties such as bicarbonate ions.
[0006]
Thus, the quality of the electrolyzed water obtained by the electrolyzed water generating device is greatly influenced not only by the voltage applied in the electrolyzer 2 but also by the amount of water flowing into the electrolyzer 2 and the quality of the raw water. The water quality cannot be determined from the estimated value calculated backward from the amount of electricity required for electrolysis. Therefore, as shown in FIG. 8, a water quality measuring device 20 is provided in the alkaline water outlet 12 and the acidic water outlet 13 to directly measure the quality of the electrolyzed water.
[0007]
Here, the electrolyzed water flowing out from the electrolytic cell 2 has a flow rate of several cm / sec to several tens of cm / sec, and in order to continuously measure the electrolyzed water in real time, the measurement principle does not cause a time lag. However, the water quality measurement device 20 using the electrochemical measurement principle can directly measure the water quality by directly contacting the test solution passing through the working electrode. An electrochemical measuring device is most suitable as the water quality measuring device 20 in the water generating device, and the electrochemical water quality measuring device 20 is used to measure pH, oxidation-reduction potential, and various ion concentrations. . For example, in the electrolyzed water generating apparatus described in Japanese Utility Model Publication No. 56-172391, a pH sensor is provided as an electrochemical water quality measuring apparatus, and the pH value of the generated electrolyzed water is displayed. Moreover, in the electrolyzed water generating apparatus described in JP-A-5-64785, a pH sensor is provided as an electrochemical water quality measuring apparatus, and the deviation pH with respect to the target set pH value is set based on the output signal of the pH sensor. Feedback control to increase or decrease the corresponding electrolysis voltage or flow rate is performed.
[0008]
A water quality measurement device using an electrochemical measurement principle is formed by including an electrode composed of a working electrode (detection electrode) and a reference electrode, and a potential difference between the working electrode and the reference electrode due to water quality change. Alternatively, the water quality is measured by detecting a current change, and an outline of the structure of the electrochemical water quality measuring device 20 is shown in FIGS.
[0009]
FIG. 9 shows a pH sensor, and FIG. 10 shows an oxidation-reduction potential sensor. An enclosure 18 for enclosing an internal solution 16 such as a saturated or 3.3 M (mol / L) potassium chloride solution and electrolyzed water are passed through. A liquid junction holding member 24 is provided between the water sampling portion 17 to be watered, and a liquid junction portion (salt bridge) 22 formed of a porous material such as alumina-based ceramics is provided on the liquid junction holding member 24. It is held. Note that a cellulose-based thickener such as carboxymethyl cellulose or hydroxyethyl cellulose may be added to the internal solution 16 in order to stably dissolve potassium chloride and prevent crystallization. A silver / silver chloride electrode is usually used as the electrode of the comparative electrode portion 21, and the comparative electrode portion 21 is immersed in the internal solution 16. 9 and 10, 14 is a potential difference amplification amplifier that amplifies the detected potential difference, 15 is an internal solution replenishing port, 30 is an inlet, 31 is an outlet, and electrolyzed water as test water is detected from the inlet 30. It enters the water section 17 and flows through the water inspection section 17 so as to flow out from the outlet 31.
[0010]
The detection working electrode portion 28 is formed by sealing the internal electrode 26a in the glass sensitive film 27 in the pH sensor of FIG. 9, and in the oxidation-reduction potential sensor of FIG. A reactive metal electrode 26b is used, and the electrode 26b is attached to the tip of an insulating coating 29 such as a heat shrinkable Teflon tube or glass coated with a lead wire 44 such as a platinum wire. The lower part of the working electrode part 28 is exposed to the water inspection part 17 through the liquid junction holding member 24.
[0011]
FIG. 11 shows a structure in which a pH sensor and a redox potential sensor are integrated. The reference electrode 21 is used in common for the pH sensor and the redox potential sensor, and both pH and redox potential are measured. It is of a type that can be used.
[0012]
[Problems to be solved by the invention]
However, the electrochemical water quality measuring apparatus 20 having the working electrode section 28 facing the water sampling section 17 has the following problems.
When water is electrolyzed in the electrolytic cell 2, the electrode 8 is in the cathode electrode chamber 9.
2H2O + 2e-→ 2OH-+ H2
In the electrode chamber 7 where the electrode 6 is an anode,
2H2O → 4H++ O2+ 4e-
2Cl-→ Cl2+ 2e-
At the same time, alkaline water and acidic water are generated, and hydrogen, oxygen, and chlorine are also generated. Hydrogen and oxygen are contained in the electrolyzed water as gas components.
[0013]
And when the electrolyzed water accompanied by such gas component bubbles is passed through the water-sensing unit 17, the bubbles in the electrolyzed water adhere to the surface of the working electrode unit 28, and the action of the electrolyzed water on the electrode is a bubble. There was a problem that it was blocked and an abnormal output was generated, and accurate measurement could not be performed.
In addition, when the flow rate passed through the water sampling unit 17 is small, the gas component in the electrolyzed water tends to stay in the water sampling unit 17, and as a result, the reference electrode unit 21 can be sampled via the internal solution 16. There is also a problem that the liquid junction 22 serving as a salt bridge that is electrically connected to certain electrolyzed water is covered with a bubble layer and becomes disconnected, which may make measurement impossible.
[0014]
The present invention has been made in view of the above points, and provides an electrolyzed water generating apparatus capable of stably measuring water quality without being affected by bubbles adhering to the working electrode. It is an object of the present invention to provide an electrolyzed water generating apparatus capable of stably measuring water quality without being affected by staying.
[0015]
[Means for Solving the Problems]
  An electrolyzed water generator according to claim 1 of the present invention generates alkaline water and acidic water by electrolyzing water, and electrolyzes the generated alkaline and acidic electrolyzed water separately, In the electrolyzed water generating device, which is disposed on the downstream side of the tank and is formed to include a water quality measuring device for electrochemically measuring the quality of the electrolyzed water generated in the electrolyzed tank, the electrolyzed water is passed therethrough. Water detection part, working electrode part arranged with the lower part facing the water detection part, enclosing part for enclosing the internal solution, reference electrode part arranged in the enclosing part, porosity between the water inspection part and the enclosing part A water quality measuring device is formed with a quality liquid junction, and the lower part of the working electrode section in the water sampling section is formed.Convex downward with a truncated cone shape, conical shape, or diagonally cut cross-sectional triangle shapeIt is characterized by being formed in a convex shape.
[0016]
The invention of claim 2 is characterized in that the working electrode portion is arranged at a position where the lower electrode of the working electrode portion hits a lateral water flow in the water sampling portion.
According to a third aspect of the present invention, the ceiling surface of the water inspection section is formed as an inclined surface that is inclined upward from the inlet side to the outlet side.
The invention according to claim 4 is characterized in that an insertion member for generating a wall surface flow in the water passing through the water inspection section is provided in the water inspection section.
[0017]
An electrolyzed water generating apparatus according to claim 5 of the present invention is an electrolyzer that electrolyzes water to generate alkaline water and acidic water, and causes the generated alkaline and acidic electrolyzed water to flow out separately, and an electrolyzer In the electrolyzed water generating device, which is disposed on the downstream side of the water electrode and is formed to include a water quality measuring device that electrochemically measures the quality of the electrolyzed water generated in the electrolyzer, Water part, working electrode part with the lower part facing the test part, enclosing part for enclosing the internal solution, comparative electrode part provided in the enclosing part, porous between the test part and the enclosing part The water junction is formed to form a water quality measuring device, and the flow path from the electrolytic cell to the water detection portion of the water quality measuring device branches on the upstream side of the water quality measuring device and the downstream side of the water quality measuring device. Provide a bypass path connected to the, and provide an orifice in the bypass path Sectional area S of the orifice1Cross-sectional area S of the flow path into which the water flows into the test water section2Against S1/ S2<0.8 is formed.
[0018]
DETAILED DESCRIPTION OF THE INVENTION
Embodiments of the present invention will be described below.
FIG. 2 shows an example of the electrolyzed water generating device, in which the electrolyzer 2, the water purifier 3, the electrolyte supply device 4, the water channel switching valve 32, the electrochemical water quality measuring device 20, etc. are housed in the housing 33. It is configured. The water purifier 3 is provided with a filter medium 34 made of antibacterial activated carbon and a filter medium 35 made of a hollow fiber membrane. The two types of filter mediums 34 and 35 are housed in a single cartridge. Everything can be exchanged.
[0019]
The inside of the electrolytic cell 2 is partitioned by a diaphragm 5 into an electrode chamber 7 in which an electrode 6 is installed and an electrode chamber 9 in which an electrode 8 is installed. Roads 12 and 13 are provided. These outflow passages 12 and 13 are connected to discharge pipes 36 and 37 via a water passage switching valve 32. Here, the inflow path 10 and the outflow path 13 communicate with the electrode chamber 7 in the diaphragm 5 surrounding one electrode 6, and the inflow path 11 and the outflow path 12 communicate with the electrode chamber 9 surrounding the other electrode 8. However, the inflow path 10 is made narrower than the inflow path 11, and is adjusted so that the flow rate flowing into the electrode 7 side is smaller than the flow rate flowing into the electrode 8 side at a ratio of 1: 3 to 1: 4. Yes. The water channel switching valve 32 communicates the outflow channel 13 and the discharge pipe 37 when communicating the outflow channel 12 and the discharge pipe 36, and connects the outflow channel 13 and the discharge pipe 37 when communicating the outflow channel 12 and the discharge pipe 37. An electromagnetic rotary valve or a motor type switching valve is configured to communicate with the discharge pipe 36.
[0020]
A thermistor 39 and a constant flow valve 41 are connected between the switching lever unit 43 connected to the water tap 42 and the water purifier 3, and a flow rate detection sensor 38 and an electromagnetic wave are connected between the water purifier 3 and the electrolytic cell 2. A valve 40 is disposed, and among the pipes individually connecting the electromagnetic valve 40 and the inflow paths 10 and 11, the electrolyte supply device 4 (calcium agent addition cylinder) is disposed in the middle of the pipe reaching the inflow path 10. ing. The solenoid valve 40 is connected to the drain port 44 and is opened after a certain period of time after water flow is stopped by the flow rate detection sensor 38 so that residual water in the electrolytic cell 2 or other piping system is discharged from the discharge port 44. It is. An electrochemical water quality measuring device 20 is disposed in the middle of the discharge pipe 37. The electrochemical water quality measuring device 20 will be described in detail later.
[0021]
Next, the flow of water when generating electrolyzed water from tap water will be described. When the cut-off lever unit 43 connected to the water tap 42 is switched so that water flows to the water purification device 3 side, water is introduced into the electrolytic cell 2 from the inflow paths 10 and 11 through the water purification device 3 and the electrolyte supply device 4. Although being electrolyzed, application of the electrolysis voltage in the electrolytic cell 2 is started when the flow rate detection sensor 38 detects it.
[0022]
If an instruction to obtain alkaline water is given, an electrolytic voltage is applied so that the electrode 6 in the electrolytic cell 2 serves as an anode and the electrode 8 serves as a cathode, and alkaline water is present on the outflow path 12 side. Acidic water is obtained on the outflow path 13 side. At this time, the water channel switching valve 32 is set so as to allow the outflow channel 12 and the discharge pipe 37 to communicate with each other and the outflow channel 13 and the discharge pipe 36 to communicate with each other, so that alkaline water is discharged to the discharge pipe 37 side. It discharges to the pipe 36 side.
[0023]
When an instruction to obtain acid water is given, the following two water flows are made according to the degree of electrolysis of the indicated acid water. First, in the case of weakly acidic water, an electrolysis voltage is applied so that the electrode 6 of the electrolytic cell 2 serves as a cathode and the electrode 8 serves as an anode, alkaline water on the outflow path 13 side, and (weak) on the outflow path 12 side. Acidic water is obtained. At this time, the water channel switching valve 32 is set to the same state as above, and (weak) acidic water is discharged to the discharge pipe 37 and alkaline water is discharged to the discharge pipe 36 side.
[0024]
In the case of strongly acidic ionic water, an electrolytic voltage is applied so that the electrode 6 in the electrolytic cell 2 serves as an anode and the electrode 8 serves as a cathode, alkaline water is present on the outflow path 12 side, and acidic water is present on the outflow path 13 side. can get. At this time, the water channel switching valve 32 is switched to a state in which the outflow channel 12 and the discharge pipe 36 are communicated with each other, and the outflow channel 13 and the discharge pipe 37 are in communication with each other. Water is discharged to the discharge pipe 36 side. As described above, when discharging strongly acidic water from the discharge pipe 37, the electrode 6 is used as the anode, as described above, by restricting the inflow path 10 to the electrode 6 side from the inflow path 11 on the electrode 8 side. This is because it is easy to obtain strongly acidic water because the amount of inflow is reduced.
[0025]
As described above, the water quality of the electrolyzed water generated in the electrolytic cell 2 and discharged from the discharge pipe 37 is measured by the electrochemical water quality measuring device 20 disposed between the electrolytic cell 2 and the discharge pipe 37.
As the electrochemical water quality measuring device 20, an apparatus for measuring the redox potential of electrolyzed water as shown in FIG. 1 will be described.
[0026]
The electrochemical water quality measuring device 20 is a potential difference detection type electrochemical sensor, and an electrode is composed of a working electrode (detection electrode) 28, a reference electrode 21, and a liquid junction 22, and the working electrode 28 due to a change in water quality. And a change in potential difference or current of the comparison electrode 21 is detected. In the present embodiment, the structure of the electrochemical water quality measuring device 20 will be described by measuring the oxidation-reduction potential. However, as shown in FIGS. 9 to 11, PH, various ion concentrations, dissolved gases, etc. A device for measuring dissolved components in water basically has the same structure.
[0027]
In the lower part of the sensor body 1 formed in a cylindrical shape, a liquid junction holding member 24 is provided so as to partition the enclosing portion 18 and the water inspection portion 17, and the liquid junction holding member 24 is made of alumina ceramics or the like. A liquid junction (salt bridge) 22 formed of a porous material is held. The liquid junction holding member 24 is formed of an insulating material such as silicon. An internal solution 16 such as a saturated or 3.3 M (mol / L) potassium chloride (KCl) solution is enclosed in the enclosure 18, and the internal solution 16 contains a 4000 cps solution for stable elution of KCl. Cellulosic thickeners such as carboxymethyl cellulose and hydroxyethyl cellulose are added so as to achieve the above (usually preferably about 10,000 cps). The comparative electrode unit 21 is formed of a silver / silver chloride electrode and is immersed in the internal solution 16. In FIG. 1, 14 is a potential difference amplification amplifier that amplifies the detected potential difference, 15 is an internal solution replenishment port, 30 is an inlet provided at the lower part of the water detection unit 17, and 31 is an outlet provided at the upper part of the water detection unit 17. Thus, the electrolyzed water that is the test water enters the lower part of the water test part 17 through the inlet 30 and flows through the water test part 17 so as to flow out from the upper outlet 31.
[0028]
The working electrode portion 28 is covered with a lead wire 44 such as a platinum wire with a heat-shrinkable Teflon tube or encapsulates the lead wire 44 in glass to form an insulating coating portion 29, and at the lower end of the insulating coating portion 29. The non-reactive metal electrode 26b such as platinum or gold is formed by being connected to the lead wire 44. The working electrode 28 is formed such that the lower part provided with the electrode 26b is located in the water detection section 17. The liquid junction holding member 24 is attached. And the lower end part of the working electrode part 28 is formed in the shape which protrudes below as shown to Fig.3 (a), ie, the shape where a lower end part becomes thin (Claim 1).
[0029]
Thus, the electrolyzed water generated in the electrolytic cell 2 flows into the water inspection unit 17 from the inflow port 30 and flows out from the outflow unit 31. And when electrolyzed water passes the sample-testing part 17, an oxidation reduction potential is measured. Here, as described above, since the lower end portion of the working electrode portion 28 provided with the electrode 26b is formed in a convex shape downward, bubbles adhere to the surface of the electrode 26b at the lower end portion of the working electrode portion 28. However, the buoyancy of the bubbles acts outward along the convex shape, and the bubbles rise and easily come off from the lower end of the working electrode portion 28. In addition, the water flow around the lower end portion of the working electrode portion 28 also flows outward (upward) along the convex shape, and bubbles are accompanied by this water flow and are difficult to adhere to the lower end portion of the working electrode portion 28. . In this way, bubbles are prevented from adhering to the lower part of the working electrode 28, and the surface of the electrode 26b is not covered with the bubbles, and the water quality is stably measured without being affected by the adhesion of the bubbles. It is something that can be done.
[0030]
    In forming the lower portion of the working electrode portion 28 in a convex shape, the lower end portion of the working electrode portion 28 is formed in a truncated cone shape by chamfering the lower end edge as shown in FIG. ) Or a conical shape as shown in FIG.SlantTo form a cut shapecan do.
[0031]
Here, as shown in FIG. 1, the ceiling surface 17 a formed as the lower surface of the liquid junction holding member 24 of the water inspection unit 17 is from the inlet 30 side provided in the lower part of the water detection unit 17. It forms as an inclined surface which inclines upward toward the outflow port 31 side provided in the upper part (Claim 3). By forming the ceiling surface 17a of the water inspection unit 17 in such an inclined surface, the electrolyzed water flowing into the lower portion of the water inspection unit 17 from the inlet 30 rises smoothly along the inclined ceiling surface 17a and is detected. It can flow through the water part 17 and flow out from the upper outlet 31. Therefore, even when the amount of water is small, the bubbles are accompanied by a water flow that smoothly flows from the bottom to the top in the water test section 17, and the bubbles can smoothly flow out from the outlet 31. Water quality can be measured stably without being subjected to water.
[0032]
FIG. 4 shows an embodiment of the invention of claim 2, wherein an inflow port 30 is provided on one side surface of the water inspection section 17 and an outflow port 31 is provided on the other side surface. The inside of the part 17 is made to flow in the lateral direction (horizontal direction) from the inlet 30 side to the outlet 31 side so that the surface of the electrode 26a facing the lower end of the working electrode part 28 hits this lateral water flow. A working electrode portion 28 is provided. In this configuration, bubbles can be prevented from adhering to the electrode 26a at the lower end of the working electrode portion 28 by flowing along with the water flow in the lateral direction, and the water quality can be stably improved without being affected by the bubble adhesion. It can be measured.
[0033]
FIG. 5 shows an embodiment of the invention of claim 4, in which a water detection section is provided between an inlet 30 provided at the lower portion of the water detection section 17 and an outlet 31 provided at the upper portion of the water detection section 17. An insertion member 19 such as a spherical shape, a cylindrical shape, or a plate shape is inserted into 17. Thus, when the insertion member 19 is provided in the water detection section 17, the electrolyzed water that has flowed into the water detection section 17 from the inlet 30 passes between the outer surface of the insertion member 19 and the inner wall of the water detection section 17. It flows along the inner wall of the water sampling section 17 toward the outlet 31, and the electrolyzed water in the water testing section 17 becomes a wall surface flow along the wall surface of the water sampling section 17. The water flow is not short-circuited. Therefore, even when the amount of water is small, the bubbles that accompany the water flow that has become the wall surface flow and are accumulated on the ceiling wall surface are smoothly discharged to the outlet 31, and the bubbles do not stay in the water inspection section 17. Water quality can be measured stably without being affected by the retention of bubbles.
[0034]
FIG. 6 shows an embodiment of the invention of claim 5. That is, the flow path 45 between the electrolytic cell 2 and the water quality measuring device 20 is fitted and connected to the outer periphery of the inlet 30, and the flow path 46 between the water quality measuring device 20 and the discharge pipe 37 is connected to the outlet 31. Is connected to. A bypass path 47 is branched from the upper part of the flow path 45 on the upstream side of the water quality measuring device 20, and this bypass path 47 is connected to the flow path 46 at a position above the flow path 45 on the downstream side of the water quality measuring apparatus 20. It is. Further, an orifice 48 is provided on the inner periphery of the bypass passage 47 to reduce the inner diameter. The orifice 48 has a sectional area of the inner periphery of the orifice 48 as S.1The cross-sectional area of the inner circumference of the portion with the smallest inner diameter (inlet 30 in FIG. 6) in the path from the branching point of the bypass path 47 to the inlet 30 is S.2Then, S1/ S2The inner diameter is set so that <0.8.
[0035]
In this case, the electrolyzed water generated in the electrolytic cell 2 passes through the flow path 45 and enters the water detection section 17 from the inlet 30, exits from the outlet 31 to the flow path 46, and is discharged from the discharge pipe 37. However, bubbles that have become large on the way from the electrolytic cell 2 to the water quality measuring device 20 can be released from the flow path 45 to the flow path 46 through the bypass path 47, and the bubbles enter the water detection section 17 and enter the water detection section. It is possible to prevent the stagnation in 17. In this case, when the flow rate of the electrolyzed water is small, the flow path 45 passes through the bypass path 47 and is short-circuited to the flow path 46, so that the water does not flow to the test water section 17, and is returned to the test water section 17. There is a risk that bubbles may stay. For this purpose, an orifice 48 is provided in the bypass path 47 to prevent a short circuit from the flow path 45 to the flow path 46 through the bypass path 47.
[0036]
FIG. 7 shows the above S1And S2This indicates the probability that when the experiment was conducted with various ratios of water, water stopped flowing in the water test section 17 and bubbles remained, and a measurement error occurred. The amount of water was 0.3 liters per minute. The results are plotted with “◯”, and the results with 0.5 liters of water per minute are plotted with “Δ”. As seen in FIG.1/ S2By setting it to <0.8, it is confirmed that the short circuit of the water flow is eliminated and the generation of the measurement error is eliminated. The smaller the inner diameter of the orifice 48, the higher the effect of preventing a short circuit of the water flow, but considering the balance with the effect of releasing bubbles, 0.3 <S1/ S2It is preferable to form the orifice 48 in a range of <0.8.
[0037]
【The invention's effect】
  As described above, the electrolyzed water generating apparatus according to the first aspect of the present invention generates alkaline water and acidic water by electrolyzing water, and electrolyzes the generated alkaline and acidic electrolyzed water separately. In an electrolyzed water generating device formed by including a tank and a water quality measuring device that is disposed downstream of the electrolyzer and electrochemically measures the quality of electrolyzed water generated in the electrolyzer, A water sample passing part, a working electrode part arranged with the lower part facing the water sample part, a sealing part for enclosing the internal solution, a comparison electrode part provided in the sealing part, a water detection part and a sealing part A water quality measuring device is formed with a porous liquid junction between the working electrode part and the lower part in the water inspection part of the working electrode part.Convex downward with a truncated cone shape, conical shape, or diagonally cut cross-sectional triangle shapeSince it is formed in a convex shape, even if bubbles adhere to the lower part of the working electrode part, it tends to float along the convex shape and come off easily, and the water flow around the lower part of the working electrode part follows the convex shape. As a result, the bubbles are less likely to adhere to the water flow, and as a result, the water quality can be measured stably without being affected by the adhesion of the bubbles.
[0038]
In the second aspect of the invention, since the working electrode portion is arranged at a position where the lower electrode of the working electrode portion hits the lateral water flow in the water sampling portion, bubbles are entrained in the lateral water flow. It is possible to prevent bubbles from adhering to the electrode below the working electrode part, and to perform water quality measurement stably without being affected by the adhesion of bubbles.
[0039]
In the invention of claim 3, since the ceiling surface of the water inspection section is formed on an inclined surface inclined upward from the inlet side to the outlet side, the electrolyzed water flowing from the inlet to the water inspection section is inclined. Even when the amount of water is small, the air bubbles flow along the ceiling surface and flow out from the inflow port. Water quality can be measured stably without being affected.
[0040]
In the invention of claim 4, since the insertion member for generating the wall surface flow in the water passing through the water inspection portion is provided in the water inspection portion, the water flow in the water inspection portion is short-circuited from the inlet to the outlet. Even when the amount of water is small, bubbles are smoothly discharged to the outlet by being accompanied by the water flow that has become the wall surface flow, and bubbles do not stay in the water sampling section. Yes, water quality can be measured stably without being affected by the retention of bubbles.
[0041]
Further, the invention of claim 5 provides a bypass path that branches from the electrolytic cell to the water detection unit of the water quality measurement device on the upstream side of the water quality measurement device and is connected to the flow path on the downstream side of the water quality measurement device. An orifice is provided in the bypass path and the orifice has a sectional area S1Cross-sectional area S of the flow path into which the water flows into the test water section2Against S1/ S2<0.8 so that bubbles can escape from the upstream flow path of the water quality measuring device through the bypass path to the downstream flow channel of the water quality measuring device, and the bubbles enter the water detection section. In addition, the orifice prevents the electrolytic water from passing through the bypass path and short-circuiting when the flow rate is low, and preventing the water from flowing into the water sample section. As a result, even when the amount of water is small, bubbles do not stay in the water sample section, and the water quality can be measured stably without being affected by the stay of bubbles.
[Brief description of the drawings]
FIG. 1 is a cross-sectional view showing an example of an embodiment of a water quality measuring device used in the present invention.
FIG. 2 is a cross-sectional view showing a schematic configuration of an example of an embodiment of an electrolyzed water generating device according to the present invention.
FIG. 3 shows various embodiments of the invention of claim 1 of the present invention, wherein (a), (b), (c), (d), and (e) are each a working electrode portion. It is sectional drawing of a part.
4 is a cross-sectional view showing an embodiment of the invention of claim 2; FIG.
5 is a sectional view showing an embodiment of the invention of claim 4; FIG.
6 is a cross-sectional view showing an embodiment of the invention of claim 5. FIG.
7 is a graph showing the relationship between the orifice diameter and the probability of measurement error due to bubble retention in the invention of claim 5. FIG.
FIG. 8 is a cross-sectional view showing a schematic configuration of an example of a conventional electrolyzed water generating apparatus.
FIG. 9 is a cross-sectional view of an example of a conventional water quality measurement device (pH sensor).
FIG. 10 is a cross-sectional view of an example of a conventional water quality measuring apparatus (oxidation reduction potential sensor).
FIG. 11 is a cross-sectional view of an example of a conventional water quality measuring apparatus (integrated type of pH sensor and oxidation-reduction potential sensor).
[Explanation of symbols]
2 Electrolysis tank
16 Internal solution
17 Water inspection section
17a Ceiling
18 enclosure
19 Insertion member
20 Water quality measuring device
21 Reference electrode
22 Liquid junction
28 Working electrode
30 Inlet
31 outlet
45 flow path
46 channel
47 Bypass route
48 Orifice

Claims (5)

水を電気分解することによりアルカリ性水と酸性水を生成し、この生成されたアルカリ性と酸性の電解水を各別に流出させる電解槽と、電解槽の下流側に配設され、電解槽で生成された電解水の水質を電気化学的に測定する水質測定装置とを具備して形成される電解水生成装置において、電解水が通水される検水部、下部を検水部内に臨ませて配設される作用電極部、内部溶液を封入する封入部、封入部内に配設される比較電極部、検水部と封入部の間の多孔質の液絡部を具備して水質測定装置を形成し、作用電極部の検水部内の下部を、円錐台形、円錐形、斜めカットした断面三角形のいずれかの形状で下方へ凸となる凸形状に形成して成ることを特徴とする電解水生成装置。Electrolyzed water generates alkaline water and acidic water, and the generated alkaline and acidic electrolyzed water flows out separately from each other. In the electrolyzed water generating device formed with the water quality measuring device for electrochemically measuring the quality of the electrolyzed water, the test water passing through the electrolyzed water is placed with the lower part facing the test water. A water quality measuring device is formed by having a working electrode portion to be installed, an enclosing portion for enclosing the internal solution, a comparison electrode portion disposed in the enclosing portion, and a porous liquid junction between the water inspection portion and the enclosing portion. And the lower portion of the working electrode portion in the water detection portion is formed into a convex shape that protrudes downward in the shape of any one of a truncated cone shape, a conical shape, and a diagonally cut cross-sectional triangle. apparatus. 検水部内での横方向の水流に作用電極部の下部の電極が当たる位置に、作用電極部を配置して成ることを特徴とする請求項1に記載の電解水生成装置。2. The electrolyzed water generating device according to claim 1, wherein the working electrode unit is arranged at a position where the lower electrode of the working electrode unit hits a lateral water flow in the water sampling unit. 検水部の天井面を流入口側から流出口側へ上向き傾斜する傾斜面に形成して成ることを特徴とする請求項1に記載の電解水生成装置。2. The electrolyzed water generating apparatus according to claim 1, wherein the ceiling surface of the water sample section is formed as an inclined surface that is inclined upward from the inlet side to the outlet side. 検水部を通過する水に壁面流を生じさせるための挿入部材を検水部内に設けて成ることを特徴とする請求項1に記載の電解水生成装置。2. The electrolyzed water generating device according to claim 1, wherein an insertion member for generating a wall surface flow in the water passing through the test water section is provided in the test water section. 水を電気分解することによりアルカリ性水と酸性水を生成し、この生成されたアルカリ性と酸性の電解水を各別に流出させる電解槽と、電解槽の下流側に配設され、電解槽で生成された電解水の水質を電気化学的に測定する水質測定装置とを具備して形成される電解水生成装置において、電解水が通水される検水部、下部が検水部内に臨ませて配設される作用電極部、内部溶液を封入する封入部、封入部内に配設される比較電極部、検水部と封入部の間の多孔質の液絡部を具備して水質測定装置を形成し、電解槽から水質測定装置の検水部への流路に、水質測定装置の上流側で分岐すると共に水質測定装置の下流側の流路に接続されるバイパス経路を設け、バイパス経路にオリフィスを設けると共にオリフィスをその断面積S1 が検水部へ流入する流路の断面積S2 に対してS1 /S2 <0.8となるように形成して成ることを特徴とする電解水生成装置。Electrolyzed water generates alkaline water and acidic water, and the generated alkaline and acidic electrolyzed water flows out separately from each other. In the electrolyzed water generating device formed with a water quality measuring device for electrochemically measuring the quality of the electrolyzed water, the water sample passing through the electrolyzed water is placed with the lower part facing the water sampled portion. A water quality measuring device is formed by having a working electrode portion to be installed, an enclosing portion for enclosing the internal solution, a comparison electrode portion disposed in the enclosing portion, and a porous liquid junction between the water inspection portion and the enclosing portion. In the flow path from the electrolytic cell to the water detection section of the water quality measurement device, a bypass path is provided which branches on the upstream side of the water quality measurement device and is connected to the flow path on the downstream side of the water quality measurement device. flow to test water unit cross-sectional area S 1 of the orifice provided with take Electrolyzed water production apparatus characterized by comprising forming such that S 1 / S 2 <0.8 with respect to the cross-sectional area S 2 of the flow path.
JP31533996A 1996-11-26 1996-11-26 Electrolyzed water generator Expired - Fee Related JP3662692B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP31533996A JP3662692B2 (en) 1996-11-26 1996-11-26 Electrolyzed water generator

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP31533996A JP3662692B2 (en) 1996-11-26 1996-11-26 Electrolyzed water generator

Publications (2)

Publication Number Publication Date
JPH10151462A JPH10151462A (en) 1998-06-09
JP3662692B2 true JP3662692B2 (en) 2005-06-22

Family

ID=18064227

Family Applications (1)

Application Number Title Priority Date Filing Date
JP31533996A Expired - Fee Related JP3662692B2 (en) 1996-11-26 1996-11-26 Electrolyzed water generator

Country Status (1)

Country Link
JP (1) JP3662692B2 (en)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4528159B2 (en) * 2005-03-03 2010-08-18 ルネサスエレクトロニクス株式会社 Redox potential measuring device and method for measuring redox potential
JP2009020063A (en) * 2007-07-13 2009-01-29 Saginomiya Seisakusho Inc Electrode of resistivity meter
JP6016157B2 (en) * 2012-09-26 2016-10-26 株式会社イワキ Liquid quality sensor
WO2021131521A1 (en) * 2019-12-27 2021-07-01 株式会社堀場アドバンスドテクノ Electrochemical measurement unit, electrochemical measurement device, and electrochemical measurement method
CN113830940B (en) * 2021-10-27 2023-02-03 澳兰斯健康产业有限公司 Rich hydrogen water purification unit

Also Published As

Publication number Publication date
JPH10151462A (en) 1998-06-09

Similar Documents

Publication Publication Date Title
JP2872633B2 (en) Electrochemical measurement cell
JP2000051858A (en) Electrolytic ionic water maker
JP3662692B2 (en) Electrolyzed water generator
JP3584594B2 (en) pH sensor and ion water generator
JP3903524B2 (en) Electrolyzed water generator
US3258411A (en) Method and apparatus for measuring the carbon monoxide content of a gas stream
KR101492393B1 (en) Total residual oxidant concentration measure module
JP2000009676A (en) Water quality detector
JP3709051B2 (en) Electrolyzed water generator
JP2000009675A (en) Water quality detector
US3315271A (en) Cell for dissolved oxidant analysis
JP3577824B2 (en) pH sensor and ion water generator
JP3708208B2 (en) pH sensor and ion water generator
JP3638172B2 (en) Electrolyzed water generator
JP2016114376A (en) Solid-state residual chlorine sensor and water meter having the same
JP3633077B2 (en) pH sensor and ion water generator
KR100970306B1 (en) Sample holder structure having a residual chlorine sensor
JP3595087B2 (en) Electrolyzed water generator
JPH09236570A (en) Ph sensor and ion water maker
JP3562153B2 (en) Alkaline ion water purifier
JPH09210951A (en) Washing method for oxidative/reductive potential sensor
JP7104837B1 (en) Dissolved gas concentration measuring method, dissolved hydrogen concentration measuring device and dialysate preparation water production device
JPH08211010A (en) Electrolytic calibration equipment
KR100759531B1 (en) Residual chlorine analyzer of ventilation form
JP2000009680A (en) Sensor for water-quality detection

Legal Events

Date Code Title Description
A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20040810

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20041012

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20050308

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20050324

R150 Certificate of patent (=grant) or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090401

Year of fee payment: 4

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090401

Year of fee payment: 4

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090401

Year of fee payment: 4

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100401

Year of fee payment: 5

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110401

Year of fee payment: 6

LAPS Cancellation because of no payment of annual fees