JP2016114376A - Solid-state residual chlorine sensor and water meter having the same - Google Patents

Solid-state residual chlorine sensor and water meter having the same Download PDF

Info

Publication number
JP2016114376A
JP2016114376A JP2014250894A JP2014250894A JP2016114376A JP 2016114376 A JP2016114376 A JP 2016114376A JP 2014250894 A JP2014250894 A JP 2014250894A JP 2014250894 A JP2014250894 A JP 2014250894A JP 2016114376 A JP2016114376 A JP 2016114376A
Authority
JP
Japan
Prior art keywords
electrode
residual chlorine
solid
tap water
metal constituting
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2014250894A
Other languages
Japanese (ja)
Other versions
JP6518937B2 (en
Inventor
慎司 岡崎
Shinji Okazaki
慎司 岡崎
尚貴 加藤
Naoki Kato
尚貴 加藤
智夫 五明
Tomoo Gomyo
智夫 五明
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Aichi Tokei Denki Co Ltd
Yokohama National University NUC
Original Assignee
Aichi Tokei Denki Co Ltd
Yokohama National University NUC
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Aichi Tokei Denki Co Ltd, Yokohama National University NUC filed Critical Aichi Tokei Denki Co Ltd
Priority to JP2014250894A priority Critical patent/JP6518937B2/en
Publication of JP2016114376A publication Critical patent/JP2016114376A/en
Application granted granted Critical
Publication of JP6518937B2 publication Critical patent/JP6518937B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Water Treatment By Electricity Or Magnetism (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a passive solid-state residual chlorine sensor having a simple structure, and a water meter having the same.SOLUTION: A solid-state residual chlorine sensor 10 comprises a first electrode 11, a second electrode 12, and a voltmeter 13 connected to the first electrode 11 and the second electrode 12. A metal constituting the first electrode 11 is more responsive to free residual chlorine in tap water than a metal constituting the second electrode 12. Electrode potential of the metal constituting the first electrode 11 and that of the metal constituting the second electrode 12 vary similarly with variation of water quality factors of the tap water and environmental factors.SELECTED DRAWING: Figure 1

Description

本発明は、水道メーターに適用可能な固体型残留塩素センサーおよびこれを備えた水道メーターに関する。   The present invention relates to a solid-type residual chlorine sensor applicable to a water meter and a water meter equipped with the same.

水道水の消毒は水道法第22条に基づく水道法施行規則(厚生労働省令)第17条3号により「給水栓(蛇口)における水が、遊離残留塩素を0.1mg/L以上(結合残留塩素の場合は0.4mg/L)以上保持するように塩素消毒をすること。ただし、供給する水が病原生物に著しく汚染される恐れがある場合、又は病原生物に汚染されたことを疑わせるような生物もしくは物質を多量に含む恐れのある場合の給水栓における水の遊離残留塩素は0.2mg/L(結合残留塩素の場合は、1.5mg/L)以上とする」と規定されている。
現在、給水栓における水に含まれる遊離残留塩素の濃度が上記の範囲となるように、浄水場において、塩素濃度を管理しており、給水栓に近いところでは、水道水に含まれる遊離残留塩素の濃度を管理していない。
Disinfection of tap water is based on Article 17-3 of the Water Supply Law Enforcement Regulations (Ministry of Health, Labor and Welfare) based on Article 22 of the Water Supply Law. Chlorine disinfection to maintain at least 0.4 mg / L in the case of chlorine (provided that the supplied water may be significantly contaminated by pathogenic organisms or suspected of being contaminated by pathogenic organisms) The free residual chlorine in water at the faucet when there is a risk of containing a large amount of such organisms or substances shall be 0.2 mg / L or more (1.5 mg / L in the case of combined residual chlorine). Yes.
At present, the chlorine concentration is controlled at the water purification plant so that the concentration of free residual chlorine contained in the water at the faucet is within the above range, and the free residual chlorine contained in tap water is close to the faucet. Not managing the concentration.

従来、水道水中の遊離残留塩素の濃度を測定する方法としては、定電位電解法が用いられている。定電位電解法は、固有の電解電位を印加して、目的の物質を酸化/還元することにより生ずる電流の変化を測定する方法である。
また、給水末端等で主流となっている吸光光度法は、水道水に発色試薬を添加し、発色試薬と塩素との反応による発色の度合いを見ることにより、遊離残留塩素の濃度を測定するものである。例えば、遊離残留塩素の濃度が分かっている標準液(水道水)に発色試薬を添加して、標準液中の遊離残留塩素を発色させ、吸光光度法により、その色の吸光度を測定して、遊離残留塩素の濃度と吸光度の関係を調べる。この遊離残留塩素の濃度と吸光度の関係を、標準液中の遊離残留塩素の濃度を変化させて、繰り返し調べて、得られた結果に基づいて、遊離残留塩素の濃度と吸光度の関係を示す検量線を作成する。その後、遊離残留塩素の濃度が分からない水道水(試料)に発色試薬を添加して、試料中の遊離残留塩素を発色させ、吸光光度法により、その色の吸光度を測定し、得られた吸光度を検量線に当てはめて、試料中の遊離残留塩素の濃度を得る。このように、吸光光度法では、水道水中の遊離残留塩素の濃度を常時観察することが難しかった。
Conventionally, a constant potential electrolysis method has been used as a method for measuring the concentration of free residual chlorine in tap water. The constant potential electrolysis method is a method for measuring a change in current caused by applying a specific electrolytic potential and oxidizing / reducing a target substance.
In addition, the spectrophotometric method, which has become the mainstream at the end of water supply, etc., measures the concentration of free residual chlorine by adding a coloring reagent to tap water and observing the degree of coloring caused by the reaction between the coloring reagent and chlorine. It is. For example, a coloring reagent is added to a standard solution (tap water) in which the concentration of free residual chlorine is known, the free residual chlorine in the standard solution is colored, and the absorbance of that color is measured by absorptiometry, Investigate the relationship between free residual chlorine concentration and absorbance. The relationship between the concentration of free residual chlorine and the absorbance was repeatedly examined by changing the concentration of free residual chlorine in the standard solution. Based on the obtained results, a calibration indicating the relationship between the concentration of free residual chlorine and the absorbance. Create a line. After that, a coloring reagent is added to tap water (sample) whose concentration of free residual chlorine is not known, the free residual chlorine in the sample is colored, the absorbance of the color is measured by absorptiometry, and the obtained absorbance Is applied to the calibration curve to obtain the concentration of free residual chlorine in the sample. Thus, with the absorptiometry, it was difficult to always observe the concentration of free residual chlorine in tap water.

また、定電位電解法は、水道水に電流を流すために大きな電力が必要であるため、電力消費量が大きい。そのため、所定の期間(例えば、8年以上)、容量に限りがある電池で、水道管の途中に設けられた、定電位電解法を応用した残留塩素センサーを稼働させることは難しい。
そこで、電力等のエネルギーを必要とすることなく稼働する電極型センサーが提案されている。具体的には、銀−塩化銀電極からなり、陽極となる第一の電極と、白金電極からなり、陰極となる第二の電極とを有し、これら2つの電極を、水道水に電極を浸漬させることにより、2つの電極間に生じる起電力を利用して、水道水中の遊離残留塩素を測定する電極型センサーが提案されている(例えば、特許文献1参照)。
In addition, the constant-potential electrolysis method requires a large amount of power in order to pass a current through tap water, and thus consumes a large amount of power. Therefore, it is difficult to operate a residual chlorine sensor to which a constant potential electrolysis method is applied that is provided in the middle of a water pipe with a battery having a limited capacity for a predetermined period (for example, 8 years or more).
Therefore, an electrode type sensor that operates without requiring energy such as electric power has been proposed. Specifically, it is composed of a silver-silver chloride electrode, having a first electrode serving as an anode, and a second electrode comprising a platinum electrode serving as a cathode, and these two electrodes are connected to tap water. An electrode-type sensor that measures free residual chlorine in tap water by using an electromotive force generated between two electrodes by dipping has been proposed (for example, see Patent Document 1).

特開平9−72879号公報Japanese Patent Laid-Open No. 9-72879

特許文献1の電極型センサーは、さらに、第二の電極よりも標準電極電位が低く、金電極からなる第三の電極を備えており、構造が複雑であるという問題があった。   The electrode-type sensor of Patent Document 1 has a problem that the standard electrode potential is lower than that of the second electrode and the third electrode made of a gold electrode is provided, and the structure is complicated.

本発明は、上記事情に鑑みてなされたものであって、構造が簡易な無給電式の固体型残留塩素センサーおよびこれを備えた水道メーターを提供することを目的とする。   This invention is made | formed in view of the said situation, Comprising: It aims at providing a non-feed-type solid-type residual chlorine sensor with a simple structure, and a water meter provided with the same.

本発明の固体型残留塩素センサーは、第1電極と、第2電極と、前記第1電極および前記第2電極に接続された電圧計と、を備え、前記第1電極を構成する金属は、前記第2電極を構成する金属よりも、水道水中の遊離残留塩素に対する反応性が高く、前記第1電極を構成する金属と、前記第2電極を構成する金属とは、前記水道水の水質因子および環境因子の変化量に対する電極電位の変化量が近似していることを特徴とする。
ここで、水質因子とは、pH、溶存酸素濃度、塩化物イオン濃度、硬度成分(Ca、Mg)等の電位に変化を及ぼす水質管理項目のことである。また、環境因子とは、水温等の電位に変化を及ぼす組立量のことである。
The solid-type residual chlorine sensor of the present invention includes a first electrode, a second electrode, and a voltmeter connected to the first electrode and the second electrode, and the metal constituting the first electrode is: Reactivity to free residual chlorine in tap water is higher than that of the metal constituting the second electrode, and the metal constituting the first electrode and the metal constituting the second electrode are water quality factors of the tap water. In addition, the change amount of the electrode potential is approximate to the change amount of the environmental factor.
Here, the water quality factor is a water quality management item that changes the potential of pH, dissolved oxygen concentration, chloride ion concentration, hardness components (Ca, Mg), and the like. The environmental factor is the amount of assembly that changes the electric potential such as the water temperature.

本発明の固体型残留塩素センサーにおいて、前記第1電極を構成する金属は、白金またはチタンであり、前記第2電極を構成する金属は、中性付近の溶液中で強固な不動態皮膜を形成し得る金属であることが好ましい。   In the solid-type residual chlorine sensor of the present invention, the metal constituting the first electrode is platinum or titanium, and the metal constituting the second electrode forms a strong passive film in a neutral solution. It is preferable that it is a metal that can be used.

本発明の固体型残留塩素センサーにおいて、前記一対の電極は、前記水道水が流れる配管の内面に露出するように設けられることが好ましい。   In the solid-type residual chlorine sensor of the present invention, it is preferable that the pair of electrodes is provided so as to be exposed on an inner surface of a pipe through which the tap water flows.

本発明の固体型残留塩素センサーにおいて、前記一対の電極は、前記配管の一部をなしていることが好ましい。   In the solid-type residual chlorine sensor of the present invention, it is preferable that the pair of electrodes form part of the pipe.

本発明の固体型残留塩素センサーにおいて、前記一対の電極における前記水道水と接する部分は、多孔質体で包囲されたことが好ましい。   In the solid-type residual chlorine sensor of the present invention, it is preferable that portions of the pair of electrodes that are in contact with the tap water are surrounded by a porous body.

本発明の水道メーターは、本発明の固体型残留塩素センサーを備えたことを特徴とする。   The water meter of the present invention includes the solid-type residual chlorine sensor of the present invention.

本発明によれば、構造が簡易な無給電式の固体型残留塩素センサーおよびこれを備えた水道メーターを提供することができる。   According to the present invention, it is possible to provide a non-feed type solid-type residual chlorine sensor having a simple structure and a water meter equipped with the same.

本発明の固体型残留塩素センサーの第1の実施形態を示す模式図である。1 is a schematic diagram showing a first embodiment of a solid-type residual chlorine sensor of the present invention. 本発明の固体型残留塩素センサーの第1の実施形態の使用方法示す概略図であり、(a)は固体型残留塩素センサーを設置した配管の長手方向に沿う断面図、(b)は(a)のA−A線に沿う断面図である。It is the schematic which shows the usage method of 1st Embodiment of the solid-type residual chlorine sensor of this invention, (a) is sectional drawing in alignment with the longitudinal direction of piping which installed the solid-type residual chlorine sensor, (b) is (a It is sectional drawing which follows the AA line of (). 本発明の固体型残留塩素センサーの第2の実施形態を示す概略斜視図である。It is a schematic perspective view which shows 2nd Embodiment of the solid-type residual chlorine sensor of this invention. 実験例1において、白金(Pt)からなる電極の電位を測定した結果を示すグラフである。In Experimental example 1, it is a graph which shows the result of having measured the electric potential of the electrode which consists of platinum (Pt). 実験例2において、SUS316からなる電極の電位を測定した結果を示すグラフである。In Experimental example 2, it is a graph which shows the result of having measured the electric potential of the electrode which consists of SUS316. 実験例3において、SUS316Lからなる電極の電位を測定した結果を示すグラフである。In Experimental example 3, it is a graph which shows the result of having measured the electric potential of the electrode which consists of SUS316L. 実験例4において、作用極の電位と溶液のpHとの関係を示すグラフである。In Experimental Example 4, it is a graph which shows the relationship between the electric potential of a working electrode, and the pH of a solution. 実験例5において、白金(Pt)からなる電極とSUS316Lからなる電極の電位差を測定した結果を示すグラフである。In Experimental Example 5, it is a graph which shows the result of having measured the electrical potential difference of the electrode which consists of platinum (Pt), and the electrode which consists of SUS316L.

本発明の固体型残留塩素センサーおよびこれを備えた水道メーターの実施の形態について説明する。
なお、本実施の形態は、発明の趣旨をより良く理解させるために具体的に説明するものであり、特に指定のない限り、本発明を限定するものではない。
Embodiments of a solid-type residual chlorine sensor and a water meter equipped with the same according to the present invention will be described.
Note that this embodiment is specifically described in order to better understand the gist of the invention, and does not limit the present invention unless otherwise specified.

[固体型残留塩素センサー]
(1)第1の実施形態
図1は、本発明の固体型残留塩素センサーの第1の実施形態を示す模式図である。図2は、本発明の固体型残留塩素センサーの第1の実施形態の使用方法示す概略図であり、(a)は固体型残留塩素センサーを設置した配管の長手方向に沿う断面図、(b)は(a)のA−A線に沿う断面図である。
本実施形態の固体型残留塩素センサー10は、水道水20中の遊離残留塩素の濃度を測定するために用いられ、陰極となる第1電極11と、陽極となる第2電極12と、第1電極11および第2電極12の電位差を測定するために接続された電圧計13と、を備えてなる。
第1電極11は、その長手方向の一端(水道水20に浸漬されたときに下方に配置される側とは反対側の端)に、電圧計13と接続するためのリード14が接続されている。また、リード14は、その長手方向の一端(第1電極11と接続されている側とは反対側の端)に、電圧計13に接続される端子(図示略)が設けられている。
同様に、第2電極12は、その長手方向の一端(水道水20に浸漬されたときに下方に配置される側とは反対側の端)に、電圧計13と接続するためのリード15が接続されている。また、リード15は、その長手方向の一端(第2電極12と接続されている側とは反対側の端)に、電圧計13に接続される端子(図示略)が設けられている。
[Solid-type residual chlorine sensor]
(1) 1st Embodiment FIG. 1: is a schematic diagram which shows 1st Embodiment of the solid-type residual chlorine sensor of this invention. FIG. 2 is a schematic view showing a method for using the first embodiment of the solid-type residual chlorine sensor of the present invention, (a) is a cross-sectional view along the longitudinal direction of a pipe in which the solid-type residual chlorine sensor is installed, (b) ) Is a cross-sectional view taken along line AA in FIG.
The solid-type residual chlorine sensor 10 of this embodiment is used for measuring the concentration of free residual chlorine in the tap water 20, and includes a first electrode 11 serving as a cathode, a second electrode 12 serving as an anode, and a first electrode. And a voltmeter 13 connected to measure a potential difference between the electrode 11 and the second electrode 12.
A lead 14 for connecting to the voltmeter 13 is connected to one end of the first electrode 11 in the longitudinal direction (the end opposite to the side disposed below when immersed in the tap water 20). Yes. The lead 14 is provided with a terminal (not shown) connected to the voltmeter 13 at one end in the longitudinal direction (the end opposite to the side connected to the first electrode 11).
Similarly, the second electrode 12 has a lead 15 for connecting to the voltmeter 13 at one end in the longitudinal direction (the end opposite to the side disposed below when immersed in the tap water 20). It is connected. The lead 15 is provided with a terminal (not shown) connected to the voltmeter 13 at one end in the longitudinal direction (the end opposite to the side connected to the second electrode 12).

第1電極11を構成する金属は、第2電極12を構成する金属よりも、水道水20中の遊離残留塩素に対する反応性が高い。本実施形態において、第1電極11を構成する金属が、水道水20中の遊離残留塩素に対する反応性が高いとは、第1電極11を構成する金属が、水道水20に含まれる微量(例えば、1ppm〜10ppm)の遊離残留塩素と反応して、電極電位が変化することを言う。
水道水を造るために、水を塩素化合物で消毒するとき、例えば、水に塩素ガスを溶かすと、水(HO)と塩素ガス(Cl)が反応して、次亜塩素酸(HOCl)と、塩酸(HCl)とが発生し、さらに、次亜塩素酸(HOCl)の一部は、次亜塩素酸イオン(OCl)と、水素イオン(H)とに解離する。第1電極11では、下記式(1)に示すような遊離残留塩素(例えば、次亜塩素酸イオン(OCl))の還元反応が生じる。
OCl+HO+2e→Cl+2OH (1)
第1電極11の表面では、上記式(1)に示すような、遊離残留塩素の還元反応と、それと対をなす酸化反応(第1電極11が腐食性金属の場合は、下記式(2)に示すような金属(M)の溶解(金属イオン(Mn)の分離)反応)が生じ、還元反応と酸化反応が釣り合うことで定常状態の電位になる。
The metal constituting the first electrode 11 is more reactive to free residual chlorine in the tap water 20 than the metal constituting the second electrode 12. In this embodiment, the metal which comprises the 1st electrode 11 is highly reactive with respect to the free residual chlorine in the tap water 20 that the metal which comprises the 1st electrode 11 is contained in the tap water 20 (for example, It means that the electrode potential changes by reacting with 1 ppm to 10 ppm of free residual chlorine.
When water is sterilized with a chlorine compound to produce tap water, for example, when chlorine gas is dissolved in water, water (H 2 O) and chlorine gas (Cl 2 ) react to produce hypochlorous acid (HOCl). ) And hydrochloric acid (HCl) are generated, and a part of hypochlorous acid (HOCl) is dissociated into hypochlorite ions (OCl ) and hydrogen ions (H + ). In the first electrode 11, a reduction reaction of free residual chlorine (for example, hypochlorite ion (OCl )) as shown in the following formula (1) occurs.
OCl + H 2 O + 2e → Cl + 2OH (1)
On the surface of the first electrode 11, a reduction reaction of free residual chlorine as shown in the above formula (1) and an oxidation reaction paired therewith (when the first electrode 11 is a corrosive metal, the following formula (2) The metal (M) dissolution (metal ion (Mn + ) separation) reaction as shown in FIG. 2 occurs, and the reduction reaction and the oxidation reaction are balanced to obtain a steady-state potential.

一方、第2電極12を構成する金属は、第1電極11を構成する金属よりも、水道水20中の遊離残留塩素に対する反応性が低い。本実施形態において、第2電極12を構成する金属が、水道水20中の遊離残留塩素に対する反応性が低いとは、第2電極12を構成する金属が、水道水20に含まれる微量(例えば、1ppm〜10ppm)の遊離残留塩素と反応して、電極電位が変化しないことを言う。また、第2電極12が腐食性金属の場合には、下記式(2)に示すような金属(M)の溶解(金属イオン(Mn+)の分離)反応と溶液中に含まれる溶存酸素の還元反応あるいは水からの水素発生反応と釣り合った状態で電位が定常状態となる。
M→Mn++ne (2)
(但し、nは1または2である。)
On the other hand, the metal constituting the second electrode 12 is less reactive to free residual chlorine in the tap water 20 than the metal constituting the first electrode 11. In this embodiment, the metal which comprises the 2nd electrode 12 is low in the reactivity with respect to the free residual chlorine in the tap water 20 that the metal which comprises the 2nd electrode 12 is contained in the tap water 20 (for example, It means that the electrode potential does not change by reacting with 1 ppm to 10 ppm of free residual chlorine. When the second electrode 12 is a corrosive metal, the metal (M) dissolution (separation of metal ions (M n + )) reaction shown in the following formula (2) and the dissolved oxygen contained in the solution The potential becomes a steady state in a state balanced with the reduction reaction or the hydrogen generation reaction from water.
M → M n + + ne (2)
(However, n is 1 or 2.)

また、第1電極11を構成する金属と、第2電極12を構成する金属とは、水道水20の水質因子および環境因子の変化量に対する電極電位の変化量が近似している。ここで、水質因子とは、水道水20のpH、溶存酸素濃度、塩化物イオン濃度、硬度成分(Ca、Mg)等の電位に変化を及ぼす水質管理項目のことである。また、環境因子とは、水道水20の温度等の電位に変化を及ぼす組立量のことである。これは、第1電極11を構成する金属と第2電極12を構成する金属との間に、以下のような関係があることを示している。なお、ここでは、水道水20のpHに着目して、第1電極11を構成する金属と第2電極12を構成する金属との関係を説明する。
水道水20中の遊離残留塩素の濃度を一定にした状態で、水道水20のpHのみを変化させて、第1電極11を構成する金属の電極電位と、第2電極12を構成する金属の電極電位とを測定して、それぞれの電極を構成する金属について、pHと電極電位の関係を示すグラフを作成する。例えば、pHをX軸(横軸)、電極電位をY軸(縦軸)として、第1電極11を構成する金属と第2電極12を構成する金属のそれぞれについて、pHと電極電位の関係を示すグラフを作成する。そのグラフから、第1電極11を構成する金属と第2電極12を構成する金属のそれぞれについて、pHと電極電位の関係を表わす直線(一次関数)を得る。本実施形態では、得られた第1電極11を構成する金属に関する直線の傾きと、第2電極12を構成する金属に関する直線の傾きとが近似している。言い換えれば、第1電極11を構成する金属に関する直線と、第2電極12を構成する金属に関する直線とが、ほぼ平行になっている。
Further, the metal constituting the first electrode 11 and the metal constituting the second electrode 12 approximate the amount of change in electrode potential with respect to the amount of change in the water quality factor and environmental factor of the tap water 20. Here, the water quality factor is a water quality management item that changes the potential of tap water 20 such as pH, dissolved oxygen concentration, chloride ion concentration, hardness components (Ca, Mg), and the like. Further, the environmental factor is an assembly amount that changes a potential such as a temperature of the tap water 20. This indicates that there is the following relationship between the metal constituting the first electrode 11 and the metal constituting the second electrode 12. Here, focusing on the pH of the tap water 20, the relationship between the metal constituting the first electrode 11 and the metal constituting the second electrode 12 will be described.
In a state where the concentration of free residual chlorine in the tap water 20 is constant, only the pH of the tap water 20 is changed, and the electrode potential of the metal constituting the first electrode 11 and the metal potential constituting the second electrode 12 are changed. The electrode potential is measured, and a graph showing the relationship between pH and electrode potential is created for the metal constituting each electrode. For example, with pH as the X axis (horizontal axis) and electrode potential as the Y axis (vertical axis), the relationship between the pH and the electrode potential for each of the metal constituting the first electrode 11 and the metal constituting the second electrode 12 is as follows. Create the graph shown. From the graph, a straight line (linear function) representing the relationship between pH and electrode potential is obtained for each of the metal constituting the first electrode 11 and the metal constituting the second electrode 12. In the present embodiment, the slope of the straight line related to the metal constituting the first electrode 11 and the slope of the straight line related to the metal constituting the second electrode 12 are approximated. In other words, the straight line related to the metal constituting the first electrode 11 and the straight line related to the metal constituting the second electrode 12 are substantially parallel.

このような第1電極11と第2電極12の関係を満たす金属としては、例えば、以下のようなものが挙げられる。
第1電極11を構成する金属としては、電極電位の経時変化が小さく、水道水20に含まれる微量の遊離残留塩素との反応性が高いことから、白金またはチタンが好ましい。
第2電極12を構成する金属としては、中性付近の溶液中で強固な不動態皮膜を形成し得る金属が好ましい。このような金属としては、SUS316、SUS316L、タングステン(W)、タンタル(Ta)等が挙げられ、これらの中でも、電極電位の経時変化が小さいことから、SUS316またはSUS316Lが好ましい。
Examples of the metal that satisfies the relationship between the first electrode 11 and the second electrode 12 include the following.
As the metal constituting the first electrode 11, platinum or titanium is preferable because the change in the electrode potential with time is small and the reactivity with a small amount of free residual chlorine contained in the tap water 20 is high.
The metal constituting the second electrode 12 is preferably a metal that can form a strong passive film in a neutral solution. Examples of such a metal include SUS316, SUS316L, tungsten (W), tantalum (Ta), and the like. Among these, SUS316 or SUS316L is preferable because the change in electrode potential with time is small.

本実施形態の固体型残留塩素センサー10は、例えば、図2に示すように、配管(水道管)30に設けられて、用いられる。すなわち、配管30を厚さ方向に貫通する貫通孔31に第1電極11を挿通し、第1電極11が配管30の内面30aに露出するように、配管30に対して第1電極11が設けられる。なお、第1電極11が配管30の内面30aに露出するとは、第1電極11の先端11aが、配管30の内面30aとほぼ同一面上に配置されることであり、言い換えれば、第1電極11の先端11aが、配管30の内面30aから配管30内に突出しないように配置されることである。同様に、配管30を厚さ方向に貫通する貫通孔32に第2電極12を挿通し、第2電極12が配管30の内面30aに露出するように、配管30に対して第2電極12が設けられる。なお、第2電極12が配管30の内面30aに露出するとは、第2電極12の先端12aが、配管30の内面30aとほぼ同一面上に配置されることであり、言い換えれば、第2電極12の先端12aが、配管30の内面30aから配管30内に突出しないように配置されることである。   The solid-type residual chlorine sensor 10 of this embodiment is provided and used for piping (water pipe) 30 as shown in FIG. 2, for example. That is, the first electrode 11 is provided to the pipe 30 so that the first electrode 11 is inserted into the through hole 31 that penetrates the pipe 30 in the thickness direction, and the first electrode 11 is exposed to the inner surface 30 a of the pipe 30. It is done. In addition, that the 1st electrode 11 is exposed to the inner surface 30a of the piping 30 is that the front-end | tip 11a of the 1st electrode 11 is arrange | positioned on the substantially same surface as the inner surface 30a of the piping 30, in other words, the 1st electrode. 11 is arranged so that the tip 11a of 11 does not protrude from the inner surface 30a of the pipe 30 into the pipe 30. Similarly, the second electrode 12 is inserted into the through-hole 32 that penetrates the pipe 30 in the thickness direction, and the second electrode 12 is connected to the pipe 30 so that the second electrode 12 is exposed to the inner surface 30a of the pipe 30. Provided. In addition, that the 2nd electrode 12 is exposed to the inner surface 30a of the piping 30 is that the front-end | tip 12a of the 2nd electrode 12 is arrange | positioned substantially on the same surface as the inner surface 30a of the piping 30, in other words, the 2nd electrode. That is, the 12 tips 12 a are arranged so as not to protrude into the pipe 30 from the inner surface 30 a of the pipe 30.

このように、第1電極11および第2電極12が、配管30の内面30aから配管30内に突出することなく、配管30の内面30aに露出するように設けられることにより、第1電極11および第2電極12が、配管30内を流れる水道水20の流速の影響を受け難くなるとともに、圧力損失の発生を抑制する。   Thus, the first electrode 11 and the second electrode 12 are provided so as to be exposed to the inner surface 30a of the pipe 30 without protruding from the inner surface 30a of the pipe 30 into the pipe 30. The second electrode 12 is less affected by the flow velocity of the tap water 20 flowing in the pipe 30 and suppresses the occurrence of pressure loss.

第1電極11および第2電極12における水道水20と接する部分、すなわち、第1電極11の先端11aおよび第2電極12の先端12aは、多孔質体40で包囲されていることが好ましい。
多孔質体40の形状は、特に限定されないが、例えば、第1電極11の先端11aおよび第2電極12の先端12aの形状に沿った形状であることが好ましい。
The portions of the first electrode 11 and the second electrode 12 that are in contact with the tap water 20, that is, the tip 11 a of the first electrode 11 and the tip 12 a of the second electrode 12 are preferably surrounded by the porous body 40.
The shape of the porous body 40 is not particularly limited. For example, the shape of the porous body 40 is preferably along the shape of the tip 11 a of the first electrode 11 and the tip 12 a of the second electrode 12.

多孔質体40としては、特に限定されないが、連続気孔(空孔)を有する多孔質セラミックス等が挙げられる。
多孔質体40の空孔率は、特に限定されないが、少なくとも、第1電極11および第2電極12が常に水道水20に接し、かつ、配管30内を流れる水道水20の流れを大きく妨げない程度である必要がある。
The porous body 40 is not particularly limited, and examples thereof include porous ceramics having continuous pores (holes).
The porosity of the porous body 40 is not particularly limited, but at least the first electrode 11 and the second electrode 12 are always in contact with the tap water 20 and do not greatly disturb the flow of the tap water 20 flowing in the pipe 30. It needs to be about.

このように、第1電極11および第2電極12における水道水20と接する部分が多孔質体40で包囲されることにより、配管30内を流れる水道水20の流速の影響を低減して、第1電極11および第2電極12によって、より正確に水道水20中の遊離残留塩素の濃度を測定することができる。   As described above, the portions of the first electrode 11 and the second electrode 12 that are in contact with the tap water 20 are surrounded by the porous body 40, thereby reducing the influence of the flow velocity of the tap water 20 flowing in the pipe 30. With the 1 electrode 11 and the 2nd electrode 12, the density | concentration of the free residual chlorine in the tap water 20 can be measured more correctly.

固体型残留塩素センサー10は、水道水20に、第1電極11および第2電極12を接触させることにより、水道水20に含まれる微量の遊離残留塩素によって、第1電極11において、上述のような遊離残留塩素の還元反応と金属(M)上で酸化反応が生じて釣り合い、その釣り合いの条件が遊離残留塩素の濃度に応じて変化することで、第1電極11と第2電極12の電位差が変化する。また、第1電極11と第2電極12の電位差は、水道水20に含まれる遊離残留塩素の濃度と比例関係にあるため、その電位差によって、遊離残留塩素の濃度を測定することができる。   The solid-type residual chlorine sensor 10 causes the first electrode 11 and the second electrode 12 to come into contact with the tap water 20, so that a small amount of free residual chlorine contained in the tap water 20 causes the first electrode 11 to The balance between the reduction reaction of free residual chlorine and the oxidation reaction on the metal (M) occurs, and the balance condition changes according to the concentration of free residual chlorine, so that the potential difference between the first electrode 11 and the second electrode 12 Changes. Further, since the potential difference between the first electrode 11 and the second electrode 12 is proportional to the concentration of free residual chlorine contained in the tap water 20, the concentration of free residual chlorine can be measured from the potential difference.

本実施形態の固体型残留塩素センサー10によれば、第1電極11、第2電極12および電圧計13という簡易な構造によって、メンテナンスフリーで長期間、配管30の途中で水道水20中の遊離残留塩素の濃度を常時測定することができる。すなわち、吸光光度法のように、発色試薬を用いる必要がないため、低コストで、水道水中の遊離残留塩素の濃度を測定することができる。   According to the solid-type residual chlorine sensor 10 of the present embodiment, the simple structure of the first electrode 11, the second electrode 12 and the voltmeter 13 is free from maintenance in the tap water 20 in the middle of the pipe 30 for a long time without maintenance. The concentration of residual chlorine can always be measured. That is, unlike the absorptiometry, it is not necessary to use a coloring reagent, so that the concentration of free residual chlorine in tap water can be measured at low cost.

(2)第2の実施形態
図3は、本発明の固体型残留塩素センサーの第2の実施形態を示す概略斜視図である。
本実施形態の固体型残留塩素センサー50は、水道水中の遊離残留塩素の濃度を測定するために用いられ、陰極となる第1電極51と、陽極となる第2電極52と、第1電極51および第2電極52に接続された電圧計53と、を備えてなる。
第1電極51および第2電極52は、固体型残留塩素センサー50が設けられる配管(水道管)60の一部をなすように、配管60と相似の形状をなしている。図3に示すように、例えば、配管60が円筒形である場合、第1電極51および第2電極52は円環状をなし、その内径および外径が、配管60の内径および外径と等しくなっている。また、第1電極51と第2電極52の間には、これら2つの電極が短絡するのを防ぐための絶縁部材56が設けられている。絶縁部材56は、第1電極51および第2電極52と相似の形状をなし、本実施形態では、円環状をなしている。
(2) Second Embodiment FIG. 3 is a schematic perspective view showing a second embodiment of the solid-type residual chlorine sensor of the present invention.
The solid-type residual chlorine sensor 50 of this embodiment is used for measuring the concentration of free residual chlorine in tap water, and includes a first electrode 51 serving as a cathode, a second electrode 52 serving as an anode, and a first electrode 51. And a voltmeter 53 connected to the second electrode 52.
The first electrode 51 and the second electrode 52 have a similar shape to the pipe 60 so as to form part of the pipe (water pipe) 60 in which the solid-type residual chlorine sensor 50 is provided. As shown in FIG. 3, for example, when the pipe 60 is cylindrical, the first electrode 51 and the second electrode 52 have an annular shape, and the inner diameter and outer diameter thereof are equal to the inner diameter and outer diameter of the pipe 60. ing. Further, an insulating member 56 is provided between the first electrode 51 and the second electrode 52 to prevent these two electrodes from being short-circuited. The insulating member 56 has a shape similar to that of the first electrode 51 and the second electrode 52, and has an annular shape in the present embodiment.

第1電極51の内面51a、第2電極52の内面52aおよび絶縁部材56の内面56aは、配管60の内面60aと同一面を形成している。また、第1電極51の外面51b、第2電極52の外面52bおよび絶縁部材56の外面56bは、配管60の外面60bと同一面を形成している。   The inner surface 51 a of the first electrode 51, the inner surface 52 a of the second electrode 52, and the inner surface 56 a of the insulating member 56 form the same surface as the inner surface 60 a of the pipe 60. Further, the outer surface 51 b of the first electrode 51, the outer surface 52 b of the second electrode 52, and the outer surface 56 b of the insulating member 56 form the same surface as the outer surface 60 b of the pipe 60.

第1電極51は、その外面51bに、電圧計53と接続するためのリード54が接続されている。また、リード54は、その長手方向の一端(第1電極51と接続されている側とは反対側の端)に、電圧計53に接続される端子(図示略)が設けられている。
同様に、第2電極52は、その外面52bに、電圧計53と接続するためのリード55が接続されている。また、リード55は、その長手方向の一端(第2電極52と接続されている側とは反対側の端)に、電圧計53に接続される端子(図示略)が設けられている。
The lead 54 for connecting with the voltmeter 53 is connected to the outer surface 51b of the first electrode 51. The lead 54 has a terminal (not shown) connected to the voltmeter 53 at one end in the longitudinal direction (the end opposite to the side connected to the first electrode 51).
Similarly, a lead 55 for connecting to the voltmeter 53 is connected to the outer surface 52b of the second electrode 52. The lead 55 is provided with a terminal (not shown) connected to the voltmeter 53 at one end in the longitudinal direction (the end opposite to the side connected to the second electrode 52).

第1電極51は、上述の第1の実施形態の第1電極11と同様に構成されている。また、第2電極52は、上述の第1の実施形態の第2電極12と同様に構成されている。   The first electrode 51 is configured in the same manner as the first electrode 11 of the first embodiment described above. The second electrode 52 is configured similarly to the second electrode 12 of the first embodiment described above.

本実施形態の固体型残留塩素センサー50は、第1電極51および第2電極52が配管60の一部をなしているので、第1電極51および第2電極52が、配管60の内面60aから配管60内に突出することなく、配管60の内面60a側に露出するように設けられ、第1電極51および第2電極52が、配管60内を流れる水道水の流速の影響を低減して、第1電極51および第2電極52によって、より正確に水道水中の遊離残留塩素の濃度を測定することができる。   In the solid-type residual chlorine sensor 50 of the present embodiment, the first electrode 51 and the second electrode 52 form a part of the pipe 60, so that the first electrode 51 and the second electrode 52 are connected to the inner surface 60a of the pipe 60. It is provided so as to be exposed to the inner surface 60a side of the pipe 60 without protruding into the pipe 60, and the first electrode 51 and the second electrode 52 reduce the influence of the flow rate of tap water flowing in the pipe 60, The first electrode 51 and the second electrode 52 can measure the concentration of free residual chlorine in tap water more accurately.

[水道メーター]
本実施形態の水道メーターは、上述の実施形態の固体型残留塩素センサーを備えてなる。
本実施形態の水道メーターの形態は、特に限定されないが、指示部回転式水道メーター、乾式水道メーター、たて型軸流羽根車式水道メーター、タービン式水道メーター、電子式水道メーター、接点パルス出力式水道メーター、電磁式水道メーター等が挙げられる。
[Water meter]
The water meter of this embodiment is provided with the solid-type residual chlorine sensor of the above-mentioned embodiment.
Although the form of the water meter of this embodiment is not particularly limited, the indicator rotating water meter, dry water meter, vertical shaft impeller water meter, turbine water meter, electronic water meter, contact pulse output Water meter, electromagnetic water meter, etc.

本実施形態の水道メーターは、例えば、上記の水道メーターの計測管に、上述の実施形態の固体型残留塩素センサーが設けられたものである。すなわち、水道メーターにおける水道水が流れる部分(水道水の流速を測定する部分)に、上述の実施形態の固体型残留塩素センサーが設けられている。   The water meter of the present embodiment is, for example, one in which the solid-type residual chlorine sensor of the above-described embodiment is provided on the measurement pipe of the water meter. That is, the solid residual chlorine sensor of the above-described embodiment is provided in a portion where tap water flows in the water meter (portion for measuring the flow rate of tap water).

本実施形態の水道メーターによれば、水道水の流量のみならず、給水栓(蛇口)により近い位置で、水道水中の遊離残留塩素の濃度を常時測定することができるとともに、水道メーターの指針値の経時変化を基に流速の影響を補正することができる。   According to the water meter of this embodiment, not only the flow rate of tap water but also the concentration of free residual chlorine in tap water can always be measured at a position closer to the faucet (faucet), and the indicator value of the water meter The influence of the flow rate can be corrected based on the change with time.

以下、実験例により本発明をさらに具体的に説明するが、本発明は以下の実験例に限定されるものではない。   Hereinafter, the present invention will be described more specifically with experimental examples, but the present invention is not limited to the following experimental examples.

「実験例1」
リン酸1水素ナトリウムとリン酸2水素ナトリウムを、モル比で1:1の割合で含む0.02Mリン酸緩衝溶液を調製し、ベース溶液とした。
このベース溶液に、遊離残留塩素を含む水溶液を注入し、次亜塩素酸の濃度が0.1ppmの次亜塩素酸溶液を調製した。
参照電極として、Ag/AgCl電極を用意した。
作用極として、白金からなる電極を用意し、炭化ケイ素(SiC)2400番研磨紙で表面を研磨した後、エタノールで脱脂した。
これらの参照電極と作用極を電圧計に接続した。
次いで、フローセル中に注入されたベース溶液に、参照電極と作用極を浸漬し、室温で60分間、ベース溶液を流通させ、作用極の電位を安定させた。
次いで、フローセル中に流通させる溶液として、ベース溶液と次亜塩素酸溶液を交互に切り替えて、作用極の電位を測定した。結果を図4に示す。
図4の結果から、次亜塩素酸溶液の流通を開始(on)してから終了(off)するまで、作用極の電位が繰り返し変化することが確認された。すなわち、白金(Pt)からなる電極の電位は、溶液中に含まれる次亜塩素酸溶液によって大きく変化し、再現性の良い応答を得ることができた。
"Experiment 1"
A 0.02M phosphate buffer solution containing sodium monohydrogen phosphate and sodium dihydrogen phosphate in a molar ratio of 1: 1 was prepared and used as a base solution.
An aqueous solution containing free residual chlorine was injected into this base solution to prepare a hypochlorous acid solution having a hypochlorous acid concentration of 0.1 ppm.
An Ag / AgCl electrode was prepared as a reference electrode.
An electrode made of platinum was prepared as a working electrode, the surface was polished with silicon carbide (SiC) No. 2400 polishing paper, and then degreased with ethanol.
These reference electrode and working electrode were connected to a voltmeter.
Next, the reference electrode and the working electrode were immersed in the base solution injected into the flow cell, and the base solution was circulated at room temperature for 60 minutes to stabilize the working electrode potential.
Next, as the solution to be circulated in the flow cell, the base solution and the hypochlorous acid solution were alternately switched, and the potential of the working electrode was measured. The results are shown in FIG.
From the results of FIG. 4, it was confirmed that the potential of the working electrode repeatedly changed from the start (on) to the end (off) of the flow of the hypochlorous acid solution. That is, the potential of the electrode made of platinum (Pt) changed greatly depending on the hypochlorous acid solution contained in the solution, and a reproducible response could be obtained.

「実験例2」
実験例1と同様にして、ベース溶液と次亜塩素酸溶液を調製し、参照電極を用意した。
作用極として、SUS316からなる電極を用意し、炭化ケイ素(SiC)2400番研磨紙で表面を研磨した後、エタノールで脱脂した。
これらの参照電極と作用極を電圧計に接続した。
次いで、実験例1と同様にして、作用極の電位を測定した。結果を図5に示す。
図5の結果から、次亜塩素酸溶液の流通を開始(on)してから終了(off)するまで、作用極の電位が繰り返し変化することが確認された。すなわち、SUS316からなる電極の電位は、白金が残留塩素濃度に応じて変化する電位の変化量よりは少ないものの、溶液中に含まれる次亜塩素酸溶液によって変化する。
"Experimental example 2"
In the same manner as in Experimental Example 1, a base solution and a hypochlorous acid solution were prepared, and a reference electrode was prepared.
An electrode made of SUS316 was prepared as a working electrode, and the surface was polished with silicon carbide (SiC) No. 2400 polishing paper, and then degreased with ethanol.
These reference electrode and working electrode were connected to a voltmeter.
Subsequently, the potential of the working electrode was measured in the same manner as in Experimental Example 1. The results are shown in FIG.
From the results of FIG. 5, it was confirmed that the potential of the working electrode repeatedly changed from the start (on) to the end (off) of the flow of the hypochlorous acid solution. That is, the potential of the electrode made of SUS316 changes depending on the hypochlorous acid solution contained in the solution, although the amount of change in potential of platinum according to the residual chlorine concentration is smaller.

「実験例3」
実験例1と同様にして、ベース溶液と次亜塩素酸溶液を調製し、参照電極を用意した。
作用極として、SUS316Lからなる電極を用意し、炭化ケイ素(SiC)2400番研磨紙で表面を研磨した後、エタノールで脱脂した。
これらの参照電極と作用極を電圧計に接続した。
次いで、実験例1と同様にして、作用極の電位を測定した。結果を図6に示す。
図6の結果から、次亜塩素酸溶液の流通を開始(on)してから終了(off)するまで、作用極の電位が繰り返し変化することが確認された。すなわち、SUS316Lからなる電極の電位は、白金が残留塩素濃度に応じて変化する電位の変化量よりは少ないものの、溶液中に含まれる次亜塩素酸溶液によって変化する。
"Experiment 3"
In the same manner as in Experimental Example 1, a base solution and a hypochlorous acid solution were prepared, and a reference electrode was prepared.
An electrode made of SUS316L was prepared as a working electrode, and the surface was polished with silicon carbide (SiC) No. 2400 polishing paper, and then degreased with ethanol.
These reference electrode and working electrode were connected to a voltmeter.
Subsequently, the potential of the working electrode was measured in the same manner as in Experimental Example 1. The results are shown in FIG.
From the results of FIG. 6, it was confirmed that the potential of the working electrode repeatedly changed from the start (on) to the end (off) of the flow of the hypochlorous acid solution. That is, the potential of the electrode made of SUS316L changes depending on the hypochlorous acid solution contained in the solution, although the amount of change in potential of platinum according to the residual chlorine concentration is smaller.

「実験例4」
pH緩衝溶液を使用して、pHが4の試験溶液(A−3)、pHが7の試験溶液(B−3)、pHが8.4の試験溶液(C−3)、pHが9.3の試験溶液(D−3)を調製した。
実験例1と同様にして、参照電極を用意した。
実験例1と同様に、作用極として、白金(Pt)からなる電極を用意した。また、実験例2と同様に、作用極として、SUS316からなる電極を用意した。また、実験例3と同様に、作用極として、SUS316Lからなる電極を用意した。
それぞれの作用極と参照電極を電圧計に接続した。
次いで、フローセル中に注入されたベース溶液に、参照電極と作用極を浸漬し、室温で60分間、ベース溶液を流通させ、作用極の電位を安定させた。
次いで、フローセル中に、試験溶液(A−3)、(B−3)、(C−3)、(D−3)の順に5分間ずつ流通させ、それぞれの試験溶液が流通しているときの作用極の電位を測定した。結果を図7に示す。
図7の結果から、いずれの作用極の電位も、試験溶液のpHと比例関係にあることが確認された。また、試験溶液のpHの変化量に対する白金(Pt)からなる電極の電位の変化量と、試験溶液のpHの変化量に対するSUS316からなる電極の電位の変化量と、試験溶液のpHの変化量に対するSUS316Lからなる電極の電位の変化量とは互いに近似している。
"Experimental example 4"
Using a pH buffer solution, a test solution (A-3) having a pH of 4, a test solution (B-3) having a pH of 7, a test solution having a pH of 8.4 (C-3), and a pH of 9. 3 test solution (D-3) was prepared.
A reference electrode was prepared in the same manner as in Experimental Example 1.
Similar to Experimental Example 1, an electrode made of platinum (Pt) was prepared as a working electrode. Further, as in Experimental Example 2, an electrode made of SUS316 was prepared as a working electrode. Further, as in Experimental Example 3, an electrode made of SUS316L was prepared as a working electrode.
Each working electrode and reference electrode were connected to a voltmeter.
Next, the reference electrode and the working electrode were immersed in the base solution injected into the flow cell, and the base solution was circulated at room temperature for 60 minutes to stabilize the working electrode potential.
Next, in the flow cell, the test solutions (A-3), (B-3), (C-3), and (D-3) were allowed to flow in order for 5 minutes, and each test solution was flowing. The potential of the working electrode was measured. The results are shown in FIG.
From the results of FIG. 7, it was confirmed that the potential of any working electrode was proportional to the pH of the test solution. Also, the change in potential of the electrode made of platinum (Pt) with respect to the change in pH of the test solution, the change in potential of the electrode made of SUS316 with respect to the change in pH of the test solution, and the change in pH of the test solution. The amount of change in potential of the electrode made of SUS316L is similar to each other.

「実験例5」
実験例1と同様にして、ベース溶液を調製した。
実験例1と同様にして、遊離残留塩素溶液を調製した。
白金(Pt)からなる電極を用意し、エタノールで脱脂した。
SUS316Lからなる電極を用意し、エタノールで脱脂した。
これらの2つの電極を電圧計に接続した。
次いで、フローセル中に注入されたベース溶液に、2つの電極を浸漬し、室温で60分間、ベース溶液を流通させ、2つの電極の電位を安定させた。
次いで、フローセル中に流通させる溶液として、ベース溶液と遊離残留塩素溶液を交互に切り替えて、電位差を測定した。結果を図8に示す。
図8の結果から、遊離残留塩素溶液の流通を開始(on)してから終了(off)するまで、電位差が繰り返し変化することが確認された。すなわち、白金(Pt)からなる電極とSUS316Lからなる電極の電位差は、溶液中に含まれる微量(1ppm)の遊離残留塩素によって変化する。
“Experimental Example 5”
A base solution was prepared in the same manner as in Experimental Example 1.
In the same manner as in Experimental Example 1, a free residual chlorine solution was prepared.
An electrode made of platinum (Pt) was prepared and degreased with ethanol.
An electrode made of SUS316L was prepared and degreased with ethanol.
These two electrodes were connected to a voltmeter.
Next, the two electrodes were immersed in the base solution injected into the flow cell, and the base solution was allowed to flow at room temperature for 60 minutes to stabilize the potential of the two electrodes.
Next, as a solution to be circulated in the flow cell, the base solution and the free residual chlorine solution were alternately switched to measure the potential difference. The results are shown in FIG.
From the result of FIG. 8, it was confirmed that the potential difference repeatedly changed from the start (on) to the end (off) of the flow of the free residual chlorine solution. That is, the potential difference between the electrode made of platinum (Pt) and the electrode made of SUS316L varies depending on a trace amount (1 ppm) of free residual chlorine contained in the solution.

10,50・・・固体型残留塩素センサー、11,51・・・第1電極、12,52・・・第2電極、13,53・・・電圧計、14,15,54,55・・・リード、20・・・水道水、30,60・・・配管、31,32・・・貫通孔、40・・・多孔質体、56・・・絶縁部材。 10, 50 ... solid type residual chlorine sensor, 11, 51 ... first electrode, 12, 52 ... second electrode, 13, 53 ... voltmeter, 14, 15, 54, 55 ... -Reed, 20 ... tap water, 30, 60 ... piping, 31, 32 ... through-hole, 40 ... porous body, 56 ... insulating member.

Claims (6)

第1電極と、第2電極と、前記第1電極および前記第2電極に接続された電圧計と、を備え、
前記第1電極を構成する金属は、前記第2電極を構成する金属よりも、水道水中の遊離残留塩素に対する反応性が高く、
前記第1電極を構成する金属と、前記第2電極を構成する金属とは、前記水道水の水質因子および環境因子の変化量に対する電極電位の変化量が近似していることを特徴とする固体型残留塩素センサー。
A first electrode; a second electrode; and a voltmeter connected to the first electrode and the second electrode;
The metal constituting the first electrode is more reactive to free residual chlorine in tap water than the metal constituting the second electrode,
The metal constituting the first electrode and the metal constituting the second electrode are solids characterized in that the amount of change in electrode potential approximates the amount of change in the water quality factor and environmental factor of the tap water Mold residual chlorine sensor.
前記第1電極を構成する金属は、白金またはチタンであり、前記第2電極を構成する金属は、中性付近の溶液中で強固な不動態皮膜を形成し得る金属であることを特徴とする請求項1に記載の固体型残留塩素センサー。   The metal constituting the first electrode is platinum or titanium, and the metal constituting the second electrode is a metal capable of forming a strong passive film in a solution near neutrality. The solid-type residual chlorine sensor according to claim 1. 前記一対の電極は、前記水道水が流れる配管の内面に露出するように設けられることを特徴とする請求項1または2に記載の固体型残留塩素センサー。   The solid-type residual chlorine sensor according to claim 1 or 2, wherein the pair of electrodes are provided so as to be exposed on an inner surface of a pipe through which the tap water flows. 前記一対の電極は、前記配管の一部をなしていることを特徴とする請求項3に記載の固体型残留塩素センサー。   The solid residual chlorine sensor according to claim 3, wherein the pair of electrodes form part of the pipe. 前記一対の電極における前記水道水と接する部分は、多孔質体で包囲されたことを特徴とする請求項1〜3のいずれか1項に記載の固体型残留塩素センサー。   4. The solid-type residual chlorine sensor according to claim 1, wherein portions of the pair of electrodes that are in contact with the tap water are surrounded by a porous body. 請求項1〜5のいずれか1項に記載の固体型残留塩素センサーを備えたことを特徴とする水道メーター。   A water meter comprising the solid-type residual chlorine sensor according to any one of claims 1 to 5.
JP2014250894A 2014-12-11 2014-12-11 Solid-type residual chlorine sensor and water meter equipped with the same Active JP6518937B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2014250894A JP6518937B2 (en) 2014-12-11 2014-12-11 Solid-type residual chlorine sensor and water meter equipped with the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2014250894A JP6518937B2 (en) 2014-12-11 2014-12-11 Solid-type residual chlorine sensor and water meter equipped with the same

Publications (2)

Publication Number Publication Date
JP2016114376A true JP2016114376A (en) 2016-06-23
JP6518937B2 JP6518937B2 (en) 2019-05-29

Family

ID=56141466

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2014250894A Active JP6518937B2 (en) 2014-12-11 2014-12-11 Solid-type residual chlorine sensor and water meter equipped with the same

Country Status (1)

Country Link
JP (1) JP6518937B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2019184501A (en) * 2018-04-13 2019-10-24 愛知時計電機株式会社 Residual chlorine concentration measuring device and water meter
JP2020020727A (en) * 2018-08-03 2020-02-06 愛知時計電機株式会社 Residual chlorine detector and residual chlorine detection method

Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61502011A (en) * 1984-04-26 1986-09-11 クローネ・アクチエンゲゼルシヤフト Measurement value sensor of magnetic induction flow measuring device
JPH10253584A (en) * 1997-03-07 1998-09-25 T R P:Kk Method and mechanism for evaluating concentration of residual halogen
JP2000131310A (en) * 1998-10-28 2000-05-12 Hitachi Ltd Self-diagnostic function for water quality meter
JP2002214220A (en) * 2001-01-23 2002-07-31 Fis Kk Water quality checker circuit
JP2005321230A (en) * 2004-05-06 2005-11-17 Aichi Tokei Denki Co Ltd Flow rate/residual chlorine concentration measuring device, and flow rate/residual chlorine concentration measuring method of service water
JP2005331337A (en) * 2004-05-19 2005-12-02 Dkk Toa Corp Oxidation-reduction current measuring device and cleaning method of the oxidation-reduction current measuring device
JP2007278762A (en) * 2006-04-04 2007-10-25 Aichi Tokei Denki Co Ltd Water flow measuring apparatus and water cell
JP2010115617A (en) * 2008-11-14 2010-05-27 Kurita Water Ind Ltd Method of controlling oxidizing agent concentration, method of controlling water based treating agent concentration using the control method, and method of sterilizing water base
JP2011220717A (en) * 2010-04-05 2011-11-04 Hiroshima Univ Method of measuring polarization resistance, method of monitoring corrosion speed, and polarization resistance measuring device
CA2842134A1 (en) * 2011-07-25 2013-01-31 Veolia Water Solutions & Technologies Support Device for measuring the free chloride content of a water

Patent Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61502011A (en) * 1984-04-26 1986-09-11 クローネ・アクチエンゲゼルシヤフト Measurement value sensor of magnetic induction flow measuring device
JPH10253584A (en) * 1997-03-07 1998-09-25 T R P:Kk Method and mechanism for evaluating concentration of residual halogen
JP2000131310A (en) * 1998-10-28 2000-05-12 Hitachi Ltd Self-diagnostic function for water quality meter
JP2002214220A (en) * 2001-01-23 2002-07-31 Fis Kk Water quality checker circuit
JP2005321230A (en) * 2004-05-06 2005-11-17 Aichi Tokei Denki Co Ltd Flow rate/residual chlorine concentration measuring device, and flow rate/residual chlorine concentration measuring method of service water
JP2005331337A (en) * 2004-05-19 2005-12-02 Dkk Toa Corp Oxidation-reduction current measuring device and cleaning method of the oxidation-reduction current measuring device
JP2007278762A (en) * 2006-04-04 2007-10-25 Aichi Tokei Denki Co Ltd Water flow measuring apparatus and water cell
JP2010115617A (en) * 2008-11-14 2010-05-27 Kurita Water Ind Ltd Method of controlling oxidizing agent concentration, method of controlling water based treating agent concentration using the control method, and method of sterilizing water base
JP2011220717A (en) * 2010-04-05 2011-11-04 Hiroshima Univ Method of measuring polarization resistance, method of monitoring corrosion speed, and polarization resistance measuring device
CA2842134A1 (en) * 2011-07-25 2013-01-31 Veolia Water Solutions & Technologies Support Device for measuring the free chloride content of a water

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2019184501A (en) * 2018-04-13 2019-10-24 愛知時計電機株式会社 Residual chlorine concentration measuring device and water meter
JP7058167B2 (en) 2018-04-13 2022-04-21 愛知時計電機株式会社 Residual chlorine concentration measuring device and water meter
JP2020020727A (en) * 2018-08-03 2020-02-06 愛知時計電機株式会社 Residual chlorine detector and residual chlorine detection method
JP7089434B2 (en) 2018-08-03 2022-06-22 愛知時計電機株式会社 Residual chlorine detection device and residual chlorine detection method

Also Published As

Publication number Publication date
JP6518937B2 (en) 2019-05-29

Similar Documents

Publication Publication Date Title
US9207204B2 (en) Method and apparatus for determining information concerning presence of constituents of a liquid sample with oxygen demand
Sosna et al. Development of a reliable microelectrode dissolved oxygen sensor
KR100874779B1 (en) Plane surface measurement hydrogen ion concentration combination sensor
US10473618B2 (en) Residual chlorine measuring apparatus and method of measuring residual chlorine
WO2015020188A1 (en) Residual-chlorine measurement device, and residual-chlorine measurement method
JP6518937B2 (en) Solid-type residual chlorine sensor and water meter equipped with the same
US20190376923A1 (en) Method for cleaning, conditioning, calibration and/or adjustment of an amperometric sensor
US10724989B2 (en) Amperometric chlorine dioxide sensor
ITMI961330A1 (en) SYSTEM FOR MONITORING BIOCIDAL TREATMENTS
JP6534264B2 (en) Measurement method of dissolved hydrogen concentration
US4441979A (en) Nutating probe for gas analysis
Bier Electrochemistry-Theory and Practice
Bier Introduction to oxidation reduction potential measurement
JP4217077B2 (en) Stabilization method of diaphragm type electrode
JP6336757B2 (en) measuring device
KR100970306B1 (en) Sample holder structure having a residual chlorine sensor
JP2001174430A (en) Composite sensor for measuring concentration and ph of hypochlorous acid
JP3903524B2 (en) Electrolyzed water generator
JP2000131276A (en) Potable type residual chlorine meter
JP2005345222A (en) Residual chlorine meter
KR101299978B1 (en) The cost includes a degradable electrodes are not affected by the temperature in the composite electrode
Gobet et al. Development of an on-line chlorine sensor for water quality monitoring in public distribution networks
JP5212306B2 (en) Diaphragm electrochemical sensor
CN205562459U (en) Be used for plane PH measuring high accuracy PH sensor
JP4381178B2 (en) Electrolyzed water production equipment

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20171110

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20171110

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20180815

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20180918

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20181106

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20190305

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20190325

R150 Certificate of patent or registration of utility model

Ref document number: 6518937

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250