JP2000162167A - Method for measuring faraday resistance - Google Patents

Method for measuring faraday resistance

Info

Publication number
JP2000162167A
JP2000162167A JP33478498A JP33478498A JP2000162167A JP 2000162167 A JP2000162167 A JP 2000162167A JP 33478498 A JP33478498 A JP 33478498A JP 33478498 A JP33478498 A JP 33478498A JP 2000162167 A JP2000162167 A JP 2000162167A
Authority
JP
Japan
Prior art keywords
voltage
resistance
corrosion
faraday
electrode
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP33478498A
Other languages
Japanese (ja)
Inventor
Yoshihisa Oda
喜久 織田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Shokubai Co Ltd
Original Assignee
Nippon Shokubai Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Shokubai Co Ltd filed Critical Nippon Shokubai Co Ltd
Priority to JP33478498A priority Critical patent/JP2000162167A/en
Publication of JP2000162167A publication Critical patent/JP2000162167A/en
Pending legal-status Critical Current

Links

Landscapes

  • Investigating Or Analyzing Materials By The Use Of Electric Means (AREA)

Abstract

PROBLEM TO BE SOLVED: To easily measure the Faraday resistance (polarization resistance) in the state where the electrochemical effect on a sample metal is minimized by sweeping the voltage to be applied to a sample metal electrode in the vicinity of open voltage within the range where the analysis by Tafel's plot is not applicable. SOLUTION: The DC voltage between a reference electrode and a sample (metal) electrode is detected, and a current source is regulated so that the applied voltage shows a specified change. The Faraday resistance is determined from the voltage-current characteristic at that time. In this circuit, a resistor R, a solution resistor Re, a Faraday resistor Rp, a capacitor component Cd, and an electromotive force (battery) factor E are provided between a counter electrode and the sample metal electrode. In this measurement, a measuring system is handled as an electronic circuit element, and the voltage-current characteristic in the vicinity of open voltage is examined to determine the Faraday resistance. As the vicinity of open voltage, up to about ±20 mV is set relative to the open voltage as a standard.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、ファラデー抵抗
(分極抵抗)の測定法に関する。本発明は、金属腐食の
評価法に関する。
The present invention relates to a method for measuring Faraday resistance (polarization resistance). The present invention relates to a method for evaluating metal corrosion.

【0002】[0002]

【従来の技術】金属の腐食とファラデー抵抗(分極抵
抗)には密接な関係がある。電解液中で金属が腐食する
場合は何らかの形式で電池が形成される。この時に、金
属原子が金属イオンと電子に解離することにより電流が
流れる。この電流が腐食電流であり、ファラデー抵抗
(分極抵抗)は腐食電流を低下させるものである。
2. Description of the Related Art There is a close relationship between metal corrosion and Faraday resistance (polarization resistance). If the metal corrodes in the electrolyte, some form of battery is formed. At this time, current flows due to dissociation of metal atoms into metal ions and electrons. This current is the corrosion current, and the Faraday resistance (polarization resistance) reduces the corrosion current.

【0003】ファラデー抵抗(分極抵抗)の測定は、古
典的には試料金属電極の開放電圧を中心として広い範囲
で印加電圧を掃引してターフェルプロットを行う方法が
ある。ターフェルプロットを行う場合は、通常、±100
mV程度の範囲で掃引されるが、開放電圧近傍(開放電圧
±20 mV程度)の部分はターフェルプロットにおいて直
線にのらないので、用いることができない。
A method of measuring the Faraday resistance (polarization resistance) includes a method of performing a Tafel plot by sweeping an applied voltage in a wide range centering on an open voltage of a sample metal electrode. When performing Tafel plots, typically ± 100
Although the voltage is swept in the range of about mV, the portion near the open-circuit voltage (open-circuit voltage about ± 20 mV) cannot be used because it does not form a straight line in the Tafel plot.

【0004】[0004]

【発明が解決しようとする課題】印加電圧を掃引してタ
ーフェルプロットを行うことができる程度に印加電圧を
掃引するためには、大きな電流を流す必要がある。その
結果、試料金属電極において電気化学的な反応が激しく
なる。反応(現象)の例としては、印加電圧が負の場合
は水素ガスの発生、発生した水素の電極金属への浸透な
ど、印加電圧が正の場合は電極の溶解などが観察され
る。これらは電極表面を大きく変化させ、電極特性を変
化させるものである。従って、ターフェルプロットを用
いる条件で測定したファラデー抵抗(分極抵抗)は、本
来のファラデー抵抗(分極抵抗)と異なる可能性が高
く、実際の腐食評価の尺度には使用しにくい。
In order to sweep the applied voltage so that Tafel plotting can be performed by sweeping the applied voltage, a large current needs to flow. As a result, the electrochemical reaction at the sample metal electrode becomes intense. Examples of the reaction (phenomenon) include generation of hydrogen gas when the applied voltage is negative, permeation of the generated hydrogen into the electrode metal, and dissolution of the electrode when the applied voltage is positive. These greatly change the electrode surface and change the electrode characteristics. Therefore, the Faraday resistance (polarization resistance) measured under the conditions using the Tafel plot is likely to be different from the original Faraday resistance (polarization resistance), and is hard to use as a scale for actual corrosion evaluation.

【0005】電極表面を乱しにくいファラデー抵抗(分
極抵抗)の測定法はいくつか提案されている。それらの
なかには、微少交流電圧を印加して測定するものやコン
デンサで電荷を与え、生じた電圧の時間変化から求める
方法などがある(電気化学協会編「新編電気化学測定
法」)。これらは測定に動的な要素をもち、測定される
ファラデー抵抗(分極抵抗)に若干の差が見られること
がある。また、装置自体の構成も比較的複雑である。
Several methods for measuring Faraday resistance (polarization resistance) that are less likely to disturb the electrode surface have been proposed. Among them, there are a method in which a minute AC voltage is applied to measure, a method in which a charge is given by a capacitor, and a method in which the voltage is obtained from a time change of the generated voltage ("New edition electrochemical measurement method" edited by The Electrochemical Society of Japan). These have a dynamic component in the measurement, and there may be a slight difference in the measured Faraday resistance (polarization resistance). Further, the configuration of the device itself is relatively complicated.

【0006】[0006]

【課題を解決するための手段】本測定法は測定系の等価
電子回路に注目し、開放電圧近傍で試料金属電極に印加
する電圧をターフェルプロットによる解析が適用できな
い範囲で掃引してファラデー抵抗(分極抵抗)を測定す
るものである。すなわち、試料金属電極に印加する電圧
を開放電圧±20 mV以下の範囲内で掃引することを特徴
とするファラデー抵抗(分極抵抗)の測定方法または金
属腐食の評価方法である。
This measurement method focuses on the equivalent electronic circuit of the measurement system, and sweeps the voltage applied to the sample metal electrode in the vicinity of the open circuit voltage to the extent that analysis by Tafel plot cannot be applied, and the Faraday resistance ( (Polarization resistance). That is, the method is a method for measuring Faraday resistance (polarization resistance) or a method for evaluating metal corrosion, in which a voltage applied to a sample metal electrode is swept within a range of an open voltage ± 20 mV or less.

【0007】[0007]

【発明の実施の形態】本発明で用いた測定系は、腐食を
評価するための試料金属で作成した電極と対極の電極と
参照電極とを電解液に浸したものである。測定系は一種
の電池を形成する。本測定法との関連を考慮して単純化
すると、測定系の基本機能は、図1の等価電子回路で示
し得る。本測定法は、図1に示すように、参照電極と試
料(金属)電極との間の直流電圧(印加電圧)を検知
し、この印加電圧が所定の変化を示すように電流源を調
節する。このときの電圧−電流特性からファラデー抵抗
を求めるものである。この回路においては、対極と試料
金属電極との間は、抵抗(R)、溶液抵抗(Re)、フ
ァラデー抵抗(分極抵抗)(Rp)、コンデンサ成分
(Cdl)、起電力(電池)因子(E)で構成されてお
り、RpとCdlは試料金属電極に由来する。なお、本
測定法においては、対極は測定に伴って流れる電流の通
路としての役割を果たすのみであるので、図1において
対極に起因する起電力の因子は省略してある。図1のR
は、参照電極−対極間の溶液抵抗と対極のファラデー抵
抗をまとめて示したものである。
BEST MODE FOR CARRYING OUT THE INVENTION The measuring system used in the present invention is one in which an electrode made of a sample metal for evaluating corrosion, an electrode of a counter electrode, and a reference electrode are immersed in an electrolytic solution. The measurement system forms a kind of battery. When simplified in consideration of the connection with the present measurement method, the basic functions of the measurement system can be represented by the equivalent electronic circuit of FIG. In this measuring method, as shown in FIG. 1, a DC voltage (applied voltage) between a reference electrode and a sample (metal) electrode is detected, and a current source is adjusted so that the applied voltage shows a predetermined change. . The Faraday resistance is obtained from the voltage-current characteristics at this time. In this circuit, the resistance (R), solution resistance (Re), Faraday resistance (polarization resistance) (Rp), capacitor component (Cdl), electromotive force (battery) factor (E) are provided between the counter electrode and the sample metal electrode. ), And Rp and Cdl are derived from the sample metal electrode. In the present measurement method, the counter electrode only plays a role as a path of a current flowing along with the measurement, and thus the factor of the electromotive force caused by the counter electrode is omitted in FIG. R in FIG.
Shows the solution resistance between the reference electrode and the counter electrode and the Faraday resistance of the counter electrode collectively.

【0008】図1において、ファラデー抵抗(分極抵
抗)はRpである。本測定は測定系を電子回路素子として
扱い、開放電圧近傍の電圧−電流特性を調べてファラデ
ー抵抗(分極抵抗ともいう、以下の説明においてはRpと
略して示す)を求めるものである。本発明でいう開放電
圧とは、参照電極を基準とする試料金属電極の電位であ
り、対極を電流源に接続しない場合に図1の電圧計で測
定される電圧を意味する。そのため、参照電極としてカ
ロメル電極、試料金属電極として鉄電極を用いた実施例
では、開放電圧は負の値になる。ここで用いる電圧計
は、高入力抵抗(FET入力型電子電圧計等)のもので
あることは当然である。開放電圧近傍とは、開放電圧に
対して±20mV程度までを目安とする。電気化学的な反
応は試料金属電極に流す電流は小さいほど起きにくくな
るので、ノイズなどの問題がなければ印加電圧は開放電
圧に近いほどよい。従って、電圧−電流特性を調べる掃
引電圧範囲は開放電圧を中心として狭い方が好ましい。
特に、Rpが低い場合は試料金属電極に流れる電流を少な
くするために掃引電圧範囲を狭くすることが好ましい。
In FIG. 1, the Faraday resistance (polarization resistance) is Rp. In this measurement, the measurement system is treated as an electronic circuit element, and the Faraday resistance (also referred to as polarization resistance, abbreviated as Rp in the following description) is obtained by examining the voltage-current characteristics near the open circuit voltage. The open voltage in the present invention is the potential of the sample metal electrode with respect to the reference electrode, and means the voltage measured by the voltmeter of FIG. 1 when the counter electrode is not connected to the current source. Therefore, in the embodiment using the calomel electrode as the reference electrode and the iron electrode as the sample metal electrode, the open circuit voltage has a negative value. The voltmeter used here is of course a high input resistance (FET input type electronic voltmeter or the like). The term "close to the open circuit voltage" is used as a standard up to about ± 20 mV relative to the open circuit voltage. Since the electrochemical reaction is less likely to occur as the current flowing through the sample metal electrode is smaller, the applied voltage should be closer to the open voltage unless there is a problem such as noise. Therefore, it is preferable that the sweep voltage range for examining the voltage-current characteristics is narrower around the open circuit voltage.
In particular, when Rp is low, it is preferable to narrow the sweep voltage range in order to reduce the current flowing through the sample metal electrode.

【0009】電圧−電流特性を測定すれば開放電圧にお
ける電圧変化(ΔV)に対する電流変化(ΔI)がわかる
ので Re + Rp =ΔV/ΔI が求められる。この場合、溶
液抵抗(Re)が予め測定してあれば Rp = ΔV/ΔI −R
eとして容易に計算できる。また、Reが(Re + Rp)より
も十分小さく(Re + Rp)の測定誤差範囲になる場合は
Rp = ΔV/ΔI とすることができる。
When the voltage-current characteristics are measured, the current change (ΔI) with respect to the voltage change (ΔV) at the open voltage can be determined, so that Re + Rp = ΔV / ΔI is obtained. In this case, if the solution resistance (Re) is measured in advance, Rp = ΔV / ΔI-R
It can be easily calculated as e. Also, if Re is sufficiently smaller than (Re + Rp) and the measurement error range is (Re + Rp),
Rp = ΔV / ΔI.

【0010】溶液抵抗(Re)が不明の場合は、公知の方
法で測定する必要がある。それらの溶液抵抗測定法のい
ずれを用いてもよいが、測定装置(測定用電子回路)の
構成を考慮すると印加電圧を瞬断する方法は好ましい選
択の一つである。すなわち、印加電圧の掃引を行う際に
ごく短期間対極を開放して通電を停止すると、試料金属
電極と参照電極に残存電圧 Vresが観測される。Vres
は、起電力(電池)因子Eの電圧とコンデンサ成分Cdlに
残存する電圧との和である。通電停止時間は公知の測定
の場合と同様であり、1ミリ秒以下が好ましく下限は測
定用電子回路などの応答特性で決まる。通電停止直前の
印加電圧をVapp、そのときの電流をIappとすると、溶液
抵抗 Re に発生する電圧は(Vapp− Vres )である。従
って、オームの法則を用いて Re = │(Vapp− Vres )
/Iapp│として求められる。本測定法における印加電圧
は開放電圧近傍であるので、ここに記載した溶液抵抗
(Re)の測定操作は、電圧掃引の開始時点あるいは電圧
掃引の終了の時点で行ってもよい。この場合、電圧の瞬
断は電圧−電流特性を乱す要因にならないので好都合で
ある。
If the solution resistance (Re) is unknown, it must be measured by a known method. Any of these solution resistance measurement methods may be used, but a method of instantaneously interrupting the applied voltage is one of the preferable choices in consideration of the configuration of the measurement device (electronic circuit for measurement). That is, when the counter electrode is opened for a very short time to stop the energization when the applied voltage is swept, the residual voltage Vres is observed at the sample metal electrode and the reference electrode. Vres
Is the sum of the voltage of the electromotive force (battery) factor E and the voltage remaining in the capacitor component Cdl. The energization stop time is the same as in the case of a known measurement, and is preferably 1 millisecond or less, and the lower limit is determined by response characteristics of an electronic circuit for measurement and the like. Assuming that the applied voltage immediately before the stop of energization is Vapp and the current at that time is Iapp, the voltage generated at the solution resistance Re is (Vapp-Vres). Therefore, using Ohm's law, Re = │ (Vapp− Vres)
/ Iapp |. Since the applied voltage in this measurement method is near the open-circuit voltage, the operation of measuring the solution resistance (Re) described here may be performed at the start of the voltage sweep or at the end of the voltage sweep. In this case, the instantaneous interruption of the voltage is advantageous because it does not disturb the voltage-current characteristics.

【0011】測定系を構成する試料金属電極は腐食を評
価したい金属試料を用いる。また、対極は、測定用電解
液の中で電気化学的に安定で導電性が高いものであれば
どのような材質のものでも用いることができる。例え
ば、黒鉛や白金、金などの導電性材料が使用できる。さ
らに、参照電極はカロメル電極、銀−塩化銀電極、水素
電極など通常の電気化学的測定で用いるものが使用でき
る。
As a sample metal electrode constituting the measuring system, a metal sample whose corrosion is to be evaluated is used. As the counter electrode, any material can be used as long as it is electrochemically stable and has high conductivity in the electrolytic solution for measurement. For example, conductive materials such as graphite, platinum, and gold can be used. Further, as the reference electrode, those used in ordinary electrochemical measurements such as a calomel electrode, a silver-silver chloride electrode and a hydrogen electrode can be used.

【0012】試料金属電極と電解液は目的に応じて決定
できる。例えば、本測定法の応用として塩化ナトリウム
を主要電解質として含有する水溶液における金属の腐食
評価がある。その際、塩化ナトリウムなどの主要電解質
の濃度範囲が1 g/l(リットル)以上で飽和まで、好ま
しくは10 g/l(リットル)以上で飽和までとすること
が望ましい。特に、鉄、ステンレスなどの鉄系金属を塩
化ナトリウムを主要電解質として含有する水溶液に曝す
状態で使用する例が数多くある。その例としては、温泉
や海水の移送、油井管などがある。このような場合は、
試料金属電極として移送に用いる金属の小片を用い、電
解液として温泉水や海水や油田塩水などやそれらの混合
物を用いることができる。ここで、温泉水、海水、油田
塩水という言葉は、無機塩類を混合溶解して調製した温
泉水類似物、海水類似物、油田塩水類似物も含むものと
する。
The sample metal electrode and the electrolyte can be determined according to the purpose. For example, as an application of this measurement method, there is a metal corrosion evaluation in an aqueous solution containing sodium chloride as a main electrolyte. At this time, it is desirable that the concentration range of the main electrolyte such as sodium chloride is saturated up to 1 g / l (liter) or more, preferably up to 10 g / l (liter). In particular, there are many examples in which iron-based metals such as iron and stainless steel are used in a state where they are exposed to an aqueous solution containing sodium chloride as a main electrolyte. Examples include the transfer of hot springs and seawater, and oil well pipes. In such a case,
As a sample metal electrode, a small piece of metal used for transfer can be used, and as an electrolytic solution, hot spring water, seawater, oil field salt water, or a mixture thereof can be used. Here, the terms hot spring water, sea water, and oil field salt water also include hot spring water analogs, sea water analogs, and oil field salt water analogs prepared by mixing and dissolving inorganic salts.

【0013】金属の腐食評価は産業施設の維持管理など
において非常に重要であり、腐食評価はフィールドで測
定できるほうが好ましい場合があると考えられる。本発
明の測定法に必要な測定用電子回路は、測定精度やデー
タ処理法に応じて種々のものが使用可能である。最も簡
単な測定装置(測定用電子回路)は、印加電圧発生回路
と電流測定回路とから構成される。印加電圧の時間に対
する変化(dV/dt)を直線的に変化するようにすること
は容易である。従って、電流測定回路に変化率(dI/d
t)を検出するための微分機能を付加することで Re + R
p =(dV/dt)/(dI/dt)を計算するためのデータが容
易に得られる。溶液抵抗(Re)の測定が必要であればVr
esを求め出力するためのスイッチとサンプルホールド回
路を付加するのみである。ここに述べた回路は安価に制
作でき、電池で作動させることが容易であるのでフィー
ルドでの使用もできる。測定装置を構成するうえでも本
測定法は有用である。
[0013] The evaluation of metal corrosion is very important in the maintenance and management of industrial facilities, and it is considered that it is sometimes preferable that the corrosion evaluation be measured in the field. Various electronic circuits for measurement required for the measurement method of the present invention can be used depending on the measurement accuracy and the data processing method. The simplest measuring device (measuring electronic circuit) includes an applied voltage generating circuit and a current measuring circuit. It is easy to linearly change the change (dV / dt) of the applied voltage with respect to time. Therefore, the rate of change (dI / d
Re + R by adding a differentiation function to detect t)
Data for calculating p = (dV / dt) / (dI / dt) is easily obtained. Vr if measurement of solution resistance (Re) is required
Only a switch and a sample hold circuit for obtaining and outputting es are added. The circuit described here can be manufactured inexpensively and is easy to operate on batteries, so it can be used in the field. This measurement method is also useful in configuring a measurement device.

【0014】試料金属電極の腐食の相対評価は、(1/
Rp)により行うことができる。腐食速度(V)と腐食
電流(I)が比例し、腐食電流とRpが反比例するとい
う関係が一般的に認められているからである。簡単に腐
食速度を評価することは,Iの単位をmA、Rpの単位
をΩ、腐食速度の単位をミリ(化学)当量/秒とする
と、I=K/Rpにより腐食電流値を求め、{鉄や鉄
系金属の場合はK=26(mV)}、腐食速度(V)
は金属イオン生成速度{ミリ(化学)当量/秒}であ
り、ファラデーの法則に従う(V=I/96500)も
のとして可能である。
The relative evaluation of the corrosion of the sample metal electrode is expressed as (1 /
Rp). This is because it is generally recognized that the corrosion rate (V) is proportional to the corrosion current (I), and the corrosion current is inversely proportional to Rp. In order to easily evaluate the corrosion rate, assuming that the unit of I is mA, the unit of Rp is Ω, and the unit of corrosion rate is milli (chemical) equivalent / second, the corrosion current value is obtained by I = K / Rp, K = 26 (mV) for iron and iron-based metals, corrosion rate (V)
Is the metal ion generation rate {milli (chemical) equivalent / sec}, which is possible according to Faraday's law (V = I / 96500).

【0015】腐食防止剤の腐食防止能は、腐食防止剤を
添加する前の腐食速度(Vco)と腐食防止剤を添加した
後の腐食速度(Vsa)から(腐食防止能)=(Vco − Vs
a)/Vco として求められるものである。腐食電流は腐
食速度と正比例するので、腐食防止能と腐食電流の関係
は(腐食防止能)=(Ico − Isa)/Ico となる。ここ
で、Icoは腐食防止剤を添加する前の腐食電流、Isaは腐
食防止剤の添加後の腐食電流である。腐食防止剤を添加
する前のRpをRpco、腐食防止剤を添加した後のRpをRpsa
とすると腐食電流とRpは反比例するので、 Ico= K / R
pco 、Isa = K/ Rpsa が成立する。これらの関係をも
とに腐食防止能をRpを用いて表すと (腐食防止能)=(Rpsa− Rpco)/Rpsaとなる。
The corrosion inhibitory ability of the corrosion inhibitor is obtained from the corrosion rate (Vco) before the addition of the corrosion inhibitor and the corrosion rate (Vsa) after the addition of the corrosion inhibitor (corrosion inhibitory ability) = (Vco−Vs).
a) It is required as / Vco. Since the corrosion current is directly proportional to the corrosion rate, the relationship between the corrosion prevention ability and the corrosion current is (corrosion prevention ability) = (Ico−Isa) / Ico. Here, Ico is the corrosion current before the addition of the corrosion inhibitor, and Isa is the corrosion current after the addition of the corrosion inhibitor. Rp is Rpco before adding the corrosion inhibitor and Rpsa is Rp after adding the corrosion inhibitor.
Then, since the corrosion current and Rp are inversely proportional, Ico = K / R
pco and Isa = K / Rpsa hold. When the corrosion prevention ability is expressed using Rp based on these relationships, (corrosion prevention ability) = (Rpsa−Rpco) / Rpsa.

【0016】鉄の場合、上記の比例係数Kについては経
験的に25 mVあるいは26 mVとすることが多いようであ
る。本発明者は必要に応じてK=26 mVを用いるが、腐食
防止能の算出においてK値はキャンセルされるので問題
にならない。なお、本発明の実施例においては、上記の
式で算出される数値を100倍し、パーセント表示として
腐食防止剤の腐食防止能を示した。
In the case of iron, the proportionality coefficient K is often empirically set to 25 mV or 26 mV. The inventor uses K = 26 mV as needed, but this does not pose a problem because the K value is canceled in the calculation of the corrosion prevention ability. In the examples of the present invention, the numerical value calculated by the above equation was multiplied by 100, and the corrosion inhibitory ability of the corrosion inhibitor was shown as a percentage.

【0017】[0017]

【実施例】以下、実施例を示して本発明を具体的に説明
するが、本発明はこれらの実施例に限定されるものでは
ない。実施例1 電極および電解液 試料金属電極は、直径9.5 mm長さ12.1mmの円柱状の鉄
材であり、ほぼ鏡面に研磨したものである。これを本発
明においては鉄電極と称する。丸底フラスコに鉄電極を
取り付け、かかる鉄電極の周囲に対極としてグラファイ
ト電極2本と、参照電極として飽和カロメル電極(SC
E)をセットした。900 mlの電解液を用いたが、それ
らの組成を表1に示す。なお、電子回路は、ソーラトロ
ン社製電気化学測定装置SI 1280Bを用いたが、
測定セルとあわせて図1の電子回路と同等の動作を行わ
せた。
EXAMPLES Hereinafter, the present invention will be described specifically with reference to examples, but the present invention is not limited to these examples. Example 1 The electrode and the electrolyte sample metal electrode were cylindrical iron materials having a diameter of 9.5 mm and a length of 12.1 mm, and were almost polished to a mirror surface. This is called an iron electrode in the present invention. An iron electrode was attached to a round bottom flask, and two graphite electrodes as counter electrodes around the iron electrode and a saturated calomel electrode (SC) as a reference electrode.
E) was set. Table 1 shows the compositions of 900 ml of the electrolytic solution. As the electronic circuit, an electrochemical measurement device SI 1280B manufactured by Solartron was used.
An operation equivalent to that of the electronic circuit of FIG. 1 was performed together with the measurement cell.

【0018】[0018]

【表1】 [Table 1]

【0019】腐食測定の場合、二酸化炭素を電解液に通
気して空気を除去させると同時に二酸化炭素を飽和させ
ることがよく行われる。ここでは再現性を高くするため
に、電解液Bに窒素通気した後炭酸水素ナトリウムと塩
酸を添加して所定の電解液組成物(電解液A)とした。
電解液AはpH 5.9であるが、炭酸−炭酸水素塩の緩衝系
になっているのでpHの安定度が高いものである。な
お、二酸化炭素の揮散を防ぐため電解液Aには通気しな
かった。
In the case of corrosion measurement, it is common to saturate carbon dioxide at the same time as removing air by passing carbon dioxide through an electrolyte. Here, in order to increase reproducibility, sodium hydrogen carbonate and hydrochloric acid were added after passing nitrogen gas through the electrolyte solution B to obtain a predetermined electrolyte solution composition (electrolyte solution A).
Electrolyte A has a pH of 5.9, but has a high pH stability because of the buffer system of carbonic acid-bicarbonate. In addition, in order to prevent the volatilization of carbon dioxide, the electrolyte A was not ventilated.

【0020】電解液Aで試料(腐食防止剤)濃度0の対
照測定を行った後に測定用の腐食防止剤を添加し、その
効果を測定した。測定用の腐食防止剤は2%水溶液とし
た。腐食防止剤の添加量は測定濃度3 ppmで0.135 ml、2
0 ppmで0.900 mlとなるので、腐食防止剤の添加による
電解液Aの希釈はほとんど起こらない。腐食防止剤など
を測定系に添加するときには、撹拌して電解液を均質に
なるようにした。測定中は撹拌を停止して電解液の揺動
を防いだ。測定および腐食防止能の計算 測定は、前記図1に記載の等価回路における、鉄電極
(試料金属電極)−SCE(参照電極)の開放電圧±15mV
程度の範囲で直流的に印加電圧を掃引して行った。
After performing a control measurement of a sample (corrosion inhibitor) concentration of 0 using the electrolyte solution A, a corrosion inhibitor for measurement was added, and the effect was measured. The corrosion inhibitor for measurement was a 2% aqueous solution. The amount of corrosion inhibitor added was 0.135 ml, 2 at the measured concentration of 3 ppm.
Since it is 0.900 ml at 0 ppm, the dilution of the electrolytic solution A by the addition of the corrosion inhibitor hardly occurs. When a corrosion inhibitor or the like was added to the measurement system, the mixture was stirred to make the electrolyte homogeneous. During the measurement, the stirring was stopped to prevent the electrolyte from swinging. The measurement and the calculation of the corrosion prevention ability were performed by the open circuit ± 15 mV of the iron electrode (sample metal electrode) -SCE (reference electrode) in the equivalent circuit shown in FIG.
The test was performed by sweeping the applied voltage in a DC range within the range.

【0021】電解液 Bを用いた場合のRp値は 1700 Ω前
後であった。電解液 Aを用いた場合のRp値は 80 Ω程度
であった。このRp値からV=(26/Rp)/96500
として腐食速度を推定すると0.0000034ミリ
(化学)当量/秒{3.4ナノ(化学)当量/秒}とな
る。
When the electrolytic solution B was used, the Rp value was around 1700 Ω. The Rp value when using electrolyte A was about 80 Ω. From this Rp value, V = (26 / Rp) / 96500
When the corrosion rate is estimated as follows, it becomes 0.0000034 milli (chemical) equivalent / second {3.4 nano (chemical) equivalent / second}.

【0022】比較のために、公知の方法であるインピー
ダンス測定法も試みた。インピーダンス測定は、1kHz
−0.1 Hz程度の範囲で周波数を変化させてコールコール
プロットを行いレジスタンス成分を解析するものであ
る。測定時印加した電圧の直流成分は開放電圧とし、交
流成分は、5 mVとした。コールコールプロットにおいて
若干歪んだほぼ半円形の図形が得られたが、低周波側か
ら求めたレジスタンス成分はそれぞれ80Ω程度{推定腐
食速度3.4ナノ(化学)当量/秒}であり、本発明の
測定結果と同等の値であった。
For comparison, a known method of impedance measurement was also attempted. 1 kHz for impedance measurement
The Cole-Cole plot is performed by changing the frequency in the range of about -0.1 Hz to analyze the resistance component. The DC component of the voltage applied during the measurement was an open circuit voltage, and the AC component was 5 mV. Although a slightly distorted and almost semicircular figure was obtained in the Cole-Cole plot, the resistance components obtained from the low frequency side were about 80Ω, respectively, {estimated corrosion rate 3.4 nano (chemical) equivalents / sec}. It was a value equivalent to the measurement result.

【0023】腐食防止剤であるラウリルアミンの腐食防
止能の評価を試みた。ラウリルアミン無添加すなわち濃
度0 ppmの場合のRp値は 83.5 Ω{推定腐食速度3.2
ナノ(化学)当量/秒}、濃度3 ppmの場合のRp値は 9
4.1 Ω{推定腐食速度2.9ナノ(化学)当量/秒}、
濃度 20 ppmの場合のRp値は 177Ω{推定腐食速度1.
52ナノ(化学)当量/秒}であった。この結果、ラウ
リルアミンの腐食防止能は 11 %(濃度3 ppm)、53%
(濃度 20 ppm)であることが求められた。公知の方法
であるインピーダンス測定法も試みたが、通常、3%以
内の差で一致した。
An attempt was made to evaluate the ability of laurylamine, a corrosion inhibitor, to inhibit corrosion. When laurylamine was not added, that is, when the concentration was 0 ppm, the Rp value was 83.5 Ω {the estimated corrosion rate was 3.2.
The Rp value at nano (chemical) equivalent / sec} and 3 ppm concentration is 9
4.1 Ω {estimated corrosion rate 2.9 nano (chemical) equivalents / sec},
The Rp value at a concentration of 20 ppm is 177Ω {Estimated corrosion rate 1.
52 nano (chemical) equivalents / sec. As a result, the corrosion inhibiting ability of laurylamine was 11% (concentration 3 ppm), 53%
(Concentration: 20 ppm). A known impedance measurement method was also tried, but the agreement was usually within 3%.

【0024】[0024]

【発明の効果】本発明の測定法の場合、測定中に流れる
電流が小さいので電極表面の乱れが少なく、原理的には
静的な状態でファラデー抵抗(分極抵抗)を測定でき
る。
According to the measuring method of the present invention, since the current flowing during the measurement is small, the disturbance on the electrode surface is small, and the Faraday resistance (polarization resistance) can be measured in a static state in principle.

【0025】本発明の測定方法によれば、試料金属に与
える電気化学的影響が小さい状態でファラデー抵抗(分
極抵抗)が容易に測定でき、試料金属の腐食評価ができ
る。測定に必要な測定用電子回路の最小構成が簡単であ
るのでフィールドでの利用も期待できる。また、腐食防
止剤の腐食防止能の評価を容易に行うことができる。
According to the measuring method of the present invention, the Faraday resistance (polarization resistance) can be easily measured in a state where the electrochemical influence on the sample metal is small, and the corrosion of the sample metal can be evaluated. Since the minimum configuration of the measuring electronic circuit required for the measurement is simple, it can be expected to be used in the field. In addition, the corrosion prevention ability of the corrosion inhibitor can be easily evaluated.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明のファラデー抵抗を測定するために用い
られる等価電子回路の一例を示す図面である。
FIG. 1 is a diagram illustrating an example of an equivalent electronic circuit used to measure Faraday resistance according to the present invention.

Claims (6)

【特許請求の範囲】[Claims] 【請求項1】 試料金属電極に印加する電圧を開放電圧
±20 mV以下の範囲内で掃引することを特徴とするファ
ラデー抵抗(分極抵抗)の測定方法。
1. A method for measuring Faraday resistance (polarization resistance), wherein a voltage applied to a sample metal electrode is swept within an open voltage range of ± 20 mV or less.
【請求項2】 請求項1記載の試料金属電極が鉄で製造
されたものであることを特徴とするファラデー抵抗の測
定方法。
2. The method for measuring Faraday resistance according to claim 1, wherein the sample metal electrode according to claim 1 is made of iron.
【請求項3】 請求項1、2の測定において濃度範囲が
1 g/l以上で飽和までの塩化ナトリウムを主要電解質と
して含有することを特徴とする電解液を用いることを特
徴とするファラデー抵抗の測定方法。
3. The Faraday resistance of the Faraday resistance according to claim 1 or 2, wherein an electrolyte solution containing sodium chloride up to saturation in a concentration range of 1 g / l or more as a main electrolyte is used. Measuring method.
【請求項4】 請求項1、2、3の測定において温泉
水、海水、油田塩水あるいは海水と油田塩水の混合物
(ここで、温泉水、海水、油田塩水という言葉は、無機
塩類を混合溶解して調製した温泉水類似物、海水類似
物、油田塩水類似物も含むものとする)を電解液として
用いることを特徴とするファラデー抵抗の測定方法。
4. The hot spring water, sea water, oil field salt water or a mixture of sea water and oil field salt water (where the term hot spring water, sea water, oil field salt water is a mixture of inorganic salts, A hot spring water analog, a seawater analog, and an oilfield saltwater analog prepared as described above) as an electrolytic solution.
【請求項5】 請求項1〜4のいずれか1項に記載の測
定方法でファラデー抵抗を測定し、下式により腐食速度
(V)を求めることを特徴とする金属腐食の評価方法: V=K/(96500×Rp) ただし、式中、Kは比例定数、Rpはファラデー抵抗を
示す。
5. A method for evaluating metal corrosion, comprising measuring a Faraday resistance by the measuring method according to claim 1 and obtaining a corrosion rate (V) by the following equation: K / (96500 × Rp) where K is a proportional constant, and Rp is a Faraday resistance.
【請求項6】 腐食防止剤の存在下に請求項1〜4のい
ずれか1項に記載の測定を行うことを特徴とする腐食防
止剤の腐食防止能の評価方法。
6. A method for evaluating the corrosion inhibitory ability of a corrosion inhibitor, wherein the measurement according to claim 1 is performed in the presence of a corrosion inhibitor.
JP33478498A 1998-11-25 1998-11-25 Method for measuring faraday resistance Pending JP2000162167A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP33478498A JP2000162167A (en) 1998-11-25 1998-11-25 Method for measuring faraday resistance

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP33478498A JP2000162167A (en) 1998-11-25 1998-11-25 Method for measuring faraday resistance

Publications (1)

Publication Number Publication Date
JP2000162167A true JP2000162167A (en) 2000-06-16

Family

ID=18281205

Family Applications (1)

Application Number Title Priority Date Filing Date
JP33478498A Pending JP2000162167A (en) 1998-11-25 1998-11-25 Method for measuring faraday resistance

Country Status (1)

Country Link
JP (1) JP2000162167A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2017198545A (en) * 2016-04-27 2017-11-02 日本電信電話株式会社 Duct corrosion estimation method and duct corrosion estimation device
JP2018205124A (en) * 2017-06-05 2018-12-27 日本電信電話株式会社 Device and method for measuring corrosion rate

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2017198545A (en) * 2016-04-27 2017-11-02 日本電信電話株式会社 Duct corrosion estimation method and duct corrosion estimation device
JP2018205124A (en) * 2017-06-05 2018-12-27 日本電信電話株式会社 Device and method for measuring corrosion rate

Similar Documents

Publication Publication Date Title
US6428684B1 (en) Method and apparatus for diagnosing the condition of a gas sensor
US6280603B1 (en) Electrochemical noise technique for corrosion
Mansfeld The polarization resistance technique for measuring corrosion currents
US4238298A (en) Corrosion rate measuring method and apparatus
US8111078B1 (en) Oxidizing power sensor for corrosion monitoring
JP2011220717A (en) Method of measuring polarization resistance, method of monitoring corrosion speed, and polarization resistance measuring device
JP2007532887A (en) An improved method for measuring local corrosion degree using a multi-electrode array sensor
Pearson “Null” Methods Applied to Corrosion Measurements
JP2931214B2 (en) How to monitor acid concentration in plating bath
JPH07198643A (en) Method for measuring resistance of solution, method for measuring corrosion rate of metal surface using method thereof and device therefor
JP3361237B2 (en) Residual chlorine measuring method and apparatus and residual chlorine detecting probe
EP0598380B1 (en) Method of monitoring constituents in plating baths
Scully et al. Methods for determining aqueous corrosion reaction rates
JP2000162167A (en) Method for measuring faraday resistance
EP0626577B1 (en) Method of monitoring metal ion content in plating baths
Scholz et al. The anodic dissolution of dental amalgams studied with abrasive stripping voltammetry
JPH06213869A (en) Method for monitoring main component in plating bath containing simultaneously attached component
JPH11316209A (en) Evaluation method for weather resistance of steel product and measuring apparatus for weather resistance
GB2365977A (en) Corrosion monitoring system for use in multiple phase solutions
Legault et al. Linear Polarization Measurements In the Study of Corrosion Inhibition
Hack et al. Influence of electrolyte resistance on electrochemical measurements and procedures to minimize or compensate for resistance errors
JPH11270860A (en) Floor heater with function for detecting deterioration of antifreeze
CA2087801C (en) Method and apparatus for on-line monitoring the quality of a purified metal sulphate solution
JP2004125668A (en) Oxidation-reduction potential measuring instrument
JP3504127B2 (en) Chlorine concentration measuring device

Legal Events

Date Code Title Description
RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20040701

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20050419