JP5665524B2 - Water treatment method for suppressing microbial damage in water - Google Patents

Water treatment method for suppressing microbial damage in water Download PDF

Info

Publication number
JP5665524B2
JP5665524B2 JP2010284288A JP2010284288A JP5665524B2 JP 5665524 B2 JP5665524 B2 JP 5665524B2 JP 2010284288 A JP2010284288 A JP 2010284288A JP 2010284288 A JP2010284288 A JP 2010284288A JP 5665524 B2 JP5665524 B2 JP 5665524B2
Authority
JP
Japan
Prior art keywords
concentration
acid
water
compound
oxidation
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2010284288A
Other languages
Japanese (ja)
Other versions
JP2012130852A (en
Inventor
百合子 打田
百合子 打田
伊藤 賢一
賢一 伊藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hakuto Co Ltd
Original Assignee
Hakuto Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hakuto Co Ltd filed Critical Hakuto Co Ltd
Priority to JP2010284288A priority Critical patent/JP5665524B2/en
Publication of JP2012130852A publication Critical patent/JP2012130852A/en
Application granted granted Critical
Publication of JP5665524B2 publication Critical patent/JP5665524B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Agricultural Chemicals And Associated Chemicals (AREA)

Description

本発明は、冷却水系、紙パルププロセス水系、集塵水系、スクラバー水系、排水系などの各種水系に次亜ハロゲン酸とハロゲン安定化剤と添加して殺菌殺藻処理するに際し、上記ハロゲン安定化剤を有効活用してハロゲン安定化剤の必要最低限の添加濃度で優れた殺菌・殺藻効果を得るとともに、その使用量の低減により該ハロゲン安定化剤由来の窒素分及びCOD分を低減しながら、水系の殺菌殺藻を行いうる水系処理方法に関するものである。   In the present invention, the above-mentioned halogen stabilization is carried out by adding hypohalous acid and a halogen stabilizer to various water systems such as a cooling water system, a paper pulp process water system, a dust collection water system, a scrubber water system, and a drainage system, and then sterilizing and killing them. Effective use of chemicals to obtain an excellent bactericidal and algicidal effect at the minimum required concentration of halogen stabilizers, and by reducing the amount used, the nitrogen content and COD content derived from the halogen stabilizers are reduced. However, the present invention relates to an aqueous treatment method capable of performing aqueous sterilization and algae.

特許文献1には、スルファミン酸と次亜塩素酸塩を反応させて得られる殺菌用安定化塩素溶液が開示されており、蒸発式水冷却塔などの冷却系における殺菌のために約0.2から3mg/Lの濃度の遊離有効塩素と約1から10mg/Lの濃度のスルファミン酸イオンを含む溶液を添加する方法が開示されている。   Patent Document 1 discloses a stabilized chlorine solution for sterilization obtained by reacting sulfamic acid and hypochlorite, and about 0.2 for sterilization in a cooling system such as an evaporative water cooling tower. A method of adding a solution containing free active chlorine at a concentration of 3 to 3 mg / L and sulfamic acid ions at a concentration of about 1 to 10 mg / L is disclosed.

この殺菌用安定化塩素の濃度は、全残留塩素濃度から遊離残留塩素濃度を引いた「結合塩素濃度」として表される。そして、殺菌力が強く即効性はあるものの、有効成分が消失しやすく、腐食性が高い遊離塩素と、殺菌力は抑制されるが、遊離塩素に比べて有効成分の持続性が向上し、腐食性が低い結合塩素を、それぞれの特徴を生かして組み合わせることによって高い初期殺菌力と殺菌力の持続、及び低い腐食性を実現する試みが行われてきた(例えば、特許文献2参照)。   This concentration of stabilizing chlorine for sterilization is expressed as “bound chlorine concentration” obtained by subtracting free residual chlorine concentration from total residual chlorine concentration. Although it has strong bactericidal power and immediate effect, the active ingredient tends to disappear and corrosive free chlorine, and the bactericidal power is suppressed, but the sustainability of the active ingredient is improved compared to free chlorine, corrosion Attempts have been made to achieve high initial sterilizing power, sustained sterilizing power, and low corrosivity by combining low-bonding bonded chlorine utilizing the respective characteristics (see, for example, Patent Document 2).

更にその組み合わせについて詳述すると、即効効果はあるものの、その効果に持続性が無い遊離塩素は殺菌対象の表面に強力に作用し殺菌するが、その対象が配管や熱交の金属表面に層状を成して付着した汚れである場合は、その層の表面を殺菌・殺生物するものの、層の下部には効果が及ばない。ところが、例えば冷却水系における最も重大な障害は金属表面腐食による漏れであるが、その腐食は層状の汚れが金属表面と接する汚れの下部で進行する。従って、遊離塩素では単細胞や微小な塊の細菌や藻類を殺菌・殺藻することはできるが、層状の汚れの下部や大型の藻類などが形成する大きな塊の中心部分を効果的に殺菌・殺藻することは期待できない。一方、結合塩素は遊離塩素に比べて有効成分の持続性が高いので、その成分が層状の汚れの下部や大きな塊の中心部分に到達した時点でも十分な殺菌・殺藻効果を保持しており、従って、遊離塩素が効果を及ぼすことが期待できない部位においても結合塩素は十分に殺菌・殺藻効果を示すことが可能であり、また、金属に対する腐食性も低いので、層状汚れ下部における金属表面の腐食進行を効果的に抑制することができる。このように、遊離塩素と結合塩素を組み合わせて用いることによって、低腐食性で優れた殺菌・殺藻効果を得ることができる。   Furthermore, the combination will be described in detail. Although there is an immediate effect, free chlorine, which does not have a long-lasting effect, acts strongly on the surface of the object to be sterilized and sterilizes. In the case of dirt that has been formed and adhered, the surface of the layer is sterilized and biocidal, but the effect does not reach the lower part of the layer. However, for example, the most serious obstacle in the cooling water system is leakage due to metal surface corrosion, and the corrosion proceeds under the soil where the layered soil contacts the metal surface. Therefore, free chlorine can sterilize and kill bacteria and algae of single cells and small clumps, but it effectively kills and kills the center of large clumps formed by the bottom of layered soil and large algae. I can't expect to algae. On the other hand, combined chlorine has a higher persistence of active ingredients than free chlorine, so it retains sufficient bactericidal and algicidal effects even when the ingredients reach the bottom of the layered soil and the central part of the large mass. Therefore, even at sites where free chlorine cannot be expected to be effective, bound chlorine can exhibit a sufficient bactericidal and algicidal effect, and also has low corrosiveness to metals, so the metal surface below the layered soil The progress of corrosion can be effectively suppressed. Thus, by using a combination of free chlorine and bonded chlorine, it is possible to obtain an excellent bactericidal / algicidal effect with low corrosivity.

特許文献2には、対象水に初期に十分な遊離塩素濃度を与えるための塩素系酸化剤とスルファミン酸もしくはその塩をそれぞれ個別に添加し、遊離残留塩素濃度と全残留塩素濃度が予め定めた範囲のバランス状態にあるか否かの判定を行うことを特徴とする水の状態判定方法において、初期に与える遊離残留塩素濃度を2(mg/L)以上とし、かつ水中の[遊離残留塩素濃度(mg/L)+0.1〕×[全残留塩素濃度(mg/L)]の値が0.1〜1.0(mg/L)の範囲内にあるか否かの判定を行う水の状態判定方法が示されている。この判定方法においては、頻繁に遊離残留塩素濃度と全残留塩素濃度を測定し判定を行う必要がある。 In Patent Document 2, a chlorine-based oxidizing agent and sulfamic acid or a salt thereof for giving a sufficient free chlorine concentration to the target water at an initial stage are individually added, and a free residual chlorine concentration and a total residual chlorine concentration are determined in advance. In the water state determination method characterized by determining whether or not the balance is in a range, the initial concentration of free residual chlorine is 2 (mg / L) or more, and the [free residual chlorine concentration in water] Water for determining whether the value of (mg / L) +0.1] × [total residual chlorine concentration (mg / L)] is within the range of 0.1 to 1.0 (mg / L) 2 The state determination method is shown. In this determination method, it is necessary to frequently measure and determine the free residual chlorine concentration and the total residual chlorine concentration.

また、特許文献3には、塩素濃度測定装置を用いて次亜塩素酸塩及び/又は次亜臭素酸塩の塩素換算による全残留塩素濃度が0.1〜100mg/Lの範囲にあるように次亜ハロゲン酸の添加量を制御すると共に、次亜塩素酸塩及び/又は次亜臭素酸塩の塩素換算による遊離残留塩素濃度が1mg/L以下にあるようにスルファミン酸の添加量を制御する殺菌殺藻方法が開示されている。ここで、汚れ成分により消耗した安定化次亜塩素酸塩の再生方法として、次亜塩素酸塩と反応せずに系内に残存したスルファミン酸塩に対して、新たに次亜塩素酸塩を系に添加することで安定化次亜塩素酸塩を生成させているが、この再生方法においても、系内に残存したスルファミン酸塩の濃度を把握できないので、頻繁に遊離残留塩素濃度と全残留塩素濃度を測定しながら、少しずつ次亜塩素酸塩を添加して次亜塩素酸塩の適正添加量を探らなければならない。   Patent Document 3 discloses that the total residual chlorine concentration in terms of chlorine in hypochlorite and / or hypobromite is within a range of 0.1 to 100 mg / L using a chlorine concentration measuring device. Control the amount of hypohalous acid added and control the amount of sulfamic acid added so that the free residual chlorine concentration in terms of chlorine in hypochlorite and / or hypobromite is 1 mg / L or less. Disinfecting and algae killing methods are disclosed. Here, as a method for regenerating the stabilized hypochlorite consumed by the soil components, hypochlorite is newly added to the sulfamate remaining in the system without reacting with hypochlorite. Stabilized hypochlorite is generated by adding to the system, but even in this regeneration method, the concentration of free residual chlorine and total residual While measuring the chlorine concentration, hypochlorite should be added little by little to find the appropriate amount of hypochlorite.

特許文献4には、次亜ハロゲン酸塩とスルファミン酸塩とを反応させて得られる安定化次亜ハロゲン酸塩を含む薬剤であり、かつ水系水の酸化力を全残留塩素濃度に換算して1mg/L以上5mg/L以下の範囲に維持することにより遊離残留塩素濃度に換算される前記水系水の酸化力を 0.01mg/L以上0.1mg/L未満の範囲に維持させることを特徴とする水系水におけるスライム抑制方法が開示されている。しかし、例えば、冷水塔循環水系における循環水の水質や運転条件は非常に多様であり、特にpHによって酸化力は大きく変動することは知られているので、水系水の酸化力として全残留塩素濃度を1mg/L以上5mg/L以下の範囲に維持すれば遊離残留塩素濃度に換算される前記水系水の酸化力を 0.01mg/L以上0.1mg/L未満の範囲に維持できるとは必ずしも言えない。   Patent Document 4 discloses a drug containing a stabilized hypohalite obtained by reacting a hypohalite and a sulfamate, and converting the oxidizing power of aqueous water into the total residual chlorine concentration. By maintaining in the range of 1 mg / L or more and 5 mg / L or less, the oxidizing power of the aqueous water converted to free residual chlorine concentration is maintained in the range of 0.01 mg / L or more and less than 0.1 mg / L. A slime suppression method in aqueous water is disclosed. However, for example, the quality and operating conditions of the circulating water in the circulating water system of the chilled water tower are very diverse, and it is known that the oxidizing power varies greatly depending on the pH. Is maintained in the range of 1 mg / L or more and 5 mg / L or less, the oxidizing power of the aqueous water converted to free residual chlorine concentration can be maintained in the range of 0.01 mg / L or more and less than 0.1 mg / L. I can not say.

このように、遊離塩素と結合塩素を組み合わせて効果的に微生物障害を抑制する従来の試みは、煩雑な分析を要する、あるいは、対象水系の条件によっては目的の効果が得られないなどの問題がある。更に、全残留塩素濃度と遊離残留塩素濃度の両方を測定する前記の従来技術では、その測定値が管理範囲を外れた場合の具体的な処置方法が明確でなく、また、スルファミン酸を適正濃度に維持することは煩雑であり、そのため、全残留塩素と遊離残留塩素の管理のみでは十分な殺菌効果や殺藻効果が得られない場合が多かった。   As described above, the conventional attempts to effectively suppress microbial damage by combining free chlorine and combined chlorine have problems such as requiring complicated analysis, or the desired effect cannot be obtained depending on the conditions of the target water system. is there. Further, in the above-described conventional technique for measuring both the total residual chlorine concentration and the free residual chlorine concentration, the specific treatment method when the measured value is out of the control range is not clear, and the sulfamic acid is added to the appropriate concentration. Therefore, it is often troublesome to maintain a sufficient amount of bactericidal and algicidal effects only by controlling the total residual chlorine and free residual chlorine.

また、系内で結合塩素を生成させるためのハロゲン安定化剤としてスルファミン酸などの含窒素化合物が用いられるが、該化合物の添加により水系水の窒素分及びCOD分が増加することも好ましくなく、該化合物の必要最小限の添加が求められている。   Further, although a nitrogen-containing compound such as sulfamic acid is used as a halogen stabilizer for generating bound chlorine in the system, it is not preferable that the nitrogen content and COD content of aqueous water increase due to the addition of the compound, There is a need for the minimum addition of the compound.

米国特許3170883号公報US Pat. No. 3,170,883 特開2008−241296号公報JP 2008-241296 A 特開2009−84163号公報JP 2009-84163 A 特開2009−160505号公報JP 2009-160505 A

本発明は、被処理水系に次亜ハロゲン酸生成化合物とハロゲン安定化剤とを添加して各種微生物障害を抑制するに際し、上記ハロゲン安定化剤の濃度を一定に維持して有効活用し、必要最低限のハロゲン安定化剤の添加濃度によって、低腐食性で優れた殺菌・殺藻効果を得るとともに、その使用量低減により該ハロゲン安定化剤由来の窒素分及びCOD分を低減し、更には複雑で高価な分析装置や制御装置を必要とせず、簡易で安価な方法により各種微生物障害の抑制を行いうる水系処理方法を提供することを目的とするものである。   In the present invention, when adding a hypohalous acid generating compound and a halogen stabilizer to a water system to be treated to suppress various microbial disturbances, the concentration of the halogen stabilizer is kept constant and effectively used. With the minimum additive concentration of the halogen stabilizer, it has low corrosivity and excellent bactericidal and algicidal effects, and by reducing the amount used, the nitrogen content and COD content derived from the halogen stabilizer are reduced. It is an object of the present invention to provide an aqueous treatment method that can suppress various microbial damages by a simple and inexpensive method without requiring a complicated and expensive analysis device or control device.

本発明者らは、前記課題を達成するために鋭意研究を重ねた結果、濃度測定が可能な有機リン酸化合物や重合リン酸化合物やオルトリン酸やアニオン性高分子電解質といった腐食防止やスケール防止のために添加されている化合物の添加に比例させてハロゲン安定化剤を一定比率で添加することにより、ハロゲン安定化剤の被処理水系における濃度を一定に保ちながら、被処理水系における酸化還元電位が所定の範囲内にあるように次亜ハロゲン酸生成化合物の添加量を制御することにより、低腐食性、かつ、各種微生物障害に対して優れた抑制効果が得られることを見出し、本発明に到達したものである。   As a result of intensive studies to achieve the above-mentioned problems, the present inventors have been able to prevent corrosion and scale such as organophosphate compounds, polymerized phosphate compounds, orthophosphoric acid and anionic polymer electrolytes capable of measuring concentrations. Therefore, by adding a halogen stabilizer at a constant ratio in proportion to the addition of the compound being added, the concentration of the halogen stabilizer in the treated water system is kept constant, while the redox potential in the treated water system is increased. By controlling the amount of hypohalous acid generating compound added so as to be within a predetermined range, it has been found that low corrosiveness and an excellent inhibitory effect against various microbial disorders can be obtained, and the present invention has been achieved. It is a thing.

本発明の方法では、ハロゲン安定化剤の被処理水系における濃度を一定に保つことによって、被処理水系における結合ハロゲン濃度を一定に保つことができ、それによって、金属の腐食を促進する付着微生物汚れを死滅・剥離させて金属腐食を抑えると共に、遊離ハロゲンを組み合わせて、系外から流入し付着汚れの構成要素になり得る微細な細菌や藻類を殺菌する。   In the method of the present invention, by keeping the concentration of the halogen stabilizer in the treated water system constant, the bound halogen concentration in the treated water system can be kept constant, thereby promoting the adhesion microbial soil that promotes corrosion of the metal. In addition to suppressing metal corrosion by killing and peeling, sterilize fine bacteria and algae that can flow from outside the system and become components of attached dirt by combining free halogen.

また、被処理水系における酸化還元電位は該水系における酸化力の総和を示し、酸化還元電位が適正な範囲を下回ると酸化力が低下して殺菌力が不足し、酸化還元電位が適正な範囲を越えると酸化力が高くなって金属腐食性が増すので、本発明では、遊離ハロゲンと結合ハロゲンを適切に組み合わせながら、酸化還元電位を適正な範囲内にあるように次亜ハロゲン酸生成化合物の添加量を制御することによって、低腐食性と優れた殺菌・殺藻効果を両立させたのである。   In addition, the oxidation-reduction potential in the water system to be treated indicates the sum of the oxidation power in the water system. When the oxidation-reduction potential falls below the appropriate range, the oxidation power decreases and the bactericidal power is insufficient, and the oxidation-reduction potential falls within the appropriate range. Since the oxidizing power increases and the metal corrosivity increases, the addition of a hypohalous acid-generating compound so that the redox potential is within an appropriate range while appropriately combining free halogen and bound halogen. By controlling the amount, both low corrosivity and excellent bactericidal and algicidal effects were achieved.

本発明で用いる次亜ハロゲン酸生成化合物は、次亜塩素酸および/または次亜臭素酸を生成する化合物であり、具体的には次亜塩素酸塩、次亜臭素酸塩などが相当するが、例えば次亜ハロゲン酸生成化合物が次亜塩素酸塩の場合、ハロゲン安定化剤の被処理水系における濃度を一定に保ちながら、酸化還元電位を一定範囲に維持するように次亜塩素酸塩の添加量を制御することにより、生成する結合塩素は一定が保たれ、また遊離塩素濃度も系の運転条件(特にpH)に依存せずに殺菌に必要な濃度が維持されることを見出した。   The hypohalous acid generating compound used in the present invention is a compound that generates hypochlorous acid and / or hypobromite, and specifically corresponds to hypochlorite, hypobromite, and the like. For example, when the hypohalous acid generating compound is hypochlorite, the hypochlorite salt of the hypochlorite is maintained so that the oxidation-reduction potential is maintained within a certain range while keeping the concentration of the halogen stabilizer in the treated water system constant. It has been found that by controlling the amount added, the bound chlorine produced is kept constant, and the concentration of free chlorine is maintained at the concentration required for sterilization without depending on the operating conditions (particularly pH) of the system.

ここで、系の濃縮度などが変動した場合、従来技術では、頻繁に遊離残留塩素濃度と全残留塩素濃度を測定して、結合塩素が変動前の濃度になるようにハロゲン安定化剤の添加量を調整し、その後、変動前の遊離残留塩素濃度が得られるように次亜塩素酸塩の添加量を調整する。この調整の過程で、次亜塩素酸塩の添加量不足や過剰添加が起こりやすく、殺菌力不足や金属の腐食促進状況が起こりやすい。一方、本発明では、ハロゲン安定化剤の添加量は系の変動に追随して増減し、常にその濃度は一定に保たれるから、変動前の酸化還元電位に合致するように次亜塩素酸塩を添加することによって、変動前と同じ殺菌力が確保され、かつ、金属の腐食は抑えられる。この「酸化還元電位に合致するように次亜塩素酸塩を添加する」操作は容易に自動化できるものである。このように、系の条件が変動した場合でも、ハロゲン安定化剤の被処理水系における濃度を必要最小限の適正濃度で一定に保つことにより、過剰添加などによる該水系水の窒素分及びCOD分の増加を抑えることができる。   Here, when the concentration of the system fluctuates, the conventional technique frequently measures the free residual chlorine concentration and the total residual chlorine concentration, and adds a halogen stabilizer so that the combined chlorine becomes the concentration before the fluctuation. The amount of hypochlorite is adjusted so that the amount of free residual chlorine before fluctuation is obtained. In this adjustment process, hypochlorite addition is likely to be insufficient or excessive, and sterilization power is insufficient or metal corrosion is promoted. On the other hand, in the present invention, the addition amount of the halogen stabilizer increases and decreases following the fluctuation of the system, and since its concentration is always kept constant, hypochlorous acid so as to match the redox potential before the fluctuation. By adding the salt, the same sterilizing power as before the change is secured, and the corrosion of the metal is suppressed. The operation of “adding hypochlorite to match the redox potential” can be easily automated. In this way, even when the system conditions fluctuate, the nitrogen content and COD content of the aqueous water due to excessive addition and the like are maintained by keeping the concentration of the halogen stabilizer in the treated water system constant at the necessary minimum appropriate concentration. Can be suppressed.

すなわち、請求項1に係る発明は、水系における微生物障害を抑制する水系処理方法であって、
(1)被処理水の酸化還元電位を測定する手段と、
(2)酸化還元電位が300〜700mV(飽和KCL入り銀/塩化銀電極基準)の範囲になるように次亜ハロゲン酸生成化合物の添加量を調整する手段と、
(3)有機リン酸化合物、重合リン酸化合物、オルトリン酸、アニオン性高分子電解質、水溶性亜鉛化合物、水溶性モリブデン酸化合物、ベンゾトリアゾール及びその誘導体、水溶性リチウム化合物から選択される濃度測定対象化合物の被処理水系中の濃度を測定する手段と、
(4)(a)前記濃度測定対象化合物の1種以上の化合物と(b)スルファミン酸、スルホンアミドから選択される1種以上のハロゲン安定化剤を含有する組成物を被処理水系に添加しながら、前記濃度測定対象化合物の濃度の測定結果に基づき該組成物の添加量を調整する手段を有することを特徴とする水系処理方法に関する。
That is, the invention according to claim 1 is an aqueous treatment method for suppressing microbial damage in an aqueous system,
(1) means for measuring the oxidation-reduction potential of water to be treated;
(2) means for adjusting the addition amount of the hypohalous acid generating compound so that the oxidation-reduction potential is in the range of 300 to 700 mV (silver / silver chloride electrode with saturated KCL);
(3) Concentration measurement target selected from organic phosphate compound, polymerized phosphate compound, orthophosphoric acid, anionic polymer electrolyte, water-soluble zinc compound, water-soluble molybdate compound, benzotriazole and its derivatives, and water-soluble lithium compound Means for measuring the concentration of the compound in the treated water system;
(4) A composition containing (a) one or more compounds of the concentration measurement target compound and (b) one or more halogen stabilizers selected from sulfamic acid and sulfonamide is added to the treated water system. However, the present invention relates to an aqueous treatment method characterized by comprising means for adjusting the amount of the composition to be added based on the measurement result of the concentration measurement target compound.

請求項2に係る発明は、ハロゲン安定化剤の被処理水系に対する添加濃度が0.01〜5mmol/Lの範囲であることを特徴とする請求項1記載の水系の処理方法に関する。   The invention according to claim 2 relates to an aqueous treatment method according to claim 1, wherein the additive concentration of the halogen stabilizer to the treated water system is in the range of 0.01 to 5 mmol / L.

本発明の水系処理方法によれば、冷却水系、紙パルププロセス水系、集塵水系、スクラバー水系、排水水系などの各種水系に、次亜ハロゲン酸生成化合物とハロゲン安定化剤とを添加して各種微生物障害を抑制するに際し、ハロゲン安定化剤を有効活用して必要最低限の添加濃度において低腐食性で優れた殺菌・殺藻効果を得るとともに、その使用量を低減することにより該ハロゲン安定化剤由来の窒素分及びCOD分を低減し、更には複雑で高価な分析装置や制御装置を必要とせず、簡易で安価な方法により目的を達成することができる。   According to the water treatment method of the present invention, a hypohalous acid generating compound and a halogen stabilizer are added to various water systems such as a cooling water system, a pulp and paper process water system, a dust collection water system, a scrubber water system, and a waste water system. When controlling microbial damage, halogen stabilizers are effectively utilized to obtain excellent bactericidal and algicidal effects with low corrosiveness at the minimum required concentration, and by reducing the amount used, the halogen stabilization The purpose can be achieved by a simple and inexpensive method that reduces the nitrogen content and COD content derived from the agent and does not require a complicated and expensive analyzer or controller.

実施例に使用した試験装置を示す系統図である。It is a systematic diagram which shows the test apparatus used for the Example.

本発明の水系の処理方法は、水系における微生物障害を抑制する水系処理方法であって、
(1)被処理水の酸化還元電位を測定する手段と、
(2)酸化還元電位が300〜700mV(飽和KCl入り銀/塩化銀電極基準)の範囲になるように次亜ハロゲン酸生成化合物の添加量を調整する手段と、
(3)有機リン酸化合物、重合リン酸化合物、オルトリン酸、アニオン性高分子電解質、水溶性亜鉛化合物、水溶性モリブデン酸化合物、ベンゾトリアゾール及びその誘導体、水溶性リチウム化合物から選択される濃度測定対象化合物の被処理水系中の濃度を測定する手段と、
(4)(a)前記濃度測定対象化合物の1種以上の化合物と(b)スルファミン酸、スルホンアミドから選択される1種以上のハロゲン安定化剤を含有する組成物を被処理水系に添加しながら、前記濃度測定対象化合物の濃度の測定結果に基づき該組成物の添加量を調整する手段を有することを特徴とする。
The aqueous treatment method of the present invention is an aqueous treatment method for suppressing microbial damage in an aqueous system,
(1) means for measuring the oxidation-reduction potential of water to be treated;
(2) means for adjusting the addition amount of the hypohalous acid generating compound so that the oxidation-reduction potential is in the range of 300 to 700 mV (saturated KCl-containing silver / silver chloride electrode standard);
(3) Concentration measurement target selected from organic phosphate compound, polymerized phosphate compound, orthophosphoric acid, anionic polymer electrolyte, water-soluble zinc compound, water-soluble molybdate compound, benzotriazole and its derivatives, and water-soluble lithium compound Means for measuring the concentration of the compound in the treated water system;
(4) A composition containing (a) one or more compounds of the concentration measurement target compound and (b) one or more halogen stabilizers selected from sulfamic acid and sulfonamide is added to the treated water system. However, it has means for adjusting the addition amount of the composition based on the measurement result of the concentration of the concentration-measurement target compound.

本発明の酸化還元電位を測定する手段は、被処理水に浸漬して酸化還元電位を測定する参照電極と白金電極およびこれらの支持体、参照電極と白金電極の間の電位差を測る電位差計から構成される。酸化還元電位を測定する時の参照電極には、銀/塩化銀電極、飽和カロメル電極、硫酸第一水銀電極、酸化水銀電極などが利用でき、一般に銀/塩化銀電極が使用される。また、参照電極と白金電極を一体化した複合電極を使用しても良い。これらの電極は特に限定されるものではなく、一般に市販されているものが使用できる。参照電極が異なれば酸化還元電位の値も異なるが、参照電極が異なっていても特定の換算値を加減することにより特定の参照電極基準の値に換算することができる。このような換算値は例えば化学便覧基礎編(日本化学会編、丸善発行)に記載されている。   The means for measuring the oxidation-reduction potential of the present invention includes a reference electrode and a platinum electrode that are immersed in the water to be treated to measure the oxidation-reduction potential, and their supports, and a potentiometer that measures the potential difference between the reference electrode and the platinum electrode. Composed. As a reference electrode for measuring the oxidation-reduction potential, a silver / silver chloride electrode, a saturated calomel electrode, a mercuric sulfate electrode, a mercury oxide electrode, or the like can be used, and a silver / silver chloride electrode is generally used. Moreover, you may use the composite electrode which integrated the reference electrode and the platinum electrode. These electrodes are not particularly limited, and commercially available ones can be used. Different reference electrodes have different oxidation-reduction potential values, but even if the reference electrodes are different, they can be converted into specific reference electrode reference values by adjusting specific conversion values. Such converted values are described, for example, in the Chemical Handbook Basic Edition (edited by the Chemical Society of Japan, published by Maruzen).

参照電極と白金電極の間の電位差を測る電位差計は、電位表示可能なpH計、エレクトロメーター、ポテンシオメーター、デジタルマルチメーター、電圧入力が可能な記録計などが利用できる。   As a potentiometer for measuring the potential difference between the reference electrode and the platinum electrode, a pH meter capable of displaying a potential, an electrometer, a potentiometer, a digital multimeter, a recorder capable of inputting a voltage, and the like can be used.

酸化還元電位は殺菌力や殺藻力との相関性が高いため、殺菌効果や殺藻効果の管理に好適である。酸化還元電位とは水中に存在するそれぞれの酸化性物質の酸化力の総和であり、酸化還元電位から全残留塩素濃度、遊離残留塩素濃度あるいは結合塩素濃度を求めることはできず、酸化還元電位による管理と残留塩素による管理は全く別物である。   Since the oxidation-reduction potential has a high correlation with the bactericidal and algicidal power, it is suitable for the management of the bactericidal and algicidal effects. The oxidation-reduction potential is the sum of the oxidative power of each oxidizing substance present in water. The total residual chlorine concentration, free residual chlorine concentration, or combined chlorine concentration cannot be determined from the oxidation-reduction potential, and depends on the oxidation-reduction potential. Management and residual chlorine management are completely different.

全残留塩素は遊離残留塩素と結合残留塩素の合計であり、遊離残留塩素は次亜塩素酸と次亜塩素酸イオンの合計であり、結合残留塩素はクロラミンと各種のN−クロロ化合物の合計であるが、次亜塩素酸と次亜塩素酸イオン、クロラミンと各種のN−クロロ化合物はそれぞれ酸化力が異なり、また、系の運転条件(特にpH)が変化するとこれらの物質の酸化力も変化するため、全残留塩素と遊離残留塩素の管理のみでは十分な殺菌効果や殺藻効果が得られない場合が多かった。   Total residual chlorine is the sum of free residual chlorine and combined residual chlorine, free residual chlorine is the total of hypochlorous acid and hypochlorite ion, and combined residual chlorine is the total of chloramine and various N-chloro compounds. However, hypochlorous acid and hypochlorite ions, chloramine and various N-chloro compounds have different oxidizing powers, and the oxidizing power of these substances changes when the operating conditions (especially pH) of the system change. Therefore, in many cases, sufficient sterilization effect and algicidal effect cannot be obtained only by management of total residual chlorine and free residual chlorine.

本発明は、酸化還元電位が300〜700mV(飽和KCl入り銀/塩化銀電極基準)の範囲になるように次亜ハロゲン酸生成化合物の添加量を調整する。維持すべき酸化還元電位は、システム条件、生物汚染に対する許容度、問題となる微生物や水棲生物の種類などによって異なるが、300mV未満では次亜ハロゲン酸濃度が低く十分な殺菌効果を得られないときがある。また、700mVを越えると次亜ハロゲン酸濃度が非常に高くなり、これを維持するために必要な次亜ハロゲン酸添加量では添加量の増加に見合うだけの効果の向上が小さくなるだけでなく、金属に対する腐食も増加するため好ましくない。   In the present invention, the addition amount of the hypohalous acid generating compound is adjusted so that the oxidation-reduction potential is in the range of 300 to 700 mV (saturated KCl-containing silver / silver chloride electrode standard). The oxidation-reduction potential to be maintained varies depending on the system conditions, tolerance to biological contamination, the type of problematic microorganisms and aquatic organisms, etc., but when less than 300 mV, the hypohalous acid concentration is low and sufficient sterilization effect cannot be obtained. There is. Moreover, when it exceeds 700 mV, the concentration of hypohalous acid becomes very high, and the amount of hypohalous acid added to maintain this becomes not only an improvement in the effect commensurate with the increase in the amount added, It is not preferable because corrosion to metal also increases.

酸化還元電位の測定結果をもとに次亜ハロゲン酸の添加量を調整する工程は、次亜ハロゲン酸生成化合物の供給装置と制御部から構成される。ここで制御部は、酸化還元電位の測定値と設定値を比較して次亜ハロゲン酸生成化合物の供給装置に出力を与えるものである。例えば、被処理水の殺菌効果が維持される次亜ハロゲン酸濃度に対応して酸化還元電位の範囲を設定し、設定範囲値未満の酸化還元電位になったならば、次亜ハロゲン酸生成化合物の添加装置を作動させる。酸化還元電位が設定範囲内に達したならば、次亜ハロゲン酸生成化合物の添加装置を停止させることによって、被処理水の酸化還元電位が維持される。   The step of adjusting the amount of hypohalous acid added based on the measurement result of the oxidation-reduction potential is composed of a hypohalous acid generating compound supply device and a control unit. Here, the control unit compares the measured value of the oxidation-reduction potential with the set value, and gives an output to the hypohalous acid generating compound supply device. For example, if a redox potential range is set corresponding to the hypohalous acid concentration that maintains the sterilizing effect of the water to be treated, and the redox potential is less than the set range value, the hypohalous acid generating compound Operate the addition equipment. When the oxidation-reduction potential reaches within the set range, the oxidation-reduction potential of the water to be treated is maintained by stopping the addition apparatus for the hypohalous acid generating compound.

本発明の次亜ハロゲン酸生成化合物は、次亜塩素酸および/または次亜臭素酸を生成する化合物であるが、具体的には次亜塩素酸塩、次亜臭素酸塩、液化塩素、臭素、塩化臭素、ブロモクロロジメチルヒダントイン、ジブロモジメチルヒダントイン、ジクロロジメチルヒダントインなどのハロゲン化ジメチルヒダントイン化合物類やトリクロロイソシアヌル酸、ジクロロイソシアヌル酸、クロロイソシアヌル酸やそれらのナトリウム塩、カリウム塩などのアルカリ金属塩、アンモニウム塩、さらには、臭化物、例えば臭化ナトリウム、臭化アンモニウム、臭化カリウム、臭化マグネシウムなどの水溶液と次亜塩素酸塩水溶液を混合して次亜臭素酸を得る組み合わせなどがあり、これらを2種以上組み合わせて使用してもよい。前記次亜塩素酸塩や次亜臭素酸塩の形態としては、ナトリウム塩、カリウム塩、リチウム塩、カルシウム塩、マグネシウム塩、アンモニウム塩などを挙げることができるが、水溶性及び経済性などの観点から、ナトリウム塩が好適である。本発明において、これらの次亜ハロゲン酸生成化合物は一種を単独で用いてもよく、二種以上を組み合わせて用いてもよい。   The hypohalous acid generating compound of the present invention is a compound that generates hypochlorous acid and / or hypobromite, and specifically, hypochlorite, hypobromite, liquefied chlorine, bromine Halogenated dimethylhydantoin compounds such as bromine chloride, bromochlorodimethylhydantoin, dibromodimethylhydantoin, dichlorodimethylhydantoin, and alkali metal salts such as trichloroisocyanuric acid, dichloroisocyanuric acid, chloroisocyanuric acid and their sodium and potassium salts, There are combinations of ammonium salts, and bromides such as sodium bromide, ammonium bromide, potassium bromide, magnesium bromide and the like, and hypochlorous acid by mixing hypochlorite aqueous solutions. May be used in combination of two or more. Examples of the form of hypochlorite and hypobromite include sodium salt, potassium salt, lithium salt, calcium salt, magnesium salt, ammonium salt, and the like, from the viewpoint of water solubility and economy. Therefore, the sodium salt is preferred. In the present invention, these hypohalous acid generating compounds may be used alone or in combination of two or more.

本発明の濃度測定対象化合物は、有機リン酸化合物、重合リン酸化合物、オルトリン酸、アニオン性高分子電解質、水溶性亜鉛化合物、水溶性モリブデン酸化合物、ベンゾトリアゾール及びその誘導体、水溶性リチウム化合物から選択される。前記濃度測定対象化合物は水溶性リチウム化合物を除き腐食防止剤やスケール防止剤として公知であり、金属の腐食防止やスケール防止の目的で被処理水系に添加されている。
Concentration measurement target compounds of the present invention include organic phosphate compounds, polymerized phosphate compounds, orthophosphoric acid, anionic polymer electrolytes, water-soluble zinc compounds, water-soluble molybdate compounds, benzotriazole and derivatives thereof, and water-soluble lithium compounds. Selected. The concentration measurement target compound is known as a corrosion inhibitor and a scale inhibitor except for a water-soluble lithium compound, and is added to the water to be treated for the purpose of preventing the corrosion of metal and preventing the scale.

本発明の有機リン酸化合物は、有機ホスホン酸類、ホスホノカルボン酸類、ホスフィノポリカルボン酸類などが挙げられる。   Examples of the organic phosphoric acid compound of the present invention include organic phosphonic acids, phosphonocarboxylic acids, and phosphinopolycarboxylic acids.

有機ホスホン酸は、分子中に1個以上のホスホノ基を有する有機化合物であり、具体的には1−ヒドロキシエチリデン−1,1−ジホスホン酸、アミノトリメチレンホスホン酸、エチレンジアミンテトラメチレンホスホン酸、ジエチレントリアミンペンタメチレンホスホン酸、ヘキサメチレンジアミンテトラメチレンホスホン酸などが挙げられ、好ましくは1−ヒドロキシエチリデン−1,1−ジホスホン酸である。   The organic phosphonic acid is an organic compound having one or more phosphono groups in the molecule, specifically, 1-hydroxyethylidene-1,1-diphosphonic acid, aminotrimethylenephosphonic acid, ethylenediaminetetramethylenephosphonic acid, diethylenetriamine. Examples include pentamethylene phosphonic acid and hexamethylene diamine tetramethylene phosphonic acid, and 1-hydroxyethylidene-1,1-diphosphonic acid is preferable.

ホスホノカルボン酸は、分子中に1個以上のホスホノ基と1個以上のカルボキシル基を有する有機化合物であり、具体的には2−ホスホノブタン−1,2,4−トリカルボン酸、ヒドロキシホスホノ酢酸、ホスホノポリマレイン酸、ホスホンコハク酸などが挙げられ、好ましくは2−ホスホノブタン−1,2,4−トリカルボン酸、ホスホノポリマレイン酸である。ここで、ホスホノカルボン酸はローディア社からBRICORR288の商品名、またBWA社からBELCOR585の商品名で市販されている。ホスホノカルボン酸は、例えば、中性〜アルカリ性の水性溶媒中で亜リン酸とモノエチレン性不飽和カルボン酸とを遊離ラジカル開始剤の存在下で加熱することにより製造することができる(例えば特開平4−334392号公報)。また、ホスホノカルボン酸は、次亜リン酸とカルボニル化合物やイミン化合物との反応物を反応開始剤の存在下で不飽和カルボン酸と反応させることにより得ることができる(特許第3284318号公報)。   The phosphonocarboxylic acid is an organic compound having one or more phosphono groups and one or more carboxyl groups in the molecule, specifically, 2-phosphonobutane-1,2,4-tricarboxylic acid, hydroxyphosphonoacetic acid. , Phosphonopolymaleic acid, phosphonic succinic acid, and the like, preferably 2-phosphonobutane-1,2,4-tricarboxylic acid and phosphonopolymaleic acid. Here, phosphonocarboxylic acid is commercially available from Rhodia under the trade name BRICORRR288 and from BWA under the trade name BELCOR585. The phosphonocarboxylic acid can be produced, for example, by heating phosphorous acid and monoethylenically unsaturated carboxylic acid in a neutral to alkaline aqueous solvent in the presence of a free radical initiator (for example, special (Kaihei 4-334392). The phosphonocarboxylic acid can be obtained by reacting a reaction product of hypophosphorous acid with a carbonyl compound or an imine compound with an unsaturated carboxylic acid in the presence of a reaction initiator (Japanese Patent No. 3284318). .

ホスフィノポリカルボン酸は、分子中に1個以上のホスフィノ基と2個以上のカルボキシル基を有する化合物であり、具体的にはアクリル酸と次亜リン酸を反応させて得られるビス−ポリ(2−カルボキシエチル)ホスフィン酸、マレイン酸と次亜リン酸を反応させて得られるビス−ポリ(1,2−ジカルボキシエチル)ホスフィン酸、マレイン酸とアクリル酸と次亜リン酸を反応させて得られるポリ(2−カルボキシエチル)(1,2−ジカルボキシエチル)ホスフィン酸、イタコン酸と次亜リン酸を反応させて得られるビス−ポリ[2−カルボキシ−(2−カルボキシメチル)エチル]ホスフィン酸、アクリル酸と2−アクリルアミド−2−メチルプロパンスルホン酸と次亜リン酸の反応物などが挙げられ、好ましくはアクリル酸とマレイン酸と次亜リン酸の反応物、イタコン酸とマレイン酸と次亜リン酸の反応物である。ホスフィノポリカルボン酸の調製は、通常、水性溶媒中で次亜リン酸とモノエチレン性不飽和カルボン酸とを遊離ラジカル開始剤の存在下で加熱することにより行なわれ、例えば特公昭54−29316号公報、特公平5−57992号公報、特公平6−47113号公報などに開示されている。また、ホスフィノポリカルボン酸は、バイオ・ラボ社よりBELCLENE500、BELSPERSE164、BELCLENE400などの商品名で市販されている。   The phosphinopolycarboxylic acid is a compound having one or more phosphino groups and two or more carboxyl groups in the molecule, and specifically, bis-poly (obtained by reacting acrylic acid and hypophosphorous acid. 2-Carboxyethyl) phosphinic acid, bis-poly (1,2-dicarboxyethyl) phosphinic acid obtained by reacting maleic acid and hypophosphorous acid, maleic acid, acrylic acid and hypophosphorous acid Bis-poly [2-carboxy- (2-carboxymethyl) ethyl] obtained by reacting the resulting poly (2-carboxyethyl) (1,2-dicarboxyethyl) phosphinic acid, itaconic acid and hypophosphorous acid Examples include phosphinic acid, acrylic acid, 2-acrylamido-2-methylpropanesulfonic acid and hypophosphorous acid, preferably acrylic acid and maleic acid. It is a reaction product of acid and hypophosphorous acid, a reaction product of itaconic acid, maleic acid and hypophosphorous acid. The preparation of phosphinopolycarboxylic acid is usually carried out by heating hypophosphorous acid and monoethylenically unsaturated carboxylic acid in an aqueous solvent in the presence of a free radical initiator, for example, JP-B-54-29316. No. 5, JP-B-5-57992 and JP-B-6-47113. Further, phosphinopolycarboxylic acids are commercially available from Bio Labs under trade names such as BELCLENE500, BELPERSE164, and BELCLENE400.

本発明の重合リン酸化合物は、ピロリン酸塩、トリポリリン酸塩、ヘキサメタリン酸塩などの重合度が2〜100の重合リン酸塩である。   The polymerized phosphoric acid compound of the present invention is a polymerized phosphate having a degree of polymerization of 2 to 100 such as pyrophosphate, tripolyphosphate, hexametaphosphate and the like.

本発明のオルトリン酸は、リン酸、第一リン酸塩、第二リン酸塩、第三リン酸塩である。   The orthophosphoric acid of the present invention is phosphoric acid, primary phosphate, secondary phosphate, or tertiary phosphate.

本発明のアニオン性高分子電解質は、分子中に複数のカルボキシル基、ないしスルホン酸基を有する分子量500以上の水溶性高分子化合物であり、水系における腐食防止、スケ−ル防止を主たる目的として被処理水系に添加されているものである。アニオン性高分子電解質の例としては、アクリル酸の単一又は共重合体、マレイン酸の単一又は共重合体、イタコン酸の単一又は共重合体、2−アクリルアミド−2−メチルプロパンスルホン酸の単一又は共重合体、3−アリロキシ−2−ヒドロキシ−1−プロパンスルホン酸の単一又は共重合体、イソプロピルスルホン酸の単一又は共重合体などが挙げられる。   The anionic polymer electrolyte of the present invention is a water-soluble polymer compound having a molecular weight of 500 or more having a plurality of carboxyl groups or sulfonic acid groups in the molecule, and is mainly used for corrosion prevention and scale prevention in aqueous systems. It is added to the treated water system. Examples of anionic polyelectrolytes include acrylic acid mono- or copolymers, maleic acid mono- or copolymers, itaconic acid mono- or copolymers, 2-acrylamido-2-methylpropanesulfonic acid And a mono- or copolymer of 3-allyloxy-2-hydroxy-1-propanesulfonic acid, a mono- or copolymer of isopropyl sulfonic acid, and the like.

本発明の水溶性亜鉛化合物は、水に溶解して亜鉛イオンを放出するものであれば何でもよいが、好ましくは塩化亜鉛、硫酸亜鉛、硝酸亜鉛、スルファミン酸亜鉛などの水溶性亜鉛塩である。   The water-soluble zinc compound of the present invention may be anything as long as it dissolves in water and releases zinc ions, but water-soluble zinc salts such as zinc chloride, zinc sulfate, zinc nitrate, and zinc sulfamate are preferred.

本発明の水溶性モリブデン酸化合物は、水に溶解してモリブデン酸イオンを生成するものであれば何でもよいが、好ましくはモリブデン酸、モリブデン酸ナトリウム、モリブデン酸カリウムなどである。   The water-soluble molybdate compound of the present invention is not particularly limited as long as it dissolves in water and generates molybdate ions, but is preferably molybdic acid, sodium molybdate, potassium molybdate or the like.

本発明のベンゾトリアゾール及びその誘導体は、1,2,3−ベンゾトリアゾール、置換−1,2,3−ベンゾトリアゾール(置換基としてアルキル基、カルボキシル基、塩素、臭素、水酸基、ニトロ基、スルホン酸基、ホスホン酸基から選択される1種以上)などであり、これらの2種以上組み合わせて使用してもよい。   The benzotriazole and derivatives thereof of the present invention include 1,2,3-benzotriazole, substituted-1,2,3-benzotriazole (alkyl groups, carboxyl groups, chlorine, bromine, hydroxyl groups, nitro groups, sulfonic acids as substituents One or more selected from a group and a phosphonic acid group), and a combination of two or more of these may be used.

本発明の水溶性リチウム化合物、被処理水系では不活性であり低濃度で濃度分析が可能な物質である
Water-soluble lithium compound of the present invention, the treated aqueous system is a low density material capable of concentration analysis in quality be inert.

本発明の濃度測定対象化合物の被処理水系中の濃度を測定する手段は、これらの化合物の濃度分析方法として公知な方法が利用できる。   As a means for measuring the concentration of the concentration measurement target compound of the present invention in the treated water system, a method known as a concentration analysis method for these compounds can be used.

例えば本発明の有機リン酸化合物ならびに重合リン酸化合物の濃度を測定する手段は、被処理水中に含まれる有機リン酸化合物や重合リン酸化合物を強酸性下で酸化剤や熱や光などによりオルトリン酸に分解した後、オルトリン酸を吸光光度法(モリブデン青法)により分析して、リン酸換算濃度として測定される。有機リン酸化合物ならびに重合リン酸化合物の分析方法は、例えばJIS K0101:1998「工業用水試験方法」における加水分解性リンや全リンの分析方法が利用できる。   For example, the means for measuring the concentration of the organic phosphoric acid compound and the polymerized phosphoric acid compound according to the present invention is that orthophosphoric acid compound or polymerized phosphoric acid compound contained in water to be treated is treated with orthophosphoric acid, heat, light, etc. under strong acidity. After decomposition into an acid, orthophosphoric acid is analyzed by absorptiometry (molybdenum blue method) and measured as a phosphoric acid equivalent concentration. As an analysis method of the organic phosphate compound and the polymerized phosphate compound, for example, an analysis method of hydrolyzable phosphorus or total phosphorus in JIS K0101: 1998 “Industrial Water Test Method” can be used.

本発明のアニオン性高分子電解質の濃度を測定する手段は、例えばポリマー比濁法や蛍光光度法や紫外吸光光度法などにより測定される。ここで、ポリマー比濁法はアニオン性高分子電解質とカチオン性化合物を定量的に反応させて安定な白濁を生じさせ、光の透過光ないし散乱光の強度を測定して、予め作成した検量線よりアニオン性高分子電解質の濃度を求めるものである。アニオン性高分子電解質と定量的に反応して安定な白濁を生じるカチオン性化合物として、炭素数が12以上の第四級アンモニウム塩であり、第四級アンモニウム塩の具体的な例として、テトラアルキルアンモニウム塩、トリアルキルベンジルアンモニウム塩、ジアルキルジベンジルアンモニウム塩、アルキルトリベンジルアンモニウム塩、ベンゼトニウム塩、ベンザルコニウム塩、アルキルピリジニウム塩、イミダゾリニウム塩ならびにこれらの誘導体である。第四級アンモニウム塩は分子中に第四級アンモニウム基が2個以上あってもよい。第四級アンモニウム塩の形態は塩化物、臭化物、沃化物、硫酸塩などである。カチオン性化合物とともにキレート剤を添加することにより、試料水に共存する金属イオンが第四級アンモニウム塩とアニオン性高分子電解質との定量的反応を妨害するのをマスキングすることができる。また、キレート剤を中和塩として添加することにより反応時のpH緩衝剤として作用させることもできる。キレート剤としてはエチレンジアミン四酢酸塩、ニトリロ三酢酸塩、ジエチレントリアミン五酢酸塩などのアミノカルボン酸類、クエン酸塩、リンゴ酸塩、酒石酸塩、グリコール酸塩などのヒドロキシ酸類が使用できるが、これらは単独ないし2種以上組み合わせて使用される。   The means for measuring the concentration of the anionic polymer electrolyte of the present invention is measured by, for example, a polymer turbidimetric method, a fluorometric method, an ultraviolet absorptiometric method, or the like. Here, the polymer turbidimetric method quantitatively reacts an anionic polyelectrolyte with a cationic compound to generate stable white turbidity, measures the intensity of transmitted light or scattered light, and creates a calibration curve prepared in advance. The concentration of the anionic polymer electrolyte is obtained more. As a cationic compound that reacts quantitatively with an anionic polyelectrolyte to produce a stable white turbidity, it is a quaternary ammonium salt having 12 or more carbon atoms. As a specific example of a quaternary ammonium salt, a tetraalkyl Ammonium salts, trialkylbenzylammonium salts, dialkyldibenzylammonium salts, alkyltribenzylammonium salts, benzethonium salts, benzalkonium salts, alkylpyridinium salts, imidazolinium salts and derivatives thereof. The quaternary ammonium salt may have two or more quaternary ammonium groups in the molecule. The form of the quaternary ammonium salt is chloride, bromide, iodide, sulfate or the like. By adding a chelating agent together with the cationic compound, it is possible to mask the metal ions coexisting in the sample water from interfering with the quantitative reaction between the quaternary ammonium salt and the anionic polymer electrolyte. Moreover, it can also be made to act as a pH buffer at the time of reaction by adding a chelating agent as a neutralization salt. As chelating agents, aminocarboxylic acids such as ethylenediaminetetraacetate, nitrilotriacetate, diethylenetriaminepentaacetate, and hydroxy acids such as citrate, malate, tartrate, glycolate can be used. Or two or more types are used in combination.

アニオン性高分子電解質の重合時に蛍光や紫外吸収活性を有するモノマーを重合させたり、アニオン性高分子電解質に蛍光や紫外吸収活性を有する化合物を反応させて、蛍光光度法や紫外吸光光度法により被処理水中の濃度を測定してもよい。   A monomer having fluorescence or ultraviolet absorption activity is polymerized at the time of polymerization of the anionic polyelectrolyte, or a compound having fluorescence or ultraviolet absorption activity is reacted with the anionic polyelectrolyte and subjected to fluorometry or ultraviolet absorption photometry. The concentration in the treated water may be measured.

本発明のベンゾトリアゾール及びその誘導体の濃度を測定する手段は、例えば蛍光光度法、紫外吸光光度法、液体クロマトグラフ法などである。紫外吸光光度法によるベンゾトリアゾール及びその誘導体の濃度測定方法は、特開平9−229851号公報に開示されている。   Means for measuring the concentration of the benzotriazole and derivatives thereof of the present invention are, for example, a fluorescence method, an ultraviolet absorptiometry, a liquid chromatograph method and the like. A method for measuring the concentration of benzotriazole and its derivatives by the ultraviolet absorptiometry is disclosed in JP-A-9-229851.

本発明の水溶性亜鉛化合物の濃度を測定する手段は、例えば、原子吸光法、ICP発光分析法、ICP質量分析法、EDTA滴定法などである。   The means for measuring the concentration of the water-soluble zinc compound of the present invention includes, for example, atomic absorption method, ICP emission analysis method, ICP mass spectrometry method, EDTA titration method and the like.

本発明の水溶性モリブデン酸化合物の濃度を測定する手段は、例えばICP発光分析法、ICP質量分析法、チオグリコール酸吸光光度法などである。   Means for measuring the concentration of the water-soluble molybdate compound of the present invention include, for example, ICP emission spectrometry, ICP mass spectrometry, thioglycolic acid absorptiometry, and the like.

本発明の水溶性リチウム化合物を分析する手段は原子吸光法、ICP発光分析法、イオン電極法などの方法が利用できる。
It means for analyzing the water-soluble lithium compound of the present invention atomic absorption spectrometry, ICP emission spectrometry, how the ion electrode method can be used.

本発明のハロゲン安定化剤は、スルファミン酸、スルホンアミドから選択される1種以上が用いられるが、スルファミン酸はナトリウム塩、カリウム塩、リチウム塩、カルシウム塩、マグネシウム塩、アンモニウム塩などの水溶性塩類であってもよく、スルホンアミドは、例えばp−トルエンスルホンアミド、m−トルエンスルホンアミド、o−トルエンスルホンアミド、イミドジスルホンアミド、ベンゼンスルホンアミド、アルキルスルホンアミド、スルファミドなどであるが、スルファミン酸またはスルホンアミドは単独で用いてもよく、2種以上を組み合わせて用いてもよい。   As the halogen stabilizer of the present invention, at least one selected from sulfamic acid and sulfonamide is used. The sulfamic acid is water-soluble such as sodium salt, potassium salt, lithium salt, calcium salt, magnesium salt, ammonium salt and the like. The sulfonamide may be a salt, for example, p-toluenesulfonamide, m-toluenesulfonamide, o-toluenesulfonamide, imidodisulfonamide, benzenesulfonamide, alkylsulfonamide, sulfamide, etc., but sulfamic acid Alternatively, sulfonamides may be used alone or in combination of two or more.

ハロゲン安定化剤の好ましい例はスルファミン酸、p−トルエンスルホンアミド、ベンゼンスルホンアミド、アルキルスルホンアミドであるが、より好ましくはスルファミン酸である。   Preferable examples of the halogen stabilizer are sulfamic acid, p-toluenesulfonamide, benzenesulfonamide, and alkylsulfonamide, and more preferable is sulfamic acid.

本発明のハロゲン安定化剤の被処理水系に対する添加濃度は、好ましくは0.01〜5mmol/L、より好ましくは0.03〜1mmol/Lの範囲である。ハロゲン安定化剤の添加濃度は系内の汚れの程度やシステム条件に応じて設定され、例えば汚れの多い系やシステムの運転開始時には0.1〜5mmol/Lの範囲で添加され、汚れの少ない系では0.01〜0.1mmol/Lの範囲で添加される。   The concentration of the halogen stabilizer of the present invention added to the water system to be treated is preferably 0.01 to 5 mmol / L, more preferably 0.03 to 1 mmol / L. The additive concentration of the halogen stabilizer is set according to the degree of contamination in the system and the system conditions. For example, it is added in the range of 0.1 to 5 mmol / L at the start of operation of a system with a lot of contamination or the system, and there is little contamination. In the system, it is added in the range of 0.01 to 0.1 mmol / L.

本発明では、前記濃度測定対象化合物の1種以上の化合物とスルファミン酸、スルホンアミドから選択される1種以上のハロゲン安定化剤を含有する組成物を被処理水系に添加しながら、前記濃度測定対象化合物の濃度の測定結果に基づき該組成物の添加量を調整する手段を有する。   In the present invention, the concentration measurement is carried out while adding a composition containing one or more compounds of the concentration measurement target compound and one or more halogen stabilizers selected from sulfamic acid and sulfonamide to the water to be treated. A means for adjusting the addition amount of the composition based on the measurement result of the concentration of the target compound;

ここで、本発明の濃度測定対象化合物とハロゲン安定化剤の組成物中の配合比率は、濃度測定対象化合物の本来の添加目的(例えば腐食抑制、スケール抑制、トレーサーなど)で必要とされる被処理水中の濃度とハロゲン安定化剤の被処理水中における必要濃度の比として単純に計算されるものであり、特定範囲である必要はない。すなわち、上記方法で配合比率を計算した濃度測定対象化合物とハロゲン安定化剤を含む組成物を被処理水系に添加して、濃度測定対象化合物の被処理水中の濃度を分析しながら、該分析値にもとづき濃度測定対象化合物の濃度が適正範囲になるように組成物の添加量を調整することにより、ハロゲン安定化剤の濃度も適正範囲に保つことができる。   Here, the blending ratio in the composition of the concentration measurement target compound and the halogen stabilizer of the present invention is the amount required for the original purpose of adding the concentration measurement target compound (for example, corrosion suppression, scale suppression, tracer, etc.). It is simply calculated as the ratio of the concentration in the treated water and the required concentration of the halogen stabilizer in the treated water, and does not need to be in a specific range. That is, while adding the composition containing the concentration measurement target compound and the halogen stabilizer whose mixing ratio was calculated by the above method to the treated water system, analyzing the concentration of the concentration measurement target compound in the treated water, Therefore, the concentration of the halogen stabilizer can be maintained within the proper range by adjusting the amount of the composition added so that the concentration of the concentration measurement target compound is within the proper range.

本発明において次亜ハロゲン酸生成化合物の被処理水中における添加濃度は、酸化還元電位の測定結果をもとに調整されるが、通常は有効ハロゲンとしてCl換算で0.1〜100mg/Lの範囲である。 In the present invention, the addition concentration of the hypohalous acid generating compound in the water to be treated is adjusted based on the measurement result of the oxidation-reduction potential, but usually 0.1 to 100 mg / L in terms of Cl 2 as effective halogen. It is a range.

本発明における被処理水系のpHは特に限定されないは、通常pH3.0〜10.0の範囲である。   Although the pH of the to-be-processed water system in this invention is not specifically limited, Usually, it is the range of pH3.0-10.0.

本発明の水系処理方法が適用される水系に特に制限はなく、例えば冷却水系、紙パルププロセス水系、集塵水系、スクラバー水系、排水水系などを挙げることができる。
これらの水系に本発明の水系処理方法を適用することにより、日光の照射を受ける環境や、銅や銅合金材料が配管及び熱交換器などに使用されている場合でも、対象水系の効果的な殺菌殺藻処理が可能であると共に、ハロゲン安定化剤が有効に活用され、その使用量を低減することにより 該ハロゲン安定化剤由来の窒素分及びCOD分を低減することができる。
The water system to which the water treatment method of the present invention is applied is not particularly limited, and examples thereof include a cooling water system, a paper pulp process water system, a dust collection water system, a scrubber water system, and a drainage water system.
By applying the water treatment method of the present invention to these water systems, even if the environment is exposed to sunlight or copper or copper alloy materials are used in piping and heat exchangers, the target water system is effective. In addition to being able to perform sterilization and algaecide treatment, a halogen stabilizer can be effectively utilized, and the amount of nitrogen and COD derived from the halogen stabilizer can be reduced by reducing the amount used.

本発明の水系処理方法では、各種の好気性細菌、嫌気性細菌、通性嫌気性細菌、カビ、酵母などの微生物や貝類、原生動物、藻類などを殺滅できるだけでなく、既に系内に付着している微生物や水棲生物を剥離除去することもできる。また、レジオネラ菌(Legionella pneumophila)に対しても有効である。   The water treatment method of the present invention not only kills various aerobic bacteria, anaerobic bacteria, facultative anaerobic bacteria, fungi, yeasts and other microorganisms, shellfish, protozoa, algae, etc., but already adheres to the system. It is also possible to peel off and remove living microorganisms and aquatic organisms. It is also effective against Legionella pneumophila.

以下に本発明を具体的に説明するが、本発明はこれらの実施例に限定されるものではない。   The present invention will be specifically described below, but the present invention is not limited to these examples.

(実施例1)
本発明の実施形態の例を図1に示す。開放式循環水系は冷水塔8、循環ポンプ9、熱交換器10、循環水ライン11、補給水ライン12、強制ブローライン13から構成される。循環水ライン11に酸化還元電位測定セル3を設置し、酸化還元電位測定セル3に白金電極1と参照電極(銀/塩化銀電極)2を挿入して、白金電極1と参照電極(銀/塩化銀電極)2の間に電位差計4を接続して酸化還元電位を測定した。電位差計4からの出力信号は制御部5に入力され、制御部5では酸化還元電位の測定値と設定値を比較して、測定値が設定値よりも低い場合に次亜ハロゲン酸生成化合物供給ポンプ6に出力信号を送り、次亜ハロゲン酸生成化合物タンク7に入った次亜ハロゲン酸生成化合物を開放式循環水系に添加した。
Example 1
An example of an embodiment of the present invention is shown in FIG. The open-type circulating water system includes a cold water tower 8, a circulating pump 9, a heat exchanger 10, a circulating water line 11, a makeup water line 12, and a forced blow line 13. A redox potential measuring cell 3 is installed in the circulating water line 11, and a platinum electrode 1 and a reference electrode (silver / silver chloride electrode) 2 are inserted into the redox potential measuring cell 3. A potentiometer 4 was connected between the silver chloride electrode) 2 and the oxidation-reduction potential was measured. The output signal from the potentiometer 4 is input to the control unit 5. The control unit 5 compares the measured value of the oxidation-reduction potential with the set value, and supplies the hypohalous acid generating compound when the measured value is lower than the set value. An output signal was sent to the pump 6, and the hypohalous acid generating compound entered in the hypohalous acid generating compound tank 7 was added to the open circulating water system.

冷水塔8の循環水に浸漬した電気伝導率測定セル14からの信号を電気伝導率指示調節計15に入力させて循環水の電気伝導率を測定し、電気伝導率の測定値と設定値を比較して、測定値が設定値よりも高い場合にブローダウン弁16に出力信号を送り、ブローダウン弁16を開いて一定流量の循環水をブローダウンし、それと同時に組成物供給ポンプ17に出力信号を送って組成物供給ポンプ17を作動させ、組成物タンク18に入った濃度測定対象化合物とハロゲン安定化剤を含む組成物を循環水中の維持濃度に相当する分だけ冷水塔8の循環水に添加した。   A signal from the electrical conductivity measurement cell 14 immersed in the circulating water of the chilled water tower 8 is input to the electrical conductivity indicating controller 15 to measure the electrical conductivity of the circulating water, and the measured value and set value of the electrical conductivity are measured. In comparison, when the measured value is higher than the set value, an output signal is sent to the blow-down valve 16, the blow-down valve 16 is opened to blow down the circulating water at a constant flow rate, and at the same time, output to the composition supply pump 17. The composition supply pump 17 is actuated by sending a signal, and the circulating water in the chilled water tower 8 is supplied to the composition containing the concentration target compound and the halogen stabilizer in the composition tank 18 by an amount corresponding to the maintenance concentration in the circulating water. Added to.

循環水の電気伝導率は900±10μS/cmの範囲に維持されたが、pHは8.5〜9.0の間で変動した。循環水ライン11の水温は熱交換器10の入り口で35℃、出口で50℃であった。熱交換器チューブ内の流速は0.3m/sであった。
次亜塩素酸ナトリウム水溶液(有効塩素をCl換算で1%含有)を次亜ハロゲン酸生成化合物タンク7に入れ、酸化還元電位が450mV以下になったとき制御部5から次亜ハロゲン酸生成化合物供給ポンプ6に出力信号を送り次亜ハロゲン酸生成化合物供給ポンプ6を作動させて次亜ハロゲン酸生成化合物タンク7に入った次亜ハロゲン酸生成化合物を開放式循環水系に供給し、酸化還元電位が450mV以上になったとき出力信号をオフにして次亜ハロゲン酸生成化合物供給ポンプ6を停止させ、以降この工程を繰り返した。
The electrical conductivity of the circulating water was maintained in the range of 900 ± 10 μS / cm, but the pH varied between 8.5 and 9.0. The water temperature of the circulating water line 11 was 35 ° C. at the inlet of the heat exchanger 10 and 50 ° C. at the outlet. The flow rate in the heat exchanger tube was 0.3 m / s.
An aqueous sodium hypochlorite solution (containing 1% of effective chlorine in terms of Cl 2 ) is placed in the hypohalous acid generating compound tank 7 and when the oxidation-reduction potential becomes 450 mV or less, the controller 5 generates the hypohalous acid generating compound. An output signal is sent to the supply pump 6 to operate the hypohalous acid generating compound supply pump 6 to supply the hypohalous acid generating compound that has entered the hypohalous acid generating compound tank 7 to the open circulating water system. When the voltage became 450 mV or more, the output signal was turned off and the hypohalous acid generating compound supply pump 6 was stopped. Thereafter, this step was repeated.

組成物タンク18には、ポリマレイン酸(BWA社製ベルクレン200LA)の10%、アクリル酸と2−アクリルアミド−2−メチルプロパンスルホン酸の共重合体(共重合比50:50重量%、重量平均分子量約6,000)の10%、スルファミン酸の6.8%、メチルベンゾトリアゾールの1%、水酸化ナトリウムの10%を含む組成物を入れた。   In the composition tank 18, 10% of polymaleic acid (Berkulen 200LA manufactured by BWA), a copolymer of acrylic acid and 2-acrylamido-2-methylpropanesulfonic acid (copolymerization ratio 50: 50% by weight, weight average molecular weight) About 6,000), 6.8% sulfamic acid, 1% methylbenzotriazole, and 10% sodium hydroxide.

循環水中の組成物の濃度はポリマー比濁法により分析した。すなわち、濾過した循環水10mLに試薬A(純水1Lにモノエタノールアミンの364gとエチレンジアミン4酢酸・2ナトリウムの465gを溶解)1mLと試薬B(純水1Lに塩化ベンゼトニウム40gとモノエタノールアミン62gとクエン酸ソーダ・2水和物の250gを溶解)を1mL加え、よく撹拌して10分間放置後、分光光度計を用いて濾過した循環水に試薬Aのみを1mL添加したものを対照として420nmにおける吸光度を測定した。予め作成した組成物濃度と吸光度の関係より、ポリマー比濁法により求めた循環水の吸光度から組成物濃度を求めて、循環水中の組成物濃度が100mg/Lになるように組成物供給ポンプ17の吐出量を調節した。   The concentration of the composition in the circulating water was analyzed by polymer turbidimetry. That is, 1 mL of reagent A (dissolved 364 g of monoethanolamine and 465 g of ethylenediaminetetraacetic acid / disodium in 1 L of pure water) and 10 g of reagent B (40 g of benzethonium chloride and 62 g of monoethanolamine in 1 L of pure water) were added to 10 mL of filtered circulating water. 1 mL of sodium citrate dihydrate (250 g dissolved) was added, stirred well, allowed to stand for 10 minutes, and then added with 1 mL of reagent A only to circulating water filtered using a spectrophotometer at 420 nm as a control. Absorbance was measured. The composition supply pump 17 obtains the composition concentration from the absorbance of the circulating water determined by the polymer turbidimetric method from the relationship between the composition concentration and the absorbance prepared in advance, so that the composition concentration in the circulating water becomes 100 mg / L. The amount of discharge was adjusted.

1ヶ月の試験期間中、酸化還元電位は450±1mVの範囲に維持されたが、循環水中の全菌数は1×10個/mL以下であった。試験期間中の組成物の平均濃度は平均105mg/Lであり、スルファミン酸の平均添加濃度は0.074mmol/Lであった。熱交換器10に設定した炭素鋼製チューブ(JIS G3445:STKM11A、外径12.7mm、長さ500mm)の腐食速度は1.9mdd、銅合金製チューブ(JIS H3300:C 6871 復水器用黄銅2種、外径12mm、長さ500mm)の腐食速度は0.1mddであり、試験チューブ表面に孔食の発生は認められなかった。また、冷却塔内に藻の付着は認められなかった。ハロゲン安定化剤由来の窒素濃度は1.0mg/Lであった。 During the test period of 1 month, the redox potential was maintained in the range of 450 ± 1 mV, but the total number of bacteria in the circulating water was 1 × 10 2 cells / mL or less. The average concentration of the composition during the test period was 105 mg / L on average, and the average addition concentration of sulfamic acid was 0.074 mmol / L. The corrosion rate of a carbon steel tube (JIS G3445: STKM11A, outer diameter 12.7 mm, length 500 mm) set in the heat exchanger 10 is 1.9 mdd, a copper alloy tube (JIS H3300: C6871 brass for condenser 2) The corrosion rate of the seed, the outer diameter of 12 mm, and the length of 500 mm was 0.1 mdd, and no pitting corrosion was observed on the test tube surface. Also, no algae adhered to the cooling tower. The nitrogen concentration derived from the halogen stabilizer was 1.0 mg / L.

(実施例2)
2−ホスホノブタン−1,2,4−トリカルボン酸の5%、ヘキサメタリン酸ナトリウムの4%、リン酸の2%、アクリル酸と3−アリロキシ−2−ヒドロキシ−1−プロパンスルホン酸の共重合体(共重合比50:50重量%、重量平均分子量約5,000)の10%、スルファミン酸の3.4%、ベンゾトリアゾールの0.6%を含む組成物を添加し、循環水中の組成物の濃度を全リン酸濃度測定法により測定した以外は、実施例1と同様に試験した。ここで全リン酸濃度測定法は、JIS K0101:1998の全リン分析方法により測定した。1ヶ月の試験期間中、酸化還元電位は400±1mVの範囲に維持されたが、循環水中の全菌数は1×10個/mL以下であった。試験期間中の組成物の添加濃度は平均102mg/Lであり、スルファミン酸の平均添加濃度は0.036mmol/Lであった。熱交換器10に設定した炭素鋼製チューブの腐食速度は1.5mdd、銅合金製チューブの腐食速度は0.2mddであり試験チューブ表面に孔食の発生は認められなかった。また、冷却塔内に藻の付着は認められなかった。ハロゲン安定化剤由来の窒素濃度は0.5mg/Lであった。
(Example 2)
5% of 2-phosphonobutane-1,2,4-tricarboxylic acid, 4% of sodium hexametaphosphate, 2% of phosphoric acid, copolymer of acrylic acid and 3-allyloxy-2-hydroxy-1-propanesulfonic acid ( A composition containing 10% of a copolymerization ratio of 50: 50% by weight, a weight average molecular weight of about 5,000), 3.4% of sulfamic acid and 0.6% of benzotriazole, The test was conducted in the same manner as in Example 1 except that the concentration was measured by the total phosphoric acid concentration measurement method. Here, the total phosphoric acid concentration was measured by the total phosphorus analysis method of JIS K0101: 1998. During the 1-month test period, the redox potential was maintained in the range of 400 ± 1 mV, but the total number of bacteria in the circulating water was 1 × 10 2 cells / mL or less. The addition concentration of the composition during the test period was 102 mg / L on average, and the average addition concentration of sulfamic acid was 0.036 mmol / L. The corrosion rate of the carbon steel tube set in the heat exchanger 10 was 1.5 mdd, the corrosion rate of the copper alloy tube was 0.2 mdd, and no pitting corrosion was observed on the test tube surface. Also, no algae adhered to the cooling tower. The nitrogen concentration derived from the halogen stabilizer was 0.5 mg / L.

(実施例3)
酸化還元電位を500mVに設定し、ポリイタコン酸(平均分子量2,000)の5%、アクリル酸とイソプロピルスルホン酸の共重合体の共重合体(共重合比50:50重量%、重量平均分子量約10,000)の4%、酸化亜鉛2.2%、スルファミン酸の8.5%、ベンゾトリアゾールの1%、水酸化ナトリウムの1.5%を含む組成物を添加し、ベンゾトリアゾールの濃度を紫外吸光光度法により測定した以外は実施例1と同様に試験した。1ヶ月の試験期間中、酸化還元電位は500±1mVの範囲に維持されたが、循環水中の全菌数は1×10個/mL以下であった。試験期間中の組成物の添加濃度は平均98mg/Lであり、スルファミン酸の平均添加濃度は0.086mmol/Lであった。循環水ライン11に設定した銅合金試験片(JIS H3100:C1201 りん脱酸銅1A種、1×13×50mm)の腐食速度は0.3mddであり、試験片表面に孔食の発生は認められなかった。また、冷却塔内に藻の付着は認められなかった。ハロゲン安定化剤由来の窒素濃度は1.2mg/Lであった。
Example 3
The oxidation-reduction potential was set to 500 mV, 5% of polyitaconic acid (average molecular weight 2,000), a copolymer of acrylic acid and isopropylsulfonic acid copolymer (copolymerization ratio 50: 50% by weight, weight average molecular weight of about 10,000%), zinc oxide 2.2%, sulfamic acid 8.5%, benzotriazole 1%, and sodium hydroxide 1.5%. The test was conducted in the same manner as in Example 1 except that the measurement was performed by the ultraviolet absorptiometry. During the one month test period, the redox potential was maintained in the range of 500 ± 1 mV, but the total number of bacteria in the circulating water was 1 × 10 2 cells / mL or less. The average addition concentration of the composition during the test period was 98 mg / L, and the average addition concentration of sulfamic acid was 0.086 mmol / L. The corrosion rate of the copper alloy specimen (JIS H3100: C1201 Phosphorous Deoxidized Copper 1A, 1 × 13 × 50 mm) set in the circulating water line 11 is 0.3 mdd, and pitting corrosion is observed on the specimen surface. There wasn't. Also, no algae adhered to the cooling tower. The nitrogen concentration derived from the halogen stabilizer was 1.2 mg / L.

(実施例4)
ポリマレイン酸(BWA社製ベルクレン200LA)の10%、アクリル酸と2−アクリルアミド−2−メチルプロパンスルホン酸(共重合比50:50重量%)共重合体(重量平均分子量約6,000)の10%、p−トルエンスルホンアミドの5%、ベンゾトリアゾールの1%、水酸化ナトリウムの10%を含む組成物を添加した以外は、実施例1と同様に試験した。1ヶ月の試験期間中、酸化還元電位は450±1mVの範囲に維持されたが、循環水中の全菌数は1×10個/mL以下であった。試験期間中の組成物の添加濃度は平均100mg/Lであり、p−トルエンスルホンアミドの平均添加濃度は0.029mmol/Lであった。熱交換器10に設定した炭素鋼製チューブの腐食速度は2.2mdd、銅合金製チューブの腐食速度は0.3mddであり、試験チューブ表面に孔食の発生は認められなかった。また、冷却塔内に藻の付着は認められなかった。ハロゲン安定化剤由来の窒素濃度は0.4mg/Lであった。
Example 4
10% of polymaleic acid (Berkulen 200LA manufactured by BWA), 10% of acrylic acid and 2-acrylamido-2-methylpropanesulfonic acid (copolymerization ratio 50: 50% by weight) copolymer (weight average molecular weight about 6,000) %, 5% of p-toluenesulfonamide, 1% of benzotriazole and 10% of sodium hydroxide were added, and the test was conducted in the same manner as in Example 1. During the test period of 1 month, the redox potential was maintained in the range of 450 ± 1 mV, but the total number of bacteria in the circulating water was 1 × 10 2 cells / mL or less. The addition concentration of the composition during the test period was 100 mg / L on average, and the average addition concentration of p-toluenesulfonamide was 0.029 mmol / L. The corrosion rate of the carbon steel tube set in the heat exchanger 10 was 2.2 mdd, the corrosion rate of the copper alloy tube was 0.3 mdd, and no pitting corrosion was observed on the test tube surface. Also, no algae adhered to the cooling tower. The nitrogen concentration derived from the halogen stabilizer was 0.4 mg / L.

(実施例5)
酸化還元電位の設定値を310±1mVに設定した以外は、実施例1と同様に試験した。試験期間中の組成物の添加濃度は平均105mg/Lであり、スルファミン酸の平均添加濃度は0.074mmol/Lであった。循環水中の全菌数は1×10個/mLであった。冷却塔内に藻の付着は認められなかった。熱交換器10に設定した炭素鋼製チューブの腐食速度は2.2mdd、銅合金製チューブの腐食速度は0.3mddであった。
(Example 5)
The test was performed in the same manner as in Example 1 except that the set value of the oxidation-reduction potential was set to 310 ± 1 mV. The average addition concentration of the composition during the test period was 105 mg / L, and the average addition concentration of sulfamic acid was 0.074 mmol / L. The total number of bacteria in the circulating water was 1 × 10 3 cells / mL. No algae adhered to the cooling tower. The corrosion rate of the carbon steel tube set in the heat exchanger 10 was 2.2 mdd, and the corrosion rate of the copper alloy tube was 0.3 mdd.

(実施例6)
酸化還元電位の設定値を690±1mVに設定した以外は、実施例1と同様に試験した。試験期間中の組成物の添加濃度は平均105mg/Lであり、スルファミン酸の平均添加濃度は0.074mmol/Lであった。循環水中の全菌数は1×102個/mL以下であった。冷却塔内に藻の付着は認められなかった。熱交換器10に設定した炭素鋼製チューブの腐食速度は3.8mdd、銅合金製チューブの腐食速度は0.5mddであった。
(Example 6)
The test was performed in the same manner as in Example 1 except that the set value of the oxidation-reduction potential was set to 690 ± 1 mV. The average addition concentration of the composition during the test period was 105 mg / L, and the average addition concentration of sulfamic acid was 0.074 mmol / L. The total number of bacteria in the circulating water was 1 × 10 2 cells / mL or less. No algae adhered to the cooling tower. The corrosion rate of the carbon steel tube set in the heat exchanger 10 was 3.8 mdd, and the corrosion rate of the copper alloy tube was 0.5 mdd.

(実施例7)
組成物の添加量を4250mg/Lとした以外は、実施例1と同様に試験した。このとき、スルファミン酸の平均添加濃度は3.0mmol/Lであった。循環水中の全菌数は1×102個/mL以下であった。冷却塔内に藻の付着は認められなかった。熱交換器10に設定した炭素鋼製チューブの腐食速度は4.5mdd、銅合金製チューブの腐食速度は0.6mddであった。
(Example 7)
The test was performed in the same manner as in Example 1 except that the amount of the composition added was 4250 mg / L. At this time, the average addition concentration of sulfamic acid was 3.0 mmol / L. The total number of bacteria in the circulating water was 1 × 10 2 cells / mL or less. No algae adhered to the cooling tower. The corrosion rate of the carbon steel tube set in the heat exchanger 10 was 4.5 mdd, and the corrosion rate of the copper alloy tube was 0.6 mdd.

(比較例1)
酸化還元電位の設定値を300mV未満に設定した以外は、実施例1と同様に試験した。試験期間中の組成物の添加濃度は平均105mg/Lであり、スルファミン酸の平均添加濃度は0.074mmol/Lであった。酸化還元電位は250〜299mVの範囲であったが、循環水中の全菌数は1×10〜1×10個/mLの間で変動した。また、冷却塔内に藻の付着が認められた。熱交換器10に設定した炭素鋼製チューブの腐食速度は5.2mdd、銅合金製チューブの腐食速度は0.8mddであった。
(Comparative Example 1)
The test was performed in the same manner as in Example 1 except that the set value of the oxidation-reduction potential was set to less than 300 mV. The average addition concentration of the composition during the test period was 105 mg / L, and the average addition concentration of sulfamic acid was 0.074 mmol / L. Although the oxidation-reduction potential was in the range of 250 to 299 mV, the total number of bacteria in the circulating water varied between 1 × 10 4 and 1 × 10 5 cells / mL. Moreover, adhesion of algae was observed in the cooling tower. The corrosion rate of the carbon steel tube set in the heat exchanger 10 was 5.2 mdd, and the corrosion rate of the copper alloy tube was 0.8 mdd.

(比較例2)
酸化還元電位測定の替わりに、DPD比色法による残留塩素自動分析装置(ハック社製CL−17型)を設置して全残留塩素濃度により処理剤供給ポンプの制御を行った以外は実施例1と同様の方法により試験した。ここで全残留塩素濃度が4mg/L以下になったとき、制御部5から次亜ハロゲン酸生成化合物供給ポンプ6に出力信号を送り処理剤供給ポンプ6を作動させて次亜ハロゲン酸生成化合物タンク7の組成物を供給し、全残留塩素濃度が5mg/L以上になったとき出力信号をオフにして次亜ハロゲン酸生成化合物供給ポンプ6を停止させた。遊離残留塩素濃度が1mg/L以下になるように組成物供給ポンプ17の吐出量を調節した。1ヶ月の試験期間中、全残留塩素濃度は4〜5mg/Lの範囲に維持されたが、遊離残留塩素濃度は0.1〜0.9mg/Lの範囲でばらついた。この時の酸化還元電位はしばしば300mV未満となり、最低250mVであった。また組成物の濃度は50〜200ppmの濃度でばらつき、スルファミン酸の添加濃度も0.035〜0.14mmol/Lの間で変化した。循環水中の全菌数は1×10〜1×10個/mLの間で変動した。また、冷却塔内に藻の付着が認められた。熱交換器10に設定した炭素鋼製チューブの腐食速度は9.7mdd、銅合金製チューブの腐食速度は1.2mddであった。
(Comparative Example 2)
Example 1 except that instead of the oxidation-reduction potential measurement, a residual chlorine automatic analyzer (CL-17 model, manufactured by Hack) was installed by the DPD colorimetric method, and the treatment agent supply pump was controlled by the total residual chlorine concentration. Were tested in the same manner. Here, when the total residual chlorine concentration becomes 4 mg / L or less, an output signal is sent from the control unit 5 to the hypohalous acid generating compound supply pump 6 to operate the processing agent supply pump 6 and the hypohalous acid generating compound tank. The composition No. 7 was supplied, and when the total residual chlorine concentration reached 5 mg / L or more, the output signal was turned off and the hypohalous acid generating compound supply pump 6 was stopped. The discharge rate of the composition supply pump 17 was adjusted so that the free residual chlorine concentration was 1 mg / L or less. During the one month test period, the total residual chlorine concentration was maintained in the range of 4-5 mg / L, while the free residual chlorine concentration varied in the range of 0.1-0.9 mg / L. The oxidation-reduction potential at this time was often less than 300 mV, and was a minimum of 250 mV. The concentration of the composition varied between 50 and 200 ppm, and the addition concentration of sulfamic acid varied between 0.035 and 0.14 mmol / L. The total number of bacteria in the circulating water varied between 1 × 10 2 and 1 × 10 3 cells / mL. Moreover, adhesion of algae was observed in the cooling tower. The corrosion rate of the carbon steel tube set in the heat exchanger 10 was 9.7 mdd, and the corrosion rate of the copper alloy tube was 1.2 mdd.

(比較例3)
比較例1と同じ試験装置を用いて、Cl換算で7%の次亜塩素酸ナトリウムと20%のスルファミン酸ナトリウムを含む水溶液を次亜ハロゲン酸生成化合物タンク7に入れ、全残留塩素濃度が1mg/L以下になったとき、制御部5から次亜ハロゲン酸生成化合物供給ポンプ6に出力信号を送り処理剤供給ポンプ6を作動させて次亜ハロゲン酸生成化合物タンク7の組成物を供給し、全残留塩素濃度が2mg/L以上になったとき出力信号をオフにして次亜ハロゲン酸生成化合物供給ポンプ6を停止させた。
1ヶ月の試験期間中、全残留塩素濃度は1〜2mg/Lの範囲に維持され、遊離残留塩素濃度は0.01〜0.1mg/Lの範囲であった。循環水中の全菌数は1×10〜1×10個/mLの間で変動した。また、冷却塔内には多量の藻が付着していた。熱交換器10に設定した炭素鋼製チューブの腐食速度は6.4mdd、銅合金試験片の腐食速度は1.0mddであった。ハロゲン安定化剤由来の窒素濃度は3.6mg/Lであった。
(Comparative Example 3)
Using the same test apparatus as in Comparative Example 1, an aqueous solution containing 7% sodium hypochlorite and 20% sodium sulfamate in terms of Cl 2 was placed in the hypohalous acid generating compound tank 7, and the total residual chlorine concentration was When it becomes 1 mg / L or less, the controller 5 sends an output signal to the hypohalous acid generating compound supply pump 6 to operate the processing agent supply pump 6 to supply the composition of the hypohalous acid generating compound tank 7. When the total residual chlorine concentration reached 2 mg / L or more, the output signal was turned off and the hypohalous acid generating compound supply pump 6 was stopped.
During the one month test period, the total residual chlorine concentration was maintained in the range of 1-2 mg / L and the free residual chlorine concentration was in the range of 0.01-0.1 mg / L. The total number of bacteria in the circulating water varied between 1 × 10 3 and 1 × 10 4 cells / mL. In addition, a large amount of algae adhered to the cooling tower. The corrosion rate of the carbon steel tube set in the heat exchanger 10 was 6.4 mdd, and the corrosion rate of the copper alloy specimen was 1.0 mdd. The nitrogen concentration derived from the halogen stabilizer was 3.6 mg / L.

実施例1、5、6の結果と比較例1の結果から、酸化還元電位を300〜700mVの範囲になるように調整する本発明の水系処理方法が殺菌効果と腐食抑制の両面で優れていることが判る。また、酸化還元電位で処理管理を行った本発明の実施例1の結果と、酸化還元電位の替わりに全残留塩素濃度と遊離残留塩素濃度で管理する従来技術を適用した比較例2の結果を比較すると、本発明の水系処理方法の方が殺菌効果と腐食抑制の両面で優れていることが判る。更に、比較例3は、次亜塩素酸ナトリウムとスルファミン酸ナトリウムを含む水溶液を用いる安定化次亜塩素酸ナトリウム処理を適用した例であるが、その結果を実施例1の結果と比べると、比較例3の処理方法は本発明の水系処理方法に比べて殺菌効果、腐食抑制効果のみならず、ハロゲン安定化剤由来の窒素分も低減することが困難なことが理解される。   From the results of Examples 1, 5, and 6 and the result of Comparative Example 1, the aqueous treatment method of the present invention for adjusting the redox potential to be in the range of 300 to 700 mV is excellent in both sterilization effect and corrosion inhibition. I understand that. In addition, the results of Example 1 of the present invention in which the treatment was controlled by the oxidation-reduction potential and the results of Comparative Example 2 in which the conventional technique for management by the total residual chlorine concentration and the free residual chlorine concentration was applied instead of the oxidation-reduction potential. In comparison, it can be seen that the aqueous treatment method of the present invention is superior in both sterilization effect and corrosion inhibition. Furthermore, although the comparative example 3 is an example which applied the stabilization sodium hypochlorite process using the aqueous solution containing sodium hypochlorite and sodium sulfamate, when the result is compared with the result of Example 1, it is a comparison. It is understood that the treatment method of Example 3 is difficult to reduce not only the bactericidal effect and the corrosion inhibiting effect but also the nitrogen content derived from the halogen stabilizer as compared with the aqueous treatment method of the present invention.

本発明の水系処理方法では、次ハロゲン塩とハロゲン安定化剤を過不足なく効率的に反応させることにより低腐食性で優れた殺菌・殺藻効果を得ることができ、従来技術の課題であったスルファミン酸由来のCODや窒素負荷を低減できる。   In the water-based treatment method of the present invention, an excellent bactericidal / algicidal effect can be obtained with low corrosion by reacting the secondary halogen salt and the halogen stabilizer efficiently without excess or deficiency. Furthermore, COD and nitrogen load derived from sulfamic acid can be reduced.

1:白金電極
2:参照電極
3:酸化還元電位測定セル
4:電位差計
5:制御部
6:次亜ハロゲン酸生成化合物供給ポンプ
7:次亜ハロゲン酸生成化合物タンク
8:冷水塔
9:循環ポンプ
10:熱交換器
11:循環水ライン
12:補給水ライン
13:強制ブローライン
14:電気伝導率測定セル
15:電気伝導率指示調節計
16:ブローダウン弁
17:組成物供給ポンプ
18:組成物タンク
1: platinum electrode 2: reference electrode 3: oxidation-reduction potential measurement cell 4: potentiometer 5: control unit 6: hypohalous acid generating compound supply pump 7: hypohalous acid generating compound tank 8: cold water tower 9: circulation pump 10: Heat exchanger 11: Circulating water line 12: Makeup water line 13: Forced blow line 14: Electrical conductivity measurement cell 15: Electrical conductivity indicating controller 16: Blow down valve 17: Composition supply pump 18: Composition tank

Claims (2)

水系における微生物障害を抑制する水系処理方法であって、
(1)被処理水の酸化還元電位を測定する手段と、
(2)酸化還元電位が300〜700mV(飽和KCl入り銀/塩化銀電極基準)の範囲になるように次亜ハロゲン酸生成化合物の添加量を調整する手段と、
(3)有機リン酸化合物、重合リン酸化合物、オルトリン酸、アニオン性高分子電解質、水溶性亜鉛化合物、水溶性モリブデン酸化合物、ベンゾトリアゾール及びその誘導体、水溶性リチウム化合物から選択される濃度測定対象化合物の被処理水系中の濃度を測定する手段と、
(4)(a)前記濃度測定対象化合物の1種以上の化合物と(b)スルファミン酸、スルホンアミドから選択される1種以上のハロゲン安定化剤を含有する組成物を被処理水系に添加しながら、前記濃度測定対象化合物の濃度の測定結果に基づき該組成物の添加量を調整する手段を有することを特徴とする水系処理方法。
An aqueous treatment method for suppressing microbial damage in an aqueous system,
(1) means for measuring the oxidation-reduction potential of water to be treated;
(2) means for adjusting the addition amount of the hypohalous acid generating compound so that the oxidation-reduction potential is in the range of 300 to 700 mV (saturated KCl-containing silver / silver chloride electrode standard);
(3) Concentration measurement target selected from organic phosphate compound, polymerized phosphate compound, orthophosphoric acid, anionic polymer electrolyte, water-soluble zinc compound, water-soluble molybdate compound, benzotriazole and its derivatives, and water-soluble lithium compound Means for measuring the concentration of the compound in the treated water system;
(4) A composition containing (a) one or more compounds of the concentration measurement target compound and (b) one or more halogen stabilizers selected from sulfamic acid and sulfonamide is added to the treated water system. However, it has a means to adjust the addition amount of this composition based on the measurement result of the density | concentration of the said compound for a density | concentration measurement object, The aqueous processing method characterized by the above-mentioned.
ハロゲン安定化剤の被処理水系に対する添加濃度が0.01〜5mmol/Lの範囲であることを特徴とする請求項1記載の水系の処理方法
The method for treating an aqueous system according to claim 1, wherein the concentration of the halogen stabilizer added to the treated water system is in the range of 0.01 to 5 mmol / L.
JP2010284288A 2010-12-21 2010-12-21 Water treatment method for suppressing microbial damage in water Active JP5665524B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2010284288A JP5665524B2 (en) 2010-12-21 2010-12-21 Water treatment method for suppressing microbial damage in water

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2010284288A JP5665524B2 (en) 2010-12-21 2010-12-21 Water treatment method for suppressing microbial damage in water

Publications (2)

Publication Number Publication Date
JP2012130852A JP2012130852A (en) 2012-07-12
JP5665524B2 true JP5665524B2 (en) 2015-02-04

Family

ID=46647095

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2010284288A Active JP5665524B2 (en) 2010-12-21 2010-12-21 Water treatment method for suppressing microbial damage in water

Country Status (1)

Country Link
JP (1) JP5665524B2 (en)

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5990726B2 (en) * 2011-03-29 2016-09-14 ナルコジャパン合同会社 Method for stabilizing water treatment chemicals
JP5941390B2 (en) * 2012-10-04 2016-06-29 栗田工業株式会社 Industrial antibacterial methods
JP6093620B2 (en) * 2013-03-29 2017-03-08 アクアス株式会社 Oxidative slime control agent composition with high storage stability
JP6655295B2 (en) * 2014-03-20 2020-02-26 オルガノ株式会社 Water treatment agent composition, method for producing water treatment agent composition, and water treatment method
JP6645030B2 (en) * 2015-05-11 2020-02-12 栗田工業株式会社 Water treatment agent and water treatment method
JP6169654B2 (en) * 2015-07-27 2017-07-26 伯東株式会社 One-component water treatment composition with improved storage stability
JP6299796B2 (en) * 2016-03-29 2018-03-28 栗田工業株式会社 Seawater desalination method and seawater desalination facility
WO2020149217A1 (en) * 2019-01-18 2020-07-23 栗田工業株式会社 Water treatment agent

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4299397B2 (en) * 1999-03-08 2009-07-22 伯東株式会社 Slime control method
JP4959062B2 (en) * 2001-02-28 2012-06-20 伯東株式会社 Water treatment method
JP5187928B2 (en) * 2001-08-01 2013-04-24 伯東株式会社 Disinfection method for cooling water and process water
JP4378512B2 (en) * 2002-09-27 2009-12-09 株式会社片山化学工業研究所 Water treatment method and water treatment system for circulating water system
JP2005205354A (en) * 2004-01-26 2005-08-04 Hakuto Co Ltd Circulating water system management method, and circulating water system management system
JP5806793B2 (en) * 2008-02-21 2015-11-10 栗田工業株式会社 Concentration control method for aqueous processing agents
JP2009160505A (en) * 2007-12-28 2009-07-23 Aquas Corp Method for controlling slime in water of water system
JP4867930B2 (en) * 2008-02-21 2012-02-01 栗田工業株式会社 Disinfection method of aqueous Legionella bacteria
JP4876094B2 (en) * 2008-03-31 2012-02-15 ソマール株式会社 Slime control method and apparatus
JP5612822B2 (en) * 2008-12-25 2014-10-22 アクアス株式会社 Slime control method

Also Published As

Publication number Publication date
JP2012130852A (en) 2012-07-12

Similar Documents

Publication Publication Date Title
JP5665524B2 (en) Water treatment method for suppressing microbial damage in water
JP4676002B2 (en) Biofouling control
CA2620449C (en) Method and apparatus for producing synergistic biocide
WO1994002423A1 (en) Method and apparatus for controlling microorganisms
EP0429631A1 (en) Biocidal methods for recirculating water systems.
JP2009154113A (en) Sterilization treatment method for water system water
JP4959062B2 (en) Water treatment method
JP6169654B2 (en) One-component water treatment composition with improved storage stability
KR100524148B1 (en) A Method of Controlling Microbial Fouling in Aqueous System
JP6837301B2 (en) Reverse osmosis membrane treatment method and reverse osmosis membrane treatment system
US7785559B2 (en) Method of forming hypobromous acid in aqueous system
US7033510B2 (en) Stabilized hypobromous acid solutions
JP5928938B2 (en) Treatment method for open circulating cooling water system
JP6057526B2 (en) Treatment method for open circulating cooling water system
Arias et al. Reclaimed water use in industrial cooling circuits: Compatibility with TP11 biocides
WO2006103314A1 (en) Electrochemical method for preparing microbiocidal solutions
JP5281465B2 (en) Bactericidal algicide composition, water-based bactericidal algicide method, and method for producing bactericidal algicide composition
JP2013158669A (en) Treatment method for open-circulating cooling water system
JP2014122176A (en) Water treatment agent composition
JP5545621B2 (en) Method for preventing adhesion of silica-based deposits in an open circulating cooling water system
JP2012206102A (en) Method of estimating corrosion of water system
JP2021181074A (en) Water treatment method and wastewater treatment apparatus

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20131202

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20141111

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20141119

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20141209

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20141209

R150 Certificate of patent or registration of utility model

Ref document number: 5665524

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250