JP3638172B2 - Electrolyzed water generator - Google Patents

Electrolyzed water generator Download PDF

Info

Publication number
JP3638172B2
JP3638172B2 JP09282796A JP9282796A JP3638172B2 JP 3638172 B2 JP3638172 B2 JP 3638172B2 JP 09282796 A JP09282796 A JP 09282796A JP 9282796 A JP9282796 A JP 9282796A JP 3638172 B2 JP3638172 B2 JP 3638172B2
Authority
JP
Japan
Prior art keywords
water
chamber
internal solution
electrode
test
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP09282796A
Other languages
Japanese (ja)
Other versions
JPH09276873A (en
Inventor
弘之 野口
利久 平井
康弘 才原
豊 裏谷
壽一 西川
源喜 中野
芳紀 柳田
智行 池ケ谷
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Electric Works Co Ltd
DKK TOA Corp
Original Assignee
DKK TOA Corp
Matsushita Electric Works Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by DKK TOA Corp, Matsushita Electric Works Ltd filed Critical DKK TOA Corp
Priority to JP09282796A priority Critical patent/JP3638172B2/en
Publication of JPH09276873A publication Critical patent/JPH09276873A/en
Application granted granted Critical
Publication of JP3638172B2 publication Critical patent/JP3638172B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Water Treatment By Electricity Or Magnetism (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、連続してアルカリ性水と酸性水、すなわち電解水を生成する電解水生成装置本体と、生成された電解水などの水質を電気化学的に測定する電気化学的水質測定器とを組み合わせた電解水生成装置に関するものである。
【0002】
【従来の技術】
電解水生成装置本体の構造を図10、電気化学的水質測定器の構造を図11、図12及び図13を用いて説明する。電解水生成装置本体1は電解槽2、浄水装置3、電解質(電解促進剤)供給装置4などから構成される、所謂“アルカリイオン整水器”を示した。電解槽2は、隔膜5により、陰極6a′が配置された陰極室7a′と、陽極6b′が配置された陽極室7b′とに区画されている。
【0003】
一般に原水とされる水道水は、浄水装置3を通して電解槽2の陰極室7a′と陽極室7b′に導入される。浄水装置3は水道水中に含まれている有機物、無機物、あるいは次亜塩素酸などの臭気成分を除去するものであり、通常、抗菌活性炭フィルタ及び中空糸膜などのマイクロフィルターにて構成されている。また、浄水装置3から流出した浄水は、陰極室7a′に直接連通した流入路8a、陽極室7b′に連通した流入路8bに分流されるようになっている。この浄水の陽極室7b′の流入側では、陽極室7b′の上流において、電解質供給装置4により連続的に電解質が供給されるようになっている。電解質としては乳酸カルシウムまたはグリセリン酸カルシウムなどのカルシウム塩が使用される。上記構成において、電解槽2に通水された水を、陽極6b′と陰極6a′との間に電流を流して電気分解することにより、陰極室7a′にアルカリ性水(所謂“アルカリイオン水”)が、陽極室7b′に酸性水(所謂“酸性イオン水”)が生成される。アルカリ性水は流出路9から、酸性水は流出路10からそれぞれ別々の経路を通って吐出されるようになっている。
【0004】
従来、得られたアルカリ性水及び酸性水の水質は、そのpH値が電解のために供給した電気量によって異なる(ファラデーの法則)ことに着目して、電気量から逆算して推定していた。しかしながら、電解槽2で電解されて生成した電解水の水質は、電解のために供給した電気量に依存するだけでなく、電解槽2への流量、電解槽2での滞留時間、流入水の流量と電解槽2の容量の比などによって決まる。電解槽2での滞留時間が長ければ長いほど電解効率は上がる。電解効率が100%に満たない場合(一般的に連続式電解水生成装置の場合は電解効率は数10%程度であるが)、電解した水と未電解水の存在比率により生成した電解水の水質が変わるのは勿論であるが、流入水に含まれていた溶存成分、特に各イオン種、炭酸水素イオンなどの緩衝性を有する溶存ガス成分などによっても電解後の水質は影響される。
【0005】
以上のことによってわかるように、電解水生成装置において得られる電解水の水質は、電解槽2内での印加電圧は勿論、流入する水の量の原水水質によって大きな影響を受けるので、生成されるアルカリ性水及び酸性水の流出路9,10に、直接電気化学的水質測定器11を設置し、電解水の水質を正しく測定することも行われている。電解槽2から吐出される電解水は、数cm/secから数10cm/secの流速があり、電解水の水質をリアルタイムに(連続的に)測定するためには、測定に要する時間がタイムラグにならない測定原理による計測が必要であるが、電気化学的測定原理を利用した水質測定器は、検知電極を通過する検査水に直接接触させて水質を測定することが可能で、電解水測定装置における水質測定器としては最も適しており、従ってpH、酸化還元電位、各種イオン濃度が測定できる。例えば、実開昭56−179321号公報に開示されるイオン水生成装置には、測定器(センサ)としてpHセンサを設け、生成した電解水のpH値を表示している。また例えば、特開平5−64785号公報に開示のイオン水生成装置では、pHセンサの出力信号に基づいて目標設定pH値に対して、その偏差pHに対応した電解電圧及び/または流量を増減させるフィードバック制御を行っている。これらの測定器の電極は、検知電極と内部電極とで構成されており、検知電極の水質変化による電位差或いは電流変化を検知して水質を測定するものである。
【0006】
上記の電気化学的水質測定器11の構造を図11、図12及び図13の例により説明する。図11はpH測定センサであり、図12は酸化還元電位センサであり、これらの検知電極としては前者ではガラス感応膜、後者では白金などの不反応金属電極が用いられており、アンプ一体型複合電極タイプの一例を示す。図11、図12で、12は検知された電位差を増幅する電位差増幅アンブ、13は内部溶液室14に溶液を補充する内部溶液補充口である。15は内部溶液室14の内部に充填された内部溶液であり、飽和もしくは3.3M(mol/L)の塩化カリウム溶液である。尚、内部溶液15には塩化カリウムの安定な溶出及び結晶固化防止のためにカルボキシメチルセルロースやヒドロキシエチルセルロースなどのセルロース系増粘剤を添加することもある。16は内部電極で銀/塩化銀電極が用いられる。17はアルミナ系セラミックスなどの多孔質素材よりなる液絡部(塩橋)であり、内部溶液室14と検査水室18との間に位置する隔壁部19に保持してある。図11のものでは、検知電極20として電極21を封入したpH測定用のガラス感応膜22を用いており、検知電極20を検査水室18内に配置してある。図12で示すものは、検知電極20として酸化還元電位測定用の白金電極23を用いており、検知電極20を検査水室18内に配置してある。24は熱収縮性テフロンチューブまたはガラス封入などにより、白金線を絶縁させた絶縁被覆部である。また図13に示すものは図11の構造のpH測定センサと図12の酸化還元電位センサとを一体化させた構造のものであり、内部電極16を共通で用い、pHと酸化還元電位の両方を測定できるタイプのものである。
【0007】
【発明が解決しようとする課題】
しかしながら、以上のような従来例の構造を有する電解水生成装置において、以下のような問題があった。すなわち、流水式の電解水生成装置の場合では連続的な電解水の生成が一つの特徴であるが、電位差測定式の電気化学的水質測定器を配置した場合、塩橋として役割を持つ液絡部分の特性、特に透水率特性が重要である。測定のためには液絡部を通じて内部溶液を検査水側に流出させる必要があるため透水性のよい材質を選定することが理想的であるが、極端に透水性がよいものについては、検査水自体の水質が大幅に変化するという問題がある。従って、この問題を考慮した上での液絡部材の選定が行われている。また電解水生成装置において、連続的に長時間の間、検査水を通水した場合、液絡部から内部溶液室の方に検査水の浸入が起こり、液絡部の抵抗値が増大することにより測定妨害の要因となり得る。この検査水の浸入現象に対しては、通常内部溶液室を密封することにより防止されており、毎分4リットル程度の通水であれば、数分間から10数分間の連続使用には十分対応できる。しかしながら、電解水を数百リットル連続的に生成する必要がある場合、例えばアストリンゼント効果の認められている弱酸性水を入浴用など全身に使用する場合や、業務用等でアルカリ性水を大量に使用する場合などにおいては、数10分間から数時間の連続測定が必要となるが、従来例で示した構造では、長時間に亙って高水量の連続通水があった場合、液絡部から内部溶液室の方に検査水の浸入が起こり、液絡部の抵抗が増大することにより測定妨害となり、精度ばらつきなどの現象を生じるという問題があった。
【0008】
本発明は上記事由に鑑みてなされたものであり、長時間に亙る高水量の連続通水条件においても、安定した水質測定ができる機能を有した電解水生成装置を提供することを課題する。
【0009】
【課題を解決するための手段】
本発明の電解水生成装置の第1の特徴は、電気化学的水質測定器は、測定対象となる検査水が通る検査水室に設置される検知電極と、内部溶液を封入した内部溶液室内に設置される内部電極と、検査水室と内部溶液室との間の透水性を確保するための多孔性の液絡部で構成され、内部溶液室と、流出口から流出された検査水が流れる水路、または電解槽内に流入させる原水が流れる水路とがチューブなどの連通路で連通させられたことを特徴とする。これによると、高水量の検査水が検査水室に流入した場合でも、内部溶液室の内圧と検査水室の内圧とが等圧になるため、検査水の液絡部への浸入が防止でき、高水量の検査水に対しても安定且つ精度よく水質を測定することが可能になる。
【0010】
本発明の電解水生成装置の第2の特徴は、上記第1の特徴において、内部溶液室と、流出口から流出された検査水が流れる水路、または電解槽内に流入させる原水が流れる水路と連通させる連通路内にピストンを摺動自在に内装して成ることを特徴とする。この場合、ピストンが圧力に応じて連通路内を摺動して圧力を伝達できるものでありながら、ピストンにて水密性を確保でき、検査水が連通路から内部溶液室に浸入したり、内部溶液が連通路から外部に流出するのを防止でき、また使用しないとき内部溶液が乾燥するのを防止できる。
【0011】
本発明の電解水生成装置の第3の特徴は、電気化学的水質測定器は、測定対象となる検査水が通る検査水室に設置される検知電極と、内部溶液を封入した内部溶液室内に設置される内部電極と、検査水室と内部溶液室との間の透水性を確保するための多孔性の液絡部で構成され、摺動移動することにより内部溶液室内の圧力を可変するピストンが設けられ、内部溶液内の圧力を所定圧力にするためにピストンを駆動する駆動手段が電気的駆動手段で構成されたことを特徴とする。これによると、電気的駆動手段でピストンを駆動することで、内部溶液室の内圧を上げることができ、高水量の検査水が流入した場合も、内部溶液室の内圧を検査水室の内圧より上げることができて強制的に内部溶液を液絡部より流出させる方向に力を働かすことができるため、検査水の液絡部への浸入が防止でき、高水量の検査水に対しても安定且つ精度よく水質を測定することが可能となる。
【0012】
本発明の電解水生成装置の第4の特徴は、第3の特徴において、内部溶液内の圧力を所定圧力にするためにピストンを駆動する駆動手段が気体の加圧手段で構成されたことを特徴とする。この場合、気体の加圧手段でピストンを駆動して簡単且つ精度よく内部溶液室内の圧力を保つことができる。
本発明の電解水生成装置の第5の特徴は、電気化学的水質測定器は、測定対象となる検査水が通る検査水室に設置される検知電極と、内部溶液を封入した内部溶液室内に設置される内部電極と、検査水室と内部溶液室との間の透水性を確保するための多孔性の液絡部で構成され、上記液絡部を保持すると共に検査水室と内部溶液室との間を分離する部材に部分的な薄肉構造の部分が設けられたことを特徴とする。このようにしたことにより、検査水室の内圧上昇により薄肉構造の部分に撓みが生じて内部溶液室内にも内圧上昇を伝達できて検査水室内の内圧と内部溶液室の内圧とを等圧にでき、検査水の液絡部への浸入が防止でき、高水量の検査水に対しても安定且つ精度よく水質を測定することが可能となる。また液絡部を保持すると共に検査水室と内部溶液室との間を分離する部材に電解水中に含まれるイオン種や有機物などが付着しても通水時に薄肉構造の部分が空気溜まりとなるために沿面放電が発生しがたくなり、測定精度の低下を低減させることもできる。
【0013】
本発明の電解水生成装置の第6の特徴は、第5の特徴において、液絡部を保持すると共に検査水室と内部溶液室との間を分離する部材に球状、円柱状または風船状の構造の部分を設けることで撓み変形する部分が形成されたことを特徴とすることも好ましい。この場合も、検査水室の内圧上昇により球状、円柱状または風船状の構造の部分に撓みが生じて内部溶液室内にも内圧上昇を伝達できて検査水室内の内圧と内部溶液室の内圧とを等圧にでき、検査水の液絡部への浸入が防止でき、高水量の検査水に対しても安定且つ精度よく水質を測定することが可能となる。また液絡部を保持すると共に検査水室と内部溶液室との間を分離する部材に電解水中に含まれるイオン種や有機物などが付着しても通水時に球状、円柱状または風船状の構造の部分が空気溜まりとなるために沿面放電が発生しがたくなり、測定精度の低下を低減させることもできる。
【0015】
本発明の電解水生成装置の第7の特徴は、電気化学的水質測定器は、測定対象となる検査水が通る検査水室に設置される検知電極と、内部溶液を封入した内部溶液室内に設置される内部電極と、検査水室と内部溶液室との間の透水性を確保するための多孔性の液絡部で構成され、電気化学的水質測定器の液絡部の液絡部材が検査水室側に延長させられると共に液絡部材の接液部分が検査水の流れ方向に相対しないように液絡部材の表面の一部が被覆されたことを特徴とする。この構造により、検査水が直接液絡部にフラッシングすることが阻止でき、検査水の液絡部への浸入を低減させることができ、安定且つ精度よく水質を測定することが可能になる。
【0017】
【発明の実施の形態】
以下本発明の実施の形態を図面に基づいて説明する。
電解水生成装置本体1の全体構造は従来例と同一であり、詳しい説明は省略し、本発明の主要部について説明する。電解水生成装置は、図2及び図3に示すように電解槽2、逆洗ユニット26と切り替え弁27、水路切り替え弁28、浄水装置3、電解質(電解促進剤)供給装置4、及び電気化学的水質測定器11をハウジング25内に収めたものとして構成されている。浄水装置3は抗菌活性炭からなる濾過材29と中空糸膜からなる濾過材30とを備えたものであって、その下端に設けられた2つの開口部のうち一方が、逆洗ユニット26のシリンダに、他方が切り替え弁27に接続されている。尚、上記の2種の濾過材29,30は単一のカートリッジに納められており、カートリッジ毎に交換できるように構成されている。
【0018】
電解槽2は隔膜5にて電極6aが設置された電極室7aと、電極6bが設置された電極室7bに区画されており、底部側には流入路8a,8bを、上部側には流出路9,10を備えており、これらの流出路9,10には流路切り替え弁28を介して吐出管31,32が接続されている。ここにおいて、流入路8bは流入路8aより1:3か1:4程度の比率で流量が少なくなるように調整されている。上記水路切り替え弁28は流出路9,10と吐出管31,32との連通を切り替えるもので電磁ロータリー弁もしくはモータ式切り替え弁で構成されている。逆洗ユニット26は浄水装置3の濾過材29,30の目詰まりを、一旦浄水装置3を通すことで濾過した浄水を浄水装置3に逆流させる逆洗を行うことで解消するためのものである。そして、逆洗ユニット26の吐出側は電解槽2の流入路8a,8bヘと連結されているのであるが、この間に流量検知サンサ33と逆止弁34と電磁弁35とが配置されており、電磁弁35と電解槽2との間で流入路8bには電解質供給装置(カルシウム剤添加筒)4が配置されている。逆止弁34は、排出口37につながったもので、流量検知センサ33側から水圧がかかっているときは閉じているものの、水圧がからなくなった場合には開いて、電解槽2内やその他配管系内の残留水を排出口37から排出するようになっている。前記吐出管32の途中には電気化学的水質測定器11が配置されている。この電気化学的水質測定器11については後で詳しく述べる。
【0019】
次に水の流れについて説明する。水道蛇口37に接続した切り替えレバーユニット38を切り替え弁27側に水が流れるように切り換えると、逆洗ユニット26を経て、浄水装置3及び電解質供給装置4を通して流入路8a,8bから電解槽2内に水が導入され、電気分解されるわけであるが、電解槽2内への電圧の印加は流量検知センサ33により検知された場合に開始される。そしてアルカリ性水を得たい旨の指示がなされているならば、電解槽2の電極6aが陰極に、電極6bが陽極になるように電解電圧が印加されるため、流出路9側にアルカリ性水が、流出路10側に酸性水が得られ、このとき水路切り替え弁28は図2に示す状態とされているため、アルカリ性水が吐出管32側に、酸性水が吐出管31側に吐出される。酸性水が得たい旨の指示がなされているときは、指示された電解度合に応じて次の2つの水の流れとなる。まず、弱酸性水の場合には、電解槽2の電極6aが陽極に、電極6bが陰極になるように電解電圧が印加されるため、流出路10側にアルカリ性水、流出路9側に(弱)酸性水が得られ、このとき水路切り替え弁28が上記と同じ状態にされているためにアルカリ性水が吐出管31側に(弱)酸性水が吐出管32側に吐出される。強酸性水の場合には、電解槽2の電極6aが陰極に、電極6bが陽極になるように電解電圧が印加されるため、流出路9側にアルカリ性水が、流出路10側に酸性水が得られ、このとき水路切り替え弁28は図3のように切り替わり、アルカリ性水が吐出管31側に、(強)酸性水が吐出管32側に吐出される。このように、強酸性水を吐出管32側から吐出させる場合に、電極6bを陽極とするのは、前述のように電極6b側への流入路8bを電極6a側への流入路8aより絞って流入量を少なくしているために、強酸性水を得ることが容易になっているためである。
【0020】
上記それぞれの電解により生成されて吐出管32より吐出される電解水は、電解槽2と吐出管32との間に配置された電気化学的水質測定器11により、水質が測定される。測定項目として、酸化還元電位を測定する場合の、電気化学的水質測定器11の実施の形態を図1、図4、図5に示す。この電気化学的水質測定器11は、電位差検出方式の電気化学センサであり、測定対象となる検査水が通る検査水室18に設置される検知電極20と、内部溶液15を封入した内部溶液室14内に設置される内部電極16と、検査水室18と内部溶液室14との間の透水性を確保するための多孔性の液絡部17で構成され、検知電極20の水質変化による電位差を検出するものである。本実施の形態ではpH・酸化還元電位を測定するものであるが、各種イオン濃度や溶存ガスなどの水中溶存成分を測定するもので構成される場合もある。
【0021】
この電気化学的水質測定器11の構造は、測定のための基本機能構造は従来例と同様であり、対応する部分には同一符号を付して詳しい説明を省略する。尚、内部電極16としては本実施の形態の場合、銀/塩化銀電極が通常使用される。また内部溶液15は飽和もしくは3.3M(mol/L)の塩化カリウム溶液が使用されるが、本発明では、この塩化カリウムの安定な溶出のために溶液粘度が4000cps以上(通常10000cps程度が望ましい)となるようにカルボキシメチルセルロースやヒドロキシエチルセルロースなどの増粘剤を添加する。液絡部17はアルミナ系セラミックスなどの多孔質素材などからなり、内部溶液室14と検査水室18を隔離する隔壁部19に保持されている。この隔壁部19はシリコンなどの絶縁材料にて形成されている。検知電極20は、白金、金などによる酸化還元電位測定用の不反応電極であるか、または高分子膜・ガラス感応膜のイオン選択膜、またはこれらの組み合わせからなる溶存成分検出電極である。本実施の形態の場合、pH・酸化還元電位測定用のガラス感応膜及び純度99.97%以上の白金電極を検査水室18内に配置してある。尚、白金線は熱収縮性テフロンチューブのような絶縁被覆部24で絶縁被覆した点は従来例を同じであるが、白金線のガラス封入などにより絶縁被覆部24を設けてもよい。
【0022】
また本発明では、内部溶液室14内と、検査水室18との間がチューブのような連通路40にて連通させてある。しかして検査水室18に電解水のような検査水を流入させて水質の検査を行うとき、連通路40に検査水による内圧が印加され、内部溶液室14内が検査水室18内と等圧になり、結果として液絡部17も検査水室18と等圧となり、検査水の検査水室18からの内部溶液室14内への浸入を阻止することが可能となり、高水量の検査水の通水時においても長時間の安定な測定が可能となる。尚、連通路40の検査水室18側は、上記のように検査水室18に直接連通させるものに限らず、検査水室18より上流側であればどの部位の配管と連通させてもよい。検査水の通水時に等圧になった状態では、連通路40内は先に存在した空気が圧縮された状態で平衡状態となり、検査水が内部溶液15に混入することはないが、未使用期間が長期に亙る場合には、内部溶液15が徐々に乾燥する可能性があるので、未使用期間が長期に亙ると考えられる場合には、図4に示すような構造を採用するのが望ましい。図4に示すものでは、連通路40の途中にシリンダ部41を設けてあり、シリンダ部41内にシリンダ部41に沿って摺動自在にピストン42を内装してある。この場合、検査水室18からかかる内圧に応じてピストン42が摺動して検査水室18の内圧と内部溶液室14の内圧が等圧に保たれるものでありながら、検査水室18から内圧がかからないときにはピストン42にて連通路40は閉塞されて内部溶液15が乾燥するのを防止できる。
【0023】
図5の実施の形態では、内部溶液室14には加圧路43を連通させてあり、加圧路43にはシリンダ部41を設けてあり、シリンダ部41内にピストン42を摺動自在に内装してあり、またピストン42を動作させる電気的駆動手段としてモータ44を配置してある。ピストン42をモータ44で動作させるとき、機械的な動力伝達手段で動力をピストン42に伝達させてピストン42が移動するようにしても、モータ44でポンプを駆動してエアーのような気体を送ることでピストン42を移動するようにしてもよい。この場合、ピストン42を駆動することで、内部溶液室14の内圧を上げることができ、高水量の検査水が流入した場合も、内部溶液室14の内圧を検査水室18の内圧より上げることができて強制的に内部溶液15を液絡部17より流出させる方向に力を働かすことができるため、検査水の液絡部17への浸入が防止でき、高水量の検査水に対しても安定且つ精度よく水質を測定することが可能となる。
【0024】
図6の実施の形態では、液絡部17を保持する隔壁部19に薄肉構造として薄肉部45を設けてあり、薄肉部45の下に空所46を設けてある。図7の実施の形態では、隔壁部19に風船状の構造として薄肉曲面部47を設けてあり、薄肉曲面部47の下の空所46を設けてある。このような風船状の構造以外に球状や円柱状の構造にしてもよい。図6や図7に示すいずれのものも、検査水の未通水時には図6(a)や図7(a)の状態であるものの、高水量の検査水が流入した場合、図6(b)や図7(b)のように検査水室18の内圧上昇により、薄肉部45、薄肉球面部47に撓みが生じて検査水室18の内圧の上昇を伝達することができ、結果として内部溶液室14から液絡部17に圧力を印加することとなり、検査水の液絡部17への浸入が防止でき、高水量の検査水に対しても安定且つ精度よく水質を測定することが可能になる。しかも、上記の実施の形態の場合、以下の効果も期待できる。すなわち、検知電極20と液絡部17との間に位置する、隔壁部19から検知電極20の絶縁被覆部24を経て検知電極20に至るまでの絶縁部分に、電解水中に含まれるイオン種、有機物などの溶存成分が微量でも付着した場合、本来完全に絶縁されてあるべき上記部分が微小ながら導電性を有して微弱電流が流れ得る状態となり、結果として検査水測定時、検知電極20に起因する電位(発生起電力)よりも絶対値の低い電位を検知し、しかも測定値が不安定で正確な測定が行われないといった問題があったが(特に検知電極20として酸化還元電位測定用の白金電極または金電極等の不反応電極を設置した酸化還元電位センサの場合には顕著である。)、たとえ隔壁部19に電解水中に含まれるイオン種や有機物などが付着しても通水時には空所46が空気溜まりになるため、沿面放電が発生し難くなり、測定精度の劣化を低減させることができるといった効果も期待できる。
【0025】
図8の実施の形態では、液絡部17の液絡部材17aを検査水室18側に延長させてあると共に液絡部材17aの接液部分が検査水の流れ方向に相対しないように液絡部材17aの表面の一部を被覆してある。絶縁材料にて形成せる隔壁部19から被膜状の液絡部材被覆部48,49を延出してあり、液絡部材被覆部48,49にて液絡部材17aの検査水室18側に突出する部分を被覆してある。図8(a)の場合、液絡部材17aの外周の全周を液絡部材被覆部48にて被覆してあり、図8(b)の場合、液絡部材17aの外周の一部と下面とを液絡部材被覆部49にて被覆してある。この実施の形態の図8(a)に示す構造のものでは検査水の液絡部17への浸入時間の延長ができ、図8(b)に示す構造のものでは検査水が直接液絡部17にフラッシングすることが阻止でき、検査水の液絡部17への浸入を低減させることができる。従って図8に示す実施の形態でも連続使用可能時間の延長を達成することができるようになる。
【0026】
図9の実施の形態の場合、検査水室18に検査水を流入させる検査水流入口50が検査水室18より検査水を流出させる検査水流出口51よりも検査水の通過面積が小になるように形成され、検査水流入口50から検査水室18を通って検査水流出口51から検査水が流出する検査用の水路に一部の水が流れるように検査用の水路がバイパス構造で設けられている。つまり、検査水流入口50には絞り弁52を設けてあり、また図9の矢印aのように流入して水が矢印bに示す経路と矢印cに示す経路とに分流され、矢印dのように再び合流するようにしてある。この実施の形態の場合、高水量であっても、一部の検査水が検査水室18に流れ込む構造となり、しかも検査水流入口50から流入する検査水が絞られると共にアスピレータの作用により検査水室18内の圧力が高くならなく、これらの相乗効果により検査水の液絡部17への浸入が防止でき、高水量の検査水に対しても安定且つ精度よく水質を測定することが可能になる。
【0027】
また他の実施の形態としては、液絡部17を構成する液絡部材として材質または構造により水の透水率が異なるものが複数個使用されたもののある。この場合、液絡部17の総合機能として抵抗値の上昇を低減させることができる。また検知電極20が白金電極または金電極の不反応金属電極で構成されると共にその感応部位の表面粗度が1μm以下にされたことも好ましい。この場合、前回測定時の水質による測定精度への影響を低減させ、レスポンスが非常に遅くなることを防止できる。具体的には、強酸性のpH値である水質を計測した後、飲用レベルのアルカリ性水を測定した場合、強酸性水に含まれていた次亜塩素酸及び溶存塩素ガス成分等の白金電極への吸着が起こりにくくなり、次回測定時には残存しないため、アルカリ性水の真の酸化還元電位値を示すまでの応答時間が早くなる。
【0028】
尚、上記実施の形態の場合、電解水を検査水として水質を測定するものについて述べたが、水道の原水でも浄化装置3で浄化した浄化水でも同様に水質を検査することができる。
【0029】
【発明の効果】
請求項1の発明では、電気化学的水質測定器は、測定対象となる検査水が通る検査水室に設置される検知電極と、内部溶液を封入した内部溶液室内に設置される内部電極と、検査水室と内部溶液室との間の透水性を確保するための多孔性の液絡部で構成され、内部溶液室と、流出口から流出された検査水が流れる水路、または電解槽内に流入させる原水が流れる水路とが連通路で連通させられたので、高水量の検査水が検査水室に流入した場合でも、内部溶液室の内圧と検査水室の内圧とが連通路を介して等圧になるため、検査水の液絡部への浸入が防止でき、高水量の検査水に対しても安定且つ精度よく水質を測定することが可能になるものである。
【0030】
請求項2の発明では、請求項1において、内部溶液室と、流出口から流出された検査水が流れる水路、または電解槽内に流入させる原水が流れる水路と連通させる連通路内にピストンを摺動自在に内装しているので、ピストンが圧力に応じて連通路内を摺動して圧力を伝達できるものでありながら、ピストンにて水密性を確保でき、検査水が連通路から内部溶液室に浸入したり、内部溶液が連通路から外部に流出するのを防止できるものであり、しかも使用しない内部溶液が乾燥しないようにできる。
【0031】
請求項3の発明では、電気化学的水質測定器は、測定対象となる検査水が通る検査水室に設置される検知電極と、内部溶液を封入した内部溶液室内に設置される内部電極と、検査水室と内部溶液室との間の透水性を確保するための多孔性の液絡部で構成され、摺動移動することにより内部溶液室内の圧力を可変するピストンが設けられ、内部溶液内の圧力を所定圧力にするためにピストンを駆動する駆動手段が電気的駆動手段で構成されたので、電気的駆動手段でピストンを駆動することで、内部溶液室の内圧を上げることができ、高水量の検査水が流入した場合も、内部溶液室の内圧を検査水室の内圧より上げることができて強制的に内部溶液を液絡部より流出させる方向に力を働かすことができるため、検査水の液絡部への浸入が防止でき、高水量の検査水に対しても安定且つ精度よく水質を測定することが可能となるものである。
【0032】
請求項4の発明では、請求項3において、内部溶液内の圧力を所定圧力にするためにピストンを駆動する駆動手段が気体の加圧手段で構成されので、気体の加圧手段でピストンを駆動して簡単且つ精度よく内部溶液室内の圧力を保つことができるものである。
請求項5の発明では、電気化学的水質測定器は、測定対象となる検査水が通る検査水室に設置される検知電極と、内部溶液を封入した内部溶液室内に設置される内部電極と、検査水室と内部溶液室との間の透水性を確保するための多孔性の液絡部で構成され、上記液絡部を保持すると共に検査水室と内部溶液室との間を分離する部材に部分的な薄肉構造の部分が設けられたので、検査水室の内圧上昇により薄肉構造の部分に撓みが生じて内部溶液室内にも内圧上昇を伝達できて検査水室内の内圧と内部溶液室の内圧とを等圧にでき、検査水の液絡部への浸入が防止でき、高水量の検査水に対しても安定且つ精度よく水質を測定することが可能となるものであり、また液絡部を保持すると共に検査水室と内部溶液室との間を分離する部材に電解水中に含まれるイオン種や有機物などが付着しても通水時に薄肉構造の部分が空気溜まりとなるために沿面放電が発生しがたくなり、測定精度の低下を低減させることもできるものである。
請求項6の発明では、請求項5において、液絡部を保持すると共に検査水室と内部溶液室との間を分離する部材に球状、円柱状または風船状の構造の部分を設けることで撓み変形する部分が形成されたので、検査水室の内圧上昇により球状、円柱状または風船状の構造の部分に撓みが生じて内部溶液室内にも内圧上昇を伝達できて検査水室内の内圧と内部溶液室の内圧とを等圧にでき、検査水の液絡部への浸入が防止でき、高水量の検査水に対しても安定且つ精度よく水質を測定することが可能となるものであり、また液絡部を保持すると共に検査水室と内部溶液室との間を分離する部材に電解水中に含まれるイオン種や有機物などが付着しても通水時に球状、円柱状または風船状の構造の部分が空気溜まりとなるために沿面放電が発生しがたくなり、測定精度の低下を低減させることもできるものである。
【0034】
請求項7の発明では、電気化学的水質測定器は、測定対象となる検査水が通る検査水室に設置される検知電極と、内部溶液を封入した内部溶液室内に設置される内部電極と、検査水室と内部溶液室との間の透水性を確保するための多孔性の液絡部で構成され、電気化学的水質測定器の液絡部の液絡部材が検査水室側に延長させられると共に液絡部材の接液部分が検査水の流れ方向に相対しないように液絡部材の表面の一部が被覆されたので、検査水が直接液絡部にフラッシングすることが阻止でき、検査水の液絡部への浸入を低減させることができ、安定且つ精度よく水質を測定することが可能になるものである。
【図面の簡単な説明】
【図1】本発明の実施の形態の一例の電気化学的水質測定器の断面図である。
【図2】同上の電気化学的水質測定器を備えた電解水生成装置を示し、アルカリ性水を得る場合の配管図である。
【図3】同上の電気化学的水質測定器を備えた電解水生成装置を示し、酸性水を得る場合の配管図である。
【図4】同上の実施の形態の他例の電気化学的水質測定器の断面図である。
【図5】同上の実施の形態の他例の電気化学的水質測定器の断面図である。
【図6】同上の実施の形態の他例の電気化学的水質測定器の要部で、(a)は水圧のかかっていない状態の断面図、(b)は水圧のかかっている状態の断面図である。
【図7】同上の実施の形態の他例の電気化学的水質測定器の要部で、(a)は水圧のかかっていない状態の断面図、(b)は水圧のかかっている状態の断面図である。
【図8】同上の実施の形態の他例の電気化学的水質測定器の要部で、(a)(b)は構造が少し異なるものの例の断面図である。
【図9】同上の実施の形態の他例の電気化学的水質測定器の断面図である。
【図10】従来例の電解水生成装置本体の概略断面図である。
【図11】一従来例の電気化学的水質測定器の断面図である。
【図12】他の従来例の電気化学的水質測定器の断面図である。
【図13】他の従来例の電気化学的水質測定器の断面図である。
【符号の説明】
2 電解槽
6a 電極
6b 電極
11 電気化学的水質測定器
14 内部溶液室
15 内部溶液
16 内部電極
17 液絡部
18 検査水室
19 隔壁部
20 検知電極
40 連通路
42 ピストン
50 検査水流入口
51 検査水流出口
[0001]
BACKGROUND OF THE INVENTION
The present invention combines an alkaline water and acidic water, that is, an electrolyzed water generating device main body that generates electrolyzed water, and an electrochemical water quality measuring instrument that electrochemically measures water quality such as electrolyzed water generated. The present invention relates to an electrolyzed water generating apparatus.
[0002]
[Prior art]
The structure of the electrolyzed water generator main body will be described with reference to FIG. 10, and the structure of the electrochemical water quality measuring device will be described with reference to FIGS. 11, 12 and 13. The electrolyzed water generator main body 1 is a so-called “alkali ion water conditioner” composed of an electrolyzer 2, a water purifier 3, an electrolyte (electrolysis promoter) supply device 4, and the like. The electrolytic cell 2 is partitioned by a diaphragm 5 into a cathode chamber 7a ′ in which a cathode 6a ′ is disposed and an anode chamber 7b ′ in which an anode 6b ′ is disposed.
[0003]
In general, tap water, which is raw water, is introduced into the cathode chamber 7 a ′ and the anode chamber 7 b ′ of the electrolytic cell 2 through the water purifier 3. The water purifier 3 removes odorous components such as organic substances, inorganic substances, and hypochlorous acid contained in tap water, and is usually composed of a microfilter such as an antibacterial activated carbon filter and a hollow fiber membrane. . The purified water that has flowed out of the water purification apparatus 3 is diverted into an inflow path 8a that communicates directly with the cathode chamber 7a 'and an inflow path 8b that communicates with the anode chamber 7b'. On the inflow side of the anode chamber 7b 'of the purified water, the electrolyte is continuously supplied by the electrolyte supply device 4 upstream of the anode chamber 7b'. A calcium salt such as calcium lactate or calcium glycerate is used as the electrolyte. In the above configuration, the water passed through the electrolytic cell 2 is electrolyzed by passing a current between the anode 6b 'and the cathode 6a', thereby causing alkaline water (so-called "alkali ion water") to enter the cathode chamber 7a '. However, acidic water (so-called “acidic ionic water”) is generated in the anode chamber 7b ′. Alkaline water is discharged from the outflow path 9 and acidic water is discharged from the outflow path 10 through different paths.
[0004]
Conventionally, the water quality of the obtained alkaline water and acidic water has been estimated by calculating back from the amount of electricity, paying attention to the fact that the pH value differs depending on the amount of electricity supplied for electrolysis (Faraday's law). However, the quality of the electrolyzed water produced by electrolysis in the electrolyzer 2 is not only dependent on the amount of electricity supplied for electrolysis, but also the flow rate to the electrolyzer 2, the residence time in the electrolyzer 2, It is determined by the ratio of the flow rate and the capacity of the electrolytic cell 2. The longer the residence time in the electrolytic cell 2, the higher the electrolysis efficiency. When the electrolysis efficiency is less than 100% (in general, the electrolysis efficiency is about several tens of percent in the case of a continuous electrolyzed water generator), the electrolyzed water produced by the ratio of electrolyzed water to unelectrolyzed water Of course, the water quality changes, but the water quality after electrolysis is also affected by dissolved components contained in the inflowing water, particularly dissolved gas components having buffering properties such as ionic species and bicarbonate ions.
[0005]
As can be seen from the above, the quality of the electrolyzed water obtained in the electrolyzed water generator is generated because it is greatly affected by the quality of the raw water of the amount of inflowing water as well as the applied voltage in the electrolyzer 2. An electrochemical water quality measuring device 11 is directly installed in the outflow passages 9 and 10 for alkaline water and acidic water to correctly measure the quality of the electrolyzed water. The electrolyzed water discharged from the electrolytic cell 2 has a flow rate of several cm / sec to several tens of cm / sec. In order to measure the quality of the electrolyzed water in real time (continuously), the time required for the measurement becomes a time lag. It is necessary to measure based on the measurement principle, but the water quality measuring device using the electrochemical measurement principle can measure the water quality by directly contacting the test water passing through the sensing electrode. It is most suitable as a water quality measuring instrument, and can therefore measure pH, redox potential, and various ion concentrations. For example, the ion water generating device disclosed in Japanese Utility Model Publication No. 56-179321 is provided with a pH sensor as a measuring device (sensor), and the pH value of the generated electrolyzed water is displayed. Further, for example, in the ionic water generator disclosed in JP-A-5-64785, the electrolytic voltage and / or flow rate corresponding to the deviation pH is increased or decreased with respect to the target set pH value based on the output signal of the pH sensor. Feedback control is performed. The electrodes of these measuring instruments are constituted by a detection electrode and an internal electrode, and measure the water quality by detecting a potential difference or a current change due to a change in the water quality of the detection electrode.
[0006]
The structure of the electrochemical water quality measuring device 11 will be described with reference to FIGS. 11, 12 and 13. FIG. 11 shows a pH measurement sensor, and FIG. 12 shows an oxidation-reduction potential sensor. As these detection electrodes, a glass-sensitive film is used in the former, and a non-reactive metal electrode such as platinum is used in the latter. An example of an electrode type is shown. 11 and 12, reference numeral 12 denotes a potential difference amplifying amplifier that amplifies the detected potential difference, and 13 denotes an internal solution replenishing port for replenishing the internal solution chamber 14 with a solution. Reference numeral 15 denotes an internal solution filled in the internal solution chamber 14, which is a saturated or 3.3M (mol / L) potassium chloride solution. Note that a cellulose-based thickener such as carboxymethyl cellulose or hydroxyethyl cellulose may be added to the internal solution 15 in order to stably dissolve potassium chloride and prevent crystal solidification. An internal electrode 16 is a silver / silver chloride electrode. Reference numeral 17 denotes a liquid junction (salt bridge) made of a porous material such as alumina ceramics, and is held in a partition wall 19 located between the internal solution chamber 14 and the inspection water chamber 18. In FIG. 11, a glass sensitive film 22 for pH measurement in which an electrode 21 is enclosed is used as the detection electrode 20, and the detection electrode 20 is disposed in the inspection water chamber 18. In FIG. 12, a platinum electrode 23 for measuring the redox potential is used as the detection electrode 20, and the detection electrode 20 is arranged in the inspection water chamber 18. Reference numeral 24 denotes an insulating coating portion in which a platinum wire is insulated by heat shrinkable Teflon tube or glass encapsulation. FIG. 13 shows a structure in which the pH measurement sensor having the structure of FIG. 11 and the oxidation-reduction potential sensor of FIG. 12 are integrated. The internal electrode 16 is used in common, and both pH and oxidation-reduction potential are used. It is the type that can measure.
[0007]
[Problems to be solved by the invention]
However, the electrolyzed water generating apparatus having the conventional structure as described above has the following problems. That is, in the case of a flowing water type electrolyzed water generator, continuous electrolyzed water generation is one of the characteristics. However, when a potentiometric electrochemical water quality measuring device is installed, a liquid junction that functions as a salt bridge is used. The characteristics of the part, in particular the water permeability, are important. For measurement, it is necessary to flow the internal solution through the liquid junction to the test water side, so it is ideal to select a material with good water permeability. There is a problem that the water quality itself changes greatly. Therefore, the liquid junction member is selected in consideration of this problem. Also, in the electrolyzed water generating device, when the test water is continuously passed for a long time, the test water enters from the liquid junction to the internal solution chamber, and the resistance value of the liquid junction increases. May cause measurement interference. This intrusion phenomenon of the inspection water is usually prevented by sealing the internal solution chamber. If the water flow rate is about 4 liters per minute, it can be used sufficiently for several minutes to 10 minutes. it can. However, when it is necessary to continuously generate several hundred liters of electrolyzed water, for example, when using weakly acidic water, which has been recognized as having an astringent effect, for the whole body, such as for bathing, or using a large amount of alkaline water for business purposes. In the case of performing a continuous measurement of several tens of minutes to several hours is necessary, in the structure shown in the conventional example, when there is a continuous flow of a high amount of water for a long time, from the liquid junction There is a problem in that the inspection water enters the internal solution chamber and the resistance of the liquid junction increases, which disturbs the measurement and causes phenomena such as variations in accuracy.
[0008]
The present invention has been made in view of the above-described reasons, and an object of the present invention is to provide an electrolyzed water generating device having a function capable of performing stable water quality measurement even under continuous water flow conditions with a high amount of water over a long period of time.
[0009]
[Means for Solving the Problems]
The first feature of the electrolyzed water generating apparatus of the present invention is that the electrochemical water quality measuring device is provided in a detection electrode installed in a test water chamber through which the test water to be measured passes and an internal solution chamber enclosing the internal solution. Consists of an internal electrode to be installed and a porous liquid junction for ensuring water permeability between the test water chamber and the internal solution chamber, and the test water flowing out from the internal solution chamber and the outlet flows. A water channel or a water channel through which raw water flowing into the electrolytic cell flows is communicated by a communication channel such as a tube. According to this, even when a large amount of test water flows into the test water chamber, the internal pressure of the internal solution chamber and the internal pressure of the test water chamber are equal to each other, so that intrusion of the test water into the liquid junction can be prevented. It becomes possible to measure water quality stably and accurately even for high-volume test water.
[0010]
According to a second feature of the electrolyzed water generating device of the present invention, in the first feature described above, an internal solution chamber, a water channel through which the inspection water flowing out from the outlet flows, or a water channel through which raw water flowing into the electrolytic cell flows. It is characterized in that a piston is slidably mounted in a communication path for communication. In this case, the piston can slide in the communication passage according to the pressure and transmit the pressure, but the piston can ensure water tightness, and the inspection water can enter the internal solution chamber from the communication passage, The solution can be prevented from flowing out from the communication path, and the internal solution can be prevented from drying when not in use.
[0011]
A third feature of the electrolyzed water generating apparatus according to the present invention is that an electrochemical water quality measuring instrument is provided in a detection electrode installed in a test water chamber through which test water to be measured passes and an internal solution chamber in which an internal solution is sealed. A piston that is composed of an internal electrode to be installed and a porous liquid junction for ensuring water permeability between the inspection water chamber and the internal solution chamber, and changes the pressure in the internal solution chamber by sliding movement. And the drive means for driving the piston to make the pressure in the internal solution a predetermined pressure is constituted by an electrical drive means. According to this, the internal pressure of the internal solution chamber can be increased by driving the piston with the electric drive means, and the internal pressure of the internal solution chamber is more than the internal pressure of the test water chamber even when a large amount of test water flows in. Since the force can be exerted in the direction that forces the internal solution to flow out of the liquid junction, it can be prevented from entering the liquid junction of the test water and is stable even for high-volume test water. Moreover, it becomes possible to measure the water quality with high accuracy.
[0012]
A fourth feature of the electrolyzed water generating device of the present invention is that, in the third feature, the driving means for driving the piston to make the pressure in the internal solution a predetermined pressure is constituted by a gas pressurizing means. Features. In this case, the pressure in the internal solution chamber can be easily and accurately maintained by driving the piston with the gas pressurizing means.
A fifth feature of the electrolyzed water generating apparatus according to the present invention is that an electrochemical water quality measuring instrument is provided in a detection electrode installed in a test water chamber through which test water to be measured passes and an internal solution chamber in which an internal solution is sealed. It is composed of an internal electrode to be installed, and a porous liquid junction for ensuring water permeability between the test water chamber and the internal solution chamber, and holds the liquid junction and has the test water chamber and the internal solution chamber The member which isolate | separates between is provided with the part of the partial thin-walled structure. By doing so, the thin-walled structure portion is deflected by the increase in the internal pressure of the test water chamber, and the increase in the internal pressure can be transmitted to the internal solution chamber, so that the internal pressure of the test water chamber and the internal pressure of the internal solution chamber are made equal. It is possible to prevent the inspection water from entering the liquid junction, and it is possible to measure the water quality stably and accurately even for a large amount of inspection water. In addition, even if ionic species or organic substances contained in the electrolyzed water adhere to the member that holds the liquid junction and separates between the test water chamber and the internal solution chamber, the thin-walled structure becomes an air reservoir when water is passed. As a result, creeping discharge is less likely to occur, and a reduction in measurement accuracy can be reduced.
[0013]
A sixth feature of the electrolyzed water generating device of the present invention is that, in the fifth feature, the member that holds the liquid junction and separates between the test water chamber and the internal solution chamber is spherical, cylindrical, or balloon-shaped. It is also preferable that a portion that bends and deforms by providing a portion of the structure is formed. Also in this case, the increase in the internal pressure in the test water chamber causes the internal structure to be transmitted to the internal solution chamber by bending the spherical, cylindrical or balloon-shaped structure due to the increase in the internal pressure in the test water chamber. The test water can be prevented from entering the liquid junction, and the water quality can be measured stably and accurately even for high-volume test water. Even when ionic species or organic substances contained in the electrolytic water adhere to the member that holds the liquid junction and separates between the test water chamber and the internal solution chamber, it has a spherical, cylindrical, or balloon-like structure when passing water Since this portion becomes an air reservoir, creeping discharge is less likely to occur, and a reduction in measurement accuracy can be reduced.
[0015]
Of the electrolyzed water generator of the present invention 7th The feature of the electrochemical water quality measuring device is that the detection electrode installed in the test water chamber through which the test water to be measured passes, the internal electrode installed in the internal solution chamber enclosing the internal solution, and the test water chamber The liquid junction part of the electrochemical water quality measuring instrument is extended to the inspection water chamber side and the liquid junction part is composed of a porous liquid junction part for ensuring water permeability between the liquid and the internal solution chamber. A part of the surface of the liquid junction member is covered so that the liquid contact portion of the link member does not face the flow direction of the inspection water. With this structure, it is possible to prevent the test water from flushing directly to the liquid junction, to reduce the intrusion of the test water into the liquid junction, and to measure the water quality stably and accurately.
[0017]
DETAILED DESCRIPTION OF THE INVENTION
Embodiments of the present invention will be described below with reference to the drawings.
The entire structure of the electrolyzed water generating apparatus main body 1 is the same as that of the conventional example, and detailed description thereof is omitted. As shown in FIGS. 2 and 3, the electrolyzed water generating device includes an electrolysis tank 2, a backwash unit 26 and a switching valve 27, a water channel switching valve 28, a water purifier 3, an electrolyte (electrolysis promoter) supply device 4, and an electrochemical device. The automatic water quality measuring device 11 is configured to be housed in a housing 25. The water purifier 3 includes a filter medium 29 made of antibacterial activated carbon and a filter medium 30 made of a hollow fiber membrane, and one of the two openings provided at the lower end thereof is a cylinder of the backwash unit 26. The other is connected to the switching valve 27. The two types of filter media 29 and 30 are accommodated in a single cartridge, and are configured to be exchangeable for each cartridge.
[0018]
The electrolytic cell 2 is partitioned by a diaphragm 5 into an electrode chamber 7a in which an electrode 6a is installed and an electrode chamber 7b in which an electrode 6b is installed. The inflow channels 8a and 8b are provided on the bottom side and the outflow channels are provided on the upper side. Channels 9 and 10 are provided, and discharge pipes 31 and 32 are connected to the outflow channels 9 and 10 via a channel switching valve 28. Here, the inflow path 8b is adjusted so that the flow rate is smaller than the inflow path 8a at a ratio of about 1: 3 or 1: 4. The water channel switching valve 28 switches communication between the outflow channels 9 and 10 and the discharge pipes 31 and 32, and is constituted by an electromagnetic rotary valve or a motor type switching valve. The backwash unit 26 is used to eliminate clogging of the filtering materials 29 and 30 of the water purification device 3 by performing backwashing in which the purified water once filtered through the water purification device 3 flows back to the water purification device 3. . The discharge side of the backwash unit 26 is connected to the inflow passages 8a and 8b of the electrolytic cell 2, and a flow rate detection sensor 33, a check valve 34, and an electromagnetic valve 35 are disposed therebetween. The electrolyte supply device (calcium agent addition cylinder) 4 is disposed in the inflow path 8b between the electromagnetic valve 35 and the electrolytic cell 2. The check valve 34 is connected to the discharge port 37 and is closed when water pressure is applied from the flow rate detection sensor 33 side, but is opened when the water pressure is not applied, and is opened in the electrolytic cell 2 or other places. Residual water in the piping system is discharged from the discharge port 37. An electrochemical water quality measuring device 11 is arranged in the middle of the discharge pipe 32. The electrochemical water quality measuring device 11 will be described in detail later.
[0019]
Next, the flow of water will be described. When the switching lever unit 38 connected to the water faucet 37 is switched so that water flows to the switching valve 27 side, it passes through the backwash unit 26 and passes through the water purifier 3 and the electrolyte supply device 4 from the inflow paths 8a and 8b into the electrolytic cell 2. Water is introduced into the cell and electrolyzed, but application of a voltage into the electrolytic cell 2 is started when detected by the flow rate detection sensor 33. If an instruction to obtain alkaline water is given, an electrolytic voltage is applied so that the electrode 6a of the electrolytic cell 2 serves as a cathode and the electrode 6b serves as an anode. Acid water is obtained on the outflow path 10 side, and the water path switching valve 28 is in the state shown in FIG. 2 at this time, so that alkaline water is discharged to the discharge pipe 32 side and acidic water is discharged to the discharge pipe 31 side. . When an instruction to obtain acid water is given, the following two water flows are made according to the instructed degree of electrolysis. First, in the case of weakly acidic water, an electrolysis voltage is applied so that the electrode 6a of the electrolytic cell 2 serves as an anode and the electrode 6b serves as a cathode. Weak) acidic water is obtained. At this time, the water channel switching valve 28 is in the same state as described above, so that alkaline water is discharged to the discharge pipe 31 side and (weak) acidic water is discharged to the discharge pipe 32 side. In the case of strongly acidic water, an electrolytic voltage is applied so that the electrode 6a of the electrolytic cell 2 serves as a cathode and the electrode 6b serves as an anode, so that alkaline water is present on the outflow path 9 side and acidic water is present on the outflow path 10 side. At this time, the water channel switching valve 28 is switched as shown in FIG. 3, and alkaline water is discharged to the discharge pipe 31 side and (strong) acidic water is discharged to the discharge pipe 32 side. As described above, when discharging strongly acidic water from the discharge pipe 32 side, the electrode 6b is used as an anode because the inflow path 8b to the electrode 6b side is narrower than the inflow path 8a to the electrode 6a side as described above. This is because it is easy to obtain strongly acidic water because the inflow amount is reduced.
[0020]
The water quality of the electrolyzed water generated by the respective electrolysis and discharged from the discharge pipe 32 is measured by the electrochemical water quality measuring device 11 disposed between the electrolytic cell 2 and the discharge pipe 32. Embodiments of the electrochemical water quality measuring instrument 11 when measuring the oxidation-reduction potential are shown in FIG. 1, FIG. 4, and FIG. The electrochemical water quality measuring instrument 11 is a potential difference detection type electrochemical sensor, and includes a detection electrode 20 installed in a test water chamber 18 through which test water to be measured passes, and an internal solution chamber in which an internal solution 15 is enclosed. 14 is composed of an internal electrode 16 installed in the interior 14 and a porous liquid junction portion 17 for ensuring water permeability between the inspection water chamber 18 and the internal solution chamber 14, and a potential difference due to a change in water quality of the detection electrode 20. Is detected. In the present embodiment, the pH / redox potential is measured, but it may be configured to measure dissolved components in water such as various ion concentrations and dissolved gases.
[0021]
The structure of the electrochemical water quality measuring instrument 11 is the same as that of the conventional example in the basic functional structure for measurement, and the corresponding parts are denoted by the same reference numerals and detailed description thereof is omitted. In this embodiment, a silver / silver chloride electrode is usually used as the internal electrode 16. In addition, a saturated or 3.3 M (mol / L) potassium chloride solution is used as the internal solution 15. In the present invention, the solution viscosity is 4000 cps or more (usually about 10,000 cps is desirable for stable dissolution of potassium chloride. ) And a thickener such as carboxymethylcellulose or hydroxyethylcellulose is added. The liquid junction portion 17 is made of a porous material such as alumina ceramics, and is held by a partition wall portion 19 that separates the internal solution chamber 14 and the inspection water chamber 18. The partition wall 19 is made of an insulating material such as silicon. The detection electrode 20 is a non-reactive electrode for measuring an oxidation-reduction potential using platinum, gold, or the like, or a dissolved component detection electrode made of a polymer membrane, an ion selective membrane of a glass sensitive membrane, or a combination thereof. In the case of the present embodiment, a glass sensitive film for measuring pH / redox potential and a platinum electrode having a purity of 99.97% or more are arranged in the inspection water chamber 18. The platinum wire is the same as the conventional example in that it is covered with an insulating coating portion 24 such as a heat-shrinkable Teflon tube. However, the insulating coating portion 24 may be provided by glass sealing of a platinum wire.
[0022]
In the present invention, the inside of the internal solution chamber 14 and the inspection water chamber 18 are communicated with each other through a communication path 40 such as a tube. Thus, when water quality is inspected by flowing inspection water such as electrolyzed water into the inspection water chamber 18, the internal pressure of the inspection water is applied to the communication path 40, and the inside of the internal solution chamber 14 is the same as the inside of the inspection water chamber 18. As a result, the liquid junction 17 also has the same pressure as the inspection water chamber 18, and it is possible to prevent the inspection water from entering the internal solution chamber 14 from the inspection water chamber 18. Even during the passage of water, stable measurement for a long time is possible. Note that the inspection water chamber 18 side of the communication passage 40 is not limited to the one directly connected to the inspection water chamber 18 as described above, and may be connected to any part of the piping as long as it is upstream of the inspection water chamber 18. . In the state where the test water is at the same pressure when the test water is passed, the air inside the communication passage 40 is in an equilibrium state with the compressed air, and the test water is not mixed into the internal solution 15 but is not used. When the period is long, the internal solution 15 may be gradually dried. Therefore, when the unused period is considered to be long, it is desirable to adopt the structure shown in FIG. . In FIG. 4, a cylinder portion 41 is provided in the middle of the communication path 40, and a piston 42 is slidably provided along the cylinder portion 41 in the cylinder portion 41. In this case, the piston 42 slides in accordance with the internal pressure applied from the inspection water chamber 18, and the internal pressure of the inspection water chamber 18 and the internal pressure of the internal solution chamber 14 are maintained at the same pressure. When the internal pressure is not applied, the communication path 40 is blocked by the piston 42 and the internal solution 15 can be prevented from drying.
[0023]
In the embodiment of FIG. 5, a pressurizing passage 43 is communicated with the internal solution chamber 14, and a cylinder portion 41 is provided in the pressurizing passage 43, and a piston 42 is slidable in the cylinder portion 41. A motor 44 is arranged as an electric drive means for operating the piston 42. When the piston 42 is operated by the motor 44, the pump is driven by the motor 44 to send a gas such as air even if the piston 42 moves by transmitting power to the piston 42 by mechanical power transmission means. Thus, the piston 42 may be moved. In this case, the internal pressure of the internal solution chamber 14 can be increased by driving the piston 42, and the internal pressure of the internal solution chamber 14 is increased above the internal pressure of the test water chamber 18 even when a high amount of test water flows. Since the force can be exerted in the direction in which the internal solution 15 is forced to flow out of the liquid junction portion 17, the intrusion of the inspection water into the liquid junction portion 17 can be prevented, and even for a high amount of inspection water. It becomes possible to measure water quality stably and accurately.
[0024]
In the embodiment of FIG. 6, a thin wall portion 45 is provided as a thin wall structure in the partition wall portion 19 that holds the liquid junction portion 17, and a void 46 is provided under the thin wall portion 45. In the embodiment of FIG. 7, a thin curved surface portion 47 is provided as a balloon-like structure in the partition wall portion 19, and a void 46 is provided below the thin curved surface portion 47. In addition to such a balloon-like structure, a spherical or cylindrical structure may be used. 6 and FIG. 7 is in the state of FIG. 6A and FIG. 7A when the test water is not passed, but when a high amount of test water flows, FIG. 7) or FIG. 7 (b), the increase in the internal pressure of the inspection water chamber 18 causes the thin portion 45 and the thin spherical surface portion 47 to bend, and the increase in the internal pressure of the inspection water chamber 18 can be transmitted. Pressure is applied from the solution chamber 14 to the liquid junction portion 17, so that intrusion of test water into the liquid junction portion 17 can be prevented, and the water quality can be measured stably and accurately even for a high amount of test water. become. In addition, in the case of the above embodiment, the following effects can also be expected. That is, the ion species contained in the electrolyzed water in the insulating portion located between the detection electrode 20 and the liquid junction portion 17 from the partition wall portion 19 through the insulating coating portion 24 of the detection electrode 20 to the detection electrode 20, If even a trace amount of dissolved components such as organic matter adheres, the above-mentioned portion, which should be completely insulated, will be in a state where it is electrically conductive and a weak current can flow. As a result, when measuring test water, Although there is a problem that a potential having an absolute value lower than the resulting potential (generated electromotive force) is detected, and the measured value is unstable and accurate measurement cannot be performed (particularly, the detection electrode 20 is used for redox potential measurement). This is remarkable in the case of an oxidation-reduction potential sensor provided with a non-reactive electrode such as a platinum electrode or a gold electrode.) Even if ionic species or organic substances contained in the electrolytic water adhere to the partition wall 19, Since cavity 46 is an air pocket, creeping discharge is less likely to occur, the effect can be expected such can reduce the deterioration of the measurement accuracy.
[0025]
In the embodiment of FIG. 8, the liquid junction member 17 a of the liquid junction portion 17 is extended to the inspection water chamber 18 side and the liquid contact portion of the liquid junction member 17 a is not opposed to the flow direction of the inspection water. A part of the surface of the member 17a is covered. The film-shaped liquid junction member covering portions 48 and 49 are extended from the partition wall portion 19 formed of an insulating material, and project at the liquid junction member covering portions 48 and 49 toward the inspection water chamber 18 side of the liquid junction member 17a. The part is covered. In the case of FIG. 8 (a), the entire outer periphery of the liquid junction member 17a is covered with the liquid junction member covering portion 48, and in the case of FIG. 8 (b), a part of the outer periphery of the liquid junction member 17a and the lower surface. Are covered with a liquid junction member covering portion 49. In the embodiment shown in FIG. 8 (a), the time for entering the test water into the liquid junction 17 can be extended, and in the structure shown in FIG. 8 (b), the test water is directly connected to the liquid junction. 17 can be prevented from being flushed, and the penetration of the inspection water into the liquid junction 17 can be reduced. Therefore, the embodiment shown in FIG. 8 can achieve the extension of the continuous usable time.
[0026]
In the case of the embodiment of FIG. 9, the test water inlet 50 through which the test water flows into the test water chamber 18 has a smaller passage area of the test water than the test water outlet 51 through which the test water flows out from the test water chamber 18. The inspection water channel is provided in a bypass structure so that a part of the water flows from the inspection water inlet 50 to the inspection water channel through which the inspection water flows out from the inspection water outlet 51 through the inspection water chamber 18. Yes. That is, the inspection water inlet 50 is provided with a throttle valve 52, and flows in as shown by an arrow a in FIG. 9 to divert water into a path shown by an arrow b and a path shown by an arrow c, as shown by an arrow d. To join again. In the case of this embodiment, even when the amount of water is high, a part of the inspection water flows into the inspection water chamber 18, and the inspection water flowing from the inspection water inlet 50 is throttled and the inspection water chamber is operated by the action of the aspirator. The pressure inside 18 does not increase, and the synergistic effect of these prevents intrusion of test water into the liquid junction 17 and enables stable and accurate measurement of water quality even for high-volume test water. .
[0027]
In another embodiment, a plurality of liquid junction members constituting the liquid junction portion 17 having different water permeability depending on the material or structure are used. In this case, an increase in resistance value can be reduced as an overall function of the liquid junction portion 17. It is also preferable that the detection electrode 20 is composed of a platinum electrode or an unreacted metal electrode such as a gold electrode, and the surface roughness of the sensitive portion is 1 μm or less. In this case, it is possible to reduce the influence of the water quality at the previous measurement on the measurement accuracy and prevent the response from becoming very slow. Specifically, after measuring the water quality of a strongly acidic pH value, when measuring drinking level alkaline water, to the platinum electrode such as hypochlorous acid and dissolved chlorine gas components contained in the strongly acidic water Is less likely to be adsorbed and does not remain at the next measurement, so that the response time until the true oxidation-reduction potential value of alkaline water is obtained is shortened.
[0028]
In the case of the above embodiment, the water quality is measured using electrolyzed water as test water. However, the quality of water can be tested in the same manner using raw water of water supply or purified water purified by the purification device 3.
[0029]
【The invention's effect】
In the invention of claim 1, the electrochemical water quality measuring device includes a detection electrode installed in a test water chamber through which test water to be measured passes, an internal electrode installed in an internal solution chamber enclosing the internal solution, Consists of a porous liquid junction to ensure water permeability between the test water chamber and the internal solution chamber, in the internal solution chamber and the water channel through which the test water flowing out from the outlet flows, or in the electrolytic cell Since the water channel through which the raw water to flow in is communicated with the communication channel, even if a large amount of test water flows into the test water chamber, the internal pressure of the internal solution chamber and the internal pressure of the test water chamber are connected via the communication channel. Since the pressure is equal, it is possible to prevent the inspection water from entering the liquid junction, and it is possible to measure the water quality stably and accurately even for a large amount of inspection water.
[0030]
According to a second aspect of the present invention, the piston is slid into the internal solution chamber and the communication path that communicates with the water path through which the inspection water flowing out from the outflow port flows or the raw water flow into the electrolytic cell. The piston is slidable in the communication passage according to the pressure and can transmit the pressure, but the piston can ensure water tightness and the inspection water can be passed from the communication passage to the internal solution chamber. It is possible to prevent the internal solution from entering the outside or from flowing out from the communication path to the outside, and to prevent the unused internal solution from drying.
[0031]
In the invention of claim 3, the electrochemical water quality measuring device includes a detection electrode installed in a test water chamber through which test water to be measured passes, an internal electrode installed in an internal solution chamber enclosing the internal solution, It is composed of a porous liquid junction for ensuring water permeability between the test water chamber and the internal solution chamber, and a piston is provided to change the pressure in the internal solution chamber by sliding movement. Since the driving means for driving the piston is made up of an electric driving means in order to make the pressure at the predetermined pressure, the internal pressure of the internal solution chamber can be increased by driving the piston with the electric driving means. Even when a large amount of test water flows, the internal pressure of the internal solution chamber can be raised above the internal pressure of the test water chamber, and the force can be exerted in the direction to force the internal solution to flow out of the liquid junction. Prevents water from entering the liquid junction , In which it is possible to measure a stable and accurately water against test water high water volume.
[0032]
According to a fourth aspect of the present invention, in the third aspect, the driving means for driving the piston to make the pressure in the internal solution a predetermined pressure is constituted by a gas pressurizing means, so the piston is driven by the gas pressurizing means. Thus, the pressure in the internal solution chamber can be maintained easily and accurately.
In the invention of claim 5, the electrochemical water quality measuring device includes a detection electrode installed in a test water chamber through which test water to be measured passes, an internal electrode installed in an internal solution chamber enclosing the internal solution, A member composed of a porous liquid junction for ensuring water permeability between the test water chamber and the internal solution chamber, and holds the liquid junction and separates the test water chamber from the internal solution chamber Since the partial thin-walled structure is provided, the internal pressure in the test water chamber can be transmitted to the internal solution chamber by bending the thin-walled structure due to the increase in the internal pressure of the test water chamber. The internal pressure of the water can be made equal, the intrusion of the inspection water into the liquid junction can be prevented, and the water quality can be measured stably and accurately even for a high amount of inspection water. Electrolyze the member that holds the tangle and separates between the inspection water chamber and the internal solution chamber Even if ionic species or organic substances contained in it adhere, the thin-walled structure becomes air trapped during water flow, making it difficult for creeping discharge to occur and reducing the reduction in measurement accuracy. .
According to a sixth aspect of the present invention, in the fifth aspect, the member that holds the liquid junction portion and separates between the test water chamber and the internal solution chamber is bent by providing a spherical, cylindrical, or balloon-shaped portion. Since the deformed part is formed, the increase in the internal pressure of the test water chamber causes deflection of the spherical, cylindrical, or balloon-shaped structure part, and the increase in the internal pressure can be transmitted to the internal solution chamber. The internal pressure of the solution chamber can be made equal, the penetration of the inspection water into the liquid junction can be prevented, and the water quality can be measured stably and accurately even for a high amount of inspection water. Even when ionic species or organic substances contained in the electrolytic water adhere to the member that holds the liquid junction and separates between the test water chamber and the internal solution chamber, it has a spherical, cylindrical, or balloon-like structure when passing water The surface of this area becomes an air reservoir and creeping discharge may occur. No longer one in which a decrease in measurement accuracy may be reduced.
[0034]
Claim 7 In the invention, the electrochemical water quality measuring device includes a detection electrode installed in a test water chamber through which test water to be measured passes, an internal electrode installed in an internal solution chamber enclosing the internal solution, and a test water chamber The liquid junction part of the electrochemical water quality measuring instrument is extended to the inspection water chamber side and the liquid junction part is composed of a porous liquid junction part for ensuring water permeability between the liquid and the internal solution chamber. Since a part of the surface of the liquid junction member is coated so that the liquid contact portion of the entanglement member does not face the flow direction of the inspection water, it is possible to prevent the inspection water from flushing directly to the liquid junction portion, and the liquid of the inspection water It is possible to reduce the intrusion into the entangled portion and to measure the water quality stably and accurately.
[Brief description of the drawings]
FIG. 1 is a cross-sectional view of an electrochemical water quality measuring device as an example of an embodiment of the present invention.
FIG. 2 is a piping diagram in the case where alkaline water is obtained, showing an electrolyzed water generating apparatus equipped with the electrochemical water quality measuring instrument.
FIG. 3 is a piping diagram in the case where acid water is obtained, showing an electrolyzed water generating apparatus equipped with the electrochemical water quality measuring instrument.
FIG. 4 is a sectional view of an electrochemical water quality measuring device according to another example of the embodiment.
FIG. 5 is a cross-sectional view of another example of an electrochemical water quality measuring device according to the embodiment.
6A and 6B are main parts of an electrochemical water quality measuring apparatus according to another example of the embodiment, in which FIG. 6A is a cross-sectional view in a state where water pressure is not applied, and FIG. 6B is a cross-section in a state where water pressure is applied. FIG.
7A and 7B are main parts of an electrochemical water quality measuring apparatus according to another example of the embodiment, in which FIG. 7A is a cross-sectional view in a state where water pressure is not applied, and FIG. 7B is a cross-section in a state where water pressure is applied. FIG.
FIGS. 8A and 8B are cross-sectional views of an example of an electrochemical water quality measuring apparatus according to another example of the embodiment, with the structures slightly different.
FIG. 9 is a cross-sectional view of an electrochemical water quality measuring device according to another example of the embodiment.
FIG. 10 is a schematic cross-sectional view of a conventional electrolyzed water generating apparatus main body.
FIG. 11 is a cross-sectional view of a conventional electrochemical water quality measuring device.
FIG. 12 is a cross-sectional view of another conventional electrochemical water quality measuring device.
FIG. 13 is a cross-sectional view of another conventional electrochemical water quality measuring device.
[Explanation of symbols]
2 Electrolysis tank
6a electrode
6b electrode
11 Electrochemical water quality measuring instrument
14 Internal solution chamber
15 Internal solution
16 Internal electrode
17 Liquid junction
18 Inspection water room
19 Bulkhead
20 sensing electrodes
40 communication path
42 piston
50 Inspection water inlet
51 Inspection water outlet

Claims (7)

電解槽内の電極間に電圧を印加して水を電気分解することにより、一方の電極室でアルカリ性水を生成すると共に他方の電極室で酸性水を生成し、アルカリ性水と酸性水の電解水を各電極室に夫々設けた流出口から各別に流出させるようにした電解水生成装置において、生成された電解水の水質を測定するための電気化学的水質測定器が電解槽の下流側に配置され、この電気化学的水質測定器は、測定対象となる検査水が通る検査水室に設置される検知電極と、内部溶液を封入した内部溶液室内に設置される内部電極と、検査水室と内部溶液室との間の透水性を確保するための多孔性の液絡部で構成され、内部溶液室と、上記流出口から流出された検査水が流れる水路、または電解槽内に流入させる原水が流れる水路とが連通路で連通させられたことを特徴とする電解水生成装置。  By applying voltage between the electrodes in the electrolytic cell to electrolyze water, alkaline water is generated in one electrode chamber and acidic water is generated in the other electrode chamber. In the electrolyzed water generating device that flows out from the outlet provided in each electrode chamber, an electrochemical water quality measuring device for measuring the quality of the generated electrolyzed water is arranged downstream of the electrolyzer. The electrochemical water quality measuring device includes a detection electrode installed in a test water chamber through which test water to be measured passes, an internal electrode installed in an internal solution chamber enclosing the internal solution, a test water chamber, Raw water that is composed of a porous liquid junction for ensuring water permeability between the internal solution chamber and the internal solution chamber and a water channel through which the inspection water that has flowed out from the outflow port flows, or into the electrolytic cell Communicating with the water channel through which the water flows Electrolytic water generation apparatus, characterized in that the. 内部溶液室と、流出口から流出された検査水が流れる水路、または電解槽内に流入させる原水が流れる水路と連通させる連通路内にピストンを摺動自在に内装して成ることを特徴とする請求項1記載の電解水生成装置。  The piston is slidably mounted in the internal solution chamber and a water passage through which the inspection water flowing out from the outlet flows or a water passage through which raw water flowing into the electrolytic cell flows. The electrolyzed water generating apparatus according to claim 1. 電解槽内の電極間に電圧を印加して水を電気分解することにより、一方の電極室でアルカリ性水を生成すると共に他方の電極室で酸性水を生成し、アルカリ性水と酸性水の電解水を各電極室に夫々設けた流出口から各別に流出させるようにした電解水生成装置において、生成された電解水の水質を測定するための電気化学的水質測定器が電解槽の下流側に配置され、この電気化学的水質測定器は、測定対象となる検査水が通る検査水室に設置される検知電極と、内部溶液を封入した内部溶液室内に設置される内部電極と、検査水室と内部溶液室との間の透水性を確保するための多孔性の液絡部で構成され、摺動移動することにより内部溶液室内の圧力を可変するピストンが設けられ、内部溶液内の圧力を所定圧力にするためにピストンを駆動する駆動手段が電気的駆動手段で構成されたことを特徴とする電解水生成装置。  By applying voltage between the electrodes in the electrolytic cell to electrolyze water, alkaline water is generated in one electrode chamber and acidic water is generated in the other electrode chamber. In the electrolyzed water generating device that flows out from the outlet provided in each electrode chamber, an electrochemical water quality measuring device for measuring the quality of the generated electrolyzed water is arranged downstream of the electrolyzer. The electrochemical water quality measuring device includes a detection electrode installed in a test water chamber through which test water to be measured passes, an internal electrode installed in an internal solution chamber enclosing the internal solution, a test water chamber, It is composed of a porous liquid junction for ensuring water permeability with the internal solution chamber, and a piston is provided to change the pressure in the internal solution chamber by sliding movement. Drive piston to make pressure That the drive means electrolytic water generation apparatus, characterized in that is constituted by the electrical driving means. 内部溶液内の圧力を所定圧力にするためにピストンを駆動する駆動手段が気体の加圧手段で構成されたことを特徴とする請求項3記載の電解水生成装置。  4. The electrolyzed water generating apparatus according to claim 3, wherein the driving means for driving the piston to make the pressure in the internal solution a predetermined pressure is constituted by a gas pressurizing means. 電解槽内の電極間に電圧を印加して水を電気分解することにより、一方の電極室でアルカリ性水を生成すると共に他方の電極室で酸性水を生成し、アルカリ性水と酸性水の電解水を各電極室に夫々設けた流出口から各別に流出させるようにした電解水生成装置において、生成された電解水の水質を測定するための電気化学的水質測定器が電解槽の下流側に配置され、この電気化学的水質測定器は、測定対象となる検査水が通る検査水室に設置される検知電極と、内部溶液を封入した内部溶液室内に設置される内部電極と、検査水室と内部溶液室との間の透水性を確保するための多孔性の液絡部で構成され、上記液絡部を保持すると共に検査水室と内部溶液室との間を分離する部材に部分的な薄肉構造の部分が設けられたことを特徴とする電解水生成装置。  By applying voltage between the electrodes in the electrolytic cell to electrolyze water, alkaline water is generated in one electrode chamber and acidic water is generated in the other electrode chamber. In the electrolyzed water generating device that flows out from the outlet provided in each electrode chamber, an electrochemical water quality measuring device for measuring the quality of the generated electrolyzed water is arranged downstream of the electrolyzer. The electrochemical water quality measuring device includes a detection electrode installed in a test water chamber through which test water to be measured passes, an internal electrode installed in an internal solution chamber enclosing the internal solution, a test water chamber, Consists of a porous liquid junction for ensuring water permeability between the internal solution chamber, and a part of the member that holds the liquid junction and separates between the test water chamber and the internal solution chamber Electrolysis characterized by a thin-walled structure Generating device. 上記液絡部を保持すると共に検査水室と内部溶液室との間を分離する部材に球状、円柱状または風船状の構造の部分を設けることで撓み変形する部分が形成されたことを特徴とする請求項5記載の電解水生成装置。  A member that holds the liquid junction part and separates between the inspection water chamber and the internal solution chamber is provided with a part that is bent and deformed by providing a spherical, cylindrical, or balloon-shaped part. The electrolyzed water generating apparatus according to claim 5. 電解槽内の電極間に電圧を印加して水を電気分解することにより、一方の電極室でアルカリ性水を生成すると共に他方の電極室で酸性水を生成し、アルカリ性水と酸性水の電解水を各電極室に夫々設けた流出口から各別に流出させるようにした電解水生成装置において、生成された電解水の水質を測定するための電気化学的水質測定器が電解槽の下流側に配置され、この電気化学的水質測定器は、測定対象となる検査水が通る検査水室に設置される検知電極と、内部溶液を封入した内部溶液室内に設置される内部電極と、検査水室と内部溶液室との間の透水性を確保するための多孔性の液絡部で構成され、電気化学的水質測定器の液絡部の液絡部材が検査水室側に延長させられると共に液絡部材の接液部分が検査水の流れ方向に相対しないように液絡部材の表面の一部が被覆されたことを特徴とする電解水生成装置。By applying voltage between the electrodes in the electrolytic cell to electrolyze water, alkaline water is generated in one electrode chamber and acidic water is generated in the other electrode chamber. In the electrolyzed water generating device that flows out from the outlet provided in each electrode chamber, an electrochemical water quality measuring device for measuring the quality of the generated electrolyzed water is arranged downstream of the electrolyzer. The electrochemical water quality measuring device includes a detection electrode installed in a test water chamber through which test water to be measured passes, an internal electrode installed in an internal solution chamber enclosing the internal solution, a test water chamber, Consists of a porous liquid junction to ensure water permeability between the internal solution chamber, and the liquid junction of the liquid junction of the electrochemical water quality measuring instrument is extended to the test water chamber side and the liquid junction The wetted part of the member is not relative to the flow direction of the inspection water Electrolytic water generation apparatus a portion of the surface of the liquid junction member is characterized in that it is coated.
JP09282796A 1996-04-15 1996-04-15 Electrolyzed water generator Expired - Fee Related JP3638172B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP09282796A JP3638172B2 (en) 1996-04-15 1996-04-15 Electrolyzed water generator

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP09282796A JP3638172B2 (en) 1996-04-15 1996-04-15 Electrolyzed water generator

Publications (2)

Publication Number Publication Date
JPH09276873A JPH09276873A (en) 1997-10-28
JP3638172B2 true JP3638172B2 (en) 2005-04-13

Family

ID=14065276

Family Applications (1)

Application Number Title Priority Date Filing Date
JP09282796A Expired - Fee Related JP3638172B2 (en) 1996-04-15 1996-04-15 Electrolyzed water generator

Country Status (1)

Country Link
JP (1) JP3638172B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2015141329A1 (en) * 2014-03-19 2015-09-24 株式会社 東芝 Device for yielding electrolyzed water, method for yielding electrolyzed water, and electrolyzed water

Also Published As

Publication number Publication date
JPH09276873A (en) 1997-10-28

Similar Documents

Publication Publication Date Title
US5225063A (en) Apparatus for the electrochemical determination of the partial oxygen pressure in a liquid measuring medium
CN102834964B (en) Electrochemical detection cell for liquid chromatography system
JPH08304331A (en) Electrochemical measuring cell
JPS638423B2 (en)
JP3638172B2 (en) Electrolyzed water generator
JP2000131277A (en) Electrochemical gas sensor
JP3903524B2 (en) Electrolyzed water generator
JP3662692B2 (en) Electrolyzed water generator
JPS6053842A (en) Circulation type electrolyte cell
US20070227908A1 (en) Electrochemical cell sensor
CN209927769U (en) Self-stirring system of dissolved oxygen tester
GB2075197A (en) Electrochemical gas sensor
KR101115050B1 (en) Method for measuring dissolved hydrogen in boiler water
JP3708208B2 (en) pH sensor and ion water generator
JP3709051B2 (en) Electrolyzed water generator
JP2000009676A (en) Water quality detector
US5393392A (en) Polarographic PPB oxygen gas sensor
JPH11118750A (en) Apparatus for setting of reference electrode
JP2954174B1 (en) Constant potential electrolytic gas sensor
JP3595087B2 (en) Electrolyzed water generator
CN105474009B (en) Coulometric titration unit
KR100310531B1 (en) Automatic measuring apparatus of dissolved oxygen
CN219830933U (en) Electrochemical composite sensor
JPH08211010A (en) Electrolytic calibration equipment
JPH08211014A (en) Dissolved oxygen measuring device

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20040130

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20040525

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20040726

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20041214

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20050107

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090121

Year of fee payment: 4

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090121

Year of fee payment: 4

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090121

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100121

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110121

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110121

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120121

Year of fee payment: 7

LAPS Cancellation because of no payment of annual fees