JP2011220717A - Method of measuring polarization resistance, method of monitoring corrosion speed, and polarization resistance measuring device - Google Patents

Method of measuring polarization resistance, method of monitoring corrosion speed, and polarization resistance measuring device Download PDF

Info

Publication number
JP2011220717A
JP2011220717A JP2010087096A JP2010087096A JP2011220717A JP 2011220717 A JP2011220717 A JP 2011220717A JP 2010087096 A JP2010087096 A JP 2010087096A JP 2010087096 A JP2010087096 A JP 2010087096A JP 2011220717 A JP2011220717 A JP 2011220717A
Authority
JP
Japan
Prior art keywords
electrode
corrosion
counter electrode
sample
polarization resistance
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2010087096A
Other languages
Japanese (ja)
Inventor
Yoshinori Isomoto
良則 礒本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hiroshima University NUC
Original Assignee
Hiroshima University NUC
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hiroshima University NUC filed Critical Hiroshima University NUC
Priority to JP2010087096A priority Critical patent/JP2011220717A/en
Publication of JP2011220717A publication Critical patent/JP2011220717A/en
Pending legal-status Critical Current

Links

Abstract

PROBLEM TO BE SOLVED: To provide a method of measuring polarization resistance capable of directly calculating a corrosion current, a method of monitoring a corrosion speed using the method of measuring polarization resistance, and a polarization resistance measuring device used for the method of measuring polarization resistance.SOLUTION: A sample electrode 12 is made of a metal with which to measure a corrosion current. A counter electrode 14 is made of a solid having favorable electrical conductivity and a different equilibrium potential in a natural corrosion state from that of the metal. After the sample electrode 12 and counter electrode 14 are short-circuited for an extremely minute time, they are immediately opened and polarization resistance is obtained from voltage current response during this period therebetween. Using the polarization resistance thus obtained, a corrosion current can be calculated directly. Since polarization can be measured without significantly disturbing a natural corrosion state of the sample electrode 12, this method can be preferably used as a corrosion speed monitoring method capable of monitoring on a regular basis.

Description

本発明は、腐食電流を直接算出することができる分極抵抗の測定方法、該分極抵抗測定方法を用いた腐食速度モニタリング方法及び分極抵抗測定装置に関する。   The present invention relates to a polarization resistance measurement method capable of directly calculating a corrosion current, a corrosion rate monitoring method and a polarization resistance measurement device using the polarization resistance measurement method.

金属がある水溶系の環境に置かれた場合の腐食電流を求める方法として、試料極に金属を用い、試料極、対極及び参照電極を用いた3電極法がある。なお本発明において、水溶系とは、水又は水を主成分とする水溶液を言う。   As a method for obtaining a corrosion current when a metal is placed in a water-based environment, there is a three-electrode method using a metal as a sample electrode and using a sample electrode, a counter electrode, and a reference electrode. In the present invention, the water-based system refers to water or an aqueous solution containing water as a main component.

3電極法を用いた分極測定から腐食電流を求める方法に分極抵抗法がある。参照電極は試料極の自然状態の腐食電位を測定するために用い、対極と試料極との電位を同じに設定し、その状態から対極の電位を+または−に操作し分極させ、電位、電流を測定し分極抵抗を求める。さらに相関式を用いて分極抵抗から腐食電流を求める。分極を数mVから数十mVにすると、表面の腐食状態をほとんど変えることなく分極測定ができるので腐食モニタリングに適している。   There is a polarization resistance method as a method for obtaining a corrosion current from polarization measurement using a three-electrode method. The reference electrode is used to measure the corrosion potential in the natural state of the sample electrode. The counter electrode and the sample electrode are set to the same potential, and the counter electrode potential is adjusted to + or-from that state to polarize the potential and current. To determine the polarization resistance. Furthermore, the corrosion current is obtained from the polarization resistance using the correlation equation. When the polarization is from several mV to several tens of mV, the polarization can be measured with almost no change in the corrosion state of the surface, which is suitable for corrosion monitoring.

また、3電極法を用いた分極測定から腐食電流を求める方法として、交流インピーダンス法がある。通常ポテンシオスタット等を併用し対極を試料極と同じ電位に保ち、周波数の異なる交流を印加することにより、試料極と対極とのインピーダンスが変化し、その抵抗成分を取り出すことで腐食抵抗を求める。さらに相関式を用いて分極抵抗から腐食電流を求める(例えば特許文献2参照)。   Moreover, there exists an alternating current impedance method as a method of calculating | requiring a corrosion current from the polarization measurement using a 3 electrode method. Usually, using a potentiostat, etc., keeping the counter electrode at the same potential as the sample electrode, and applying an alternating current with a different frequency, the impedance between the sample electrode and the counter electrode changes, and the resistance component is taken out to determine the corrosion resistance. . Further, the corrosion current is obtained from the polarization resistance using a correlation equation (see, for example, Patent Document 2).

金属材料の腐食モニタリング方法及び装置に関しては、これまでに多くの提案がなされている。例えば特許文献1には、ボイラー鋼材の腐食状況をモニタリングするための3電極法を用いた分極抵抗の測定装置が開示されている。また特許文献2には、ボイラー、ガスタービンなどの溶融塩付着環境における腐食速度推定に用いる腐食モニタリングセンサー及び測定法が開示されている。また特許文献3には、水系プロセスの管理システムの中で3つの電極を用いた電気化学ノイズ法が開示されている。また特許文献4には、水系における金属の腐食防止方法の中で、自然腐食電位を測定して腐食モニタリングする方法が開示されている。さらに特許文献5には、ポテンシオスタット、3電極を用いて試料極にアノード電流を流し、局部腐食を生じる金属のモニタリング方法及び装置が開示されている。   Many proposals have been made regarding methods and apparatuses for monitoring corrosion of metal materials. For example, Patent Document 1 discloses an apparatus for measuring polarization resistance using a three-electrode method for monitoring the corrosion status of boiler steel. Patent Document 2 discloses a corrosion monitoring sensor and measurement method used for estimating a corrosion rate in a molten salt adhesion environment such as a boiler and a gas turbine. Patent Document 3 discloses an electrochemical noise method using three electrodes in an aqueous process management system. Patent Document 4 discloses a method for monitoring corrosion by measuring a natural corrosion potential among methods for preventing corrosion of metals in an aqueous system. Further, Patent Document 5 discloses a metal monitoring method and apparatus for causing local corrosion by supplying an anode current to a sample electrode using a potentiostat and three electrodes.

特開平10−318962号公報Japanese Patent Laid-Open No. 10-318962 特開2003−14682号公報JP 2003-14682 A 特開2005−3635号公報Japanese Patent Laid-Open No. 2005-3635 特開平11−118703号公報JP 11-118703 A 特開2004−101349号公報JP 2004-101349 A

3電極法を用いた分極測定から腐食電流を求める方法である分極抵抗法又は交流インピーダンス法では、得られた分極抵抗や印加した電圧、電流値から直接腐食速度、腐食電流を求めることができず、得られた分極抵抗等と材料の減肉量などから換算された腐食速度と相関させた係数を用いて腐食速度を求める必要がある。得られた分極抵抗や印加した電圧、電流値から直接腐食速度、腐食電流を求めることができれば好ましいが、これまで分極抵抗や印加した電圧、電流値から直接腐食速度、腐食電流を取得する手法は見出されていない。またこれら腐食速度、腐食電流の取得を簡単に行うことが可能で、またポテンシオスタット又は外部電源などの装置を使用することなく行うことができれば、装置構成が簡単となり、腐食速度モニタリング装置としてより好ましい。   In the polarization resistance method or AC impedance method, which is a method for obtaining the corrosion current from the polarization measurement using the three-electrode method, the corrosion rate and the corrosion current cannot be obtained directly from the obtained polarization resistance, applied voltage, and current value. Therefore, it is necessary to obtain the corrosion rate using a coefficient correlated with the corrosion rate converted from the obtained polarization resistance and the amount of thinning of the material. It is preferable if the direct corrosion rate and corrosion current can be obtained from the obtained polarization resistance, applied voltage, and current value, but the method for obtaining the direct corrosion rate and corrosion current from the polarization resistance, applied voltage, and current value so far is Not found. In addition, the corrosion rate and corrosion current can be easily acquired, and if it can be performed without using a potentiostat or an external power source, the device configuration becomes simple and the corrosion rate monitoring device preferable.

また従来の3電極法を用いた腐食モニタリング方法は、参照電極として銀・塩化銀電極のように溶液を用いる汎用参照電極が使用されるため、封液の漏れによる環境汚染が生じる恐れがあり、ボイラー環境など純水環境における腐食モニタリング方法としては適さない。   In addition, the conventional corrosion monitoring method using the three-electrode method uses a general-purpose reference electrode that uses a solution such as a silver / silver chloride electrode as a reference electrode, which may cause environmental pollution due to leakage of the sealing liquid. It is not suitable as a corrosion monitoring method in pure water environments such as boiler environments.

本発明の目的は、腐食電流を直接算出することができる分極抵抗の測定方法、該分極抵抗測定方法を用いた腐食速度モニタリング方法及び分極抵抗測定方法に用いる分極抵抗測定装置を提供することである。   An object of the present invention is to provide a polarization resistance measurement method capable of directly calculating the corrosion current, a corrosion rate monitoring method using the polarization resistance measurement method, and a polarization resistance measurement device used in the polarization resistance measurement method. .

請求項1に記載の本発明は、腐食電流を直接算出することができる分極抵抗の測定方法であって、腐食電流を求める金属を試料極とし、前記金属とは自然腐食状態の平衡電位が異なる良好な電気伝導性を有する固体を対極とし、前記試料極と対極との間を極微小時間短絡させた後、直ちに開放し、この間の電位電流応答から分極抵抗を求めることを特徴とする分極抵抗測定方法である。   The present invention according to claim 1 is a polarization resistance measuring method capable of directly calculating a corrosion current, wherein a metal for which the corrosion current is obtained is used as a sample electrode, and an equilibrium potential in a natural corrosion state is different from that of the metal. A polarization resistor characterized in that a solid having good electrical conductivity is used as a counter electrode, the sample electrode and the counter electrode are short-circuited for a very short time, then immediately opened, and the polarization resistance is obtained from the potential-current response during this period. This is a measurement method.

請求項2に記載の本発明は、請求項1に記載の分極抵抗測定方法において、さらに前記対極と同一の材料からなる固体を参照電極とし、前記試料極と対極との間を極微小時間短絡させるとき、同時に、前記試料極と前記参照電極との間の電位差を測定することを特徴とする。   According to a second aspect of the present invention, in the polarization resistance measuring method according to the first aspect, a solid made of the same material as the counter electrode is used as a reference electrode, and a very short time is short-circuited between the sample electrode and the counter electrode. At the same time, a potential difference between the sample electrode and the reference electrode is measured at the same time.

請求項3に記載の本発明は、請求項1又2に記載の分極抵抗測定方法において、前記試料極と対極との間を極微小時間短絡させることに代え、前記試料極と対極との間に所定の電流が流れるように外部電源を用いて前記試料極と対極との間に極微小時間電圧を印加することを特徴とする。   According to a third aspect of the present invention, in the polarization resistance measuring method according to the first or second aspect, instead of short-circuiting the sample electrode and the counter electrode for a very short time, the sample electrode and the counter electrode An extremely minute time voltage is applied between the sample electrode and the counter electrode by using an external power source so that a predetermined current flows through the electrode.

請求項4に記載の本発明は、請求項1又は2に記載の分極抵抗測定方法において、前記試料極と対極との間を極微小時間短絡させた後、直ちに開放することに代え、前記試料極と対極との間を短絡させた状態から極微小時間開放し、その後直ちに短絡させることを特徴とする。   According to a fourth aspect of the present invention, in the polarization resistance measuring method according to the first or second aspect, the sample electrode and the counter electrode are short-circuited for a very short time and then immediately opened, and the sample is immediately opened. It is characterized in that a very short time is released from a state in which the pole and the counter electrode are short-circuited, and then short-circuited immediately thereafter.

請求項5に記載の本発明は、請求項3に記載の分極抵抗測定方法において、前記試料極と対極との間に所定の電流が流れるように外部電源を用いて前記試料極と対極との間に極微小時間電圧を印加した後、直ちに試料極と対極との間を開放することに代え、前記試料極と対極との間に所定の電流が流れるように外部電源を用いて電圧を印加した状態から極微小時間試料極と対極との間を開放し、その後直ちに電極間に所定の電流が流れるように外部電源を用いて電圧を印加することを特徴とする。   According to a fifth aspect of the present invention, in the polarization resistance measurement method according to the third aspect, an external power source is used so that a predetermined current flows between the sample electrode and the counter electrode. Instead of immediately opening the gap between the sample electrode and the counter electrode after applying a very short time voltage between them, apply the voltage using an external power supply so that a predetermined current flows between the sample electrode and the counter electrode From this state, the sample electrode and the counter electrode are opened for a very short time, and then a voltage is applied using an external power source so that a predetermined current flows between the electrodes immediately thereafter.

請求項6に記載の本発明は、前記試料極及び対極、又は試料極、対極及び参照電極を、腐食電流を求めたい水溶系環境下に置き、請求項1から5のいずれか1の分極抵抗測定方法を用いて金属材料の分極抵抗を測定し、腐食速度をモニタリングすることを特徴とする腐食速度モニタリング方法である。   The present invention described in claim 6 is characterized in that the sample electrode and the counter electrode, or the sample electrode, the counter electrode, and the reference electrode are placed in an aqueous environment in which a corrosion current is desired to be obtained, and the polarization resistance according to any one of claims 1 to 5 It is a corrosion rate monitoring method characterized in that the polarization resistance of a metal material is measured using a measurement method and the corrosion rate is monitored.

請求項7に記載の本発明は、請求項6に記載の腐食速度モニタリング方法において、前記参照電極は、溶液又は塩溶液を用いない固体材料からなる参照電極であり、測定する水溶系環境下において、性状安定性及び形状安定性に優れることを特徴とする。   According to a seventh aspect of the present invention, in the corrosion rate monitoring method according to the sixth aspect, the reference electrode is a reference electrode made of a solid material that does not use a solution or a salt solution. It is characterized by excellent property stability and shape stability.

請求項8に記載の本発明は、請求項6又は7に記載の腐食速度モニタリング方法において、前記対極、又は対極及び参照電極がマグネタイトからなり、前記水溶系環境が、100℃以上のボイラー給水であることを特徴とする。   The present invention according to claim 8 is the corrosion rate monitoring method according to claim 6 or 7, wherein the counter electrode, or the counter electrode and the reference electrode are made of magnetite, and the aqueous environment is boiler feed water of 100 ° C or higher. It is characterized by being.

請求項9に記載の本発明は、腐食電流を求める金属からなる試料極と、前記試料極とは自然腐食状態の平衡電位が異なる良好な電気伝導性を有する固体からなる対極と、前記試料極と前記対極とを極微小時間短絡させた後、開放させるスイッチと、前記試料極と前記対極との間の電位差を検出する電圧計と、前記試料極と前記対極との間を流れる電流を検出する電流計と、電位差及び電流値をオンラインで取り込み可能なデータ処理装置と、を含むことを特徴とする分極抵抗測定装置である。   The present invention described in claim 9 includes a sample electrode made of a metal for which a corrosion current is obtained, a counter electrode made of a solid having good electrical conductivity and a different equilibrium potential in a natural corrosion state from the sample electrode, and the sample electrode. And the counter electrode are short-circuited for a very short time and then opened, a voltmeter for detecting a potential difference between the sample electrode and the counter electrode, and a current flowing between the sample electrode and the counter electrode are detected. A polarization resistance measuring device comprising: an ammeter for measuring the potential difference; and a data processing device capable of capturing a potential difference and a current value online.

請求項10に記載の本発明は、請求項9に記載の分極抵抗測定装置において、さらに前記対極と同一の固体材料からなる参照電極を備え、前記スイッチは、さらに前記試料極と前記参照電極とを極微小時間短絡させた後、開放し、前記電圧計は、前記試料極と前記対極との間の電位差の検出に代え、前記試料極と前記参照電極との間の電位差を検出することを特徴とする。   A tenth aspect of the present invention is the polarization resistance measuring apparatus according to the ninth aspect, further comprising a reference electrode made of the same solid material as the counter electrode, wherein the switch further includes the sample electrode, the reference electrode, and the reference electrode. The voltmeter detects the potential difference between the sample electrode and the reference electrode instead of detecting the potential difference between the sample electrode and the counter electrode. Features.

本発明に係る分極抵抗測定方法は、試料極と対極との間に瞬間的に高電流を流し、分極抵抗を測定する。このようにして得られる電位電流応答は、内部分極曲線に近似するため、得られる分極抵抗から直接、腐食電流、腐食速度を求めることができる。また分極時間が極微小時間であるので、試料極の腐食状態を自然腐食状態とほぼ同じ状態に維持することができる。この方法は簡単に分極抵抗を測定することができるので、腐食速度のモニタリングに好適に使用することができる。   In the polarization resistance measuring method according to the present invention, a high current is instantaneously passed between a sample electrode and a counter electrode to measure the polarization resistance. Since the potential-current response obtained in this manner approximates the internal polarization curve, the corrosion current and the corrosion rate can be obtained directly from the obtained polarization resistance. Further, since the polarization time is extremely short, the corrosion state of the sample electrode can be maintained almost the same as the natural corrosion state. Since this method can easily measure the polarization resistance, it can be suitably used for monitoring the corrosion rate.

本発明の分極抵抗測定原理を説明するための電位−電流図及び分極曲線を示す図である。It is a figure which shows the electric potential-current diagram and polarization curve for demonstrating the polarization resistance measurement principle of this invention. 本発明の3電極短絡法又は2電極短絡法を用いた腐食速度モニタリングが可能な3電極方式の腐食速度モニタリング装置1の構成を示す図である。It is a figure which shows the structure of the corrosion rate monitoring apparatus 1 of the 3 electrode system which can perform corrosion rate monitoring using the 3 electrode short circuit method or the 2 electrode short circuit method of this invention. 本発明の2電極外部電源法を用いて分極抵抗を測定する分極抵抗測定装置2の構成を示す図である。It is a figure which shows the structure of the polarization resistance measuring apparatus 2 which measures polarization resistance using the 2 electrode external power supply method of this invention. 本発明の3電極外部電源法を用いて分極抵抗を測定する分極抵抗測定装置3の構成を示す図である。It is a figure which shows the structure of the polarization resistance measuring apparatus 3 which measures polarization resistance using the 3 electrode external power supply method of this invention. 本発明の実施例1で使用した2電極短絡法の実験装置の構成図である。It is a block diagram of the experimental apparatus of the 2 electrode short circuit method used in Example 1 of this invention. 本発明の実施例1の実験結果を示す図であって、分極時間を4、8、50msとした場合の電位、電流応答の経時変化を示す図である。It is a figure which shows the experimental result of Example 1 of this invention, Comprising: It is a figure which shows a time-dependent change of an electric potential and an electric current response when polarization time is 4, 8, 50 ms. 本発明の実施例2の実験結果であって、電位、電流応答から求めた分極抵抗及び腐食電流の経時変化を示す図である。It is an experimental result of Example 2 of this invention, Comprising: It is a figure which shows a time-dependent change of the polarization resistance calculated | required from the electric potential and the electric current response, and the corrosion current. 本発明の実施例2の実験結果であって、腐食電流から求めた腐食積算量と実際の試験片の質量変化及びICP分光分析から得られた質量変化とを比較した図である。It is an experimental result of Example 2 of this invention, Comprising: The corrosion integrated quantity calculated | required from the corrosion current, the mass change of the actual test piece, and the mass change obtained from ICP spectroscopy analysis were compared. 本発明の実施例3の実験結果であって、ボイラー水環境条件において電位、電流応答から得られた腐食電流及び腐食電流を用いて求めた累積腐食量の経時変化を示す図である。It is an experimental result of Example 3 of this invention, Comprising: It is a figure which shows the time-dependent change of the cumulative corrosion amount calculated | required using the corrosion current obtained from the electric potential, electric current response, and the corrosion current in boiler water environmental conditions. 本発明の実施例4の実験結果であって、2電極短絡法による水道水環境の純鉄試料極の電位、電流応答を示す図である。It is an experimental result of Example 4 of this invention, Comprising: It is a figure which shows the electric potential of a pure iron sample electrode of a tap water environment by a 2 electrode short circuit method, and an electric current response. 本発明の実施例6の実験結果であって、3電極短絡法による水道水環境の軟鋼試料極の電位、電流応答を示す図である。It is an experimental result of Example 6 of this invention, Comprising: It is a figure which shows the electric potential and electric current response of the mild steel sample pole of a tap water environment by a 3 electrode short circuit method.

本発明に係る第1の分極抵抗測定方法は、腐食電流を直接算出することができる分極抵抗の測定方法であって、分極測定を外部電源を用いることなく2電極法又は3電極法によって行う。ここで言う外部電源とは、試料極と対極に外部から電圧又は電流を印加するための電源である。本発明に係る第1の分極抵抗測定方法は、ある環境における金属又は電導体の電位はその表面で生じる酸化還元反応で決まり、2つの異種金属の自然腐食電位が異なることを利用するものである。この電位差を用いて試料極と対極とを極微小時間短絡させ、その間の電位、電流変化を測定することにより、分極抵抗、さらには腐食電流を求める。試料極と対極とを短絡させると両電極間には、瞬間的に高電流が流れる。このようにして得られる電位電流応答は、内部分極曲線に近似するため、得られる分極抵抗から直接、腐食電流を求めることができる。腐食電流はファラデーの法則により直接腐食速度に換算される。分極時間を短くすることにより、外部的には乱れをほとんど生じさせない。本発明に係る第1の分極抵抗測定方法は、異種金属接触腐食という腐食現象を逆手に取った分極抵抗測定方法と言える。以下、詳細に説明する。   The first polarization resistance measurement method according to the present invention is a polarization resistance measurement method capable of directly calculating the corrosion current, and the polarization measurement is performed by the two-electrode method or the three-electrode method without using an external power source. The external power source mentioned here is a power source for applying a voltage or current from the outside to the sample electrode and the counter electrode. The first method for measuring polarization resistance according to the present invention utilizes the fact that the potential of a metal or conductor in a certain environment is determined by a redox reaction occurring on the surface, and the natural corrosion potentials of two different metals are different. . By using this potential difference, the sample electrode and the counter electrode are short-circuited for an extremely short time, and the potential and current change between them are measured to obtain the polarization resistance and further the corrosion current. When the sample electrode and the counter electrode are short-circuited, a high current instantaneously flows between the two electrodes. Since the potential-current response obtained in this manner approximates the internal polarization curve, the corrosion current can be obtained directly from the obtained polarization resistance. Corrosion current is directly converted to corrosion rate according to Faraday's law. By shortening the polarization time, external disturbance is hardly caused. The first polarization resistance measurement method according to the present invention can be said to be a polarization resistance measurement method in which a corrosion phenomenon called dissimilar metal contact corrosion is taken in reverse. Details will be described below.

本発明に係る第1の分極抵抗測定方法は、腐食電流を求める金属を試料極とし、前記金属とは自然腐食状態の平衡電位が異なる良好な電気伝導性を有する固体を対極とし、試料極と対極との間を極微小時間、短絡させた後、直ちに開放し、この間の電位電流応答から分極抵抗を求める。このようにして得られる分極抵抗は、従来の分極抵抗法から得られる分極抵抗と異なり、分極抵抗から直接、腐食電流を算出することができる。以下、この方法を2電極短絡法と記す。   In the first polarization resistance measuring method according to the present invention, a metal for which a corrosion current is to be obtained is used as a sample electrode, and a solid having good electrical conductivity that is different from the metal in an equilibrium potential in a natural corrosion state is used as a counter electrode. After short-circuiting the counter electrode for a very short time, it is immediately opened, and the polarization resistance is obtained from the potential-current response during this period. The polarization resistance obtained in this way is different from the polarization resistance obtained from the conventional polarization resistance method, and the corrosion current can be calculated directly from the polarization resistance. Hereinafter, this method is referred to as a two-electrode short-circuit method.

2電極短絡法において、対極は、水溶系の環境に対して試料極とは自然腐食状態の平衡電位が異なる良好な電気伝導性を有する固体を用いる。成分、形状は限定されず、例えば水溶系の環境に対して安定な物質であるマグネタイトや白金を用いることができる。   In the two-electrode short-circuit method, the counter electrode is a solid having good electrical conductivity that is different from the sample electrode in the natural corrosion state with respect to the aqueous environment. The component and shape are not limited, and for example, magnetite or platinum which is a stable substance in an aqueous environment can be used.

2電極短絡法において、試料極の自然腐食状態を大きく乱すことなく試料極と対極との電位差及び短絡電流を測定するために、試料極と対極との短絡時間をできるだけ短くする。従来の3電極法では、対極と試料極との電位を同じに設定し、その状態から対極の電位を+または−に操作し分極させることで電位、電流を測定する。このため従来の3電極法においては、電極間を流れる電流は比較的小さいが、2電極短絡法においては、電位が異なる試料極と対極との間を短絡させるので電極間に瞬間的に高電流が流れる。このため試料極と対極とを短絡させる時間は、極微小時間とする。後述の実施例に示すように短絡時間は、数ミリ秒(ms)から数十ミリ秒(ms)である。なお2電極短絡法では、試料極と対極の短絡状態の電流と電位差とを別々に測定する。このとき電位、電流測定の測定間隔を短くする。   In the two-electrode short-circuit method, the short-circuit time between the sample electrode and the counter electrode is made as short as possible in order to measure the potential difference and the short-circuit current between the sample electrode and the counter electrode without greatly disturbing the natural corrosion state of the sample electrode. In the conventional three-electrode method, the potentials of the counter electrode and the sample electrode are set to be the same, and the potential and current are measured by manipulating the potential of the counter electrode to + or-from that state to cause polarization. For this reason, in the conventional three-electrode method, the current flowing between the electrodes is relatively small. However, in the two-electrode short-circuit method, the sample electrode and the counter electrode having different potentials are short-circuited. Flows. For this reason, the time for short-circuiting the sample electrode and the counter electrode is an extremely short time. As shown in the examples described later, the short-circuit time is several milliseconds (ms) to several tens of milliseconds (ms). In the two-electrode short-circuit method, the short-circuit current and potential difference between the sample electrode and the counter electrode are measured separately. At this time, the measurement interval of potential and current measurement is shortened.

また本発明に係る第1の分極抵抗測定方法は、2電極短絡法を、参照電極を用いた3電極短絡法とすることができる。3電極短絡法は基本的に2電極短絡法と同じであるが、参照電極を備えるため試料極と対極の短絡状態の電流を測定しながら、参照電極と試料極との電位差を直接測定することができる。3電極短絡法で使用する参照電極は、対極と同一の材料からなる固体を用いる。参照電極では、例えば水溶系の環境に対して安定な物質であるマグネタイトや白金を用いることができる。   In the first polarization resistance measuring method according to the present invention, the two-electrode short-circuit method can be a three-electrode short-circuit method using a reference electrode. The three-electrode short-circuit method is basically the same as the two-electrode short-circuit method, but since the reference electrode is provided, the potential difference between the reference electrode and the sample electrode is directly measured while measuring the short-circuit current between the sample electrode and the counter electrode. Can do. The reference electrode used in the three-electrode short-circuit method is a solid made of the same material as the counter electrode. For the reference electrode, for example, magnetite or platinum, which is a stable material with respect to an aqueous environment, can be used.

本発明の分極抵抗測定原理は次のように想定される。図1は、本発明の分極抵抗測定原理を説明するための電位−電流図及び分極曲線を示す図である。図1の縦軸は相対電位、横軸は電流の対数である。試料極は水溶系環境である平衡状態になる。このときの電位が腐食電位である。対極も同一の水溶系環境である平衡電位をもつ。この2つの電極が短絡されることにより、瞬間的に2つの電極の電位差Vに見合った短絡電流Iが流れる。その直後2つの電極は、電位差を0にするように分極し、短絡電流も小さくなる。このときの電位差はV、短絡電流はIである。次の瞬間に短絡状態を開放すると、電位差Vは徐々に元の状態Vに戻ろうとする。2電極短絡法では、短絡状態の試料極そのものの電位は計測されないので、これらの値から求められる分極抵抗は仮想内部アノード分極曲線、仮想内部カソード分極曲線を合わせたものの直線の傾きを表す。3電極短絡法では試料極と対極との短絡状態の電流差(I−I)を測定しながら、参照電極と試料極との電位差(V−V)を直接測定することになる。 The principle of measuring polarization resistance according to the present invention is assumed as follows. FIG. 1 is a diagram showing a potential-current diagram and a polarization curve for explaining the principle of measuring polarization resistance of the present invention. The vertical axis in FIG. 1 is the relative potential, and the horizontal axis is the logarithm of the current. The sample electrode reaches an equilibrium state that is an aqueous environment. The potential at this time is the corrosion potential. The counter electrode also has an equilibrium potential which is the same aqueous system environment. When these two electrodes are short-circuited, a short-circuit current I 1 corresponding to the potential difference V 1 between the two electrodes instantaneously flows. Immediately thereafter, the two electrodes are polarized so that the potential difference is zero, and the short-circuit current is also reduced. At this time, the potential difference is V 2 and the short-circuit current is I 2 . When you open a short-circuit state to the next moment, the potential difference V 2 is gradually to return to the original state V 1. In the two-electrode short-circuit method, since the potential of the short-circuited sample electrode itself is not measured, the polarization resistance obtained from these values represents the slope of the straight line of the combined virtual internal anode polarization curve and virtual internal cathode polarization curve. In the three-electrode short-circuit method, the potential difference (V 1 -V 2 ) between the reference electrode and the sample electrode is directly measured while measuring the current difference (I 1 -I 2 ) in the short-circuit state between the sample electrode and the counter electrode. .

2電極短絡法では、分極抵抗は仮想内部アノード分極曲線、仮想内部カソード分極曲線を合わせたものの直線の傾きで表されるので、仮想内部アノード分極曲線の傾きである分極抵抗値を平均分極抵抗Rpとして式1で表す。また、平均分極抵抗Rpは電位、電流の切り替え直後に変わる電位差(V−V)及び電流差(I−I)を用いて式2としても表される。これらの平均分極抵抗Rp、Rp、及び1点の電位差、電流値から式3を用いて腐食電流Icorrを求めることができる。一方、3電極短絡法では、短絡状態の試料極そのものの電位が計測されるので、式1及び式2の右辺(1/2)は不要である。 In the two-electrode short-circuit method, the polarization resistance is represented by the slope of a straight line that is a combination of the virtual internal anode polarization curve and the virtual internal cathode polarization curve. Therefore, the polarization resistance value that is the slope of the virtual internal anode polarization curve is expressed as the average polarization resistance Rp. 1 is represented by Formula 1. The average polarization resistance Rp 2 is also expressed as Equation 2 using a potential difference (V 3 −V 2 ) and a current difference (I 1 −I 3 ) that change immediately after the potential and current are switched. From these average polarization resistances Rp 1 and Rp 2 , the potential difference at one point, and the current value, the corrosion current I corr can be obtained using Equation 3. On the other hand, in the three-electrode short-circuit method, since the potential of the sample electrode itself in a short-circuit state is measured, the right side (1/2) of Equation 1 and Equation 2 is not necessary.

Rp=(1/2)×(V−V)/log(I/I)・・・(1)
Rp=(1/2)×(V−V)/log(I/I)・・・(2)
corr=I×10−(V1/Rp)=I×10−(V2/Rp)・・・(3)
ここでRp=Rp 又は Rp=Rp
Rp 1 = (1/2) × (V 1 −V 2 ) / log (I 1 / I 2 ) (1)
Rp 2 = (1/2) × (V 3 −V 2 ) / log (I 1 / I 3 ) (2)
I corr = I 1 × 10 − (V1 / Rp) = I 2 × 10 − (V2 / Rp) (3)
Where Rp = Rp 1 or Rp = Rp 2

腐食を受けている試料極の腐食速度R(mm/Year)は、腐食電流を表す式3、ファラデーの法則におけるファラデー定数F=96500C/eq、金属の原子量M、イオン価数n、密度ρ及び試料極の露出面積Aを用いて、式4で計算される。
R=Icorr×((365×24×3600)/(96500×n)×(M/ρ/A)
・・・(4)
The corrosion rate R (mm / Year) of the sample electrode undergoing corrosion is expressed by Equation 3, which represents the corrosion current, Faraday constant F = 96500 C / eq in Faraday's law, metal atomic weight M, ion valence n, density ρ, and Using the exposed area A of the sample electrode, calculation is performed using Equation 4.
R = I corr × ((365 × 24 × 3600) / (96500 × n) × (M / ρ / A)
... (4)

図2は、3電極短絡法又は2電極短絡法を用いた腐食速度モニタリングが可能な3電極方式の腐食速度モニタリング装置1の構成を示す図である。ここでは、発電所等に用いられる高温高圧のボイラー給水管11の腐食速度モニタリングを例としている。ボイラー給水管11には一般に炭素鋼又は低合金鋼が用いられる。超純水でpH9前後、酸素濃度7ppb以下の環境で炭素鋼又は低合金鋼の表面にマグネタイト(Fe)が形成される。腐食速度モニタリング装置1は、ボイラー給水管11と同材の試料極12と試料極12とは自然腐食状態の平衡電位が異なる良好な電気伝導性を有する固体材料であるマグネタイトからなる参照電極13及び対極14を備える。これら電極は絶縁具15で絶縁され、ボイラー給水に直接接するように、ボイラー給水管11の一部を取除きその部分に、各電極の表面がボイラー給水管11の内面と同一平面となるように、電極固定具16でボイラー給水管11に固定されている。 FIG. 2 is a diagram showing a configuration of a three-electrode type corrosion rate monitoring apparatus 1 that can perform corrosion rate monitoring using the three-electrode short-circuit method or the two-electrode short-circuit method. Here, the corrosion rate monitoring of the high-temperature and high-pressure boiler feed pipe 11 used in a power plant or the like is taken as an example. The boiler feed pipe 11 is generally made of carbon steel or low alloy steel. Magnetite (Fe 3 O 4 ) is formed on the surface of carbon steel or low alloy steel in an environment of ultrapure water at a pH of around 9 and an oxygen concentration of 7 ppb or less. The corrosion rate monitoring apparatus 1 includes a reference electrode 13 made of magnetite, which is a solid material having good electrical conductivity, and the sample electrode 12 and the sample electrode 12 made of the same material as the boiler feed pipe 11 have different equilibrium potentials in a natural corrosion state. A counter electrode 14 is provided. These electrodes are insulated by an insulator 15 and part of the boiler water supply pipe 11 is removed so that the surface of each electrode is flush with the inner surface of the boiler water supply pipe 11 so as to be in direct contact with the boiler water supply. The electrode fixing tool 16 is fixed to the boiler water supply pipe 11.

さらに腐食速度モニタリング装置1は、電極間の電位差、電流を検出する電圧計18、電流計19、電位差及び電流値を取り込むためのA/Dコンバータ20、切換スイッチ21及びパーソナルコンピュータ22を備える。各電極は、導線17を介して切換スイッチ21、電圧計18、電流計19に接続し、電圧計18、電流計19はA/Dコンバータ20を介してパーソナルコンピュータ22と接続し、パーソナルコンピュータ22は、切換スイッチ21及びA/Dコンバータ20を制御する。電圧計18は入力インピーダンスの高いものを、電流計19は無抵抗電流測定器とし、測定器の応答時間の早いものを使用する。なお、切換スイッチ21、電圧計18、電流計19、A/Dコンバータ20、切換スイッチ21の制御、データ処理などを行う装置を組み込んだ専用測定器を用いてもよいことは言うまでもない。腐食速度モニタリング装置1は、参照電極13を使用しなければ2電極短絡法を用いた腐食速度モニタリング装置として使用することが可能であり、また腐食速度モニタリング装置1から参照電極13を取除けば2電極短絡法を用いた腐食速度モニタリング装置となる。2電極短絡法を用いた腐食速度モニタリング装置は、短絡電流と電位差とを同時に測定することはできないが構造が非常に簡単である。   The corrosion rate monitoring device 1 further includes a voltmeter 18 for detecting a potential difference between electrodes and a current, an ammeter 19, an A / D converter 20 for taking in the potential difference and the current value, a changeover switch 21, and a personal computer 22. Each electrode is connected to a changeover switch 21, a voltmeter 18, and an ammeter 19 via a conductor 17, and the voltmeter 18 and ammeter 19 are connected to a personal computer 22 via an A / D converter 20. Controls the changeover switch 21 and the A / D converter 20. The voltmeter 18 has a high input impedance, the ammeter 19 is a non-resistance current measuring instrument, and a measuring instrument with a fast response time is used. Needless to say, a dedicated measuring instrument incorporating a device for controlling the switch 21, the voltmeter 18, the ammeter 19, the A / D converter 20, the selector switch 21, and data processing may be used. If the reference electrode 13 is not used, the corrosion rate monitoring device 1 can be used as a corrosion rate monitoring device using the two-electrode short-circuit method, and if the reference electrode 13 is removed from the corrosion rate monitoring device 1, the corrosion rate monitoring device 1 can be used. Corrosion rate monitoring device using the electrode short-circuit method. The corrosion rate monitoring apparatus using the two-electrode short-circuit method cannot measure the short-circuit current and the potential difference at the same time, but has a very simple structure.

腐食速度モニタリング装置1において、電位測定状態から瞬間的に切換スイッチ21を作動させることにより試料極12及び対極14との短絡電流、この状態での参照電極13との電位差を測定し、それらの電位電流応答から分極抵抗を、さらに分極抵抗値から腐食電流が計算で求められる。瞬間的な切換えによって試料極12は自然腐食状態を大きく乱さないまま分極測定がなされるので、長時間の腐食状態を監視できる腐食速度モニタリング装置として優れる。また、腐食速度モニタリング装置1は、試料極12と対極14とを短絡させることで電極間に電圧、電流を印加するので外部電源が不要である。このため設置も簡単であり、また分極抵抗測定、腐食電流の算出も簡単に行うことができる。   In the corrosion rate monitoring device 1, the changeover switch 21 is instantaneously operated from the potential measurement state to measure the short-circuit current between the sample electrode 12 and the counter electrode 14 and the potential difference with the reference electrode 13 in this state. The polarization resistance is calculated from the current response, and the corrosion current is calculated from the polarization resistance value. Since the sample electrode 12 performs polarization measurement without instantaneously disturbing the natural corrosion state by instantaneous switching, it is excellent as a corrosion rate monitoring device capable of monitoring a long-time corrosion state. Moreover, since the corrosion rate monitoring apparatus 1 applies a voltage and an electric current between electrodes by short-circuiting the sample electrode 12 and the counter electrode 14, an external power supply is unnecessary. For this reason, installation is easy, and polarization resistance measurement and corrosion current calculation can be easily performed.

また、腐食速度モニタリング装置1では、参照電極13にマグネタイトを用いるので、銀・塩化銀電極のように溶液を用いる汎用参照電極と異なり、封液の漏れによる汚染の心配がない。参照電極13が一部溶解などしてこれらが不純物としてボイラー給水に混入すると、プロセスに悪影響を及ぼすけれども、参照電極13にマグネタイトを用いるので仮に参照電極13の一部が溶解しボイラー給水に含まれても、ボイラー給水管11は一般に炭素鋼又は低合金鋼が用いられ、超純水でpH9前後、酸素濃度7ppb以下の環境で炭素鋼又は低合金鋼の表面にマグネタイトやヘマタイトなどの酸化鉄が形成されることからプロセスに悪影響を及ぼさないと考えられる。さらに参照電極13にマグネタイトを用いるので、試料極12の表面に良好なマグネタイトが形成される場合は参照電極13と試料極12との電極間電位は0に近づくので、試料極12の表面にマグネタイトが形成されたことを検知することができる。なお、マグネタイトは、あらゆる温度の水溶系の環境下で成分的、物性的及び形状的にも安定であり、かつマグネタイトは良好な電気伝導性を有するので参照電極として好適に使用することができる。なお、使用環境に応じて、参照電極13及び対極14に白金を用いることができる。   Moreover, in the corrosion rate monitoring apparatus 1, since magnetite is used for the reference electrode 13, unlike the general-purpose reference electrode using a solution such as a silver / silver chloride electrode, there is no concern about contamination due to leakage of the sealing liquid. If the reference electrode 13 is partially dissolved and these are mixed into the boiler feed water as impurities, the process will be adversely affected. However, since magnetite is used for the reference electrode 13, a part of the reference electrode 13 is temporarily dissolved and included in the boiler feed water. However, the boiler water supply pipe 11 is generally made of carbon steel or low alloy steel, and iron oxide such as magnetite or hematite is formed on the surface of the carbon steel or low alloy steel in an environment of ultrapure water having a pH of around 9 and an oxygen concentration of 7 ppb or less. Because it is formed, it is considered that the process is not adversely affected. Further, since magnetite is used for the reference electrode 13, when good magnetite is formed on the surface of the sample electrode 12, the interelectrode potential between the reference electrode 13 and the sample electrode 12 approaches 0, so that the magnetite is formed on the surface of the sample electrode 12. Can be detected. Magnetite is stable in terms of components, physical properties and shape in a water-based environment at any temperature, and magnetite has good electrical conductivity, so that it can be suitably used as a reference electrode. Note that platinum can be used for the reference electrode 13 and the counter electrode 14 depending on the use environment.

本発明に係る第2の分極抵抗測定方法は、前記2電極短絡法及び3電極短絡法の試料極と対極との短絡、開放に代え、試料極と対極との間に所定の電流が流れるように外部電源を用いて試料極と対極との間に極微小時間電圧を印加した後、直ちに電極間を開放する。以下この方法を2電極外部電源法、3電極外部電源法と記す。   In the second polarization resistance measuring method according to the present invention, a predetermined current flows between the sample electrode and the counter electrode instead of short-circuiting and opening the sample electrode and the counter electrode in the two-electrode short-circuit method and the three-electrode short-circuit method. After applying an extremely small time voltage between the sample electrode and the counter electrode using an external power source, the electrodes are immediately opened. Hereinafter, this method is referred to as a two-electrode external power source method and a three-electrode external power source method.

図3は、2電極外部電源法を用いて分極抵抗測定する分極抵抗測定装置2の構成を示す図、図4は、3電極外部電源法を用いて分極抵抗測定する分極抵抗測定装置3の構成を示す図である。図2に示す腐食速度モニタリング装置1と同一の構成には同一の符号を付して説明を省略する。分極抵抗測定装置2、分極抵抗測定装置3は、3電極短絡法を用いた腐食速度モニタリング装置1と異なり、試料極12と対極14との間に外部から所定の電圧を印加するための外部電源23を備え、外部電源23と電流計18が直列に接続される。2電極外部電源法及び3電極外部電源法では、2電極短絡法及び3電極短絡法で行う試料極12と対極14との短絡の代わりに、外部電源23を用いて試料極12と対極14との間に所定の電流(高電流)が流れるようにする。この点を除けば、前記2電極短絡法及び3電極短絡法と同じ要領で腐食電流、腐食速度を求めることができる。なお図2、図3中符号24、25、26、27は、試験面、被覆、対極作用面及び溶液を示す。2電極短絡法及び3電極短絡法では、電位差は2つの異種金属の自然腐食電位で決まってしまうが、2電極外部電源法及び3電極外部電源法では、電極間に任意の電圧を印加可能なため、試料極12と対極14との自然腐食電位差が小さい場合に好適に使用することができる。   FIG. 3 is a diagram showing a configuration of a polarization resistance measuring device 2 that measures polarization resistance using the two-electrode external power source method, and FIG. 4 is a configuration of a polarization resistance measuring device 3 that measures polarization resistance using the three-electrode external power source method. FIG. The same components as those in the corrosion rate monitoring apparatus 1 shown in FIG. Unlike the corrosion rate monitoring device 1 using the three-electrode short-circuit method, the polarization resistance measuring device 2 and the polarization resistance measuring device 3 are external power sources for applying a predetermined voltage between the sample electrode 12 and the counter electrode 14 from the outside. The external power supply 23 and the ammeter 18 are connected in series. In the two-electrode external power supply method and the three-electrode external power supply method, instead of short-circuiting the sample electrode 12 and the counter electrode 14 performed by the two-electrode short-circuit method and the three-electrode short-circuit method, the sample electrode 12 and the counter electrode 14 are A predetermined current (high current) is allowed to flow during Except this point, the corrosion current and the corrosion rate can be obtained in the same manner as the two-electrode short-circuit method and the three-electrode short-circuit method. 2 and 3, reference numerals 24, 25, 26, and 27 indicate a test surface, a coating, a counter electrode working surface, and a solution. In the two-electrode short-circuit method and the three-electrode short-circuit method, the potential difference is determined by the natural corrosion potential of two dissimilar metals, but in the two-electrode external power method and the three-electrode external power method, an arbitrary voltage can be applied between the electrodes. Therefore, it can be suitably used when the natural corrosion potential difference between the sample electrode 12 and the counter electrode 14 is small.

本発明に係る第3の分極抵抗測定方法は、前記2電極短絡法及び3電極短絡法の試料極12と対極14との短絡、開放に代え、試料極12と対極14との間を短絡させた状態から極微小時間開放した後、直ちに短絡させ、この間の電位電流応答から分極抵抗を求め、該分極抵抗から直接、腐食電流を算出する。第3の分極抵抗測定方法は、前記2電極短絡法及び3電極短絡法と同様に、試料極12の分極現象により、分極抵抗を求める方法であり、瞬間的であれば、どの位置から分極させても、分極挙動が同じであることを利用する。前記2電極短絡法及び3電極短絡法は、瞬間的に電極間を短絡、開放するため自然腐食状態に保つことができる。これに対してこの方法は、短絡させた状態から、極微小時間、開放し再度短絡させるため、自然腐食状態を維持することができないが、腐食を加速させることができる。自然腐食状態を維持する必要がない場合、腐食状態を迅速に模擬させたい場合には適する。   The third polarization resistance measuring method according to the present invention is to short-circuit the sample electrode 12 and the counter electrode 14 instead of short-circuiting and opening the sample electrode 12 and the counter electrode 14 of the two-electrode short-circuit method and the three-electrode short-circuit method. After being released from the state for a very short time, it is immediately short-circuited, and the polarization resistance is obtained from the potential current response during this time, and the corrosion current is directly calculated from the polarization resistance. The third polarization resistance measurement method is a method for obtaining the polarization resistance by the polarization phenomenon of the sample electrode 12 as in the two-electrode short-circuit method and the three-electrode short-circuit method. However, it takes advantage of the same polarization behavior. Since the two-electrode short-circuit method and the three-electrode short-circuit method instantaneously short-circuit and open the electrodes, they can be kept in a natural corrosion state. On the other hand, since this method opens and short-circuits again for a very short time from the short-circuited state, the natural corrosion state cannot be maintained, but corrosion can be accelerated. This is suitable when it is not necessary to maintain the natural corrosion state and when it is desired to quickly simulate the corrosion state.

本発明に係る第4の分極抵抗測定方法は、前記2電極外部電源法、3電極外部電源法の外部電源23を用いて試料極12と対極14との間に所定の電流が流れるように試料極12と対極14との間に極微小時間電圧を印加した後、直ちに試料極12と対極14との間を開放することに代え、試料極12と対極14との間に所定の電流が流れるように外部電源23を用いて電圧を印加した状態から極微小時間試料極12と対極14との間を開放し、その後直ちに電極間に所定の電流が流れるように外部電源23を用いて電圧を印加し、この間の電位電流応答から分極抵抗を求め、該分極抵抗から直接、腐食電流を算出する。第4の分極抵抗測定方法は、前記2電極外部電源法及び3電極外部電源法と同様に、試料極12の分極現象により、分極抵抗を求める方法であり、瞬間的であれば、どの位置から分極させても、分極挙動が同じであることを利用する。前記2電極外部電源法及び3電極外部電源法は、外部電源23を用いて試料極12と対極14との間に所定の電流が流れるように試料極12と対極14との間に極微小時間電圧を印加した後、直ちに試料極12と対極14との間を開放するため自然腐食状態に保つことができる。これに対してこの方法は、試料極12と対極14との間に所定の電流が流れるように外部電源23を用いて電圧を印加した状態から極微小時間試料極12と対極14との間を開放し、その後直ちに電極間に所定の電流が流れるように外部電源23を用いて電圧を印加するため、自然腐食状態を維持することができないが、腐食を加速させることができる。自然腐食状態を維持する必要がない場合、腐食状態を迅速に模擬させたい場合には適する。   A fourth polarization resistance measuring method according to the present invention is such that a predetermined current flows between the sample electrode 12 and the counter electrode 14 using the external power source 23 of the two-electrode external power source method and the three-electrode external power source method. After applying a very small time voltage between the electrode 12 and the counter electrode 14, a predetermined current flows between the sample electrode 12 and the counter electrode 14 instead of immediately opening the space between the sample electrode 12 and the counter electrode 14. Thus, the voltage is applied using the external power source 23 so that a predetermined current flows between the electrodes immediately after the sample electrode 12 and the counter electrode 14 are opened for a very short time after the voltage is applied using the external power source 23. The polarization resistance is obtained from the potential current response during this period, and the corrosion current is calculated directly from the polarization resistance. The fourth polarization resistance measurement method is a method for obtaining the polarization resistance by the polarization phenomenon of the sample electrode 12 as in the two-electrode external power supply method and the three-electrode external power supply method. Even if polarization is performed, the fact that the polarization behavior is the same is utilized. In the two-electrode external power source method and the three-electrode external power source method, a very short time is required between the sample electrode 12 and the counter electrode 14 so that a predetermined current flows between the sample electrode 12 and the counter electrode 14 using the external power source 23. Since the gap between the sample electrode 12 and the counter electrode 14 is immediately opened after the voltage is applied, it can be kept in a natural corrosion state. On the other hand, in this method, between the sample electrode 12 and the counter electrode 14 from a state where a voltage is applied using the external power source 23 so that a predetermined current flows between the sample electrode 12 and the counter electrode 14. Since the voltage is applied using the external power source 23 so that a predetermined current flows between the electrodes immediately after opening, the natural corrosion state cannot be maintained, but the corrosion can be accelerated. This is suitable when it is not necessary to maintain the natural corrosion state and when it is desired to quickly simulate the corrosion state.

実施例1
図5に示す実験装置を使用し、2電極短絡法を用いて分極抵抗方法を行った。図2に示す腐食速度モニタリング装置1と同一の構成には同一の符号を付して説明を省略する。溶液は水温21℃、pH1の塩酸環境とした。試料極12として純鉄板、対極14としてマグネタイト板を対向させ、1辺が5mmの正方形の試験面24及び対極作用面26とし、周辺を被覆25した後に溶液27に浸漬した。電圧計18、無抵抗電流計19の切換えを4〜100msの範囲で制御した。電位モードにすると試料極12がこの環境で腐食しているときの電位を測定することになる。次ぎに電流モードに切り替え、数msの間、電流測定を行い、再び電位測定に切換えた。このとき変化する電位差及び電流をA/Dコンバータ20で変換し、パーソナルコンピュータ22に取込み保存した。なお数msの分極では試料表面の腐食状態をほとんど乱さない。
Example 1
Using the experimental apparatus shown in FIG. 5, the polarization resistance method was performed using the two-electrode short-circuit method. The same components as those in the corrosion rate monitoring apparatus 1 shown in FIG. The solution was a hydrochloric acid environment having a water temperature of 21 ° C. and a pH of 1. A pure iron plate as a sample electrode 12 and a magnetite plate as a counter electrode 14 were opposed to each other to form a square test surface 24 and a counter electrode working surface 26 each having a side of 5 mm. Switching between the voltmeter 18 and the non-resistance ammeter 19 was controlled in the range of 4 to 100 ms. In the potential mode, the potential when the sample electrode 12 is corroded in this environment is measured. Next, it switched to the current mode, measured current for several ms, and switched to potential measurement again. The potential difference and current that change at this time were converted by the A / D converter 20 and stored in the personal computer 22. It should be noted that the polarization of several ms hardly disturbs the corrosion state of the sample surface.

図6は実施例1の実験結果であり、マグネタイトに対する試料極12の自然腐食電位の状態から、極微小時間の短絡、開放を行った場合の電位差及び短絡電流応答結果を示す図である。短絡(分極)時間は4ms、8ms及び50msの3回とした。2極間を短絡することによって電流値は高い状態から徐々に低下し、分極が進むことが分かる。分極によって2極間の電位差は小さくなるが、短絡を中止し開放すると電位差は徐々に高くなり元の電位差に近づこうとする。短絡前の電位をV、短絡直後の電流をI、開放直前の電流をI、開放直後の電位をVとする。V、IはそれぞれV、Iの後ろ側にある。 FIG. 6 is an experimental result of Example 1, and shows a potential difference and a short-circuit current response result when short-circuiting and opening are performed for a very short time from the state of natural corrosion potential of the sample electrode 12 with respect to magnetite. The short-circuit (polarization) time was 3 times of 4 ms, 8 ms and 50 ms. It can be seen that by short-circuiting the two electrodes, the current value gradually decreases from a high state, and the polarization proceeds. The potential difference between the two electrodes is reduced by the polarization, but when the short circuit is stopped and opened, the potential difference gradually increases and tries to approach the original potential difference. The potential before the short circuit is V 1 , the current immediately after the short circuit is I 1 , the current immediately before the opening is I 2 , and the potential immediately after the opening is V 2 . V 3 and I 3 are behind V 2 and I 1 , respectively.

実施例2
実施例1と同一の装置を使用した。試料極12として純鉄板、対極14としてマグネタイト板を対向させ、直径4mmの円形の試験面24及び対極作用面26とし、周辺を被覆25した後に21℃、0.5重量%の食塩水溶液の環境に浸漬し、電位、電流応答測定による6時間の腐食試験を行った。1回の分極時間8msとした。分極抵抗値Rp及び腐食電流値Icorrの経時変化を図7に示した。図7の腐食電流から式4を用いて腐食速度を求め、腐食量を積算した結果、及び表面積455mmの同一材料の純鉄を用いて6時間の腐食試験を行ったときのICP発光分析及び試験片質量減少量から得られた腐食積算量を図8に示した。表面積455mmの同一材料の純鉄を用いて2時間の腐食試験を行ったときの試験片質量減少量0.2mg及びICP発光分析から求めた平均腐食速度は66.1×10−8mg/mm・s、直径4mmの円形面の平均腐食電流は式4を用いて2.6μA、同面積の6時間における腐食積算量は0.017mgであった。図7に示す分極測定で得られた平均腐食電流は2.2μAであり平均腐食電流はよく一致した。さらに図7に示す分極測定で得られた平均腐食速度から求めた6時間における腐食積算量は0.014mgであり、腐食積算量もよく一致した。
Example 2
The same apparatus as in Example 1 was used. A pure iron plate as a sample electrode 12 and a magnetite plate as a counter electrode 14 are opposed to each other to form a circular test surface 24 and a counter electrode working surface 26 having a diameter of 4 mm. A 6 hour corrosion test was conducted by measuring the potential and current response. One polarization time was 8 ms. Changes with time in the polarization resistance value Rp 2 and the corrosion current value I corr are shown in FIG. The corrosion rate was calculated from the corrosion current of FIG. 7 using Equation 4, the result of integrating the corrosion amount, and the ICP emission analysis when a 6 hour corrosion test was performed using pure iron of the same material with a surface area of 455 mm 2 The accumulated corrosion amount obtained from the test piece mass reduction amount is shown in FIG. When a 2-hour corrosion test was performed using pure iron of the same material having a surface area of 455 mm 2 , the test piece mass reduction amount was 0.2 mg, and the average corrosion rate determined from ICP emission analysis was 66.1 × 10 −8 mg / The average corrosion current of the circular surface having a diameter of 2 mm and a diameter of 4 mm was 2.6 μA using Equation 4, and the cumulative amount of corrosion in the same area over 6 hours was 0.017 mg. The average corrosion current obtained by the polarization measurement shown in FIG. 7 was 2.2 μA, and the average corrosion currents were in good agreement. Further, the integrated amount of corrosion in 6 hours obtained from the average corrosion rate obtained by the polarization measurement shown in FIG. 7 was 0.014 mg, and the integrated amounts of corrosion were in good agreement.

実施例3
ボイラー水環境である140℃、pH9、溶存酸素濃度20ppb以下の試験溶液を高圧容器内に入れ、純鉄試料極12の電位、電流応答による分極抵抗の測定を、短絡時間8ms、60分の測定間隔で行い、算出した腐食電流から求めた累積腐食量の経時変化を図9に示した。試料極12の表面積を400mm、マグネタイト対極14の表面積を900mmとし試料極12と対極14との面積比を変えた。試料極12の表面に形成するマグネタイト皮膜が生長するために腐食量は徐々に低下することが分かる。試験後の試料極12の質量減少量は0.2mgであり、本発明による腐食電流から求めた累積腐食量と良く一致した。
Example 3
A test solution having a boiler water environment of 140 ° C., pH 9, and dissolved oxygen concentration of 20 ppb or less is placed in a high-pressure vessel, and the electric resistance of the pure iron sample electrode 12 is measured for the polarization resistance by measuring the short circuit time 8 ms for 60 minutes. FIG. 9 shows the change over time in the cumulative corrosion amount obtained from the calculated corrosion current at intervals. The surface area of the sample electrode 12 was 400 mm 2 , the surface area of the magnetite counter electrode 14 was 900 mm 2 , and the area ratio between the sample electrode 12 and the counter electrode 14 was changed. It can be seen that the amount of corrosion gradually decreases because the magnetite film formed on the surface of the sample electrode 12 grows. The mass reduction amount of the sample electrode 12 after the test was 0.2 mg, which was in good agreement with the cumulative corrosion amount obtained from the corrosion current according to the present invention.

実施例4
対極14を白金、試料極12を純鉄として、直径4mmの円形の試験面24及び対極作用面26とし、周辺を被覆25した後に21℃、水道水環境に浸漬し、2電極短絡法により短絡させた状態から極微小時間開放させた場合の純鉄試料極12の電位、電流応答をみた結果を図10に示した。開放時間8ms及び4msの電位電流応答において0.8ms後の電位値V、電流値Iから式2の分極抵抗を求め、式3から求められる腐食電流は3μAとなった他、極微小時間開放させたときの電位応答が複雑な挙動をとり、試料面の複雑な腐食状態を反映していることが分かった。本手法では瞬間的な切り替えにより、試料面の腐食状態を観察することができることが確かめられた。
Example 4
The counter electrode 14 is platinum, the sample electrode 12 is pure iron, the test surface 24 and the counter electrode working surface 26 have a diameter of 4 mm, and the periphery is covered 25, then immersed in a tap water environment at 21 ° C., and short-circuited by the two-electrode short-circuit method. FIG. 10 shows the results of viewing the potential and current response of the pure iron sample electrode 12 when it was opened for a very short period of time from the state in which it was applied. In the potential-current response with an opening time of 8 ms and 4 ms, the polarization resistance of Equation 2 was obtained from the potential value V 3 and current value I 3 after 0.8 ms, and the corrosion current obtained from Equation 3 was 3 μA. It was found that the potential response when released was complex and reflected the complex corrosion state of the sample surface. In this method, it was confirmed that the corrosion state of the sample surface can be observed by instantaneous switching.

実施例5
実施例1と同様の装置を使用し2電極短絡法により、対極14としてマグネタイト板、炭素板、マルテンサイト系ステンレス鋼を用いた場合の0.5重量%の食塩水溶液環境の純鉄の腐食電流を求めた。結果を表1に示す。分極時間は8msとした。対極14としてマグネタイト板、炭素板、マルテンサイト系ステンレス鋼を用いた場合の純鉄の腐食電流は、それぞれ2.16μA、2.93μA、1.45μAであり、この値は、実施例2で示す腐食試験による試験片質量減少量から得られる腐食電流2.6μAとよく一致し、本手法の妥当性が確かめられた。
Example 5
Corrosion current of pure iron in a 0.5 wt% saline solution environment when a magnetite plate, carbon plate, martensitic stainless steel is used as the counter electrode 14 by the two-electrode short-circuit method using the same apparatus as in Example 1. Asked. The results are shown in Table 1. The polarization time was 8 ms. Corrosion currents of pure iron when using a magnetite plate, a carbon plate, and martensitic stainless steel as the counter electrode 14 are 2.16 μA, 2.93 μA, and 1.45 μA, respectively, and these values are shown in Example 2. It was in good agreement with the corrosion current of 2.6 μA obtained from the test piece mass loss by the corrosion test, confirming the validity of this method.

実施例6
水道水環境において白金の対極14及び参照電極13を用いて軟鋼試料極12の電位、電流応答を、3電極短絡法を用いて求めた結果を図11に示す。対極14及び参照電極13の表面を直径4mmの円形とし、試料極12の表面を直径12mmの円形とした。対極14と試料極12の電位を測り、次に対極14と試料極12を導線17で瞬間的(4ms)に短絡させ、対極14と試料極12に流れる電流及び対極14と短絡させた状態での試料極12と参照電極13の電位を同時に測定した。このときの電位は、回路上プラスとマイナスが逆転する。この試験により、腐食電流は式3を用いて0.02μAと計算された。
Example 6
FIG. 11 shows the results of determining the potential and current response of the mild steel sample electrode 12 using the platinum counter electrode 14 and the reference electrode 13 using a three-electrode short-circuit method in a tap water environment. The surface of the counter electrode 14 and the reference electrode 13 was circular with a diameter of 4 mm, and the surface of the sample electrode 12 was circular with a diameter of 12 mm. The potential of the counter electrode 14 and the sample electrode 12 is measured, and then the counter electrode 14 and the sample electrode 12 are short-circuited instantaneously (4 ms) by the conducting wire 17, and the current flowing through the counter electrode 14 and the sample electrode 12 and the counter electrode 14 are short-circuited. The potentials of the sample electrode 12 and the reference electrode 13 were measured simultaneously. The potential at this time is reversed between plus and minus on the circuit. With this test, the corrosion current was calculated to be 0.02 μA using Equation 3.

1 腐食電流測定装置
2 分極抵抗測定装置
3 分極抵抗測定装置
11 ボイラー給水管
12 試料電極
13 参照電極
14 対極
15 絶縁具
16 電極固定具
17 導線
18 電圧計
19 電流計
20 A/Dコンバータ
21 切換スイッチ
22 パーソナルコンピュータ
23 外部電源
24 試験面
25 被覆
26 対極作用面
27 溶液
DESCRIPTION OF SYMBOLS 1 Corrosion current measuring apparatus 2 Polarization resistance measuring apparatus 3 Polarization resistance measuring apparatus 11 Boiler feed pipe 12 Sample electrode 13 Reference electrode 14 Counter electrode 15 Insulator 16 Electrode fixture 17 Conductor 18 Voltmeter 19 Ammeter 20 A / D converter 21 Changeover switch 22 Personal Computer 23 External Power Supply 24 Test Surface 25 Coating 26 Counter Electrode Working Surface 27 Solution

Claims (10)

腐食電流を直接算出することができる分極抵抗の測定方法であって、
腐食電流を求める金属を試料極とし、前記金属とは自然腐食状態の平衡電位が異なる良好な電気伝導性を有する固体を対極とし、前記試料極と対極との間を極微小時間短絡させた後、直ちに開放し、この間の電位電流応答から分極抵抗を求めることを特徴とする分極抵抗測定方法。
A method for measuring polarization resistance capable of directly calculating the corrosion current,
The metal for which the corrosion current is to be obtained is used as a sample electrode, and the solid electrode having a good electrical conductivity different from the equilibrium potential in the natural corrosion state is used as a counter electrode, and the sample electrode and the counter electrode are short-circuited for a very short time. A method of measuring polarization resistance, which is immediately opened and the polarization resistance is obtained from the potential-current response during this period.
さらに前記対極と同一の材料からなる固体を参照電極とし、
前記試料極と対極との間を極微小時間短絡させるとき、同時に、前記試料極と前記参照電極との間の電位差を測定することを特徴とする請求項1に記載の分極抵抗測定方法。
Furthermore, a solid made of the same material as the counter electrode is used as a reference electrode,
2. The polarization resistance measuring method according to claim 1, wherein when the sample electrode and the counter electrode are short-circuited for a very short time, a potential difference between the sample electrode and the reference electrode is measured simultaneously.
前記試料極と対極との間を極微小時間短絡させることに代え、前記試料極と対極との間に所定の電流が流れるように外部電源を用いて前記試料極と対極との間に極微小時間電圧を印加することを特徴とする請求項1又2に記載の分極抵抗測定方法。   Instead of short-circuiting between the sample electrode and the counter electrode for a very short time, an extremely small amount is used between the sample electrode and the counter electrode using an external power source so that a predetermined current flows between the sample electrode and the counter electrode. 3. The polarization resistance measuring method according to claim 1, wherein a time voltage is applied. 前記試料極と対極との間を極微小時間短絡させた後、直ちに開放することに代え、前記試料極と対極との間を短絡させた状態から極微小時間開放し、その後直ちに短絡させることを特徴とする請求項1又は2に記載の分極抵抗測定方法。   Instead of immediately opening the sample electrode and the counter electrode after short-circuiting for a very short time, instead of opening the sample electrode and the counter electrode short-circuited from the state of being short-circuited, and immediately short-circuiting 3. The polarization resistance measuring method according to claim 1, wherein the polarization resistance is measured. 前記試料極と対極との間に所定の電流が流れるように外部電源を用いて前記試料極と対極との間に極微小時間電圧を印加した後、直ちに試料極と対極との間を開放することに代え、前記試料極と対極との間に所定の電流が流れるように外部電源を用いて電圧を印加した状態から極微小時間試料極と対極との間を開放し、その後直ちに電極間に所定の電流が流れるように外部電源を用いて電圧を印加することを特徴とする請求項3に記載の分極抵抗測定方法。   After applying a very short time voltage between the sample electrode and the counter electrode using an external power source so that a predetermined current flows between the sample electrode and the counter electrode, the gap between the sample electrode and the counter electrode is immediately opened. Instead, the gap between the sample electrode and the counter electrode is opened for a very short time from the state in which a voltage is applied using an external power supply so that a predetermined current flows between the sample electrode and the counter electrode, and then immediately between the electrodes. 4. The polarization resistance measuring method according to claim 3, wherein a voltage is applied using an external power supply so that a predetermined current flows. 前記試料極及び対極、又は試料極、対極及び参照電極を、腐食電流を求めたい水溶系環境下に置き、請求項1から5のいずれか1の分極抵抗測定方法を用いて金属材料の分極抵抗を測定し、腐食速度をモニタリングすることを特徴とする腐食速度モニタリング方法。   The sample electrode and counter electrode, or the sample electrode, counter electrode, and reference electrode are placed in an aqueous environment where the corrosion current is desired to be obtained, and the polarization resistance of the metal material is measured using the polarization resistance measurement method according to claim 1. A corrosion rate monitoring method characterized by measuring the corrosion rate and monitoring the corrosion rate. 前記参照電極は、溶液又は塩溶液を用いない固体材料からなる参照電極であり、測定する水溶系環境下において、性状安定性及び形状安定性に優れることを特徴とする請求項6に記載の腐食速度モニタリング方法。   The corrosion according to claim 6, wherein the reference electrode is a reference electrode made of a solid material that does not use a solution or a salt solution, and is excellent in property stability and shape stability in a water-based environment to be measured. Speed monitoring method. 前記対極、又は対極及び参照電極がマグネタイトからなり、前記水溶系環境が、100℃以上のボイラー給水であることを特徴とする請求項6又は7に記載の腐食速度モニタリング方法。   The corrosion rate monitoring method according to claim 6 or 7, wherein the counter electrode, or the counter electrode and the reference electrode are made of magnetite, and the water-based environment is boiler feed water at 100 ° C or higher. 腐食電流を求める金属からなる試料極と、
前記試料極とは自然腐食状態の平衡電位が異なる良好な電気伝導性を有する固体からなる対極と、
前記試料極と前記対極とを極微小時間短絡させた後、開放させるスイッチと、
前記試料極と前記対極との間の電位差を検出する電圧計と、
前記試料極と前記対極との間を流れる電流を検出する電流計と、
電位差及び電流値をオンラインで取り込み可能なデータ処理装置と、
を含むことを特徴とする分極抵抗測定装置。
A sample electrode made of a metal for which a corrosion current is required;
A counter electrode made of a solid having good electrical conductivity, which is different from the equilibrium potential of the natural corrosion state from the sample electrode;
A switch that opens after short-circuiting the sample electrode and the counter electrode for a very short time,
A voltmeter for detecting a potential difference between the sample electrode and the counter electrode;
An ammeter for detecting a current flowing between the sample electrode and the counter electrode;
A data processing device capable of capturing potential difference and current value online;
A polarization resistance measuring device comprising:
さらに前記対極と同一の固体材料からなる参照電極を備え、
前記スイッチは、さらに前記試料極と前記参照電極とを極微小時間短絡させた後、開放し、
前記電圧計は、前記試料極と前記対極との間の電位差の検出に代え、前記試料極と前記参照電極との間の電位差を検出することを特徴とする請求項9に記載の分極抵抗測定装置。
Furthermore, a reference electrode made of the same solid material as the counter electrode is provided,
The switch is further opened after the sample electrode and the reference electrode are short-circuited for a very short time,
The polarization resistance measurement according to claim 9, wherein the voltmeter detects a potential difference between the sample electrode and the reference electrode instead of detecting a potential difference between the sample electrode and the counter electrode. apparatus.
JP2010087096A 2010-04-05 2010-04-05 Method of measuring polarization resistance, method of monitoring corrosion speed, and polarization resistance measuring device Pending JP2011220717A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2010087096A JP2011220717A (en) 2010-04-05 2010-04-05 Method of measuring polarization resistance, method of monitoring corrosion speed, and polarization resistance measuring device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2010087096A JP2011220717A (en) 2010-04-05 2010-04-05 Method of measuring polarization resistance, method of monitoring corrosion speed, and polarization resistance measuring device

Publications (1)

Publication Number Publication Date
JP2011220717A true JP2011220717A (en) 2011-11-04

Family

ID=45037908

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2010087096A Pending JP2011220717A (en) 2010-04-05 2010-04-05 Method of measuring polarization resistance, method of monitoring corrosion speed, and polarization resistance measuring device

Country Status (1)

Country Link
JP (1) JP2011220717A (en)

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104359828A (en) * 2014-10-31 2015-02-18 重庆建工住宅建设有限公司 Method for testing corrosive action of grouting mortar to rebar
CN104535487A (en) * 2015-01-13 2015-04-22 南京钢铁股份有限公司 Electrochemical experiment method for continuously measuring polarization resistance of material
WO2015152219A1 (en) * 2014-03-31 2015-10-08 株式会社堀場製作所 Electrode, composite electrode, and liquid analyzer
JP2015180856A (en) * 2014-03-06 2015-10-15 株式会社神戸製鋼所 Corrosion monitoring sensor, corrosion depth calculation system, and metal corrosion speed calculation system
JP2016114376A (en) * 2014-12-11 2016-06-23 国立大学法人横浜国立大学 Solid-state residual chlorine sensor and water meter having the same
JP2019035655A (en) * 2017-08-15 2019-03-07 三浦工業株式会社 Corrosion measurement system and corrosion measurement method
CN110133053A (en) * 2019-06-14 2019-08-16 中国特种设备检测研究院 A kind of Metal pipeline corrosion monitoring method and system
US10488323B1 (en) * 2019-03-15 2019-11-26 King Saud University Steel panel with an integrated corrosion sensor
CN111398157A (en) * 2020-04-15 2020-07-10 中国船舶重工集团公司第七二五研究所 Small-caliber copper alloy pipeline polarization resistance testing device and method
KR102180356B1 (en) * 2019-10-31 2020-11-18 송광철 System for preventing corrosion of pipe using current management for anticorrosion
CN114112884A (en) * 2021-12-07 2022-03-01 江苏容大材料腐蚀检验有限公司 Detection method for steel corrosion performance under simulated seawater environment
CN116500340A (en) * 2023-05-18 2023-07-28 浙江蓝能氢能科技股份有限公司 Impedance measurement method of electrolytic hydrogen production device

Cited By (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015180856A (en) * 2014-03-06 2015-10-15 株式会社神戸製鋼所 Corrosion monitoring sensor, corrosion depth calculation system, and metal corrosion speed calculation system
CN106164662B (en) * 2014-03-31 2019-06-25 株式会社堀场制作所 Electrode, combination electrode, fluid analyte meter
WO2015152219A1 (en) * 2014-03-31 2015-10-08 株式会社堀場製作所 Electrode, composite electrode, and liquid analyzer
CN106164662A (en) * 2014-03-31 2016-11-23 株式会社堀场制作所 Electrode, combination electrode, fluid analyte meter
JPWO2015152219A1 (en) * 2014-03-31 2017-04-13 株式会社堀場製作所 Electrode, composite electrode, liquid analyzer
US10036718B2 (en) 2014-03-31 2018-07-31 Horiba, Ltd. Electrode, composite electrode, and analyzer for analyzing liquid
CN104359828A (en) * 2014-10-31 2015-02-18 重庆建工住宅建设有限公司 Method for testing corrosive action of grouting mortar to rebar
JP2016114376A (en) * 2014-12-11 2016-06-23 国立大学法人横浜国立大学 Solid-state residual chlorine sensor and water meter having the same
CN104535487A (en) * 2015-01-13 2015-04-22 南京钢铁股份有限公司 Electrochemical experiment method for continuously measuring polarization resistance of material
JP2019035655A (en) * 2017-08-15 2019-03-07 三浦工業株式会社 Corrosion measurement system and corrosion measurement method
US10488323B1 (en) * 2019-03-15 2019-11-26 King Saud University Steel panel with an integrated corrosion sensor
CN110133053A (en) * 2019-06-14 2019-08-16 中国特种设备检测研究院 A kind of Metal pipeline corrosion monitoring method and system
CN110133053B (en) * 2019-06-14 2024-02-02 中国特种设备检测研究院 Metal pipeline corrosion monitoring method and system
KR102180356B1 (en) * 2019-10-31 2020-11-18 송광철 System for preventing corrosion of pipe using current management for anticorrosion
CN111398157A (en) * 2020-04-15 2020-07-10 中国船舶重工集团公司第七二五研究所 Small-caliber copper alloy pipeline polarization resistance testing device and method
CN111398157B (en) * 2020-04-15 2022-11-18 中国船舶重工集团公司第七二五研究所 Small-caliber copper alloy pipeline polarization resistance testing device and method
CN114112884A (en) * 2021-12-07 2022-03-01 江苏容大材料腐蚀检验有限公司 Detection method for steel corrosion performance under simulated seawater environment
CN116500340A (en) * 2023-05-18 2023-07-28 浙江蓝能氢能科技股份有限公司 Impedance measurement method of electrolytic hydrogen production device
CN116500340B (en) * 2023-05-18 2024-02-02 浙江蓝能氢能科技股份有限公司 Impedance measurement method of electrolytic hydrogen production device

Similar Documents

Publication Publication Date Title
JP2011220717A (en) Method of measuring polarization resistance, method of monitoring corrosion speed, and polarization resistance measuring device
Buchanan et al. Electrochemical corrosion
Thomas et al. Possibilities and limitations of scanning electrochemical microscopy of Mg and Mg alloys
JP2007532887A (en) An improved method for measuring local corrosion degree using a multi-electrode array sensor
US20020153907A1 (en) Sensor array for electrochemical corrosion monitoring
US2947679A (en) Corrosion rate sensing assembly
Pearson “Null” Methods Applied to Corrosion Measurements
JP6163433B2 (en) Crevice corrosion test method and crevice corrosion test equipment
WO2018048461A1 (en) Electrochemical detection of corrosion and corrosion rates of metal in molten salts at high temperatures
Fajardo et al. A critical review of the application of electrochemical techniques for studying corrosion of Mg and Mg alloys: opportunities and challenges
Seri et al. Differentiating polarization curve technique for determining the exchange current density of hydrogen electrode reaction
Vasyliev Polarization resistance measurement in tap water: the influence of rust electrochemical activity
Zhang et al. The AC corrosion mechanisms and models: A review
JP2020046336A (en) Corrosion sensor and corrosion evaluation system
JP2015212623A (en) Water quality sensor and cooling system including the same
JP6762536B2 (en) Water corrosiveness judgment method and water corrosiveness judgment device
JP3849338B2 (en) Method for evaluating weather resistance of steel and weather resistance measuring apparatus
US3313720A (en) Apparatus for measuring dissolved oxygen in water
da Silva et al. Near-surface solution pH measurements during the pitting corrosion of AISI 1020 steel using a ring-shaped sensor
GB2365977A (en) Corrosion monitoring system for use in multiple phase solutions
JP2009002902A (en) Method of evaluating inter-granular corrosion susceptibility for zinc alloy die casting
Moran et al. A Modeling Approach to Understanding the Interrelated Nature of Cathodic Protection Current and AC Stray Current on Pipelines
JP2000162167A (en) Method for measuring faraday resistance
Protopopoff et al. Potential Measurements with Reference Electrodes
CN105629134B (en) A kind of method that state is insulated between detection dissimilar metal