JP2010115617A - Method of controlling oxidizing agent concentration, method of controlling water based treating agent concentration using the control method, and method of sterilizing water base - Google Patents

Method of controlling oxidizing agent concentration, method of controlling water based treating agent concentration using the control method, and method of sterilizing water base Download PDF

Info

Publication number
JP2010115617A
JP2010115617A JP2008292043A JP2008292043A JP2010115617A JP 2010115617 A JP2010115617 A JP 2010115617A JP 2008292043 A JP2008292043 A JP 2008292043A JP 2008292043 A JP2008292043 A JP 2008292043A JP 2010115617 A JP2010115617 A JP 2010115617A
Authority
JP
Japan
Prior art keywords
oxidant
concentration
natural potential
controlling
aqueous
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2008292043A
Other languages
Japanese (ja)
Other versions
JP5458551B2 (en
Inventor
Kazuhiko Tsunoda
和彦 角田
Naohiro Nagai
直宏 永井
Hajime Iseri
一 井芹
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kurita Water Industries Ltd
Original Assignee
Kurita Water Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kurita Water Industries Ltd filed Critical Kurita Water Industries Ltd
Priority to JP2008292043A priority Critical patent/JP5458551B2/en
Publication of JP2010115617A publication Critical patent/JP2010115617A/en
Application granted granted Critical
Publication of JP5458551B2 publication Critical patent/JP5458551B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Treatment Of Water By Oxidation Or Reduction (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a method of precisely controlling concentration of an oxidizing agent in a water base. <P>SOLUTION: The method of controlling the concentration of the oxidizing agent in the water base includes at least: performing a first natural potential measuring step of measuring the natural potential of a metal dipped in the water base; and performing an oxidizing agent generating step of generating the oxidizing agent in the water base. The natural potential of the metal has a positive correlation with the concentration of the oxidizing agent and then, the concentration of the oxidizing agent is controllable in a prescribed range by measuring the natural potential of the metal and keeping the natural potential constant. <P>COPYRIGHT: (C)2010,JPO&INPIT

Description

本発明は、酸化剤濃度の制御方法に関する。より詳しくは、水系の殺菌を行うために酸化剤濃度を制御する技術、該技術を用いた水系処理剤の濃度制御方法、並びに水系の殺菌方法に関する。   The present invention relates to a method for controlling an oxidant concentration. More specifically, the present invention relates to a technique for controlling the concentration of an oxidant to perform aqueous sterilization, a method for controlling the concentration of an aqueous treatment agent using the technique, and an aqueous sterilization method.

各種工場のプラント冷却水系、排水処理水系、鉄鋼水系、紙パルプ水系、切削油水系等では、細菌や糸状菌や藻類等が原因となりスライム等が水系内に発生する。このスライム等は、熱効率の低下、通水配管等の閉塞、配管金属材質の腐食等の障害を引き起こす。   In plant cooling water systems, wastewater treatment water systems, steel water systems, paper pulp water systems, cutting oil water systems, etc. in various factories, slime and the like are generated in the water systems due to bacteria, filamentous fungi, algae, and the like. This slime or the like causes troubles such as a decrease in thermal efficiency, blockage of water passage pipes, corrosion of pipe metal materials, and the like.

このような障害を防ぐために、冷却水系等ではスライムコントロール剤等として次亜塩素酸塩などの酸化剤が用いられる。例えば、特許文献1には、冷却水系のスライム剥離処理に関するものとして、前段でヒドラジンを冷却水に含有させ、後段で(ア)次亜塩素酸やその塩、(イ)次亜臭素酸やその塩等を冷却水に含有させる技術が開示されている。   In order to prevent such an obstacle, an oxidizing agent such as hypochlorite is used as a slime control agent in a cooling water system or the like. For example, in Patent Document 1, hydrazine is contained in cooling water in the first stage, and (a) hypochlorous acid or a salt thereof, (b) hypobromite or the like, as related to a cooling water-based slime peeling treatment. A technique for containing a salt or the like in cooling water is disclosed.

また、塩素剤として結合塩素剤(安定化塩素剤)が用いられていることも多い。結合塩素剤を用いる場合、水系内で消耗されると塩素安定化剤として残留する。しかし、結合塩素剤は、冷却水負荷や周囲の環境等によって水系内での消耗速度が変化する場合がある。そのため、バッチタイマーや補給水比例等によって結合塩素剤の注入量を制御しようとしても、安定した濃度を維持することが難しいといった問題がある。   In many cases, a combined chlorine agent (stabilized chlorine agent) is used as the chlorine agent. When a combined chlorine agent is used, it remains as a chlorine stabilizer when consumed in the aqueous system. However, the consumption rate of the combined chlorine agent in the water system may vary depending on the cooling water load, the surrounding environment, and the like. Therefore, there is a problem that it is difficult to maintain a stable concentration even if the injection amount of the combined chlorine agent is controlled by a batch timer or a proportion of makeup water.

このように、結合塩素の消耗量が多い系等では、実際の添加量に対して水系内での検出濃度が低下する傾向にある。そこで、有効な検出濃度を確保するために、薬剤の添加量を増やしたりするが、これによってコストがかかったり、水系内で消耗された結合塩素剤は塩素安定化剤として多量に残留してしまうことがあった。   As described above, in a system where the consumption amount of bound chlorine is large, the detected concentration in the aqueous system tends to be lower than the actual addition amount. Therefore, in order to ensure an effective detection concentration, the amount of the drug added is increased. However, this increases costs, and the bound chlorine agent consumed in the aqueous system remains in a large amount as a chlorine stabilizer. There was a thing.

特開2004−012042号公報JP 2004-012042 A

上記の問題を解決するために、本願発明者らは、先に、結合塩素剤を効果的に用いることができる水系処理剤の濃度制御方法として、遊離塩素を水系に発生させて、該水系の結合塩素の量を制御する水系処理剤の濃度制御方法を見出した。すなわち、水系内に遊離塩素を発生させることで、水系内に残留している塩素安定化剤と結合させて結合塩素とすることができ、その結果、残留している塩素安定化剤を効果的に活用することができる方法である。この際、水系内の遊離塩素などの酸化剤濃度を一定範囲に制御することができれば、水系処理剤の濃度をより正確に制御し、水系の効率的な殺菌を行うことができる。   In order to solve the above problem, the inventors of the present invention firstly generated free chlorine in the aqueous system as a method for controlling the concentration of the aqueous processing agent that can effectively use the combined chlorine agent, A method for controlling the concentration of an aqueous treatment agent that controls the amount of bound chlorine was found. That is, by generating free chlorine in the aqueous system, it can be combined with the chlorine stabilizer remaining in the aqueous system to form combined chlorine, and as a result, the remaining chlorine stabilizer can be effectively used. It is a method that can be utilized for. At this time, if the concentration of the oxidizing agent such as free chlorine in the aqueous system can be controlled within a certain range, the concentration of the aqueous processing agent can be controlled more accurately and the aqueous system can be efficiently sterilized.

そこで、本発明では、水系内の酸化剤濃度をより正確に制御する新規な方法を提供することを主目的とする。   Thus, the main object of the present invention is to provide a novel method for more accurately controlling the oxidant concentration in the aqueous system.

本願発明者らは、水系内の酸化剤濃度を制御する方法を鋭意研究した結果、金属の自然電位に着目することにより、より正確に酸化剤濃度を操作し得る方法を見出し、本発明を完成させるに至った。   As a result of earnest research on the method for controlling the oxidant concentration in the aqueous system, the present inventors have found a method capable of operating the oxidant concentration more accurately by focusing on the natural potential of the metal, and completed the present invention. I came to let you.

すなわち、本発明ではまず、水系に浸漬した金属の自然電位を測定する第1自然電位測定工程と、
該第1自然電位測定工程において測定した前記自然電位に基づいて、前記水系に酸化剤を発生させる酸化剤発生工程と、
を少なくとも行う水系における酸化剤濃度の制御方法を提供する。
金属の自然電位は、酸化剤濃度と正の相関性を有するため、金属の自然電位を測定し、この自然電位を一定に保つことで、酸化剤濃度を所定の範囲に制御することが可能である。
本発明に係る制御方法では、前記第1自然電位測定工程を行う前に、前記金属の自然電位と前記酸化剤の濃度との相関関係を解析する解析工程を更に行い、この相関関係に基づいて酸化剤を発生させることにより、酸化剤濃度の制御が容易になる。
本発明に係る制御方法に用いる金属は、水系処理に影響のない金属であれば特に限定されないが、本発明では特に、ステンレス鋼、銅が好ましい。これらは、単独で用いても良いが、併用することも可能である。
また、前記金属以外の金属材料より成る電極を前記水系に浸漬し、該電極の自然電位を測定する第2自然電位測定工程を更に行い、前記金属の自然電位と合わせて、この電極の自然電位にも基づいて、酸化剤を発生させることで、より正確に酸化剤濃度の制御を行うことができる。
この場合に用いる金属材料として、例えば、水系の配管材料または水と接する構成機器と同一の金属材料を用いれば、配管や水と接する構成機器の腐食発生を防止することが可能となる。
例えば、第2自然電位測定工程を行う前に、前記電極の腐食発生電位を求める腐食発生電位測定工程を更に行い、この腐食発生電位より低い値に前記電極の自然電位を保つことで、配管材料や水と接する構成機器の腐食を防止することが可能である。
That is, in the present invention, first, a first natural potential measuring step for measuring a natural potential of a metal immersed in an aqueous system,
An oxidizing agent generating step for generating an oxidizing agent in the aqueous system based on the natural potential measured in the first natural potential measuring step;
And a method for controlling the oxidant concentration in an aqueous system.
Since the natural potential of the metal has a positive correlation with the oxidant concentration, it is possible to control the oxidant concentration within a predetermined range by measuring the natural potential of the metal and keeping this natural potential constant. is there.
In the control method according to the present invention, before performing the first natural potential measurement step, an analysis step of analyzing a correlation between the natural potential of the metal and the concentration of the oxidizing agent is further performed, and based on this correlation By generating the oxidant, the oxidant concentration can be easily controlled.
The metal used in the control method according to the present invention is not particularly limited as long as it is a metal that does not affect the aqueous treatment, but stainless steel and copper are particularly preferable in the present invention. These may be used alone or in combination.
In addition, a second natural potential measuring step of immersing an electrode made of a metal material other than the metal in the aqueous system and measuring a natural potential of the electrode is performed, and the natural potential of the electrode is combined with the natural potential of the metal. Based on the above, the oxidant concentration can be more accurately controlled by generating the oxidant.
As the metal material used in this case, for example, if the same metal material as the water-based piping material or the component equipment in contact with water is used, it is possible to prevent the corrosion of the component equipment in contact with the pipe or water.
For example, before performing the second natural potential measurement step, a corrosion generation potential measurement step for obtaining the corrosion occurrence potential of the electrode is further performed, and the natural potential of the electrode is maintained at a value lower than the corrosion occurrence potential, thereby the piping material It is possible to prevent corrosion of components that come into contact with water.

本発明に係る酸化剤濃度の制御方法を用いて、水系の酸化剤の量を正確に制御することで、水系処理剤の濃度制御が可能である。
このとき、制御する酸化剤の種類は、水系の殺菌に用いることができるものであれば特に限定されないが、例えば、遊離ハロゲンである場合、水系内にハロゲン安定化剤を存在させることで、遊離ハロゲンとハロゲン安定化剤とを結合させ、結合ハロゲンとすることで水系処理剤の正確な濃度制御が実現できる。
そして、水系処理剤の正確な濃度制御を行うことにより、水系の殺菌が可能である。
The concentration of the aqueous treatment agent can be controlled by accurately controlling the amount of the aqueous oxidant using the method for controlling the oxidant concentration according to the present invention.
At this time, the type of the oxidizing agent to be controlled is not particularly limited as long as it can be used for sterilization of an aqueous system. For example, in the case of a free halogen, the presence of a halogen stabilizer in the aqueous system allows the release Accurate concentration control of the aqueous treatment agent can be realized by combining halogen and a halogen stabilizer to form a combined halogen.
And the aqueous | water-based disinfection is possible by performing exact density | concentration control of an aqueous | water-based processing agent.

本発明に係る酸化剤濃度の制御方法によれば、酸化剤濃度を正確に制御することが可能であるため、水系内の水系処理剤の濃度制御も正確に行うことができる。その結果、水系の効率的かつ有効的な殺菌が可能である。   According to the method for controlling the oxidant concentration according to the present invention, the oxidant concentration can be accurately controlled, so that the concentration control of the aqueous treatment agent in the aqueous system can also be accurately performed. As a result, the water system can be efficiently and effectively sterilized.

以下、本発明を実施するための好適な形態について図面を参照しながら説明する。なお、以下に説明する実施形態は、本発明の代表的な実施形態の一例を示したものであり、これにより本発明の範囲が狭く解釈されることはない。   DESCRIPTION OF EXEMPLARY EMBODIMENTS Hereinafter, preferred embodiments for carrying out the invention will be described with reference to the drawings. In addition, embodiment described below shows an example of typical embodiment of this invention, and, thereby, the range of this invention is not interpreted narrowly.

図1は、本発明に係る酸化剤濃度の制御方法1のフロー図である。本発明に係る酸化剤濃度の制御方法は、第1自然電位測定工程11と、酸化剤発生工程12と、を少なくとも行う方法である。また、必要に応じて、解析工程13、第2自然電位測定工程14、腐食発生電位測定工程15、をそれぞれ行うことが可能である。以下、それぞれの工程について詳細に説明する。   FIG. 1 is a flowchart of an oxidant concentration control method 1 according to the present invention. The oxidant concentration control method according to the present invention is a method of performing at least the first natural potential measurement step 11 and the oxidant generation step 12. Further, if necessary, the analysis step 13, the second natural potential measurement step 14, and the corrosion occurrence potential measurement step 15 can be performed. Hereinafter, each process will be described in detail.

(1)第1自然電位測定工程11
第1自然電位測定工程11は、水系に浸漬した金属の自然電位を測定する工程である。金属の自然電位は、酸化剤濃度と正の相関性を有するため、第1自然電位測定工程11において金属の自然電位を測定し、この自然電位を一定に保つように、後述する酸化剤発生工程で酸化剤を発生させることで、酸化剤濃度を所定の範囲に制御することが可能である。
(1) First natural potential measurement step 11
The first natural potential measuring step 11 is a step of measuring the natural potential of the metal immersed in the water system. Since the natural potential of the metal has a positive correlation with the oxidant concentration, the oxidant generation step described later is performed so as to measure the natural potential of the metal in the first natural potential measurement step 11 and keep this natural potential constant. By generating the oxidant, it is possible to control the oxidant concentration within a predetermined range.

用いることのできる金属は、水系処理に影響のない金属であれば特に限定されず、公知の金属を1種または2種以上、自由に選択して用いることができる。例えば、ステンレス鋼、銅、金、白金、チタン、銅合金、ニッケル基合金などが挙げられる。この中でも本発明では特に、ステンレス鋼、銅が好ましい。   The metal that can be used is not particularly limited as long as it does not affect the aqueous treatment, and one or more known metals can be freely selected and used. For example, stainless steel, copper, gold, platinum, titanium, a copper alloy, a nickel base alloy, and the like can be given. Among these, stainless steel and copper are particularly preferable in the present invention.

前記の通り、金属の自然電位は、酸化剤濃度と正の相関性を有するが、その反応性は金属の種類によって異なる。例えば、後述する実施例1の結果を示す図2に示す通り、銅は遊離塩素などの酸化剤に鋭敏に反応するのに対して、ステンレス鋼は、比較的ゆっくりと反応する。そのため、水系内の酸化剤濃度の変化が緩やかな場合には、ステンレス鋼のような反応性の緩やかな金属の自然電位に基づいて、酸化剤濃度の制御を行うことが可能である。一方、酸化剤濃度の振幅が大きく変化する水系では、銅のような反応性の鋭敏な金属を用いたり、反応性の鋭敏な金属と反応性の穏やかな金属の両方を併用したりすることが有効である。   As described above, the natural potential of a metal has a positive correlation with the oxidant concentration, but the reactivity varies depending on the type of metal. For example, as shown in FIG. 2 showing the results of Example 1 described later, copper reacts sensitively to an oxidizing agent such as free chlorine, whereas stainless steel reacts relatively slowly. Therefore, when the change in the oxidant concentration in the aqueous system is gradual, it is possible to control the oxidant concentration based on the natural potential of a moderately reactive metal such as stainless steel. On the other hand, in an aqueous system in which the amplitude of the oxidant concentration varies greatly, a reactive sensitive metal such as copper may be used, or both a reactive sensitive metal and a mild reactive metal may be used in combination. It is valid.

用いる金属は、1種でも問題ないが、一定の電位以上に到達すると金属の腐食が発生する結果、電位が下降し、酸化剤濃度の正確な制御が難しくなる場合があるため、2種以上の金属を用いることが好ましい。本発明においては、例えば、銅のような反応性の鋭敏な金属と、ステンレス鋼のような反応性の穏やかな金属を併用することにより、水系内の酸化剤濃度の動向を把握することができるとともに、銅のような反応性の鋭敏な金属の腐食が生じたことを検知することも可能である。   There is no problem even if one kind of metal is used. However, if the metal reaches a certain potential or more, corrosion of the metal occurs. As a result, the potential drops and it may be difficult to accurately control the oxidant concentration. It is preferable to use a metal. In the present invention, for example, by using a reactive sensitive metal such as copper and a mild reactive metal such as stainless steel, the trend of the oxidant concentration in the aqueous system can be grasped. At the same time, it is possible to detect the occurrence of corrosion of reactive sensitive metals such as copper.

(2)酸化剤発生工程12
酸化剤発生工程12は、前記第1自然電位測定工程11において測定した自然電位に基づいて、水系に酸化剤を発生させる工程である。酸化剤を水系に発生させることで、後述する水系処理剤の制御や水系の殺菌のために、水系内に残留する所定の安定化剤と結合させることができる。これにより、水系処理剤を再生させ、水系の殺菌を効率的かつ有効的に行うことができる。
(2) Oxidant generation step 12
The oxidizing agent generating step 12 is a step of generating an oxidizing agent in the water system based on the natural potential measured in the first natural potential measuring step 11. By generating the oxidizing agent in the aqueous system, it can be combined with a predetermined stabilizer remaining in the aqueous system in order to control the aqueous processing agent described later and to sterilize the aqueous system. Thereby, an aqueous processing agent can be regenerated and aqueous sterilization can be performed efficiently and effectively.

酸化剤発生工程12では、酸化剤の発生は、前記第1自然電位測定工程11において測定した自然電位の測定値に基づいて行うことを特徴としている。前述の通り、金属の自然電位は、酸化剤濃度と正の相関性を有するからである。例えば、水系に浸漬した金属の自然電位を一定に保つように酸化剤の発生/停止を行えば、水系内の酸化剤濃度も一定に保つことが可能である。   In the oxidizing agent generating step 12, the oxidizing agent is generated based on the measured value of the natural potential measured in the first natural potential measuring step 11. This is because the natural potential of the metal has a positive correlation with the oxidant concentration as described above. For example, if the oxidant is generated / stopped so that the natural potential of the metal immersed in the water system is kept constant, the oxidant concentration in the water system can be kept constant.

金属の自然電位の測定値に基づいて酸化剤を発生させることで、ポーラログラフィー、吸光光度法、DPD(N,N-diethylphenylenediamine)法、などを連続的に行うことにより測定した酸化剤濃度の測定値に基づいて酸化剤を発生させる方法に比べ、測定機器類が廉価であり、測定用試薬の供給などの煩雑性を軽減することが可能である。   By generating an oxidant based on the measured value of the natural potential of the metal, the oxidant concentration measured by continuously performing polarography, absorptiometry, DPD (N, N-diethylphenylenediamine) method, etc. Compared with the method of generating an oxidant based on the measured value, the measuring instruments are inexpensive, and it is possible to reduce the complexity of supplying the measuring reagent.

また、金属の自然電位は、後述する実施例2に示す通り、酸化剤濃度に対する測定値の安定性が高いため、金属の自然電位の測定値に基づいて酸化剤を発生させることで、水系内の酸化還元電位(Oxidation-reduction Potential ; ORP)の測定値に基づいて酸化剤を発生させる方法に比べ、長期的に安定した酸化剤の管理が可能である。   Further, as shown in Example 2 described later, the natural potential of the metal is highly stable in the measured value with respect to the oxidant concentration. Therefore, by generating the oxidant based on the measured value of the natural potential of the metal, Compared to the method of generating an oxidant based on the measured value of Oxidation-reduction Potential (ORP), it is possible to manage the oxidant stably over a long period of time.

なお、金属の自然電位の測定値に基づいて酸化剤濃度の制御を少なくとも行っていれば、本発明に包含され、より確実を期すために、ポーラログラフィー、吸光光度法、DPD(N,N-diethylphenylenediamine)法による酸化剤濃度の測定値や、酸化還元電位の測定値に基づいて酸化剤濃度の制御を行う方法を併用することも可能である。   In addition, as long as the control of the oxidant concentration is performed based on the measured value of the natural potential of the metal, it is included in the present invention, and for more certainty, polarography, absorptiometry, DPD (N, N It is also possible to use a method of controlling the oxidant concentration based on the measured value of the oxidant concentration by the -diethylphenylenediamine) method or the measured value of the oxidation-reduction potential.

本発明において水系に発生させる酸化剤の種類は、特に限定されず、水系の殺菌に効果を奏するものであれば自由に選択して発生させることができる。例えば、遊離ハロゲン、オゾン、過酸化水素、などを挙げることができる。この中でも特に、本発明においては、遊離ハロゲンが好ましい。水系に存在するハロゲン安定化剤と結合させて結合ハロゲンとすることにより、水系処理剤を再生させ、水系の殺菌を効率的かつ有効的に行うことができるからである。遊離ハロゲンの具体的一例として、本発明においては、遊離塩素を好適に用いることができる。   In the present invention, the type of oxidizing agent to be generated in the aqueous system is not particularly limited, and any oxidizing agent that is effective for aqueous sterilization can be selected and generated. For example, free halogen, ozone, hydrogen peroxide, etc. can be mentioned. Of these, free halogen is particularly preferred in the present invention. This is because by combining with a halogen stabilizer present in the aqueous system to form a combined halogen, the aqueous processing agent can be regenerated and the aqueous system can be sterilized efficiently and effectively. As a specific example of the free halogen, free chlorine can be preferably used in the present invention.

酸化剤を水系に生成させる方法は、特に限定されず、公知の方法を自由に選択して用いることができる。例えば、薬剤を水系に薬注する方法や、食塩水や塩化カリウム水溶液等の電解反応を利用して次亜塩素酸イオンなどの酸化剤を発生させる方法、などが挙げられる。   The method for generating the oxidizing agent in the aqueous system is not particularly limited, and a known method can be freely selected and used. For example, a method of injecting a drug into an aqueous system, a method of generating an oxidizing agent such as hypochlorite ion using an electrolytic reaction such as a saline solution or an aqueous potassium chloride solution, and the like can be mentioned.

具体的な一例として、薬注によって酸化剤の一つである遊離塩素を生成させる際に用いることができる薬剤等としては、次亜塩素酸又はその塩、亜塩素酸又はその塩、塩素酸又はその塩、過塩素酸又はその塩、塩素化イソシアヌル酸又はその塩、塩素ガス、二酸化塩素等が挙げられる。より具体的な塩としては、次亜塩素酸ナトリウム、次亜塩素酸カリウム等の次亜塩素酸アルカリ金属塩、次亜塩素酸カルシウム、次亜塩素酸バリウム等の次亜塩素酸アルカリ土類金属塩、亜塩素酸ナトリウム、亜塩素酸カリウム等の亜塩素酸アルカリ金属塩、亜塩素酸カルシウム、亜塩素酸バリウム等の亜塩素酸アルカリ土類金属塩、亜塩素酸ニッケル等の他の亜塩素酸金属塩、塩素酸アンモニウム、塩素酸ナトリウム、塩素酸カリウム等の塩素酸アルカリ金属塩、塩素酸カルシウム、塩素酸バリウム等の塩素酸アルカリ土類金属塩等を挙げることができる。   As a specific example, as a drug that can be used when generating free chlorine, which is one of the oxidizing agents, by chemical injection, hypochlorous acid or a salt thereof, chlorous acid or a salt thereof, chloric acid or The salt, perchloric acid or its salt, chlorinated isocyanuric acid or its salt, chlorine gas, chlorine dioxide, etc. are mentioned. More specific salts include alkali metal hypochlorites such as sodium hypochlorite and potassium hypochlorite, and alkaline earth metal hypochlorites such as calcium hypochlorite and barium hypochlorite. Salts, alkali metal chlorites such as sodium chlorite and potassium chlorite, alkaline earth metal chlorites such as calcium chlorite and barium chlorite, and other chlorites such as nickel chlorite Examples include acid metal salts, alkali metal chlorates such as ammonium chlorate, sodium chlorate and potassium chlorate, and alkaline earth metal chlorates such as calcium chlorate and barium chlorate.

これらの塩素系酸化剤は、1種を単独で用いてもよいし、2種以上を組み合わせて使用してもよい。本発明においては、これらの中でも特に、取り扱いの容易性の面から次亜塩素酸塩を好適に用いることができる。   These chlorine-based oxidizing agents may be used alone or in combination of two or more. In the present invention, among these, hypochlorite can be preferably used from the viewpoint of easy handling.

また、例えば、酸化剤として遊離塩素を発生させる場合、その水系内の好適な遊離塩素濃度の下限値は、0.05mg−Cl/L以上、より好ましくは0.1mg−Cl/L以上、更に好ましくは0.4mg−Cl/L以上である。かかる遊離塩素濃度とすることで、後述する水系処理剤の制御や水系の殺菌のために、水系内に残留する塩素安定化剤と更に効率よく結合させることができる。その結果、結合塩素を更に効率よく再生させ、水系の殺菌を効率的かつ有効的に行うことができる。一方、遊離塩素濃度の上限値は、水系内の金属の腐食を防止する観点等から、5mg−Cl/L以下であることが好ましく、1mg−Cl/L以下であることがより好ましい。   For example, when free chlorine is generated as an oxidizing agent, the lower limit of the suitable free chlorine concentration in the aqueous system is 0.05 mg-Cl / L or more, more preferably 0.1 mg-Cl / L or more, Preferably it is 0.4 mg-Cl / L or more. By setting it as this free chlorine density | concentration, it can couple | bond more efficiently with the chlorine stabilizer which remains in an aqueous system for control of the aqueous processing agent mentioned later and aqueous | water-based disinfection. As a result, bound chlorine can be regenerated more efficiently, and aqueous sterilization can be performed efficiently and effectively. On the other hand, the upper limit value of the free chlorine concentration is preferably 5 mg-Cl / L or less, more preferably 1 mg-Cl / L or less, from the viewpoint of preventing corrosion of metals in the aqueous system.

(3)解析工程13
解析工程13は、前記第1自然電位測定工程11を行う前に、前記金属の自然電位と前記酸化剤の濃度との相関関係を解析する工程である。この相関関係に基づいて、前記酸化剤発生工程12におけて酸化剤を発生させることにより、酸化剤濃度の制御が容易になる。
(3) Analysis step 13
The analysis step 13 is a step of analyzing the correlation between the natural potential of the metal and the concentration of the oxidizing agent before performing the first natural potential measurement step 11. Based on this correlation, the oxidant concentration can be easily controlled by generating the oxidant in the oxidant generation step 12.

具体的な自然電位の値は水系や使用する金属により異なるが、例えば、後述する実施例1の場合では、遊離塩素濃度を約0.8mg/Lに保つためのステンレス鋼の自然電位は33〜35mV、銅の自然電位は140〜160mVであることが分かる。この相関関係を予め求めておくことで、遊離塩素などの酸化剤濃度を定期的にモニタリングする手間を省くことができる。   Although the specific value of the natural potential varies depending on the aqueous system and the metal used, for example, in the case of Example 1 described later, the natural potential of stainless steel for maintaining the free chlorine concentration at about 0.8 mg / L is 33 to It can be seen that 35 mV and the natural potential of copper is 140 to 160 mV. By obtaining this correlation in advance, it is possible to save the trouble of periodically monitoring the concentration of an oxidizing agent such as free chlorine.

(4)第2自然電位測定工程14
第2自然電位測定工程14は、第1自然電位測定工程で用いる金属と異なる金属材料より成る電極を前記水系に浸漬し、該電極の自然電位を測定する工程である。第1自然電位測定工程で用いる金属の自然電位と合わせて、この電極の自然電位にも基づいて、酸化剤を発生させることで、より正確に酸化剤濃度の制御を行うことができる。
(4) Second natural potential measurement step 14
The second natural potential measuring step 14 is a step of immersing an electrode made of a metal material different from the metal used in the first natural potential measuring step in the aqueous system, and measuring the natural potential of the electrode. In addition to the natural potential of the metal used in the first natural potential measurement step, the oxidizing agent concentration can be controlled more accurately by generating the oxidizing agent based on the natural potential of the electrode.

用いる金属材料は、第1自然電位測定工程で用いる金属と異なる金属材料であって、水系処理に影響を及ぼさないものであれば、自由に選択して用いることができる。例えば、水系の配管材料または水と接する構成機器と同一の金属材料を好適に用いることができる。配管材料や水と接する構成機器への影響を加味した酸化剤濃度の制御が可能となるからである。   The metal material to be used can be freely selected and used as long as it is a metal material different from the metal used in the first natural potential measurement step and does not affect the aqueous treatment. For example, the same metal material as the water-based piping material or the component equipment in contact with water can be suitably used. This is because it is possible to control the oxidant concentration in consideration of the influence on the constituent materials in contact with the piping material and water.

例えば、水系の配管材料または水と接する構成機器には、ステンレス鋼、炭素鋼、チタン、銅、銅合金、などの金属が用いられることが多いが、用いる配管材料や構成機器の種類に応じて、同一の金属材料より成る電極を用いることで、配管材料や構成機器の腐食の発生などの影響を加味した酸化剤濃度の制御が可能となる。   For example, stainless steel, carbon steel, titanium, copper, copper alloys, and other metals are often used for water-based piping materials or components that come into contact with water, but depending on the type of piping materials and components used By using the electrodes made of the same metal material, it becomes possible to control the oxidant concentration taking into account the influence of the occurrence of corrosion of the piping material and the component equipment.

本発明では、第2自然電位測定工程14を行って、配管材料や構成機器と同一の金属電極の自然電位にも基づいて酸化剤を発生させることで、残留酸化剤濃度を一定範囲に維持することだけに着目した制御に比べ、配管材料や構成機器への影響が生じる電位を超えてしまうことを確実に防止することができる。   In the present invention, the residual natural oxidant concentration is maintained within a certain range by performing the second natural potential measurement step 14 and generating the oxidant based on the natural potential of the same metal electrode as that of the piping material and the component equipment. Compared with control that focuses only on this, it is possible to reliably prevent exceeding the potential at which the piping material and components are affected.

(5)腐食発生電位測定工程15
腐食発生電位測定工程15は、第2自然電位測定工程14を行う前に、前記電極の腐食発生電位を求める工程である。この腐食発生電位より低い値に前記電極の自然電位を保つことで、配管材料や水と接する構成機器の腐食を防止することが可能である。
(5) Corrosion occurrence potential measurement step 15
The corrosion occurrence potential measurement step 15 is a step of obtaining the corrosion occurrence potential of the electrode before performing the second natural potential measurement step 14. By keeping the natural potential of the electrode at a value lower than the corrosion occurrence potential, it is possible to prevent corrosion of the component equipment that comes into contact with the piping material or water.

本発明では、腐食発生電位測定工程15を行って、配管材料や構成機器と同一の金属電極の腐食発生電位より低い値に前記電極の自然電位を保つように酸化剤を発生させることで、残留酸化剤濃度を一定範囲に維持することだけに着目した制御に比べ、配管材料や構成機器の腐食を確実に防止することができる。   In the present invention, the corrosion occurrence potential measurement step 15 is performed, and an oxidant is generated so as to keep the natural potential of the electrode at a value lower than the corrosion occurrence potential of the same metal electrode as that of the piping material or component equipment, thereby remaining. Compared to control that focuses only on maintaining the oxidant concentration within a certain range, corrosion of piping materials and components can be reliably prevented.

以上説明した本発明に係る酸化剤濃度の制御方法を用いて、水系の酸化剤の量を正確に制御することで、水系処理剤の正確な濃度制御が可能である。水系内で水系処理剤(例えば、結合塩素)が消耗されることによって、所定の安定化剤(例えば、塩素安定化剤)が生じ得るが、本発明では酸化剤(例えば、遊離塩素)を該安定化剤(例えば、塩素安定化剤)と反応させることで、水系処理剤(例えば、結合塩素)として再生させることができる。水系に残留する所定の安定化剤(例えば、塩素安定化剤)は、酸化剤(例えば、遊離塩素)と結合することにより結合塩素のような水系処理剤となるが、余剰分は酸化剤(例えば、遊離塩素)として水系内に存在することとなる。この酸化剤(例えば、遊離塩素)の濃度を一定範囲内に正確にコントロールすることで、水系処理剤(例えば、結合塩素)の再生を効率よく行うことができ、水系処理剤の正確な濃度制御を実現することができる。これによって水系内に存在する各種安定化剤を有効利用することが可能となる。   By using the oxidant concentration control method according to the present invention described above, the amount of the aqueous oxidant is accurately controlled, so that the concentration of the aqueous treatment agent can be accurately controlled. A predetermined stabilizer (for example, a chlorine stabilizer) can be generated by depleting an aqueous treatment agent (for example, bonded chlorine) in the aqueous system. In the present invention, an oxidizing agent (for example, free chlorine) is added to the By reacting with a stabilizer (for example, chlorine stabilizer), it can be regenerated as an aqueous treatment agent (for example, combined chlorine). A predetermined stabilizer (for example, a chlorine stabilizer) remaining in an aqueous system is combined with an oxidizing agent (for example, free chlorine) to become an aqueous processing agent such as combined chlorine, but an excess is an oxidizing agent ( For example, it will be present in the water system as free chlorine). By accurately controlling the concentration of this oxidizing agent (for example, free chlorine) within a certain range, it is possible to efficiently regenerate the aqueous processing agent (for example, bound chlorine), and to accurately control the concentration of the aqueous processing agent. Can be realized. This makes it possible to effectively use various stabilizers present in the aqueous system.

なお、塩素安定化剤のような所定の安定化剤と遊離塩素のような酸化剤とを水系に添加し、水系内で結合塩素のような水系処理剤を発生させる場合にも、本発明に係る酸化剤濃度の制御方法を適用することが可能である。   The present invention also applies to the case where a predetermined stabilizer such as a chlorine stabilizer and an oxidizing agent such as free chlorine are added to an aqueous system to generate an aqueous treatment agent such as bound chlorine in the aqueous system. It is possible to apply such a method for controlling the oxidant concentration.

また、本発明に係る酸化剤濃度の制御方法を用いれば、水系の水系処理剤の量を正確に制御することができるため、薬剤の添加量を低減することもできる。特に、水系処理剤としてマルチ薬剤を用いる場合には、薬剤の添加量が増加することによる他の成分の過剰注入や過剰残留等も防止できる。   Moreover, if the method for controlling the concentration of the oxidant according to the present invention is used, the amount of the aqueous aqueous treatment agent can be accurately controlled, so that the amount of the chemical added can be reduced. In particular, when a multi-drug is used as an aqueous treatment agent, it is possible to prevent excessive injection or excessive residual of other components due to an increase in the amount of drug added.

本発明に係る水系処理剤の濃度制御方法おいて、水系処理剤は、所定の安定化剤と酸化剤が結合することにより生成させることができる。本発明において用いることができる水系処理剤の種類は限定されず、水系処理に用いることが可能な水系処理剤を1種または2種以上、自由に選択して用いることができる。例えば、水系処理剤として結合塩素を用いる場合、その種類としては、クロラミン−T(N−クロロ−4−メチルベンゼンスルホンアミドのナトリウム塩)、クロラミン−B(N−クロロ−ベンゼンスルホンアミドのナトリウム塩)、N−クロロ−パラニトロベンゼンスルホンアミドのナトリウム塩、トリクロロメラミン、モノ−若しくはジ−クロロメラミンのナトリウム塩又はカリウム塩、トリクロロ−イソシアヌレート、モノ−若しくはジ−クロロイソシアヌール酸のナトリウム塩又はカリウム塩、モノ−若しくはジ−クロロスルファミン酸のナトリウム塩又はカリウム塩、モノクロロヒダントイン若しくは1,3−ジクロロヒダントイン又はその5,5−アルキル誘導体等が挙げられる。   In the method for controlling the concentration of an aqueous processing agent according to the present invention, the aqueous processing agent can be generated by combining a predetermined stabilizer and an oxidizing agent. The kind of aqueous treatment agent that can be used in the present invention is not limited, and one or more aqueous treatment agents that can be used for aqueous treatment can be freely selected and used. For example, when combined chlorine is used as an aqueous treatment agent, the types thereof include chloramine-T (sodium salt of N-chloro-4-methylbenzenesulfonamide), chloramine-B (sodium salt of N-chloro-benzenesulfonamide). ), Sodium salt of N-chloro-paranitrobenzenesulfonamide, trichloromelamine, sodium salt or potassium salt of mono- or di-chloromelamine, sodium salt or potassium salt of trichloro-isocyanurate, mono- or di-chloroisocyanuric acid Salt, sodium salt or potassium salt of mono- or di-chlorosulfamic acid, monochlorohydantoin or 1,3-dichlorohydantoin or 5,5-alkyl derivatives thereof.

水系処理剤として結合塩素を用いる場合、結合塩素を生成するために用いることができる塩素安定化剤の種類も限定されず、塩素安定化効果のある剤を1種または2種以上、自由に選択して用いることができる。例えば、スルファミン酸、ヒダントイン等が挙げられる。本発明においては、この中でも特に、スルファミン酸化合物を用いることが好ましい。ヒドラジン等に比べて、安全性が高いからである。   When combined chlorine is used as an aqueous treatment agent, the type of chlorine stabilizer that can be used to generate combined chlorine is not limited, and one or more agents having a chlorine stabilizing effect can be freely selected. Can be used. Examples thereof include sulfamic acid and hydantoin. In the present invention, it is particularly preferable to use a sulfamic acid compound among them. This is because it is safer than hydrazine.

このようなスルファミン酸化合物としては、例えば、N−メチルスルファミン酸、N,N−ジメチルスルファミン酸、N−フェニルスルファミン酸等を挙げることができる。本発明に用いるスルファミン酸化合物のうち、この化合物の塩としては、例えば、ナトリウム塩、カリウム塩等のアルカリ金属塩、カルシウム塩、ストロンチウム塩、バリウム塩等のアルカリ土類金属塩、マンガン塩、銅塩、亜鉛塩、鉄塩、コバルト塩、ニッケル塩等の他の金属塩、アンモニウム塩及びグアニジン塩等を挙げることができ、具体的には、スルファミン酸ナトリウム、スルファミン酸カリウム、スルファミン酸カルシウム、スルファミン酸ストロンチウム、スルファミン酸バリウム、スルファミン酸鉄、スルファミン酸亜鉛等を挙げることができる。スルファミン酸及びこれらのスルファミン酸塩は、1種を単独で用いることもでき、2種以上を組み合わせて用いることもできる。   Examples of such sulfamic acid compounds include N-methylsulfamic acid, N, N-dimethylsulfamic acid, N-phenylsulfamic acid and the like. Among the sulfamic acid compounds used in the present invention, examples of the salt of the compound include alkali metal salts such as sodium salt and potassium salt, alkaline earth metal salts such as calcium salt, strontium salt and barium salt, manganese salt, copper Other metal salts such as salts, zinc salts, iron salts, cobalt salts, nickel salts, ammonium salts, guanidine salts, etc., specifically, sodium sulfamate, potassium sulfamate, calcium sulfamate, sulfamine Examples include strontium acid, barium sulfamate, iron sulfamate, and zinc sulfamate. The sulfamic acid and these sulfamic acid salts can be used alone or in combination of two or more.

例えば、遊離塩素とスルファミン酸を水系に共存させると、水系内で結合してクロロスルファミン酸化合物となり結合塩素として再生させることができる。例えば、塩素系酸化剤とスルファミン酸化合物、あるいは塩素系酸化剤とスルファミン酸化合物からなるクロロスルファミン酸系結合塩素剤等を被処理水に共存せしめた場合、酸性域からアルカリ性域にわたる広範なpH範囲であっても、被処理水中における遊離塩素濃度が大きく変化しないという特徴がある。   For example, when free chlorine and sulfamic acid coexist in an aqueous system, they can be combined in the aqueous system to become a chlorosulfamic acid compound and regenerated as bound chlorine. For example, when a chlorinated oxidant and a sulfamic acid compound, or a chlorosulfamic acid-based combined chlorinating agent composed of a chlorinated oxidant and a sulfamic acid compound are coexisted in the water to be treated, a wide pH range covering an acidic range to an alkaline range. Even so, there is a feature that the free chlorine concentration in the water to be treated does not change greatly.

また、例えば、水系処理剤として結合塩素を発生させる場合、その水系内の好適な結合塩素濃度としては、下限値が0.1mg−Cl/L以上であることが好ましく、上限値が50mg−Cl/L以下であることが好ましい。この場合の結合塩素濃度はDPD法によって測定することが可能である。   In addition, for example, when bound chlorine is generated as an aqueous treatment agent, the preferred lower bound value of the bound chlorine concentration in the aqueous system is preferably 0.1 mg-Cl / L or more, and the upper limit value is 50 mg-Cl. / L or less is preferable. The bound chlorine concentration in this case can be measured by the DPD method.

以上のように、本発明に係る酸化剤濃度の制御方法によれば、酸化剤濃度を正確に制御することが可能であるため、水系内の酸化剤の量に基づく水系処理剤の濃度制御も正確に行うことができる。その結果、水系の効率的かつ有効的な殺菌が可能である。   As described above, according to the method for controlling the oxidant concentration according to the present invention, the oxidant concentration can be accurately controlled. Therefore, the concentration control of the aqueous treatment agent based on the amount of the oxidant in the aqueous system is also possible. Can be done accurately. As a result, the water system can be efficiently and effectively sterilized.

本発明に係る殺菌方法を適用し得る水系は特に限定されず、例えば、各種工場のプラント冷却水系、スクラバー、廃水処理水系、排水処理水系、鉄鋼水系、切削油水系等が挙げられ、これらの装置、通水配管等へのスライム付着の防止や、装置、通水配管等へ付着したスライム構成物等の剥離を、効率的かつ有効的に行うことができる。   The water system to which the sterilization method according to the present invention can be applied is not particularly limited, and examples thereof include plant cooling water systems, scrubbers, waste water treatment water systems, waste water treatment water systems, steel water systems, cutting oil water systems, and the like of various factories. In addition, it is possible to efficiently and effectively perform the prevention of slime adhesion to the water passage piping or the like, and the peeling of the slime constituents attached to the apparatus, the water passage piping and the like.

水系としては循環水系に好適に用いることができる。循環水系を長期運転させると、塩素安定化剤のような安定化剤が水系内に多量に残留してしまいやすいが、本発明によれば各種安定化剤から水系処理剤を効率的に再生することができるので好適である。更には、開放循環冷却水系等が好適である。例えば、レジオネラ菌等の細菌は、開放式循環冷却塔等の水温、特に冷却塔内に発生する藻類に囲まれた環境を好み、かかる条件の水系において発生しやすい。しかし本発明に係る殺菌方法を用いれば、とりわけ開放循環冷却水系等に対して効率的、効果的、長期的に水系の殺菌を行うことが可能である。   As an aqueous system, it can use suitably for a circulating water system. When the circulating water system is operated for a long period of time, a stabilizer such as a chlorine stabilizer tends to remain in the water system in a large amount, but according to the present invention, the aqueous processing agent is efficiently regenerated from various stabilizers. This is preferable. Furthermore, an open circulating cooling water system or the like is suitable. For example, bacteria such as Legionella bacteria are liable to be generated in an aqueous system under such conditions because the water temperature of an open circulation cooling tower or the like, particularly an environment surrounded by algae generated in the cooling tower, is preferred. However, if the sterilization method according to the present invention is used, it is possible to sterilize the water system efficiently, effectively, and in the long term, especially for the open circulation cooling water system.

以下、実施例に基づいて本発明を更に詳細に説明するとともに、本発明の効果を検証する。なお、以下に説明する実施例は、本発明の代表的な実施例の一例を示したものであり、これにより本発明の範囲が狭く解釈されることはない。   Hereinafter, the present invention will be described in more detail based on examples, and effects of the present invention will be verified. In addition, the Example demonstrated below shows an example of the typical Example of this invention, and, thereby, the range of this invention is not interpreted narrowly.

実施例1では、水系に浸漬した金属の自然電位と酸化剤濃度との相関関係を調べるとともに、金属の自然電位に基づいて酸化剤濃度の制御を行った。なお、本実施例では、酸化剤の一例として遊離塩素を、金属の一例としてステンレス鋼と銅を用いた。   In Example 1, the correlation between the natural potential of the metal immersed in the aqueous system and the oxidant concentration was examined, and the oxidant concentration was controlled based on the natural potential of the metal. In this example, free chlorine was used as an example of the oxidizing agent, and stainless steel and copper were used as examples of the metal.

開放冷却水系に、ステンレス鋼と銅を浸漬し、自然電位を測定しながら、遊離有効塩素を添加した。   Stainless steel and copper were immersed in an open cooling water system, and free effective chlorine was added while measuring the natural potential.

遊離塩素注入直後の濃度変化の急激な部分に関しては、鋭敏な反応を示す銅の自然電位に基づいて遊離塩素の添加の制御を行い、その後の緩やかな反応の部分に関しては、ステンレス鋼の自然電位に基づいて遊離塩素の添加の制御を行った。   For the rapid change in concentration immediately after the injection of free chlorine, the addition of free chlorine is controlled based on the spontaneous potential of copper, which shows a sensitive reaction, and for the subsequent slow reaction, the natural potential of stainless steel is controlled. Based on the results, the addition of free chlorine was controlled.

結果を図2に示す。
図2に示す通り、ステンレス鋼と銅の自然電位は、遊離塩素濃度と相関関係を示すことが分かった。
The results are shown in FIG.
As shown in FIG. 2, it was found that the natural potential of stainless steel and copper correlates with the free chlorine concentration.

また、遊離塩素注入直後の濃度変化の急激な部分に関しては、鋭敏な反応を示す銅の自然電位に基づいて遊離塩素濃度の制御が可能であり、その後の緩やかな反応の部分に関しては、ステンレス鋼の自然電位に基づいて遊離塩素濃度の制御が可能であることが分かった。更に、遊離塩素濃度を約0.8mg/Lに保つためのステンレス鋼の自然電位は33〜35mV、銅の自然電位は140〜160mVであることが分かった。   In addition, regarding the abrupt part of the concentration change immediately after the free chlorine injection, the free chlorine concentration can be controlled based on the natural potential of copper showing a sensitive reaction, and the subsequent slow reaction part is made of stainless steel. It was found that the concentration of free chlorine can be controlled based on the natural potential. Furthermore, it was found that the natural potential of stainless steel for maintaining the free chlorine concentration at about 0.8 mg / L was 33 to 35 mV, and the natural potential of copper was 140 to 160 mV.

実施例1の結果より、金属の自然電位は、酸化剤濃度と相関関係を示すこと、および金属の自然電位に基づいて酸化剤濃度の制御が可能であることが分かった。また、用いる金属を工夫することで、酸化剤濃度変化が一定でない水系においても、正確に酸化剤の濃度を制御することができることが分かった。   From the results of Example 1, it was found that the natural potential of the metal has a correlation with the oxidant concentration, and that the oxidant concentration can be controlled based on the natural potential of the metal. It was also found that the concentration of the oxidant can be accurately controlled even in an aqueous system in which the oxidant concentration change is not constant by devising the metal to be used.

実施例2では、水系内の酸化剤濃度に対する金属の自然電位の変化を調べた。なお、本実施例では、実施例1と同様に、酸化剤の一例として遊離塩素を、金属の一例としてステンレス鋼と銅を用いた。   In Example 2, the change in the natural potential of the metal with respect to the oxidant concentration in the aqueous system was examined. In this example, as in Example 1, free chlorine was used as an example of the oxidizing agent, and stainless steel and copper were used as examples of the metal.

一定濃度の遊離塩素を添加したビーカーに、ステンレス鋼から成る電極と銅から成る電極を浸漬し、それぞれの電位の経時変化を測定した。同時に、銀−塩化電極(Ag-AgCl電極)を用いて、水系内の酸化還元電位(Oxidation-reduction Potential ; ORP)も測定した。   An electrode made of stainless steel and an electrode made of copper were immersed in a beaker to which a constant concentration of free chlorine was added, and the change with time of each potential was measured. At the same time, the oxidation-reduction potential (ORP) in the aqueous system was also measured using a silver-chloride electrode (Ag-AgCl electrode).

結果を表1に示す。
The results are shown in Table 1.

表1に示す通り、遊離塩素濃度に対する酸化還元電位(ORP)に比べて、遊離塩素濃度に対するステンレス鋼の自然電位および銅の自然電位の方が、安定性が高い結果となった。   As shown in Table 1, compared to the redox potential (ORP) with respect to the free chlorine concentration, the natural potential of stainless steel and the natural potential of copper with respect to the free chlorine concentration resulted in higher stability.

実施例2の結果より、酸化剤濃度に対する酸化還元電位(ORP)に比べて、酸化剤濃度に対する金属の自然電位の方が安定性が高いため、金属の自然電位を用いることで、酸化剤濃度を長期的に安定した酸化剤濃度の管理ができることが分かった。   From the result of Example 2, since the stability of the metal natural potential with respect to the oxidant concentration is higher than the oxidation-reduction potential (ORP) with respect to the oxidant concentration, the oxidant concentration can be obtained by using the metal natural potential. It was found that the oxidant concentration can be controlled stably over the long term.

本発明に係る酸化剤濃度の制御方法1のフロー図である。It is a flowchart of the control method 1 of the oxidizing agent density | concentration which concerns on this invention. 実施例1において、ステンレス鋼と銅の自然電位の測定結果、および水系内の遊離塩素濃度の測定結果を示す図面代用グラフである。In Example 1, it is a drawing substitute graph which shows the measurement result of the natural potential of stainless steel and copper, and the measurement result of the free chlorine concentration in an aqueous system.

符号の説明Explanation of symbols

1 酸化剤濃度の制御方法1
11 第1自然電位測定工程
12 酸化剤発生工程
13 解析工程
14 第2自然電位測定工程
15 腐食発生電位測定工程
1 Control method 1 of oxidant concentration
11 First natural potential measurement step 12 Oxidant generation step 13 Analysis step 14 Second natural potential measurement step 15 Corrosion occurrence potential measurement step

Claims (9)

水系に浸漬した金属の自然電位を測定する第1自然電位測定工程と、
該第1自然電位測定工程において測定した前記自然電位に基づいて、前記水系に酸化剤を発生させる酸化剤発生工程と、
を少なくとも行う水系における酸化剤濃度の制御方法。
A first natural potential measurement step for measuring a natural potential of a metal immersed in an aqueous system;
An oxidizing agent generating step for generating an oxidizing agent in the aqueous system based on the natural potential measured in the first natural potential measuring step;
A method of controlling the oxidant concentration in an aqueous system at least.
前記第1自然電位測定工程を行う前に、前記金属の自然電位と前記酸化剤の濃度との相関関係を解析する解析工程を更に行い、
前記酸化剤発生工程において、前記相関関係に基づいて、前記水系に酸化剤を発生させる請求項1記載の酸化剤濃度の制御方法。
Before performing the first natural potential measurement step, further performing an analysis step of analyzing the correlation between the natural potential of the metal and the concentration of the oxidizing agent,
The method for controlling an oxidant concentration according to claim 1, wherein, in the oxidant generation step, an oxidant is generated in the water system based on the correlation.
前記金属は、ステンレス鋼および/または銅である請求項1または2に記載の酸化剤濃度の制御方法。   The method for controlling an oxidant concentration according to claim 1, wherein the metal is stainless steel and / or copper. 前記金属と異なる金属材料より成る電極を前記水系に浸漬し、該電極の自然電位を測定する第2自然電位測定工程を更に行い、
前記酸化剤発生工程において、第2自然電位測定工程において測定した前記自然電位に基づいて、前記水系に酸化剤を発生させる請求項1から3のいずれか一項に記載の酸化剤濃度の制御方法。
An electrode made of a metal material different from the metal is immersed in the aqueous system, and a second natural potential measurement step for measuring the natural potential of the electrode is further performed.
The method for controlling an oxidant concentration according to any one of claims 1 to 3, wherein, in the oxidant generation step, an oxidant is generated in the water system based on the natural potential measured in the second natural potential measurement step. .
前記金属材料は、前記水系の配管材料または水と接する構成機器と同一の金属材料である請求項4記載の酸化剤濃度の制御方法。   5. The method for controlling an oxidant concentration according to claim 4, wherein the metal material is the same metal material as the water-based piping material or a component device in contact with water. 前記第2自然電位測定工程を行う前に、前記電極の腐食発生電位を求める腐食発生電位測定工程を更に行い、
前記酸化剤発生工程において、腐食発生電位測定工程において測定した前記腐食発生電位に基づいて、前記水系に酸化剤を発生させる請求項4または5に記載の酸化剤濃度の制御方法。
Before performing the second natural potential measurement step, further perform a corrosion occurrence potential measurement step for obtaining the corrosion occurrence potential of the electrode,
The method for controlling an oxidant concentration according to claim 4 or 5, wherein, in the oxidant generation step, an oxidant is generated in the water system based on the corrosion occurrence potential measured in the corrosion occurrence potential measurement step.
請求項1から6のいずれか一項に記載の酸化剤濃度の制御方法を用いて、前記水系の水系処理剤の量を制御する水系処理剤の濃度制御方法。   A method for controlling the concentration of an aqueous treatment agent, wherein the amount of the aqueous aqueous treatment agent is controlled using the method for controlling an oxidant concentration according to any one of claims 1 to 6. 前記酸化剤が遊離ハロゲンであり、前記水系にハロゲン安定化剤を存在させる請求項7記載の水系処理剤の濃度制御方法。   The method for controlling the concentration of an aqueous treatment agent according to claim 7, wherein the oxidizing agent is free halogen and a halogen stabilizer is present in the aqueous system. 請求項7または8に記載の水系処理剤の濃度制御方法を用いた、前記水系の殺菌方法。   A method for sterilizing an aqueous system using the concentration control method for an aqueous processing agent according to claim 7 or 8.
JP2008292043A 2008-11-14 2008-11-14 Concentration control method for aqueous treatment agent and aqueous sterilization method using the control method Expired - Fee Related JP5458551B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2008292043A JP5458551B2 (en) 2008-11-14 2008-11-14 Concentration control method for aqueous treatment agent and aqueous sterilization method using the control method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2008292043A JP5458551B2 (en) 2008-11-14 2008-11-14 Concentration control method for aqueous treatment agent and aqueous sterilization method using the control method

Publications (2)

Publication Number Publication Date
JP2010115617A true JP2010115617A (en) 2010-05-27
JP5458551B2 JP5458551B2 (en) 2014-04-02

Family

ID=42303614

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008292043A Expired - Fee Related JP5458551B2 (en) 2008-11-14 2008-11-14 Concentration control method for aqueous treatment agent and aqueous sterilization method using the control method

Country Status (1)

Country Link
JP (1) JP5458551B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016114376A (en) * 2014-12-11 2016-06-23 国立大学法人横浜国立大学 Solid-state residual chlorine sensor and water meter having the same

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH1128474A (en) * 1997-07-10 1999-02-02 Hakuto Co Ltd Method for evaluating slime generation condition of paper pulp production process and slime control method therefor
JP2000162120A (en) * 1998-11-26 2000-06-16 Kurita Water Ind Ltd Method and device for predicting obstacle of water system
JP2001004590A (en) * 1999-04-22 2001-01-12 Kurita Water Ind Ltd Water treatment method of water system
JP2003503323A (en) * 1999-06-29 2003-01-28 エス.シー. ジョンソン アンド サン、インコーポレイテッド N-chlorosulfamate composition with enhanced antibacterial effect
JP2004113981A (en) * 2002-09-27 2004-04-15 Katayama Chem Works Co Ltd Water treatment method and water treatment system for circulating water system
JP2008264615A (en) * 2007-04-16 2008-11-06 Somar Corp Slime control agent addition method and device used therefor

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH1128474A (en) * 1997-07-10 1999-02-02 Hakuto Co Ltd Method for evaluating slime generation condition of paper pulp production process and slime control method therefor
JP2000162120A (en) * 1998-11-26 2000-06-16 Kurita Water Ind Ltd Method and device for predicting obstacle of water system
JP2001004590A (en) * 1999-04-22 2001-01-12 Kurita Water Ind Ltd Water treatment method of water system
JP2003503323A (en) * 1999-06-29 2003-01-28 エス.シー. ジョンソン アンド サン、インコーポレイテッド N-chlorosulfamate composition with enhanced antibacterial effect
JP2004113981A (en) * 2002-09-27 2004-04-15 Katayama Chem Works Co Ltd Water treatment method and water treatment system for circulating water system
JP2008264615A (en) * 2007-04-16 2008-11-06 Somar Corp Slime control agent addition method and device used therefor

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016114376A (en) * 2014-12-11 2016-06-23 国立大学法人横浜国立大学 Solid-state residual chlorine sensor and water meter having the same

Also Published As

Publication number Publication date
JP5458551B2 (en) 2014-04-02

Similar Documents

Publication Publication Date Title
JP4990158B2 (en) Water treatment control system and use method thereof
Copeland et al. Measuring the oxidation–reduction potential of important oxidants in drinking water
Hernlem Electrolytic destruction of urea in dilute chloride solution using DSA electrodes in a recycled batch cell
WO2002101372A2 (en) System for optimized control of multiple oxidizer feedstreams
JP6400603B2 (en) Control method of biocide production
JP2016101583A (en) Control system and method of use for controlling concentrations of electrolyzed water in cip applications
JP4867930B2 (en) Disinfection method of aqueous Legionella bacteria
TWI439423B (en) Method for sterilizing and killing algae
JP5665524B2 (en) Water treatment method for suppressing microbial damage in water
JP5806793B2 (en) Concentration control method for aqueous processing agents
US20140302168A1 (en) Microbiocidal Solution with Ozone and Methods
JP2009513337A (en) Biofouling control
US10473618B2 (en) Residual chlorine measuring apparatus and method of measuring residual chlorine
WO2016104356A1 (en) Method for controlling slime on separation membrane
JP2016120466A (en) Filtration treatment system and filtration treatment method
JP2010167320A (en) Slime inhibition method
JP5458551B2 (en) Concentration control method for aqueous treatment agent and aqueous sterilization method using the control method
JP2009095742A (en) Method for preventing slime and system for adding halogen-based disinfectant
JP2019194159A (en) Generation method of bonded chlorine compound
JP2016121422A (en) Paper production device and wastewater treatment method
JP2016104488A (en) Method for treating ammonia-containing waste water
CN112119040B (en) System and method for monitoring biocide treated process water by oxygen sensor
KR20230018383A (en) Methods and apparatus for controlling the production of haloamine biocides
WO2021189103A1 (en) Water sanitisation device, system and method
JP2012206102A (en) Method of estimating corrosion of water system

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20111025

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20130222

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20130312

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20130507

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20130806

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20131029

A911 Transfer to examiner for re-examination before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20131105

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20131217

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20131230

R150 Certificate of patent or registration of utility model

Ref document number: 5458551

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees