JP3708208B2 - pH sensor and ion water generator - Google Patents

pH sensor and ion water generator Download PDF

Info

Publication number
JP3708208B2
JP3708208B2 JP07270996A JP7270996A JP3708208B2 JP 3708208 B2 JP3708208 B2 JP 3708208B2 JP 07270996 A JP07270996 A JP 07270996A JP 7270996 A JP7270996 A JP 7270996A JP 3708208 B2 JP3708208 B2 JP 3708208B2
Authority
JP
Japan
Prior art keywords
measured
liquid
sensor
path
channel
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP07270996A
Other languages
Japanese (ja)
Other versions
JPH09264868A (en
Inventor
良二 田中
毅 西田
利彦 松田
琢磨 佐藤
哲司 添田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Corp
Panasonic Holdings Corp
Original Assignee
Panasonic Corp
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Panasonic Corp, Matsushita Electric Industrial Co Ltd filed Critical Panasonic Corp
Priority to JP07270996A priority Critical patent/JP3708208B2/en
Publication of JPH09264868A publication Critical patent/JPH09264868A/en
Application granted granted Critical
Publication of JP3708208B2 publication Critical patent/JP3708208B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Water Treatment By Electricity Or Magnetism (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、イオン水等のpH値を測定する際に使用され、内部液を充填したガラス電極で構成され、連続して通水される被測定液のpHを精度良く測定するpHセンサ及びそのpHセンサを使用したイオン水生成器に関するものである。
【0002】
【従来の技術】
従来pHセンサには半導体電極、イオン導電性隔膜電極及びガラス電極等で構成するものがあるが、操作性が良く価格が安い等の理由でガラス電極で構成したガラス電極型のpHセンサを使用することが多い。
【0003】
そこで従来のガラス電極型のpHセンサについて説明する。ガラス電極型のpHセンサはガラス電極と比較電極で構成され、ガラス電極は露出されたpH感知ガラス部と電圧を出力する内部電極と、内部電極を浸漬した内部液(pH=7.0)とからなる。比較電極は内部電極を浸漬した中性塩溶液からなり、液絡部を介して被測定液と連通している。ガラス電極を直接多量の被測定液中に浸漬すると、被測定液のpHの大きさによってpH感知ガラス部表面に接する水素イオンの濃度が変化し、それに対応して表面の電位が変化して内部電極に起電力を発生し、比較電極の電位と比較されセンサ電圧として出力される。しかしながらこのセンサ電圧は、pH感知ガラス部表面に接する水素イオンの濃度に依存することから、被測定液の量が充分に多い場合には水素イオンは安定してpH感知ガラス部表面に供給されるため、精度良く安定してpH測定できるものの、被測定液が微量の場合には表面を流れる被測定液の流れが悪くなり、また液中に含まれた気泡等の影響を受け水素イオンの供給が不安定となってセンサ電圧はバラツクし、精度も充分なものでないという問題があった。というのはこの従来のpHセンサはpH感知ガラス部表面を開放・露出しておりそれを浸漬するための大きな流路空間と多量の被測定液を前提とするから、pH感知ガラス表面を通過する被測定液の流速がpHセンサと無関係に設計されており、微量の場合には被測定液の流量や気泡の影響が出るからである。このように連続的に通水しながらpH測定する場合には多量の被測定液を必要とし、微少流量の領域では事実上測定が困難であった。
【0004】
pH測定を微少の被測定液で行うのはこのように難しいが、通水をしないタイプのpHセンサとしては従来次のような技術(実開平1−67559号公報)が提案されている。図3は従来のガラス電極型のpHセンサの概略構造図である。図3に示すように、ガラス電極4を内部に備えた円筒状外筒1の下端部に開口2を設けた保護キャップ3を取り付け、このpH電極を予めビーカー等に採取した被測定液中に浸漬することにより、pHを測定することができるようにしたものである。
【0005】
また最近イオン水生成器が普及しているが、地方地方で原水のpH値、ミネラル分、導電率が異なっているため生成されるイオン水のpH値を制御する必要からpHセンサを設けたイオン水生成器も提案されている。
【0006】
【発明が解決しようとする課題】
しかしながら、実開平1−67559号公報に記載されたpH測定用のpH電極は、被測定液の量が多い場合にはその一部をサンプリングし、微量の場合にはサンプリングを重ねてビーカー等の容器に必要量を貯水することによって、被測定液の多少に関わらずpHが測定できるものの、煩雑にサンプリングを繰り返すこと以外連続して変化する被測定液のpHを測定することはできないし、これでは自動化できないという問題があった。また、被測定液が静止状態であるため被測定液中に含まれる気泡等がガラス電極表面に付着しやすいし、一旦付着した気泡等は剥がれにくく、そのためpH測定を困難にするという問題があった。さらにガラス電極に炭化水素、炭酸塩スケール等が付着しやすく、応答時間が長くなると同時に測定精度が充分でない等の問題もあった。
【0007】
そこで本発明は前記従来の問題点を解決するもので、簡単な構造からなり、連続して通水される被測定液に含まれる気泡を脱気し、pHが精度良く安定して自動測定できる応答性に優れたpHセンサを提供することを目的とする。
【0008】
また、本発明は安定して確実にイオン水のpH値を自動的に検出でき、吐出されるイオン水のpHを制御することのできるイオン水生成器を提供することを目的とする。
【0009】
【課題を解決するための手段】
上記目的を達成するために本発明のpHセンサは、pH感知ガラス部を備えて被測定液の水素イオン濃度を感知するガラス電極と、前記被測定液が通水されるとともに前記pH感知ガラス部が挿入された被測定液室を備え、前記被測定液室には前記被測定液が流入する流入路と前記流入路の上側に配置され前記被測定液が吐出される排水路を設け、前記流入路の被測定液室より所定上流側と排水路の被測定液室より所定下流側とを脱気路で連通し、前記被測定液に含まれ流入路に流入した気体を被測定液室に至る前に前記脱気路を介して排水路へ脱気するようにしたことを特徴とする。
【0010】
これにより、簡単な構造からなり、連続して通水される被測定液に含まれる気泡を脱気し、pHを精度良く安定して応答性よく自動測定することがきる。
【0011】
【発明の実施の形態】
本発明の請求項1に記載の発明は、pH感知ガラス部を備えて被測定液の水素イオン濃度を感知するガラス電極と、前記被測定液が通水されるとともに前記pH感知ガラス部が挿入された被測定液室を備え、前記被測定液室には前記被測定液が流入する流入路と前記流入路の上側に配置され前記被測定液が吐出される排水路を設け、前記流入路の被測定液室より所定上流側と排水路の被測定液室より所定下流側とを脱気路で連通し、前記被測定液に含まれ流入路に流入した気体を被測定液室に至る前に前記脱気路を介して排水路へ脱気するようにしたものであり、流入路に流入した被測定液に含まれる水素ガス、酸素ガス、空気等の気泡はpH感知ガラス部表面に達する前に脱気路を通過して排水路に合流されるという作用を有する。
【0012】
また、請求項2に記載の発明は、電解槽と、電解槽に設けた一対の電極と、電解槽に接続された吐出路と、吐出路から分岐された分岐路とを備え、分岐路に前記記載のpHセンサを設けたものであり、微少流量の排水に挿入して被測定液のpHを測定でき、高精度にpH制御されたイオン水を生成することができるという作用を有する。
【0013】
以下、本発明の実施の形態について、図1、図2を用いて説明する。
(実施の形態1)
図1は本発明の実施の形態1におけるpHセンサの構造断面図で、11はpHセンサ、13はAg/AgClからなる内部電極でpH=7.0の塩類溶液である内部液18に浸漬してある。16は被測定液室で被測定液27が流入する流入路14を下方側に、被測定液27が吐出する排水路15を上方側に設けてある。またこの被測定液室16は、流入した被測定液27がスムースに排水路15から排水できるように流路抵抗を少なくするような構造にしている。流入路14と排水路15の間には流入する被測定液27に含まれる気体を脱気する脱気路10をバイパスして設けてある。20は不活性ガラスからなるチューブ状のガラス電極で、その下端にはpH感知ガラス部12が設けられている。pH感知ガラス部12は微量の酸化リチュウム等を含んだ球状の珪酸ガラスからなり、その内部に内部液18が充填されている。この珪酸ガラスはリチュウムイオンが固体電解質として働いてイオン伝導性を示すことから、被測定液27の水素イオン濃度に比例した電位がpH感知ガラス部12の外表面部に帯電されることになる。23は比較電極室で内部に中性塩の溶液からなる比較電極液19を充填し、比較電極液19にAg/AgClからなる比較電極22を浸漬している。17は液絡部で多孔性セラミック等からなり被測定液27と比較電極液19とを連通している。21は比較電極液19を補充する補充口で、24は内部電極13に接続された第1出力端子で、25は比較電極22に接続された第2出力端子で制御部26に接続されている。28はpHを表示するpH表示部である。29は仕切部で比較電極室23と被測定液室16を仕切るとともにガラス電極20を貫通して固定している。この仕切部29の下面側は排水路15に向かって昇り勾配を形成して設けている。
【0014】
ここで脱気路10について説明する。この脱気路10は流入路14と排水路15を連通して設けてあり、流入路14に流入した気泡を含んだ被測定液27は被測定液室16に流入する前にこの脱気路10の開口部近傍を通過する。このとき被測定液27の一部は脱気路10に分岐して流れ、これは排水路15を流れる被測定液27とともに排水される。ところで、被測定液27に含まれている気泡の殆どは、水と比較して比重が小さいため流入路14の路壁の上部に集まって、被測定液27とともに被測定液室16の方向に移動している。これらの気泡が脱気路10の開口部に達すると後述するインジェクション効果により脱気路10内を上昇させられ排水路15に達し、そこを流れる被測定液27に再び混入され排水される。このようにして被測定液27に含まれる殆どの気泡は脱気されるが、残りの気泡は僅かではあるが被測定液室16に混入する。しかしながら、これらの気泡は量的に限られるし、その大きさも極めて微細なものでそのまま被測定液27に混入されたまま排水路15から排水されるものである。
【0015】
ここで流入路14と排水路15と脱気路10の断面積の大きさは、流入路14に比べて排水路15と脱気路10を小さくし、脱気路10は排水路15と同じかもしくは大きくするのが適当である。こうすることで気泡とともに分岐して排水される被測定液27の量を少なく抑えることができるし、排水路15内を流れる被測定液27の流速が流入路14内を流入する被測定液27に比べて大きくなるから、インジェクション効果によって気泡を脱気しやすくする。また脱気路10の開口部は流入路14の上部側に設け、排水路15の下部側に設けるのがよい。こうすることで被測定液27に含まれる気泡が脱気しやすく、その殆どを脱気することができる。この実施の形態1では脱気路10を1ヶ所にだけ設けているが、被測定液27に含まれる気泡の量が多い場合には複数箇所に設けるのもよい。またこの実施の形態1では流入路14と排水路15を同一の方向に設けているが、流入路14と排水路15の方向を別々にして設けてもよく、その間に脱気路10を脱気しやすい位置にバイパスするように設けることで同様な効果が得られる。
【0016】
以上のように構成されたpHセンサについて、以下その動作を図1に基づいて説明する。水素ガス、酸素ガス及び空気等の気泡を含んだ被測定液27は矢印aの方向から流入路14に流入する。流入した被測定液27の一部は脱気路10で分岐されるとともに被測定液27に含有される気泡の殆どを脱気することができる。ここで脱気された被測定液27が被測定液室16を充満した後、脱気路10を流れてきた気泡を含んだ被測定液27とともに排水路15から矢印bの方向に吐出される。このときpH感知ガラス部12が被測定液室16内に挿入されており、被測定液27の水素イオンがpH感知ガラス部12の表面に接触し内部液18との間に起電力を発生する。一方被測定液27は液絡部17によって比較電極液19と連通しており、比較電極液19に浸した比較電極22は被測定液27に対して0電位となるので、第1出力端子24と第2出力端子25の間にpH感知ガラス部12の表面に接触し被測定液27の水素イオン濃度に比例したセンサ電圧が出力される。このセンサ出力は次式で表される。
【0017】
E=α・0.059(pH0 −pH1 )+Cv
ただし、E:センサ電圧(V)
α:電極係数で0<α≦1
pH0 :内部液のpH値で、ここではpH=7.0
pH1 :被測定液のpH値
Cv:電極固有の不斉電位差(V)
このpHセンサ11は標準pHセンサで、内部液18のpH0 を7.0としているので、被測定液27のpH1 が中性(pH=7.0)であれば、不斉電位差Cvを別にすればセンサ電圧が0Vということになる。一方、被測定液27のpH1 が酸性(pH<7.0)であれば、不斉電位差Cvを別にすればセンサ電圧(E)が正電圧となり、被測定液27のpH1 がアルカリ性(pH>7.0)であれば、不斉電位差Cvを別にしてセンサ電圧(E)が負電圧になる。この出力されたセンサ電圧(E)は制御部26に伝達し必要に応じて増幅され、制御部26はpH表示部28にpH値表示したり、センサ電圧(E)をイオン水生成器等の制御機構に伝達し連続して生成するイオン水のpH値を制御したりする。
【0018】
このようにpH感知ガラス部12の表面に接触した被測定液27の水素イオン濃度に比例したセンサ電圧(E)が出力されることから、pH感知ガラス部12の表面は水素イオンが接触しやすいように保っておくことが必要となる。このpH感知ガラス部12の表面に気泡等が付着した場合には、接触する水素イオンの濃度が低くなり、結果的にセンサ電圧(E)が小さくなって被測定液27の正確なpH測定ができなくなる。またこの気泡等がpH感知ガラス部12の表面への付着、剥離を繰り返すことによってセンサ電圧(E)が変動し不安定になって精度よくpH測定ができなくなるし応答時間も長くかかるようになる。しかしこの実施の形態1では気泡が脱気された被測定液27がpH感知ガラス部12の表面に接触することから、その表面に気泡等が付着して水素イオンの接触を妨げることなく、正確に精度よくpH測定することができる。
【0019】
(実施の形態2)
つぎに本発明のpHセンサ11を設けたイオン水生成器について説明する。図2は本発明の実施の形態2におけるイオン水生成器の全体概略図である。図2において、41はイオン水生成器、42は原水管、43は内部に活性炭や中空糸膜などを備えた浄水部、44は導電率を高めるミネラル添加筒、45は電解槽、50は第1電解室である陰極室、52は第2電解室である陽極室である。46は陰極側処理水吐出路、47は陽極側処理水吐出路、48aは陰極側給水路、48bは陽極側給水路、49は陰極、51は陽極、53は陰極端子、54は陽極端子である。55は電解槽45を2分する隔膜、56は電源部、57はpHセンサ34のセンサ電圧に応じて両電極端子に印加する電圧を制御したりする制御部、58はpH濃度を表示するpH表示部である。以上のように構成すると、第1電解室の処理水がアルカリ性イオン水となって陰極側処理水吐出路46から吐出する。しかし、この実施の形態2で説明したものとは印加電圧の極性を逆にして、第1電解室を陽極室、第2電解室を陰極室にすると、第1電解室で生成される処理水が酸性イオン水となる。そこで、以下の説明は第1電解室を陰極室、第2電解室を陽極室として説明するが、極性を反転させたものも本実施の形態2のイオン水生成器41に含まれるもので、このとき第1電解室が陽極室、第2電解室が陰極室で処理水が酸性イオン水となる点で相違するだけである。
【0020】
30は陰極室50側の水を吐出する吐水の一部をpHセンサ34に供給する分岐路、35は分岐路30に連結されアルカリ性イオン水の一部を通水する流入路、32はアルカリ性イオン水の一部が通過する被測定液室、33は水素イオンに感応するpH応答ガラス膜を備えたpH感知ガラス部、31は測定が終了した被測定液を排出する排水路である。36は脱気路で流入路35と排水路31の間にバイパスして設けてある。
【0021】
以上のように構成されたイオン水生成器41について以下その動作を説明する。原水管42から矢印で示した様に給水された原水は浄水部43及びミネラル添加筒44を経由して陰極側給水路48a及び陽極側給水路48bから陰極室50及び陽極室52のそれぞれに給水される。原水が電解槽45内に所定量流入した後に電源部56からの電圧を制御部57で所定の電圧に制御して、陰極端子53には負電圧、陽極端子54には正電圧を印加して電気分解を開始する。この電気分解によって電解槽45ではアルカリ性イオン水と酸性イオン水が生成される。原水が連続して給水され、電圧が連続して印加されることによって陰極側処理水吐出路46からは処理水であるアルカリ性イオン水が、陽極側処理水吐出路47からは処理水である酸性イオン水が連続して吐出してくることになる。
【0022】
このように生成されたアルカリ性イオン水の大部分は陰極側処理水吐出路46を経て外部に吐出されるが、その一部のアルカリ性イオン水が陰極側処理水吐出路46に設けた分岐路30を経て流入路35からpHセンサ34の被測定液室32に流入する。ところで電解槽45で電気分解された処理水には電気分解の際発生したガスが混入しており、このうちアルカリ性イオン水には水素ガスが混入している。従ってこのアルカリ性イオン水がpH感知ガラス部33の表面部に接触しながら通過すると、pH感知ガラス部33の表面にこの水素ガスの気泡が付着し、pH測定が困難に陥りやすいが、本実施の形態2では流入路35と排水路31にバイパスして脱気路36を設けたpHセンサ34を使用しているから、アルカリ性イオン水に水素ガスが混入していても精度よくpHを測定することができる。このpH測定された被測定液は排水路31より系外に排水されるが、排水路31を陽極側処理水吐出路47に接続するのが好ましい。pHセンサ34によりアルカリ性イオン水のpHを検知して、センサ電圧を制御部57に送り、制御部57はpH表示部58にpHを表示させるとともに、予め制御部57に設けた記憶部に記憶させたpHになるように電極への印加電圧を制御してpHを調整することができる。
【0023】
このように原水を連続して流入させ、陰極端子53と陽極端子54に連続的に電圧を印加しておくことによりアルカリ性イオン水が連続して生成させることができ、分岐路30で分岐するアルカリ性イオン水の流量を少なくしてアルカリ性イオン水のpH濃度の検知とその表示及びイオン水生成器の調整が同時に連続的に行え、排水するアルカリ性イオン水を少なくして無駄を少なくすることができる。
【0024】
【発明の効果】
以上から明らかなように本発明のpHセンサは、pH感知ガラス部を備えて被測定液の水素イオン濃度を感知するガラス電極と、前記被測定液が通水されるとともに前記pH感知ガラス部が挿入された被測定液室を備え、前記被測定液室には前記被測定液が流入する流入路と前記流入路の上側に配置され前記被測定液が吐出される排水路を設け、前記流入路の被測定液室より所定上流側と排水路の被測定液室より所定下流側とを脱気路で連通し 、前記被測定液に含まれ流入路に流入した気体を被測定液室に至る前に前記脱気路を介して排水路へ脱気するようにしたものである。
よって流入路に流入した被測定液に含まれる気泡は、被測定液室に流入する前に脱気路より排水路に脱気されて、排水路を流れる被測定液とともに排出されるので、pH測定の妨げになる気泡がpH感知ガラス部の表面に付着することがなく、連続して通水される被測定液のpHを精度良く安定して応答性良く自動測定できるという効果を有する。
【0025】
また、本発明のイオン水生成器は、生成されるイオン水から微少流量の被測定液を抜き出し、そのpHを短時間に自動測定し、制御部で正確にpH制御することができるという効果を有する。
【図面の簡単な説明】
【図1】 本発明の実施の形態1におけるpHセンサの構造断面図
【図2】 本発明の実施の形態2におけるイオン水生成器の全体概略図
【図3】 従来のガラス電極型のpHセンサの概略構造図
【符号の説明】
1 円筒状外筒
2 開口
3 保護キャップ
4、20 ガラス電極
10、36 脱気路
11、34 pHセンサ
12、33 pH感知ガラス部
13 内部電極
14、35 流入路
15、31 排水路
16、32 被測定液室
17 液絡部
18 内部液
19 比較電極液
20 ガラス電極
21 補充口
22 比較電極
23 比較電極室
24 第1出力端子
25 第2出力端子
26、57 制御部
27 被測定液
28、58 pH表示部
29 仕切部
30 分岐路
41 イオン水生成器
42 原水管
43 浄水部
44 ミネラル添加筒
45 電解槽
46 陰極側処理水吐出路
47 陽極側処理水吐出路
48a 陰極側給水路
48b 陽極側給水路
49 陰極
50 陰極室
51 陽極
52 陽極室
53 陰極端子
54 陽極端子
55 隔膜
56 電源部
[0001]
BACKGROUND OF THE INVENTION
The present invention is a pH sensor that is used when measuring a pH value of ionic water or the like, is configured with a glass electrode filled with an internal liquid, and accurately measures the pH of a liquid to be measured that is continuously passed through, and its The present invention relates to an ion water generator using a pH sensor.
[0002]
[Prior art]
Conventional pH sensors include semiconductor electrodes, ion conductive diaphragm electrodes, glass electrodes, etc., but glass electrode type pH sensors composed of glass electrodes are used for reasons such as good operability and low price. There are many cases.
[0003]
Therefore, a conventional glass electrode type pH sensor will be described. The glass electrode type pH sensor includes a glass electrode and a reference electrode. The glass electrode includes an exposed pH sensing glass part, an internal electrode that outputs voltage, and an internal liquid (pH = 7.0) in which the internal electrode is immersed. Consists of. The reference electrode is made of a neutral salt solution in which the internal electrode is immersed, and communicates with the liquid to be measured through the liquid junction. When the glass electrode is directly immersed in a large amount of liquid to be measured, the concentration of hydrogen ions in contact with the surface of the pH-sensing glass part changes depending on the pH of the liquid to be measured, and the surface potential changes accordingly. An electromotive force is generated in the electrode, which is compared with the potential of the comparison electrode and output as a sensor voltage. However, since this sensor voltage depends on the concentration of hydrogen ions in contact with the pH sensing glass surface, when the amount of the liquid to be measured is sufficiently large, hydrogen ions are stably supplied to the pH sensing glass surface. Therefore, the pH can be measured accurately and stably, but when the amount of the liquid to be measured is very small, the flow of the liquid to be measured flowing on the surface is deteriorated, and the supply of hydrogen ions is affected by the bubbles contained in the liquid. However, the sensor voltage varies and the accuracy is not sufficient. This is because the conventional pH sensor has an open / exposed surface of the pH-sensing glass and assumes a large flow path space for immersing it and a large amount of liquid to be measured, so it passes through the surface of the pH-sensing glass. This is because the flow rate of the liquid to be measured is designed irrespective of the pH sensor, and the flow rate of the liquid to be measured and the influence of bubbles are generated when the amount is small. Thus, in the case of measuring pH while continuously passing water, a large amount of liquid to be measured is required, and it was practically difficult to measure in a minute flow rate region.
[0004]
Although it is difficult to perform pH measurement with a very small liquid to be measured, the following technology (Japanese Utility Model Laid-Open No. 1-67559) has been proposed as a pH sensor that does not allow water to pass through. FIG. 3 is a schematic structural diagram of a conventional glass electrode type pH sensor. As shown in FIG. 3, a protective cap 3 provided with an opening 2 is attached to the lower end of a cylindrical outer cylinder 1 having a glass electrode 4 therein, and this pH electrode is collected in a liquid to be measured previously collected in a beaker or the like. The pH can be measured by dipping.
[0005]
In addition, ion water generators have recently become widespread. However, the pH value, mineral content, and conductivity of raw water are different in local areas, so it is necessary to control the pH value of the generated ion water. Water generators have also been proposed.
[0006]
[Problems to be solved by the invention]
However, the pH electrode for measuring pH described in Japanese Utility Model Laid-Open No. 1-67559 samples a part when the amount of the liquid to be measured is large, and repeats sampling when the amount is small, such as a beaker. By storing the required amount in the container, the pH can be measured regardless of the amount of the liquid to be measured, but the pH of the liquid to be measured that continuously changes cannot be measured except by repeating sampling. Then there was a problem that could not be automated. In addition, since the liquid to be measured is stationary, bubbles and the like contained in the liquid to be measured are likely to adhere to the glass electrode surface, and bubbles that have once adhered are difficult to peel off, which makes pH measurement difficult. It was. In addition, hydrocarbons, carbonate scales and the like are likely to adhere to the glass electrode, resulting in problems such as a long response time and insufficient measurement accuracy.
[0007]
Therefore, the present invention solves the above-mentioned conventional problems, has a simple structure, and degass bubbles contained in the liquid to be continuously passed, and can automatically measure the pH accurately and stably. An object is to provide a pH sensor excellent in responsiveness.
[0008]
It is another object of the present invention to provide an ionic water generator that can automatically and stably detect the pH value of ionic water and can control the pH of discharged ionic water.
[0009]
[Means for Solving the Problems]
In order to achieve the above object, a pH sensor of the present invention comprises a pH sensing glass part that senses the hydrogen ion concentration of a liquid to be measured , and the pH sensing glass part through which the liquid to be measured is passed. The measurement liquid chamber is provided with an inflow path through which the measurement liquid flows and a drainage path that is disposed above the inflow path and through which the measurement liquid is discharged, A predetermined upstream side from the liquid chamber to be measured in the inflow channel and a predetermined downstream side from the liquid chamber to be measured in the drainage channel are communicated by a deaeration channel, and the gas contained in the liquid to be measured and flowing into the inflow channel is measured It is characterized by deaeration to the drainage channel through the degassing channel before reaching the point.
[0010]
Thereby, it becomes a simple structure, The bubble contained in the to-be-measured liquid continuously passed can be deaerated, and pH can be measured automatically with high accuracy, stability, and stability.
[0011]
DETAILED DESCRIPTION OF THE INVENTION
According to the first aspect of the present invention, there is provided a glass electrode provided with a pH sensing glass part for sensing the hydrogen ion concentration of the liquid to be measured, and the pH sensing glass part is inserted while the liquid to be measured is passed through. A liquid chamber to be measured, and an inflow passage through which the liquid to be measured flows and a drainage passage which is disposed above the inflow passage and through which the liquid to be measured is discharged are provided in the measurement liquid chamber. A predetermined upstream side of the liquid chamber to be measured and a predetermined downstream side of the liquid chamber to be measured in the drainage channel are connected by a deaeration channel, and the gas contained in the liquid to be measured and flowing into the inflow channel reaches the liquid chamber to be measured. It is designed to deaerate to the drainage channel through the degassing channel before , and bubbles such as hydrogen gas, oxygen gas, air contained in the liquid to be measured flowing into the inflow channel are formed on the surface of the pH sensing glass part. It has the effect of passing through the deaeration channel and joining the drainage channel before reaching.
[0012]
The invention according to claim 2 includes an electrolytic cell, a pair of electrodes provided in the electrolytic cell, a discharge path connected to the electrolytic cell, and a branch path branched from the discharge path. The pH sensor described above is provided, and has an effect that it can be inserted into a small amount of waste water to measure the pH of the liquid to be measured, and ion water whose pH is controlled with high accuracy can be generated.
[0013]
Hereinafter, embodiments of the present invention will be described with reference to FIGS.
(Embodiment 1)
FIG. 1 is a sectional view of the structure of a pH sensor according to Embodiment 1 of the present invention. 11 is a pH sensor, 13 is an internal electrode made of Ag / AgCl, and is immersed in an internal solution 18 that is a salt solution having a pH of 7.0. It is. Reference numeral 16 denotes a measured liquid chamber in which an inflow path 14 through which the measured liquid 27 flows is provided on the lower side and a drainage path 15 from which the measured liquid 27 is discharged is provided on the upper side. The liquid chamber 16 to be measured is structured to reduce the flow resistance so that the liquid 27 to be measured can be smoothly drained from the drainage channel 15. Between the inflow path 14 and the drainage path 15, a degassing path 10 for degassing the gas contained in the measured liquid 27 that flows in is bypassed. Reference numeral 20 denotes a tube-shaped glass electrode made of inert glass, and a pH sensing glass portion 12 is provided at the lower end thereof. The pH sensing glass part 12 is made of spherical silicate glass containing a small amount of lithium oxide or the like, and the inside is filled with an internal liquid 18. In this silicate glass, the lithium ion works as a solid electrolyte and exhibits ionic conductivity. Therefore, a potential proportional to the hydrogen ion concentration of the liquid 27 to be measured is charged on the outer surface portion of the pH sensing glass portion 12. A reference electrode chamber 23 is filled with a reference electrode solution 19 made of a neutral salt solution, and a reference electrode 22 made of Ag / AgCl is immersed in the reference electrode solution 19. Reference numeral 17 denotes a liquid junction portion which is made of porous ceramic or the like and communicates the measured liquid 27 and the comparative electrode liquid 19. Reference numeral 21 denotes a replenishing port for replenishing the comparison electrode solution 19, 24 denotes a first output terminal connected to the internal electrode 13, and 25 denotes a second output terminal connected to the comparison electrode 22, which is connected to the control unit 26. . Reference numeral 28 denotes a pH display unit for displaying pH. Reference numeral 29 denotes a partition that partitions the reference electrode chamber 23 and the measured liquid chamber 16 and penetrates and fixes the glass electrode 20. The lower surface side of the partition portion 29 is provided with a rising gradient toward the drainage channel 15.
[0014]
Here, the deaeration path 10 will be described. The deaeration channel 10 is provided so that the inflow channel 14 and the drainage channel 15 communicate with each other, and the measured liquid 27 containing bubbles flowing into the inflow channel 14 is supplied to the measured liquid chamber 16 before flowing into the measured liquid chamber 16. Pass through the vicinity of 10 openings. At this time, a part of the liquid to be measured 27 branches and flows into the deaeration passage 10, and is drained together with the liquid to be measured 27 flowing through the drainage passage 15. By the way, most of the bubbles contained in the liquid to be measured 27 have a specific gravity smaller than that of water, so that they gather at the upper part of the wall of the inflow passage 14 and move toward the liquid chamber 16 to be measured together with the liquid 27 to be measured. Has moved. When these bubbles reach the opening of the deaeration channel 10, the inside of the deaeration channel 10 is raised by an injection effect which will be described later, reaches the drainage channel 15, mixed again with the measured liquid 27 flowing therethrough, and drained. In this way, most of the bubbles contained in the liquid to be measured 27 are degassed, but the remaining bubbles are mixed in the liquid chamber 16 to be measured, although only a few. However, these bubbles are limited in quantity and are very fine in size, and are discharged from the drainage channel 15 while being mixed in the measured liquid 27 as they are.
[0015]
Here, the size of the cross-sectional area of the inflow channel 14, the drainage channel 15, and the deaeration channel 10 is smaller than that of the inflow channel 14, and the deaeration channel 10 is the same as the drainage channel 15. Or larger. By doing so, the amount of the liquid 27 to be measured that is branched and discharged together with the bubbles can be reduced, and the liquid 27 to be measured in which the flow rate of the liquid 27 to be measured flowing in the drainage channel 15 flows into the inflow channel 14. Since it becomes larger than the air bubble, it is easy to degas bubbles by the injection effect. The opening of the deaeration channel 10 is preferably provided on the upper side of the inflow channel 14 and provided on the lower side of the drainage channel 15. By doing so, bubbles contained in the liquid to be measured 27 are easily degassed, and most of them can be degassed. In the first embodiment, the deaeration path 10 is provided only at one place. However, when the amount of bubbles contained in the liquid to be measured 27 is large, it may be provided at a plurality of places. In the first embodiment, the inflow channel 14 and the drainage channel 15 are provided in the same direction. However, the inflow channel 14 and the drainage channel 15 may be provided in different directions, and the deaeration channel 10 is removed between them. A similar effect can be obtained by providing a bypass to a position where it is easy to care.
[0016]
The operation of the pH sensor configured as described above will be described below with reference to FIG. The liquid to be measured 27 containing bubbles such as hydrogen gas, oxygen gas and air flows into the inflow path 14 from the direction of the arrow a. A part of the liquid to be measured 27 that has flowed in is branched in the deaeration channel 10 and most of the bubbles contained in the liquid to be measured 27 can be degassed. After the measurement liquid 27 deaerated here fills the measurement liquid chamber 16, it is discharged from the drainage path 15 in the direction of the arrow b together with the measurement liquid 27 containing bubbles flowing through the deaeration path 10. . At this time, the pH sensing glass part 12 is inserted into the measured liquid chamber 16, and hydrogen ions of the measured liquid 27 come into contact with the surface of the pH sensing glass part 12 to generate an electromotive force between the internal liquid 18. . On the other hand, the liquid to be measured 27 is communicated with the comparative electrode liquid 19 by the liquid junction portion 17, and the comparison electrode 22 immersed in the comparative electrode liquid 19 becomes 0 potential with respect to the liquid to be measured 27. A sensor voltage proportional to the hydrogen ion concentration of the liquid to be measured 27 is output between the first output terminal 25 and the second output terminal 25. This sensor output is expressed by the following equation.
[0017]
E = α · 0.059 (pH 0 −pH 1) + Cv
Where E: Sensor voltage (V)
α: electrode coefficient 0 <α ≦ 1
pH0: pH value of the internal solution, here pH = 7.0
pH1: pH value of the solution to be measured
Cv: electrode-specific asymmetric potential difference (V)
Since this pH sensor 11 is a standard pH sensor and the pH 0 of the internal liquid 18 is 7.0, if the pH 1 of the liquid 27 to be measured is neutral (pH = 7.0), the asymmetric potential difference Cv is excluded. In this case, the sensor voltage is 0V. On the other hand, if the pH 1 of the liquid 27 to be measured is acidic (pH <7.0), the sensor voltage (E) becomes a positive voltage apart from the asymmetric potential difference Cv, and the pH 1 of the liquid 27 to be measured is alkaline (pH>). 7.0), the sensor voltage (E) becomes a negative voltage apart from the asymmetric potential difference Cv. The output sensor voltage (E) is transmitted to the control unit 26 and amplified as necessary. The control unit 26 displays the pH value on the pH display unit 28, or displays the sensor voltage (E) on an ion water generator or the like. The pH value of ionic water that is continuously transmitted to the control mechanism is controlled.
[0018]
Thus, since the sensor voltage (E) proportional to the hydrogen ion concentration of the liquid to be measured 27 in contact with the surface of the pH sensing glass unit 12 is output, the surface of the pH sensing glass unit 12 is likely to be in contact with hydrogen ions. It is necessary to keep it like this. When bubbles or the like adhere to the surface of the pH sensing glass portion 12, the concentration of hydrogen ions in contact with the surface decreases, and as a result, the sensor voltage (E) decreases and accurate pH measurement of the liquid to be measured 27 is performed. become unable. Further, when the bubbles or the like repeatedly adhere to and peel from the surface of the pH sensing glass part 12, the sensor voltage (E) fluctuates and becomes unstable, making it impossible to measure pH accurately and taking a long response time. . However, in the first embodiment, the measurement liquid 27 from which bubbles are degassed comes into contact with the surface of the pH sensing glass portion 12, so that bubbles do not adhere to the surface and the contact with hydrogen ions is prevented accurately. The pH can be measured with high accuracy.
[0019]
(Embodiment 2)
Next, an ion water generator provided with the pH sensor 11 of the present invention will be described. FIG. 2 is an overall schematic diagram of an ionic water generator according to Embodiment 2 of the present invention. In FIG. 2, 41 is an ionic water generator, 42 is a raw water pipe, 43 is a water purification unit having activated carbon, hollow fiber membranes and the like inside, 44 is a mineral addition cylinder for increasing conductivity, 45 is an electrolytic cell, and 50 is a first tank. A cathode chamber which is one electrolysis chamber and 52 is an anode chamber which is a second electrolysis chamber. 46 is a cathode side treated water discharge path, 47 is an anode side treated water discharge path, 48a is a cathode side water supply path, 48b is an anode side water supply path, 49 is a cathode, 51 is an anode, 53 is a cathode terminal, and 54 is an anode terminal. is there. 55 is a diaphragm that divides the electrolytic cell 45 into two parts, 56 is a power supply unit, 57 is a control unit that controls the voltage applied to both electrode terminals according to the sensor voltage of the pH sensor 34, and 58 is a pH that displays the pH concentration. It is a display unit. If comprised as mentioned above, the process water of a 1st electrolysis chamber turns into alkaline ionized water, and it discharges from the cathode side process water discharge path 46. FIG. However, when the polarity of the applied voltage is reversed from that described in the second embodiment and the first electrolysis chamber is the anode chamber and the second electrolysis chamber is the cathode chamber, the treated water generated in the first electrolysis chamber is generated. Becomes acidic ion water. Therefore, in the following description, the first electrolysis chamber is described as the cathode chamber, and the second electrolysis chamber is described as the anode chamber. However, the inverted polarity is also included in the ionic water generator 41 of the second embodiment. In this case, the only difference is that the first electrolysis chamber is the anode chamber, the second electrolysis chamber is the cathode chamber, and the treated water is acidic ion water.
[0020]
30 is a branch passage for supplying a part of water discharged from the cathode chamber 50 to the pH sensor 34, 35 is an inflow passage connected to the branch passage 30 for passing a part of alkaline ionized water, and 32 is an alkaline ion. A measured liquid chamber through which a part of water passes, 33 is a pH sensing glass part provided with a pH responsive glass film sensitive to hydrogen ions, and 31 is a drainage channel for discharging the measured liquid after measurement. Reference numeral 36 denotes a deaeration path which is bypassed between the inflow path 35 and the drainage path 31.
[0021]
The operation of the ionic water generator 41 configured as described above will be described below. The raw water supplied from the raw water pipe 42 as indicated by an arrow is supplied to the cathode chamber 50 and the anode chamber 52 from the cathode side water supply channel 48a and the anode side water supply channel 48b via the water purification unit 43 and the mineral addition tube 44, respectively. Is done. After a predetermined amount of raw water flows into the electrolytic cell 45, the voltage from the power supply unit 56 is controlled to a predetermined voltage by the control unit 57, and a negative voltage is applied to the cathode terminal 53 and a positive voltage is applied to the anode terminal 54. Start electrolysis. By this electrolysis, alkaline ionic water and acidic ionic water are generated in the electrolytic cell 45. When raw water is continuously supplied and voltage is continuously applied, alkaline ionized water that is treated water from the cathode side treated water discharge passage 46 and acidic water that is treated water from the anode side treated water discharge passage 47. Ionized water will be discharged continuously.
[0022]
Most of the alkaline ionized water generated in this way is discharged to the outside through the cathode side treated water discharge passage 46, and a part of the alkaline ionized water is provided in the cathode side treated water discharge passage 46. Then, it flows from the inflow path 35 into the measured liquid chamber 32 of the pH sensor 34. By the way, the gas generated at the time of electrolysis is mixed in the treated water electrolyzed in the electrolytic cell 45, and hydrogen gas is mixed in the alkaline ionized water. Therefore, when the alkaline ionized water passes while contacting the surface portion of the pH sensing glass portion 33, the hydrogen gas bubbles adhere to the surface of the pH sensing glass portion 33, and the pH measurement tends to be difficult. In the second embodiment, the pH sensor 34 provided with the deaeration channel 36 bypassed to the inflow channel 35 and the drainage channel 31 is used. Therefore, even if hydrogen gas is mixed in the alkaline ionized water, the pH is accurately measured. Can do. The measured liquid whose pH has been measured is drained from the drainage channel 31 to the outside of the system, and the drainage channel 31 is preferably connected to the anode-side treated water discharge channel 47. The pH sensor 34 detects the pH of the alkaline ionized water and sends the sensor voltage to the control unit 57. The control unit 57 displays the pH on the pH display unit 58 and stores it in a storage unit provided in the control unit 57 in advance. The pH can be adjusted by controlling the voltage applied to the electrode so as to achieve a high pH.
[0023]
In this way, by supplying raw water continuously and applying voltage continuously to the cathode terminal 53 and the anode terminal 54, alkaline ionized water can be continuously generated, and the alkalinity branched at the branch path 30. Detection of the pH concentration of alkaline ionic water, display thereof, and adjustment of the ionic water generator can be performed simultaneously by reducing the flow rate of ionic water, and the waste of alkaline ionic water to be drained can be reduced to reduce waste.
[0024]
【The invention's effect】
As is apparent from the above, the pH sensor of the present invention comprises a pH sensing glass part that senses the hydrogen ion concentration of the liquid to be measured , and the pH sensing glass part passes through the liquid to be measured. A liquid chamber to be measured is provided, and the liquid chamber to be measured is provided with an inflow path through which the liquid to be measured flows, and a drainage channel that is disposed above the inflow path and through which the liquid to be measured is discharged. A predetermined upstream side from the measured liquid chamber of the channel and a predetermined downstream side of the measured liquid chamber of the drainage channel are connected by a deaeration channel, and the gas contained in the measured liquid and flowing into the inflow channel is passed to the measured liquid chamber Before arriving, it is made to deaerate to a drainage channel via the said deaeration channel.
Therefore, bubbles contained in the measured liquid flowing into the inflow channel are degassed from the deaeration channel to the drainage channel before flowing into the measured solution chamber, and are discharged together with the measured solution flowing through the drainage channel. Bubbles that hinder measurement do not adhere to the surface of the pH sensing glass part, and the pH of the liquid to be continuously passed through can be automatically measured with high accuracy and stability and with good responsiveness .
[0025]
In addition, the ionic water generator of the present invention has the effect of extracting a liquid to be measured at a minute flow rate from the generated ionic water, automatically measuring the pH in a short time, and accurately controlling the pH by the control unit. Have.
[Brief description of the drawings]
FIG. 1 is a cross-sectional view of the structure of a pH sensor according to Embodiment 1 of the present invention. FIG. 2 is an overall schematic diagram of an ionic water generator according to Embodiment 2 of the present invention. Schematic structure diagram [Explanation of symbols]
DESCRIPTION OF SYMBOLS 1 Cylindrical outer cylinder 2 Opening 3 Protection cap 4, 20 Glass electrode 10, 36 Deaeration path 11, 34 pH sensor 12, 33 pH sensing glass part 13 Internal electrode 14, 35 Inflow path 15, 31 Drainage path 16, 32 Covered Measurement liquid chamber 17 Liquid junction 18 Internal liquid 19 Reference electrode liquid 20 Glass electrode 21 Replenishment port 22 Reference electrode 23 Reference electrode chamber 24 First output terminal 25 Second output terminal 26, 57 Control section 27 Liquid to be measured 28, 58 pH Display unit 29 Partition unit 30 Branch channel 41 Ionized water generator 42 Raw water pipe 43 Water purification unit 44 Mineral added tube 45 Electrolyzer 46 Cathode side treated water discharge channel 47 Anode side treated water discharge channel 48a Cathode side water supply channel 48b Anode side water supply channel 49 Cathode 50 Cathode chamber 51 Anode 52 Anode chamber 53 Cathode terminal 54 Anode terminal 55 Separator 56 Power supply

Claims (2)

pH感知ガラス部を備えて被測定液の水素イオン濃度を感知するガラス電極と、前記被測定液が通水されるとともに前記pH感知ガラス部が挿入された被測定液室を備え、前記被測定液室には前記被測定液が流入する流入路と前記流入路の上側に配置され前記被測定液が吐出される排水路を設け、前記流入路の被測定液室より所定上流側と排水路の被測定液室より所定下流側とを脱気路で連通し、前記被測定液に含まれ流入路に流入した気体を被測定液室に至る前に前記脱気路を介して排水路へ脱気するようにしたpHセンサ。a glass electrode for detecting a hydrogen ion concentration of a liquid to be measured with a pH sensing glass part; and a liquid chamber for measurement to which the liquid to be measured is passed and the pH sensing glass part is inserted. The liquid chamber is provided with an inflow path through which the liquid to be measured flows and a drainage path that is disposed above the inflow path and through which the liquid to be measured is discharged. A predetermined downstream side of the liquid chamber to be measured is communicated with a predetermined degassing path, and the gas contained in the liquid to be measured and flowing into the inflow path is connected to the drainage path through the degassing path before reaching the liquid chamber to be measured. A pH sensor designed to deaerate . 電解槽と、前記電解槽に設けた一対の電極と、前記電解槽に接続された吐出路と、前記吐出路から分岐された分岐路とを備え、前記分岐路に請求項1記載のpHセンサを設けたことを特徴とするイオン水生成器。2. The pH sensor according to claim 1, comprising an electrolytic cell, a pair of electrodes provided in the electrolytic cell, a discharge channel connected to the electrolytic cell, and a branch channel branched from the discharge channel. An ionic water generator characterized by comprising:
JP07270996A 1996-03-27 1996-03-27 pH sensor and ion water generator Expired - Fee Related JP3708208B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP07270996A JP3708208B2 (en) 1996-03-27 1996-03-27 pH sensor and ion water generator

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP07270996A JP3708208B2 (en) 1996-03-27 1996-03-27 pH sensor and ion water generator

Publications (2)

Publication Number Publication Date
JPH09264868A JPH09264868A (en) 1997-10-07
JP3708208B2 true JP3708208B2 (en) 2005-10-19

Family

ID=13497161

Family Applications (1)

Application Number Title Priority Date Filing Date
JP07270996A Expired - Fee Related JP3708208B2 (en) 1996-03-27 1996-03-27 pH sensor and ion water generator

Country Status (1)

Country Link
JP (1) JP3708208B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101695430B (en) * 2009-10-21 2011-09-21 中山市美斯特实业有限公司 Kettle

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4543884B2 (en) * 2004-11-04 2010-09-15 パナソニック電工株式会社 Alkaline ion water conditioner
JP5480108B2 (en) * 2010-11-17 2014-04-23 紀本電子工業株式会社 pH measurement method

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101695430B (en) * 2009-10-21 2011-09-21 中山市美斯特实业有限公司 Kettle

Also Published As

Publication number Publication date
JPH09264868A (en) 1997-10-07

Similar Documents

Publication Publication Date Title
US3223597A (en) Method and means for oxygen analysis of gases
KR970059732A (en) Electrochemical Gas Sensors and Methods for Sensing Electrochemically Active Gases in Gas Mixtures
JPS6114565A (en) Instrument for measuring concentration of hydrogen ion
JP2872633B2 (en) Electrochemical measurement cell
US4366038A (en) Method of casting in place an ion-sensitive membrane and ion-sensitive electrode using said membrane
JP3708208B2 (en) pH sensor and ion water generator
US3329599A (en) Apparatus for measuring trace constituents
US6022470A (en) Electroanalytical, dropping mercury electrode cell
US4661210A (en) Method and apparatus for electrochemical analysis of solutions
US3258411A (en) Method and apparatus for measuring the carbon monoxide content of a gas stream
US20070227908A1 (en) Electrochemical cell sensor
JP3633077B2 (en) pH sensor and ion water generator
US3315270A (en) Dissolved oxidant analysis
EP0418886B1 (en) Apparatus and method for minimizing the effects of an electrolyte&#39;s dissolved oxygen content in low range oxygen analyzers
JP3903524B2 (en) Electrolyzed water generator
JP3650919B2 (en) Electrochemical sensor
JPH11118750A (en) Apparatus for setting of reference electrode
JPS5923385B2 (en) Method for measuring the concentration of sodium in a mercury-sodium amalgam flow
JP3612870B2 (en) pH sensor and ion water generator using the same
JP3638172B2 (en) Electrolyzed water generator
JPH08292172A (en) Electrochemical water quality measuring device and electrolytic water generating apparatus having the same
JPH06222038A (en) Dissolved oxygen sensor
JPH08211014A (en) Dissolved oxygen measuring device
JPS61169756A (en) Reference electrode apparatus
JPH08278284A (en) Oxidation reduction current measuring instrument

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20040526

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20040914

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20041029

RD01 Notification of change of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7421

Effective date: 20050622

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20050712

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20050803

LAPS Cancellation because of no payment of annual fees