JP6016157B2 - Liquid quality sensor - Google Patents

Liquid quality sensor Download PDF

Info

Publication number
JP6016157B2
JP6016157B2 JP2012211710A JP2012211710A JP6016157B2 JP 6016157 B2 JP6016157 B2 JP 6016157B2 JP 2012211710 A JP2012211710 A JP 2012211710A JP 2012211710 A JP2012211710 A JP 2012211710A JP 6016157 B2 JP6016157 B2 JP 6016157B2
Authority
JP
Japan
Prior art keywords
supply port
electrode
liquid quality
quality sensor
test water
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2012211710A
Other languages
Japanese (ja)
Other versions
JP2014066597A (en
Inventor
秀幸 柳
秀幸 柳
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Iwaki Co Ltd
Original Assignee
Iwaki Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Iwaki Co Ltd filed Critical Iwaki Co Ltd
Priority to JP2012211710A priority Critical patent/JP6016157B2/en
Publication of JP2014066597A publication Critical patent/JP2014066597A/en
Application granted granted Critical
Publication of JP6016157B2 publication Critical patent/JP6016157B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Description

本発明は、工業用水等の水質を測定する液質センサに関する。   The present invention relates to a liquid quality sensor for measuring water quality such as industrial water.

一般的に、冷却水や製造工程にて用いられる工業用水、水耕栽培に用いる水、回収・処理される廃水などは、処理過程において様々な薬液や薬剤が投入されたり、工程の影響を受けたりするため、水質が変化する。その場合、水質が所定の用途に適した状態にあるか否かを判断して、水質を管理するために液質センサが必要とされる。液質センサとしては、水の酸性、アルカリ性の度合いを示す水素イオン濃度指数を測定するpHセンサや、酸化還元電位を測定するORPセンサ等が挙げられる。   In general, cooling water, industrial water used in the manufacturing process, water used for hydroponics, wastewater collected and treated, etc. are subjected to various chemicals and chemicals in the treatment process and affected by the process. Water quality changes. In that case, a liquid quality sensor is required to determine whether the water quality is in a state suitable for a predetermined application and to manage the water quality. Examples of the liquid quality sensor include a pH sensor that measures a hydrogen ion concentration index indicating the acidity and alkalinity of water, an ORP sensor that measures an oxidation-reduction potential, and the like.

通常のpHセンサでは、例えばガラスなどの材質で形成され、内部に塩化カリウム(KCl)等の内部液が充填された検知電極と比較電極とを用いる。これらの電極を検水内に浸漬して、検知電極と参照電極との電位差をpHに換算する。また、ORPセンサは、例えば白金などの材質で形成された金属電極と比較電極とを検水に浸漬して、両電極間の電位差に基づいて酸化還元電位を測定する。   A normal pH sensor uses, for example, a detection electrode and a comparison electrode formed of a material such as glass and filled with an internal solution such as potassium chloride (KCl). These electrodes are immersed in test water, and the potential difference between the detection electrode and the reference electrode is converted to pH. In addition, the ORP sensor measures a redox potential based on a potential difference between the two electrodes by immersing a metal electrode formed of a material such as platinum and a comparative electrode in test water.

pHセンサやORPセンサ等の液質センサでは、電極を検水に浸漬するためのフローセルと呼ばれる測定槽を使用する。このような液質センサでは、応答速度や測定精度を向上させるため、供給口から入った検水により古い検水を早く置換し、新しい検水をすばやく電極へ当てることが望ましい。そのため、液質センサとして、検水の供給口又は排出口を有するフローセルと、供給口からの検水がセンサに向けて流れるように形成された絞り構造とを備え、検水に対する測定精度を向上することのできる液質センサが提案されている(特許文献1)。   In a liquid quality sensor such as a pH sensor or an ORP sensor, a measurement tank called a flow cell for immersing an electrode in test water is used. In such a liquid quality sensor, in order to improve the response speed and measurement accuracy, it is desirable to replace the old test sample quickly with the test sample entered from the supply port and to apply the new test sample to the electrode quickly. Therefore, as a liquid quality sensor, it is equipped with a flow cell having a test water supply port or discharge port, and a throttle structure formed so that the test water from the supply port flows toward the sensor, improving the measurement accuracy for the test water A liquid quality sensor that can be used has been proposed (Patent Document 1).

特開2010−060395号公報JP 2010-060395 A

しかし、上述した特許文献1に開示された液質センサでは、フローセルの最下部に検水の供給口が形成されている。そのため、センサが動作を停止しており、供給口から検水が供給されていない場合には、電極が気体中に露出し、電極が乾燥するおそれがある。センサに用いられる電極が検水への浸漬・乾燥を繰り返すと、検水内の不純物等が析出して電極に付着して測定精度が悪化したり、電極自体が劣化したりする問題がある。これに対し、電極の乾燥を防ぐためにフローセル内に電極が常に検水に浸るような液溜まりを形成することも可能であるが、その場合、電極が浸漬している液溜まりに古い検水が滞留してしまい、検水の測定が適切に行われない可能性がある。   However, in the liquid quality sensor disclosed in Patent Document 1 described above, a test water supply port is formed at the bottom of the flow cell. Therefore, when the operation of the sensor is stopped and the test water is not supplied from the supply port, the electrode may be exposed to the gas and the electrode may be dried. When the electrode used for the sensor is repeatedly immersed and dried in the test water, impurities in the test water are deposited and adhere to the electrode, resulting in a problem that the measurement accuracy deteriorates or the electrode itself deteriorates. On the other hand, in order to prevent the electrode from drying, it is possible to form a liquid pool in the flow cell so that the electrode is always immersed in the test water. There is a possibility that the sample water will not be measured properly.

本発明は、このような点に鑑みなされたもので、液溜まり内の古い検水を供給口から入った検水にすばやく置換して、測定の応答速度を早くすることのできる液質センサを提供することを目的とする。   The present invention has been made in view of the above points, and a liquid quality sensor that can quickly replace the old test water in the liquid reservoir with the test water that has entered from the supply port to increase the response speed of the measurement. The purpose is to provide.

本発明に係る液質センサは、測定流体を導入する供給口、この供給口に連接する測定空間及びこの測定空間につながり前記測定流体を排出する排出口を備えたフローセルと、このフローセルに装着されて前記供給口から前記測定空間に導入された測定流体と接触して前記測定流体の性質に基づく信号を出力する電極を有する電極ユニットとを備え、前記測定空間内に挿入される前記電極ユニットの先端部は、前記供給口から供給された測定流体を前記電極の方向へ誘導する仕切り板を有し、前記供給口及び前記排出口は、前記供給口を前記排出口よりも下にして配置され、前記仕切り板は、前記供給口及び前記排出口の間の位置からこの位置とは反対側の位置に向かって下方に傾斜して上下を区画するとともに、前記反対側の位置で上下に連通する連通部を有することを特徴とする。   A liquid quality sensor according to the present invention includes a supply port for introducing a measurement fluid, a measurement space connected to the supply port, a flow cell having a discharge port connected to the measurement space and discharging the measurement fluid, and the flow cell. An electrode unit having an electrode that contacts a measurement fluid introduced from the supply port into the measurement space and outputs a signal based on a property of the measurement fluid, and the electrode unit is inserted into the measurement space. The tip has a partition plate for guiding the measurement fluid supplied from the supply port in the direction of the electrode, and the supply port and the discharge port are arranged with the supply port below the discharge port. The partition plate inclines downward from a position between the supply port and the discharge port toward a position opposite to this position, and divides up and down, and continues upward and downward at the position on the opposite side. Characterized in that it has a communication portion for.

本発明によれば、電極ユニットに仕切り板を設けるため、検水は検水供給口から電極方向へと向かうように流れる。そのため、新しく検水供給口から供給された検水をすばやく電極へ接触させることができ、液質センサの応答速度を上げることが可能となる。   According to the present invention, since the partition plate is provided in the electrode unit, the test water flows from the test water supply port toward the electrode. Therefore, the test water newly supplied from the test water supply port can be brought into contact with the electrode quickly, and the response speed of the liquid quality sensor can be increased.

本発明の一実施形態に係る液質測定システムの構成を示す図である。It is a figure which shows the structure of the liquid quality measuring system which concerns on one Embodiment of this invention. 同システムの液質センサ及びフローセルを示した外観斜視図である。It is the external appearance perspective view which showed the liquid quality sensor and flow cell of the system. 同システムの液質センサ及びフローセルを示した断面図である。It is sectional drawing which showed the liquid quality sensor and flow cell of the system.

[全体構成]
以下、添付の図面を参照して、この発明の好ましい実施の形態を説明する。
図1は、本発明の一実施形態に係る液質センサ及びその液質センサを用いた液質測定システムの構成を示す図である。この液質測定システムは、液質センサSに対して検水を送る流水経路1と、この流水経路1に装着されたフローセル2と、フローセル2に装着された電極ユニット3と、電極ユニット3で検出された電位差に基づいて出力される信号によりフローセル2内の検水に含まれるpHや酸化還元電位を算出し表示する演算処理ユニット4とを備えて構成されている。ここで、液質センサSは、フローセル2及び電極ユニット3により構成されている。
[overall structure]
Hereinafter, preferred embodiments of the present invention will be described with reference to the accompanying drawings.
FIG. 1 is a diagram illustrating a configuration of a liquid quality sensor and a liquid quality measurement system using the liquid quality sensor according to an embodiment of the present invention. This liquid quality measuring system includes a flowing water path 1 for sending water to the liquid quality sensor S, a flow cell 2 attached to the flowing water path 1, an electrode unit 3 attached to the flow cell 2, and an electrode unit 3. And an arithmetic processing unit 4 that calculates and displays pH and oxidation-reduction potential contained in the water sample in the flow cell 2 based on a signal output based on the detected potential difference. Here, the liquid quality sensor S includes the flow cell 2 and the electrode unit 3.

図1に示すように、演算処理ユニット4は、電極ユニット3の電極に所定の電圧を印加する電圧発生部5と、電極間の電位を検出する電圧検出部6と、この電圧検出部6で検出された電圧に基づいてpHや酸化還元電位を算出すると共に、電圧発生部5に適宜電圧発生指令を出力する演算処理部7と、この演算処理部7で算出されたpHや酸化還元電位等を表示する表示部8とを備え構成されている。   As shown in FIG. 1, the arithmetic processing unit 4 includes a voltage generator 5 that applies a predetermined voltage to the electrodes of the electrode unit 3, a voltage detector 6 that detects a potential between the electrodes, and the voltage detector 6. Based on the detected voltage, the pH and oxidation-reduction potential are calculated, and a calculation processing unit 7 that outputs a voltage generation command as appropriate to the voltage generation unit 5; the pH and oxidation-reduction potential calculated by the calculation processing unit 7, etc. And a display unit 8 for displaying

[液質センサの構成]
図2及び図3は、液質センサSのフローセル2及び電極ユニット3の詳細構造を示す図である。図2は、液質センサSのフローセル2及び電極ユニット3を分離して示した外観斜視図であり、図3は、液質センサSのフローセル2及び電極ユニット3が、実際の動作に際して組み合わせられた状態を示すものであり、図3(a)が縦断面図、図3(b)が図3(a)のA−A’断面を矢印方向に見た図である。
[Configuration of liquid quality sensor]
2 and 3 are diagrams showing the detailed structures of the flow cell 2 and the electrode unit 3 of the liquid quality sensor S. FIG. FIG. 2 is an external perspective view showing the flow cell 2 and the electrode unit 3 of the liquid quality sensor S separately. FIG. 3 shows the flow cell 2 and the electrode unit 3 of the liquid quality sensor S combined in actual operation. 3 (a) is a longitudinal sectional view, and FIG. 3 (b) is a view of the AA ′ section of FIG. 3 (a) as viewed in the direction of the arrow.

フローセル2は、例えば測定すべき対象の検水が、流水経路1から分岐し再び流水経路1に合流する検査流路に挿入される。このフローセル2は、全体が直方体状となるように形成された検水槽21を備える。検水槽21には上面に開口を有するように円筒状空間22が形成されている。円筒状空間22は検水槽21を貫通せず、検水槽21の下部近傍に底部を有する。そして、この円筒状空間22の底部は、下方向に向かって例えば半球状にくぼむように丸みを帯びて形成されている。   The flow cell 2 is inserted into a test flow path in which, for example, the test water to be measured is branched from the water flow path 1 and merges with the water flow path 1 again. The flow cell 2 includes a water detection tank 21 formed so as to have a rectangular parallelepiped shape as a whole. A cylindrical space 22 is formed in the water detection tank 21 so as to have an opening on the upper surface. The cylindrical space 22 does not penetrate the water test tank 21 and has a bottom near the lower part of the water test tank 21. And the bottom part of this cylindrical space 22 is rounded so that it may dent, for example in a hemispherical shape toward the downward direction.

検水槽21の側面の内の1つには検水供給口23及び検水排出口24が設けられている。この検水供給口23及び検水排出口24は、流水経路1に接続され、検水の導入・排出を制御する。ここで、検水供給口23は検水排出口24よりも下方に設けられているが、円筒状空間22の底部及び後述する電極34よりも上に位置し、円筒状空間22の底部には動作停止時でも検水が溜まり、電極34が検水に浸漬するようになっている。   One of the side surfaces of the test water tank 21 is provided with a test water supply port 23 and a test water discharge port 24. The test water supply port 23 and the test water discharge port 24 are connected to the flowing water path 1 and control introduction and discharge of the test water. Here, although the test water supply port 23 is provided below the test water discharge port 24, it is located above the bottom of the cylindrical space 22 and the electrode 34 described later, and at the bottom of the cylindrical space 22. Even when the operation is stopped, the test water is collected, and the electrode 34 is immersed in the test water.

電極ユニット3は、フローセル2の円筒状空間22と同軸の円柱状に形成された先端部31及び先端部31を支持しコネクタ33により他の装置に保持される本体部32を有する。先端部31は、円筒状空間22内を検水が流通することができるように、円筒状空間22よりも小さい径で形成される。先端部31の先には測定用の電極34が設けられる。電極34としては、例えばpH測定用又はORP測定用の電極が設けられるが、それらの電極に限られるものではなく、検水と接触して、検水の液質に基づく信号を出力するために用いられるものであれば、どのようなものでもよい。また、先端部31の先には、比較電極と電気的に導通させる機能を有した液絡部37が設けられる。比較電極は、先端部31の内部に配置され、検知用の電極34とあわせて用いられるもので、測定の基準となる所定の電圧を示すように構成されている。図3に示すように電極34及び液絡部37が露出した先端部31が円筒状空間22に差し込まれて液質センサが構成される。なお、図示は省略しているが、先端部31には温度センサが内蔵されていてもよい。この温度センサにより測定の温度補償を行い、正確に液質測定を実行することが可能である。   The electrode unit 3 has a front end portion 31 formed in a columnar shape coaxial with the cylindrical space 22 of the flow cell 2 and a main body portion 32 that supports the front end portion 31 and is held by another device by a connector 33. The tip 31 is formed with a diameter smaller than that of the cylindrical space 22 so that the test water can flow through the cylindrical space 22. A measuring electrode 34 is provided at the tip of the tip 31. As the electrode 34, for example, electrodes for pH measurement or ORP measurement are provided. However, the electrodes 34 are not limited to these electrodes. In order to output a signal based on the quality of the test water in contact with the test water. Any material may be used as long as it is used. Further, a liquid junction portion 37 having a function of electrically connecting to the comparison electrode is provided at the tip of the tip portion 31. The comparison electrode is disposed inside the tip portion 31 and is used together with the detection electrode 34, and is configured to exhibit a predetermined voltage serving as a measurement reference. As shown in FIG. 3, the tip part 31 where the electrode 34 and the liquid junction part 37 are exposed is inserted into the cylindrical space 22 to constitute a liquid quality sensor. In addition, although illustration is abbreviate | omitted, the temperature sensor may be incorporated in the front-end | tip part 31. FIG. It is possible to accurately measure the liquid quality by performing temperature compensation of the measurement with this temperature sensor.

先端部31の周囲には、検水供給口23から導入された検水を電極34へ向けて誘導するように整流する仕切り板35が設けられている。この仕切り板35により、円筒状空間22内は上下に区画される。仕切り板35は、先端部31に巻きつくように設けられるとともに、円柱状の先端部31の軸を垂線とする平面から傾きを持つように形成され、仕切り板35の最も上に位置する部分が検水供給口23と検水排出口24との間に位置している。また、仕切り板35は、検水供給口23及び検水排出口24とは反対側に位置する最も下がった部分で、一部が取り除かれ、検水が上下に流通可能な連通部を有するように構成されている。なお、仕切り板35は、仕切り板35の最も低い部分が電極34よりも上方に位置するように形成されている。   A partition plate 35 that rectifies the test water introduced from the test water supply port 23 so as to guide it toward the electrode 34 is provided around the tip portion 31. By this partition plate 35, the inside of the cylindrical space 22 is partitioned vertically. The partition plate 35 is provided so as to wrap around the distal end portion 31 and is formed so as to be inclined from a plane having the axis of the columnar distal end portion 31 as a perpendicular, and a portion positioned at the top of the partition plate 35 is It is located between the test water supply port 23 and the test water discharge port 24. Further, the partition plate 35 is the lowest part located on the opposite side to the test water supply port 23 and the test water discharge port 24, and a part of the partition plate 35 is removed so that the test water has a communication part through which the test water can flow up and down. It is configured. The partition plate 35 is formed so that the lowest part of the partition plate 35 is positioned above the electrode 34.

先端部31は、その下端の端面が傾きを有するように形成されている。この傾きは、検水供給口23及び検水排出口24とは反対側、すなわち仕切り板35が除去された箇所で最も端面の位置が高くなり、検水供給口23及び検水排出口24が形成された側に向けて下がるような傾きとされる。封止部36は、電極ユニット3の先端部31がフローセル2の中に差し込まれた時に、フローセル2内部を密閉する機能を有する。   The tip 31 is formed such that the lower end face has an inclination. This inclination is located on the side opposite to the test water supply port 23 and the test water discharge port 24, that is, at the position where the partition plate 35 is removed, so that the position of the end surface is the highest. The inclination is lowered toward the formed side. The sealing portion 36 has a function of sealing the inside of the flow cell 2 when the distal end portion 31 of the electrode unit 3 is inserted into the flow cell 2.

[液質センサの動作]
次に、このように構成された液質センサSの動作を説明する。
検査流路を流れる検水は、フローセル2の検水供給口23から円筒状空間22内に導入され、先端部31の周りに広がる。そして、検水は、先端部31に設けられた仕切り板35に沿って下方向、すなわち円筒状空間22の底部に向かって移動する。これにより電極ユニット3の先端部31では、各電極34が検水と接触する。このときの電極34の電位が測定されるとともに演算処理ユニット4に送信され、この電位に基づいて演算処理ユニット4がpHや酸化還元電位を算出する。
[Operation of liquid quality sensor]
Next, the operation of the liquid quality sensor S configured as described above will be described.
The sample water flowing through the inspection channel is introduced into the cylindrical space 22 from the sample water supply port 23 of the flow cell 2 and spreads around the tip 31. The test water moves downward along the partition plate 35 provided at the tip 31, that is, toward the bottom of the cylindrical space 22. Thereby, at the front-end | tip part 31 of the electrode unit 3, each electrode 34 contacts with test water. The potential of the electrode 34 at this time is measured and transmitted to the arithmetic processing unit 4, and the arithmetic processing unit 4 calculates the pH and oxidation-reduction potential based on this potential.

また、電極34に接した後の検水は、丸みを帯びた円筒状空間22の底部に到達した後、この底部の丸みに沿って今度は上方向に移動する。仕切り板35が取り除かれた箇所が検水槽21と仕切り板35との唯一の開口であるため、上方向に移動した検水はこの開口を通り、仕切り板35よりも上へと移動する。そして、検水は検水排出口24より排出されて、流水経路1に戻る。   Further, the water sample after contacting the electrode 34 reaches the bottom of the rounded cylindrical space 22 and then moves upward along the roundness of the bottom. Since the location where the partition plate 35 is removed is the only opening of the water test tank 21 and the partition plate 35, the water sample that has moved upward passes through this opening and moves above the partition plate 35. Then, the test water is discharged from the test water discharge port 24 and returns to the flowing water path 1.

[液質センサの効果]
次に、本実施の形態の液質センサSの効果を説明する。
仕切り板35を傾けて設けてあるため、検水は検水供給口23から直ちに電極方向へと向かうように流れる。そのため、新しく検水供給口23から供給された検水をすばやく電極34へ接触させることができ、センサの応答速度を上げることが可能となる。検水供給口23と検水排出口24が検水槽21の同一の側面に形成されている場合、検水供給口23から導入された検水が、そのまま検水排出口24へと流れるおそれがあるが、本実施の形態に係る液質センサSによれば、仕切り板35によってそのような流れを防ぐことができる。そして、検水供給口23と検水排出口24とを検水槽21の同一側面に配置することで省スペース化を図ることができる。また、検水供給口23は円筒状空間22の底部及び電極34よりも上方に設けられているため、本実施の形態の液質センサが動作を停止している状態でも、円筒状空間22の底部には検水の一部が残存して、液溜まりが形成される。そのため、電極34は常に検水に浸り、電極34の乾燥を防ぐことができる。
[Effect of liquid quality sensor]
Next, the effect of the liquid quality sensor S of the present embodiment will be described.
Since the partition plate 35 is tilted, the sample water flows immediately from the sample water supply port 23 toward the electrode. Therefore, the test water newly supplied from the test water supply port 23 can be brought into contact with the electrode 34 quickly, and the response speed of the sensor can be increased. If the test water supply port 23 and the test water discharge port 24 are formed on the same side surface of the test water tank 21, there is a possibility that the test water introduced from the test water supply port 23 flows directly to the test water discharge port 24. However, according to the liquid quality sensor S according to the present embodiment, such a flow can be prevented by the partition plate 35. And space saving can be achieved by arrange | positioning the test water supply port 23 and the test water discharge port 24 in the same side surface of the water test tank 21. FIG. In addition, since the test water supply port 23 is provided above the bottom of the cylindrical space 22 and the electrode 34, even if the liquid quality sensor of the present embodiment is not operating, A part of the test water remains at the bottom, and a liquid pool is formed. Therefore, the electrode 34 can always be immersed in the test water, and the electrode 34 can be prevented from drying.

さらに、円筒状空間22の底部を丸みを帯びるように形成することにより、デッドスペースが減り、円筒状空間22内を循環する検水の流れを安定的に作り出すことができる。その結果、古い検水と新しい検水とをすばやく且つ確実に入れ替えることが可能となり、検水のpHや酸化還元電位を正確に測定することができる。   Furthermore, by forming the bottom of the cylindrical space 22 so as to be rounded, the dead space is reduced, and the flow of the sample water circulating in the cylindrical space 22 can be stably generated. As a result, the old test water and the new test water can be replaced quickly and reliably, and the pH and redox potential of the test water can be accurately measured.

本実施の形態に係る液質センサSは、先端部31の端面が傾きを有するように形成されている。そのため、何らかの要因で検水供給口23から空気が入り込んだ場合でも、空気は検水供給口23付近の仕切り板35の下に溜まるか、又は仕切り板35の間から円筒状空間22内の上部に抜けて、先端部31の端面に空気溜まりが生じることがない。電極34が空気溜まりの中に入ってしまうと、検水の正確な電位差を測定することができないおそれがあるが、本実施の形態の液質センサSによれば、先端部31の端面に空気溜まりができることを防ぐことにより、検水の電位差を正確に測定することができる。また、傾きを有する仕切り板35の下に溜まった空気溜まりは、検水供給口23の近傍で最も層が厚くなるので、検水供給口23の高さをある程度高くしても円筒状空間22の底部に溜まる検水の量が必要以上に多くなることはない。このため、電極34の保湿に必要で、検水の置換速度に影響を与えない程度の適切な量の検水を保持することができる。   The liquid quality sensor S according to the present embodiment is formed so that the end surface of the tip 31 has an inclination. Therefore, even when air enters from the test water supply port 23 for some reason, the air accumulates under the partition plate 35 in the vicinity of the test water supply port 23 or the upper part in the cylindrical space 22 from between the partition plates 35. This prevents the air from accumulating on the end surface of the tip 31. If the electrode 34 enters the air reservoir, there is a possibility that an accurate potential difference of the sample water cannot be measured. However, according to the liquid quality sensor S of the present embodiment, the end surface of the distal end portion 31 has no air. By preventing the accumulation, the potential difference of the sample water can be measured accurately. Further, since the air pool accumulated below the inclined partition plate 35 is thickest in the vicinity of the test water supply port 23, the cylindrical space 22 is maintained even if the height of the test water supply port 23 is increased to some extent. The amount of sample water collected at the bottom of the water will not increase more than necessary. For this reason, it is necessary for the moisture retention of the electrode 34, and it is possible to hold an appropriate amount of test water that does not affect the replacement speed of the test water.

なお、本発明は上述した実施形態に限定されるものではない。例えば、より大きく検水の移動を促すために、仕切り板35が縦断面において弧を描くように設けられていてもよい。   In addition, this invention is not limited to embodiment mentioned above. For example, the partition plate 35 may be provided so as to draw an arc in the vertical cross section in order to facilitate the movement of the water sample.

1・・・流水経路、 2・・・フローセル、 3・・・電極ユニット、 4・・・演算処理ユニット、 5・・・電圧発生部、 6・・・電圧検出部、 7・・・演算処理部、 8・・・表示部、 21・・・検水槽、 22・・・円筒状空間、 23・・・検水供給口、 24・・・検水排出口、 31・・・先端部、 32・・・本体部、 33・・・コネクタ、 34・・・電極、 35・・・仕切り板、 36・・・封止部、 37・・・液絡部。   DESCRIPTION OF SYMBOLS 1 ... Flowing water path, 2 ... Flow cell, 3 ... Electrode unit, 4 ... Arithmetic processing unit, 5 ... Voltage generation part, 6 ... Voltage detection part, 7 ... Arithmetic processing 8 is a display unit, 21 is a test tank, 22 is a cylindrical space, 23 is a test water supply port, 24 is a test water discharge port, and 31 is a tip part. ... Main body part, 33 ... Connector, 34 ... Electrode, 35 ... Partition plate, 36 ... Sealing part, 37 ... Liquid junction part.

Claims (5)

測定流体を導入する供給口、この供給口に連接する測定空間及びこの測定空間につながり前記測定流体を排出する排出口を備えたフローセルと、
このフローセルに装着されて前記供給口から前記測定空間に導入された測定流体と接触して前記測定流体の性質に基づく信号を出力する電極を有する電極ユニットとを備え、
前記測定空間内に挿入される前記電極ユニットの先端部は、前記供給口から供給された測定流体を前記電極の方向へ誘導する仕切り板を有し、
前記測定空間は、中心軸が上下方向に延びる円筒状空間であり、
前記供給口及び前記排出口は、前記供給口を前記排出口よりも下にして配置され、
前記仕切り板は、前記供給口及び前記排出口の間の位置からこの位置とは前記中心軸に対して反対側の位置に向かって下方に傾斜して上下を区画するとともに、前記反対側の位置で上下に連通する連通部を有する
ことを特徴とする液質センサ。
A flow cell having a supply port for introducing a measurement fluid, a measurement space connected to the supply port, and a discharge port connected to the measurement space and discharging the measurement fluid;
An electrode unit having an electrode that is attached to the flow cell and that contacts the measurement fluid introduced into the measurement space from the supply port and outputs a signal based on the property of the measurement fluid;
The tip of the electrode unit inserted into the measurement space has a partition plate for guiding the measurement fluid supplied from the supply port in the direction of the electrode,
The measurement space is a cylindrical space whose central axis extends in the vertical direction,
The supply port and the discharge port are arranged with the supply port below the discharge port,
The partition plate inclines downward from a position between the supply port and the discharge port toward a position opposite to the central axis, and divides the upper and lower sides, and the position on the opposite side A liquid quality sensor characterized by having a communicating portion that communicates vertically.
前記仕切り板の最も低い部分は、前記電極よりも上方に設けられていることを特徴とする請求項1記載の液質センサ。   2. The liquid quality sensor according to claim 1, wherein the lowest part of the partition plate is provided above the electrode. 前記測定空間の底部は、前記測定空間の下方向に向かってくぼむように丸みを帯びて形成されていることを特徴とする請求項1又は2記載の液質センサ。   3. The liquid quality sensor according to claim 1, wherein a bottom portion of the measurement space is formed to be rounded so as to be recessed downward in the measurement space. 前記電極ユニットの前記先端部は、下端の端面が前記仕切り板の前記連通部から前記供給口側に向けて下がる傾きを有するように構成されていることを特徴とする請求項1乃至3のいずれか1項記載の液質センサ。   4. The device according to claim 1, wherein the tip portion of the electrode unit is configured such that an end surface of a lower end thereof is inclined to be lowered toward the supply port side from the communication portion of the partition plate. The liquid quality sensor according to claim 1. 前記供給口及び前記排出口は、前記フローセルの検水槽の同一の側面に設けられていることを特徴とする請求項1乃至4のいずれか1項記載の液質センサ。   The liquid quality sensor according to any one of claims 1 to 4, wherein the supply port and the discharge port are provided on the same side surface of the water detection tank of the flow cell.
JP2012211710A 2012-09-26 2012-09-26 Liquid quality sensor Active JP6016157B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2012211710A JP6016157B2 (en) 2012-09-26 2012-09-26 Liquid quality sensor

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2012211710A JP6016157B2 (en) 2012-09-26 2012-09-26 Liquid quality sensor
CN 201220576409 CN202994705U (en) 2012-09-26 2012-11-05 Liquid sensor

Publications (2)

Publication Number Publication Date
JP2014066597A JP2014066597A (en) 2014-04-17
JP6016157B2 true JP6016157B2 (en) 2016-10-26

Family

ID=48565875

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2012211710A Active JP6016157B2 (en) 2012-09-26 2012-09-26 Liquid quality sensor

Country Status (2)

Country Link
JP (1) JP6016157B2 (en)
CN (1) CN202994705U (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9834180B2 (en) 2009-07-28 2017-12-05 Craig McCONNELL Method and apparatus for preventing a build up of snow or dust

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4833385U (en) * 1971-08-23 1973-04-21
JPS51153683U (en) * 1975-05-31 1976-12-08
JP3662692B2 (en) * 1996-11-26 2005-06-22 松下電工株式会社 Electrolyzed water generator
JP5148415B2 (en) * 2008-09-02 2013-02-20 株式会社堀場製作所 Flow cell for liquid sensor such as dissolved oxygen sensor and water quality analyzer

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9834180B2 (en) 2009-07-28 2017-12-05 Craig McCONNELL Method and apparatus for preventing a build up of snow or dust

Also Published As

Publication number Publication date
CN202994705U (en) 2013-06-12
JP2014066597A (en) 2014-04-17

Similar Documents

Publication Publication Date Title
JP5622063B1 (en) Chemical oxygen consumption (COD) automatic measuring device
KR20030006561A (en) Sensor for detecting water level
JP6016157B2 (en) Liquid quality sensor
KR101433502B1 (en) Device for supplying electrolyte solution
US10712309B2 (en) Electrochemical sensor
KR101621737B1 (en) Measuring device for quality of tap water
TWI470219B (en) Hand-held systems and methods for detection of contaminants in a liquid
JP4827239B2 (en) Defect detection / filling degree measuring apparatus for concrete during placing and method for detecting and filling the defect
JP6422870B2 (en) Dissolved oxygen measuring system and calibration method of dissolved oxygen meter
CN205506744U (en) Glucose biosensor
WO2011099483A2 (en) Interface meter
JP6136570B2 (en) Water quality inspection device
CN208953402U (en) A kind of strength of fluid detector and concentration of seawater detection device
JP5946782B2 (en) pH sensor and method for detecting oil deterioration using the sensor
JP2005214685A (en) Gas leak detector
JP2017509874A (en) Electrochemical gas sensor
KR20150072039A (en) Electrostatic capacitance type system for sensing liquid level
CN103616057A (en) Method and device for measuring level of water in non-metal container or pipeline
JP2016004027A (en) Sensor, urine sensor, and toilet bowl device
CN201440134U (en) Electrochemistry measuring probe
JP3708208B2 (en) pH sensor and ion water generator
CN215768378U (en) Device for monitoring concentration of chloride ions in air in real time
CN107957441B (en) Detection device for electrochemical analysis
CN207096163U (en) A kind of protection device of platinum plate electrode
CN106441502A (en) Device and method for noncontact measuring of remaining reagent amount

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20150616

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20160525

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20160607

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20160801

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20160830

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20160916

R150 Certificate of patent or registration of utility model

Ref document number: 6016157

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250