JP4378512B2 - Water treatment method and water treatment system for circulating water system - Google Patents

Water treatment method and water treatment system for circulating water system Download PDF

Info

Publication number
JP4378512B2
JP4378512B2 JP2002283729A JP2002283729A JP4378512B2 JP 4378512 B2 JP4378512 B2 JP 4378512B2 JP 2002283729 A JP2002283729 A JP 2002283729A JP 2002283729 A JP2002283729 A JP 2002283729A JP 4378512 B2 JP4378512 B2 JP 4378512B2
Authority
JP
Japan
Prior art keywords
slime
potential
metal material
sample electrode
water
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2002283729A
Other languages
Japanese (ja)
Other versions
JP2004113981A (en
Inventor
弘宜 錦織
聖一 林
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Katayama Chemical Works Co Ltd
Original Assignee
Katayama Chemical Works Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Katayama Chemical Works Co Ltd filed Critical Katayama Chemical Works Co Ltd
Priority to JP2002283729A priority Critical patent/JP4378512B2/en
Publication of JP2004113981A publication Critical patent/JP2004113981A/en
Application granted granted Critical
Publication of JP4378512B2 publication Critical patent/JP4378512B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Treatment Of Water By Oxidation Or Reduction (AREA)

Description

【0001】
【発明の属する技術分野】
この発明は、循環水系の水処理方法および水処理システムに関する。さらに詳しくは、循環水系に使用される配管等の材料の腐食を防止しながら、この水系の運転状況や水質の変化に随時対応して適切な管理を行うことができる水処理方法およびこの方法に適用される水処理システムに関する。
【0002】
【従来の技術】
製鉄、化学、石油化学等の各種工場や火力、原子力発電所ではプロセス冷却用に、また学校、病院、ホテルその他のビルでは空調用に、工業用水、海水、湖沼水、河川水および地下水などを冷却水として大量に使用している。このような冷却水の使用の増大に伴い、冷却塔を設けて水を循環再利用したり、さらに節水のために、可能な範囲で高濃縮運転を行ったりする冷却水系が採用され、冷却水の有効利用が図られている。また、製紙工程水などの多量の工業用水を製造工程水として使用する系においても、節水のために可能な範囲で用水を循環させ、有効利用を図っている。
【0003】
これらの循環水系における障害の1つにスライム障害がある。スライム障害は、水中の微生物に起因する障害であり、熱交換器における伝熱効率の低下、配管等の通水不良あるいは腐食の原因となるため、従来より系内の運転状況や水質に応じてスライム防止剤が添加されている。冷却水系におけるスライム防止剤としては、一般に次亜塩素酸ソーダ等の酸化型スライム防止剤が使用されている。
【0004】
一方、冷却水系における熱交換器や配管等の材料としてステンレス鋼などの耐食材料が一般に広く用いられている。しかし、ステンレス鋼は、溶接を行った継ぎ目部分でその表面の不動態被膜が欠損し、スライム防止剤により孔食と呼ばれる局部腐食が発生しやすい。
この障害は、機器や配管の耐用年数の低減、破損や熱効率の低下など、資源およびエネルギーの損失、メンテナンス費の増大ならびに工場での生産停止など、種々の問題を引き起こす。
【0005】
【発明が解決しようとする課題】
前記の循環水系では、スライム防止剤の添加により系内の自然電位が上昇する場合がある。このとき、循環水系に使用されている配管等の表面の不動態被膜が破れて化学的に活性な金属表面(活性態部分)が循環水系に露出していると、前記活性態部分と他の金属表面との間に電池が形成され、活性態部分に孔食やすきま腐食等の局部腐食が発生しやすくなる。
【0006】
この発明は、上記の問題点に鑑みてなされたものであり、循環水系の運転状況や水質の変化に随時対応が可能な水処理方法および水処理システムを提供することを目的とする。
【0007】
【課題を解決するための手段】
この発明によれば、循環水系にスライム防止剤として酸化型スライム防止剤と非酸化型スライム防止剤のそれぞれを個別に添加するスライム防止剤添加手段と、前記水系に使用される金属材料を試料電極として前記系内の自然電位を測定する電位測定手段と、前記系内のスライム付着状況を測定するスライム測定手段とを備え、スライム防止剤添加手段によりスライム防止剤を添加する際、電位測定手段により測定された自然電位が前記試料電極について予め設定された腐食すきま再不動態化電位としての電位しきい値を超えないようにスライム防止剤添加手段を制御して酸化型スライム防止剤を添加し、測定された自然電位が電位しきい値を超え、かつ、スライム測定手段によりスライムの付着が確認されたときにスライム防止剤添加手段を制御し酸化型スライム防止剤に代えて非酸化型スライム防止剤を添加することを特徴とする循環水系の水処理方法が提供される。
【0008】
この発明の別の観点によれば、循環水系にスライム防止剤として酸化型スライム防止剤と非酸化型スライム防止剤のそれぞれを個別に添加するスライム防止剤添加手段と、前記水系に使用される金属材料を試料電極として前記系内の自然電位を測定する電位測定手段と、前記系内のスライム付着状況を測定するスライム測定手段と、制御部とを備え、制御部は、スライム防止剤添加手段によりスライム防止剤を添加する際、電位測定手段により測定された自然電位が前記試料電極について予め設定された腐食すきま再不動態化電位としての電位しきい値を超えないようにスライム防止剤添加手段を制御して酸化型スライム防止剤を添加し、測定された自然電位が電位しきい値を超え、かつ、スライム測定手段によりスライムの付着が確認されたときにスライム防止剤添加手段を制御し酸化型スライム防止剤に代えて非酸化型スライム防止剤を添加することを特徴とする循環水系の水処理システムが提供される。
【0009】
この発明は、循環系冷却水などの循環水系の系内に使用される金属材料に発生する孔食や、すきま腐食等の腐食が、スライム防止剤が添加された水系と、腐食が発生しやすい配管材料との間に生じる電気化学的な腐食であることに着目し、前記水系が前記の電気化学的な腐食が生じる環境とならないようにスライム防止剤の添加を制御するものである。
この発明における循環水系とは、製鉄、化学、石油化学等の各種工場および火力、原子力発電所等のプロセス冷却や、学校、病院、ホテルその他のビル等の空調、製紙工程などの製造工程などに用いられる循環水系であって、水道水、工業用水、海水、湖沼水、河川水および地下水などが挙げられる。
この発明における循環水系の系内に使用される金属材料とは、工業用水の流路を形成する金属製配管材料を意味し、具体的には、銅、ニッケル、アルミニウム、チタンまたはこれらを含む合金、ステンレス鋼等が挙げられる。
【0010】
前記の金属の表面には自然に、あるいは電気分極や不動態化溶液への浸漬等によって耐食性の被膜(不動態被膜)が形成されているが、この発明における金属材料の鋭敏化とは、この被膜が除去されることにより、化学的に活性な金属表面となるような現象を意味する。このような鋭敏化が生じる処理としては、不動態被膜を酸化あるいは還元する温度での加熱や、溶接等が挙げられる。鋭敏化処理が施された金属表面では、不動態被膜が除去された活性な金属表面と他の金属表面との間に電池が形成され、孔食等の腐食が発生しやすい。
前記のステンレス鋼の中でも、前記水系に配管材料として一般に使用されているSUS304ステンレス鋼やSUS316ステンレス鋼は、局部的に700℃程度の高温に曝される溶接等の鋭敏化処理により、ステンレス鋼を形成するCr(クロム)が表面で欠乏して化学的に活性な金属表面となる。
この発明における金属材料の溶体化とは、熱処理合金を固溶限温度以上の適温に加熱し、合金成分を十分に固溶させた後、急冷させて過飽和固溶状態にするような熱処理、すなわち、上記したステンレス鋼等の合金を製造する工程で不可避の熱処理を意味する。このような溶体化により、合金は、結晶相に他物質が溶け込んだとみなされる混合相を有する固溶体となる。
溶体化処理が施された金属表面では、汚れの付着した部分や隙間部分で溶存酸素が十分に供給されないために、電位が下がり活状態に移行し、その部分がアノード、汚れの周辺部や隙間の外部がカソードとなって、すきま腐食が発生しやすく、さらに腐食が進行すれば貫孔に至る場合がある。
【0011】
この発明におけるスライム防止剤としては、公知のスライム防止剤を用いることができる。例えば、オゾン、塩素、次亜塩素酸またはその塩、過酸化水素、二酸化塩素、ラジカル種活性酸素等の酸化型スライム防止剤や、3−イソチアゾロン系化合物、S−トリアジン系化合物等の有機窒素硫黄系化合物、2−ブロモ−2−ニトロプロパン−1,3−ジオール、2,2−ジブロモ−2−ニトロエタノール等の有機ブロム系化合物、第4級アンモニウム化合物等の有機窒素系化合物、ナトリウムピリチオン等の有機硫黄系化合物、グルタルアルデヒド等の非酸化型スライム防止剤をこの発明に適用することができる。
【0012】
この発明における自然電位とは、水中における、参照電極と試料電極との間の電位差を意味する。
この発明における電位測定手段としては、JIS G0577で規定された「ステンレス鋼の孔食電位測定方法」に基づく孔食電位試験法、またはJIS G0592で規定された「ステンレス鋼の腐食すきま再不動態化電位測定方法」に基づく再不動態化電位試験法に用いられるものが挙げられる。
すきま腐食は、孔食よりも発生しやすいため、特に試料電極に予め溶体化処理が施された金属材料を使用する場合には、上記の電位測定手段として再不動態化電位試験法に用いられるものを採用するのが好ましい。
【0013】
この発明における電位しきい値とは、試料電極を一定電位で長時間保持した際に、孔食またはすきま腐食が発生する自然電位の下限値を意味する。したがって、この発明では、予め設定された電位しきい値を超えないように水系の電位を制御するのが好ましいが、一時的に電位しきい値を超えることがあっても、短時間で自然電位を正常値に戻すことにより、孔食や、すきま腐食の発生を防止できるので、上記の電位しきい値は、適用される循環水系によって適宜設定することができる。なお、この発明では、上記の電位しきい値を有する自然電位を以下、孔食電位および腐食すきま再不動態化電位と称する。
電位測定手段が、循環水系の系内に使用される金属材料を試料電極として自然電位を測定する構成とすることにより、スライム防止剤が添加された水系と腐食が発生しやすい配管材料との間に生じる電気化学的な腐食の環境が電位測定手段に模擬されるので、前記水系における急激な水質変動等にも対応して精度の高いモニタリングが可能となる。
さらに、前記の試料電極が異なる2つの試料電極からなり、一方は鋭敏化処理が施された金属材料であり、他方は溶体化処理が施された金属材料である場合、前記水系における電気化学的な腐食が発生する環境へ移行する傾向を速やかに、かつ高精度で把握することができる。
【0014】
この発明におけるスライム測定手段としては、検水の透過光強度を測定する光学的方法、熱交換器の総括伝熱係数を測定する方法、配管のスライムボリュームを測定する方法、配管の入水側と出口側の圧力差を測定する方法等が挙げられる。
スライム防止剤添加手段は、スライム防止剤として酸化型スライム防止剤と非酸化型スライム防止剤を個別にあるいは同時に循環水系に添加する手段を備え、制御部は、前記系内の自然電位および/またはスライム付着状況に応じて、酸化型スライム防止剤と非酸化型スライム防止剤を個別にあるいは同時に循環水系に添加するようスライム防止剤添加手段を制御するので、スライム防止剤の添加による自然電位の上昇を速やかに抑えることができる。
【0015】
【発明の実施の形態】
以下、この発明の実施の形態を図面に基づいて具体的に説明するが、これにより、この発明の範囲は限定されない。
図1は、この発明の循環水系の水処理システムの実施の一形態を示す模式図である。
【0016】
図1に示すように、水処理システム10は、例えば、冷却水槽51から送水ポンプ52を介して熱交換器53に至る送水配管54と、熱交換器53から冷却塔55を経て冷却水槽51に帰還する戻り配管56とを有する循環水系に適用される。
【0017】
この水処理システム10は、送水配管54からそれぞれ分岐して送水配管54と並列に配設された分岐管15,16,17およびこれらの分岐管に介設されたそれぞれのセンサーを有する測定部1と、スライム防止剤を貯留するタンク2と、前記タンク2に貯留されたスライム防止剤を前記水系に添加するポンプ3と、制御部4とから主に構成される。
測定部1は、スライムモニター12、電位モニター13および残留塩素濃度測定器14の各センサーを有する。
【0018】
スライムモニター12は、図2の断面図に示すように、分岐管15の上流側開口端および下流側開口端の間に介設され、角筒状の測定室21を中心部に有する測定セル22と、測定室21の軸線と直角方向に測定セル22を挟持するように対向配置された発光部23および受光部24と、測定室21両端の各開口と分岐管15の上流側開口端および下流側開口端とを接続するニップル26および27とからなる。
測定セル22は、透明アクリル樹脂で成形され、外部から遮光するための図示しないケースに収容されている。
発光部23としては、一般電球やハロゲン電球のような白熱電球、電球型蛍光ランプのような蛍光ランプ、水銀ランプやメタルハライドランプのようなHIDランプ、発光ダイオード(LED)や半導体レーザのような半導体発光素子、He−NeレーザやCO2 レーザのような気体レーザ、液体レーザ、YAGレーザのような固体レーザ等が用いられる。
受光部24としては、フォトダイオード、フォトトランジスタ、pin光検出器、アバランシェ光検出器等が用いられる。
なお、上記のスライムモニター12は、本発明の出願人による先の出願(特開2000−185276号公報)に開示された水監視装置と実質的に同一であるため、詳細な説明は省略する。
【0019】
電位モニター13は、図3の模式図に示すように、参照電極31を有する電極プルーブ32と、腐食試験用の金属試料としてのテストチューブ35と、電極プルーブ32およびテストチューブ35に電気的に接続された電位測定器39とからなる。
【0020】
図4は、電位モニター13の分岐管16への取り付け状態を示す断面図である。
図4に示すように、電極プルーブ32は、参照電極31が外部との絶縁性を保持して先端部が露出するように絶縁性樹脂ケース34に収容されている。樹脂ケース34は、分岐管16の上流側開口端の近傍を貫通し、分岐管16に水密性を保持して固定される。
【0021】
テストチューブ35は、分岐管16と同一の外径を有し、分岐管16の上流側開口端および下流側開口端の間にあって、両端開口を分岐管16の上記各開口端に突き合わせた状態でスリーブ36内に収容されている。スリーブ36は、分岐管16の外径にぴったりと嵌め合う内径を有し、テストチューブ35および分岐管16との各突き合わせ部分を含む分岐管16を被覆する。スリーブ36と分岐管16の両端部分は、水密性を保持するために、スリーブ36と分岐管16(あるいはさらにテストチューブ35と)の各材質に応じて、これらの間にシールが施される。
【0022】
スリーブ36の一部には、テストチューブ35からリード線37を引き出すための貫通孔36aが形成される。貫通孔36a内でテストチューブ35に電気的に接続されたリード線37の基端は、電位測定器39の試料電極端子に接続される。また、前記参照電極31の基端は、電位測定器39の参照電極端子に接続される。
【0023】
残留塩素濃度測定器14は、残留塩素量を測定する公知のプローブが分岐管17に介設された図示しない残留塩素センサーを有する。
なお、前記の分岐管15〜17を有する測定部1の配管には、図1に示すように、バルブ61〜64を任意に配設することができる。
【0024】
図5は、この発明の水処理システム10の構成を示すブロック図である。
水処理システム10は、CPU,ROM,RAM,タイマー等を有するコンピュータを含む制御部4を有する。
制御部4は、スライムモニター12の受光部24、電位モニター13の電位測定器39および残留塩素濃度測定器14からの各出力信号を所定の測定データにそれぞれ変換するインターフェース41(例えば、アンプ、AC/DC変換器等)と、演算条件や演算プログラム等を入力する入力部43と、入力部43から入力された演算条件や演算プログラムおよび前記測定データを演算処理する演算部44と、液晶表示装置等のディスプレー装置からなる表示部46と、前記の測定データやプログラム等を情報として記憶する記憶部42と、記憶部42に記憶された情報を表示部46に表示させる表示制御部45とを備える。
【0025】
記憶部42は、入力された前記データを書き込み/読み出し可能な記憶媒体(例えば、メモリーカードやフロッピーディスク)に格納する。
演算部44は、予め設定された電位しきい値と前記水系の自然電位の測定結果とを比較する比較手段を有するとともに、入力された演算条件や演算プログラムに基づいて、予め設定された透過光強度および孔食電位の各しきい値と前記水系におけるこれらの測定結果とを比較し、この比較結果に基づいてポンプ3の駆動を制御する。
【0026】
上記の水処理システム10を用いたこの発明の水処理方法の一例を前記制御部4の動作に基づいて以下に説明する。
まず、図1の循環水系を有する石油工場をモデルプラントとして選んだ。このモデルプラントの前記水系に配管材料として使用されているSUS304ステンレス鋼と同じ材質でテストチューブ35を作製した。
次いで、テストチューブ35を試料電極として孔食電位試験(JIS G0577で規定された「ステンレス鋼の孔食電位測定方法」に基づく)を行い、前記の孔食電位のしきい値、すなわち、試料電極を一定電位で長時間保持した際に孔食が発生する自然電位の下限値を測定した。
【0027】
テストチューブ35は、外径16mm、厚さ1mmのSUS304ステンレス鋼のパイプを長さ100mmに切断し、これを加熱温度700℃で鋭敏化処理を行った。この鋭敏化処理は、前記水系に使用されているSUS304ステンレス鋼の溶接部分に相当する。
【0028】
次いで、図1の測定部1を前記水系に設けた。
測定部1は、硬質PVCパイプ(外径16mm、厚さ1mm)からなる分岐管15〜17を送水配管54から分岐し、各分岐管15〜17に前記センサー(12、13および14)をそれぞれ取り付けた。
電位モニター13は、硬質PVCからなるスリーブ36が前記のテストチューブ35の両端と分岐管16との各突き合わせ部分を含む分岐管16を長さ150mmにわたって被覆し、かつスリーブ36と分岐管16の互いの接触面を接着剤でシールした。参照電極31には、Ag/AgCl電極を用いた。
電位測定器39としては、北斗電工(株)のエレクトロメータ〔型式HE−106〕を使用した。
【0029】
まず、測定部1のバルブ61〜64を閉じ、かつ水処理システム10が作動しない状態で、図1の循環水系を130時間運転した。
その間、前記水系から採取した水に含まれる成分を分析して適当なスライム防止剤を含む水処理薬剤を決定した。この例では、南海化学工業(株)の12%次亜塩素酸ソーダを使用した。
次いで、バルブ61,62を開き、スライムモニター12を駆動させて多数の測定データを蓄積し、蓄積された測定データを解析して透過光強度を所定値以上(例えば、50%以上)に保持するためのポンプ3の駆動条件を見出した(この手順は、前記の特開2000−185276号公報に記載されているので、説明は省略する)。
【0030】
見出されたポンプ3の駆動条件および前記の孔食電位のしきい値を入力部43から入力して演算部44に設定した。前記設定により、制御部4には、受光部24から得られる透過光強度に基づいて自動的に適正量の水処理薬剤をタンク2から前記水系に添加するとともに、電位測定器39から得られる測定電位が孔食電位のしきい値に達したとき、ポンプ3が駆動状態にあれば駆動を停止し、かつ測定電位が正常値(孔食電位のしきい値以下)に戻るまでポンプ3の駆動を制限するようにポンプ3に指令を行うプログラムが入力された。
表示部46は、測定された透過光強度および残留塩素濃度が表示されるように構成した。
【0031】
前記水系の運転開始130時間後、さらにバルブ63,64を開いて、電位モニター13および残留塩素濃度測定器14に通水を開始した。前記の水処理薬剤は、添加開始時の次亜塩素酸ソーダの添加量が0.5mg/Lとなるように(塩素量で0.2〜1mg/Lになるように)調製した。また、孔食電位のしきい値は、45mVvsAg/AgClに設定した。
通水開始から330時間経過するまでの自然電位、透過光強度および残留塩素濃度の各測定値の推移を図6および図7のグラフに示す。
【0032】
図6に示すように、運転開始から180時間を経過した後、自然電位および残留塩素濃度の各測定値は、孔食電位のしきい値を超えて一時的に危険域に達したが、水処理システム10の前記制御動作により、ただちに自然電位を正常値に戻すことができた。これにより、水系の配管の孔食を未然に防止できることが明らかになった。また、危険域に達した前後を除いて、自然電位がほぼ一定の値で推移しているが、これはスライムのコントロールが適正に行われていることを示すものである。
さらに、図6および図7からわかるように、前記水系では、水処理システム10の前記制御動作により、残留塩素濃度と自然電位の各測定値は相関し、残留塩素濃度と透過光強度の各測定値は相関している。これは、スライムモニター12による透過光強度の測定と、電位測定器39による自然電位の測定とにより、酸化剤を含むスライム防止剤の使用の下で、孔食の防止と精度の高いスライムコントロールが可能なことを示している。
【0033】
この発明の水処理システム10では、前記のように、循環水系に使用される金属材料からなるテストチューブ35を試料電極として自然電位を測定する電位測定器39を備えるので、スライム防止剤、特に酸化剤からなるスライム防止剤が添加された水系と腐食が発生しやすい配管材料との間に生じる電気化学的な腐食の環境が電位測定器39に模擬される。したがって、前記水系における急激な水質変動等にも対応して精度の高いモニタリングが可能となる。
さらに、テストチューブ35に予め鋭敏化処理を施すことにより、前記水系における電気化学的な腐食を加速することができるので、前記水系における電気化学的な腐食が発生する環境へ移行する傾向を速やかに把握することができる。
【0034】
〔他の実施の形態〕
前記の実施の形態では、循環水系に使用される金属材料に予め鋭敏化処理を施したテストチューブ35を試料電極として使用したが、この実施の形態では、上記の鋭敏化処理を施したテストチューブ35と予め溶体化処理を施したテストチューブとをそれぞれの試料電極として使用する構成を説明する。
【0035】
図8は、鋭敏化処理および溶体化処理を施した各テストチューブを有する水処理システムの実施の形態を模式的に示す図である。
図8に示すように、水処理システム50は、図1の循環水系に、鋭敏化処理を施したテストチューブ35と溶体化処理を施したテストチューブ65とを備えた電位モニター18を取り付けるとともに、非酸化型スライム防止剤を貯留するタンク5と、前記タンク5に貯留された非酸化型スライム防止剤を前記水系に添加するポンプ6とを追加した構成である。上記以外は、前記の実施の形態で説明したものと同一であるため、説明は省略する。
【0036】
図9および図10は、この実施の形態における試料電極の配置を示す、図3に対応する図である。
図9に示すように、予め鋭敏化処理を施したテストチューブ35と、予め溶体化処理を施したテストチューブ65を分岐管16に直列に配設することができる。
また、図10に示すように、予め鋭敏化処理を施したテストチューブ35と、予め溶体化処理を施したテストチューブ65を分岐管16に並列に配設することができる。
【0037】
鋭敏化処理を施したテストチューブ35およびこのテストチューブ35を備えた電位モニターは、前記の実施の形態で説明したものと同一である。
このテストチューブ35を試料電極として、腐食すきま再不動態化電位試験(JIS G0592で規定された「ステンレス鋼の腐食すきま再不動態化電位測定方法」に基づく)を行うことにより、鋭敏化処理材のしきい値(E1)、 すなわち、鋭敏化処理材からなる試料電極を一定電位で長時間保持した際にすきま腐食が発生する自然電位の下限値を、図9および図10に示した電位測定器39の一方で測定する。
溶体化処理を施したテストチューブ65は、SUS304ステンレス鋼を、鋭敏化処理を施したテストチューブ35と同様の寸法および形状に作製し、腐食すきま再不動態化電位試験(JIS G0592で規定された「ステンレス鋼の腐食すきま再不動態化電位測定方法」に基づく)を行うことにより、溶体化処理材のしきい値(E2)、すなわち、溶体化処理材からなるテストチューブ65を試料電極として、この試料電極を一定電位で長時間保持した際にすきま腐食が発生する自然電位の下限値を、図9および図10に示した電位測定器39の他方で測定する。
【0038】
水処理システム50を用いたこの発明の水処理方法の一例を前記制御部4の動作に基づいて以下に説明する。
まず、前記の実施の形態と同様に見出されたポンプ3およびポンプ6の駆動条件ならびに前記の鋭敏化処理材のしきい値(E1)および溶体化処理材のしきい値(E2)を入力部43から入力して演算部44に設定する。前記設定により、制御部4には、受光部24から得られる透過光強度に基づいて自動的に適正量の水処理薬剤をタンク2およびタンク5から前記水系に添加するとともに、各電位測定器39から得られる測定電位に基づいて、ポンプ3およびポンプ6の駆動を制限するように各ポンプに指令を行うプログラムが入力される。
なお、タンク2には酸化型スライム防止剤として12%次亜塩素酸ソーダが、タンク5には非酸化型スライム防止剤として、5−クロロ−2−メチル−4−イソチアゾリン−3−オンが、それぞれ貯留される。
【0039】
上記のプログラムは、▲1▼水系の運転開始後に測定されたそれぞれの自然電位の一方がE1およびE2より低いときは、酸化型スライム防止剤の添加を行い、▲2▼上記それぞれの自然電位の一方がE1より高くE2より低いときは、酸化型スライム防止剤の注入量を下げ、▲3▼上記それぞれの自然電位の一方の自然電位がE2より高いときは、酸化型スライム防止剤の注入量をさらに下げるよう設定され、この設定により自然電位を正常値に戻すことができる。
さらに、▲2▼および▲3▼において、酸化型スライム防止剤の注入量を下げた後、自然電位が正常値に戻る前に、スライムモニター12がスライムの発生を検知したときは、ポンプ3の駆動を停止し、酸化型スライム防止剤に代えて、タンク5に貯留された非酸化型スライム防止剤を前記水系に添加するようポンプ6の駆動を行う。
その後、自然電位が正常値に戻り、スライムモニター12の測定値に基づいてスライムが消滅したと判断された場合、ポンプ3を駆動して酸化型スライム防止剤の注入に戻す。
【0040】
上記したように、分岐管16をさらに分岐して電位モニターを直列または並列に2つ設置し、一方の電位モニター内のテストチューブ35には予め鋭敏化処理を、他方の電位モニター内のテストチューブ65には溶体化処理をそれぞれ施し、それぞれのテストチューブを試料電極として、腐食すきま再不動態化電位試験(JIS G0592で規定された「ステンレス鋼の腐食すきま測定方法」に基づく)を行い、予め電位しきい値を設定しておくことにより、前記水系における電気化学的な腐食が発生する環境へ移行する傾向を速やかに、かつ高精度で把握することができる。
【0041】
【発明の効果】
この発明では、スライム防止剤が使用される循環水系の系内で、前記水系の自然電位を監視し、水系の配管にすきま腐食が発生する電位を超えないように前記、スライム防止剤の添加が制御されるので、配管のすきま腐食を未然に防止することができる。
循環水系の運転状況や水質の変化に随時対応して最適の汚れ防止効果が得られるので、水系における機器や配管の耐用年数の低減、破損や熱効率の低下などの資源並びにエネルギーの損失、メンテナンス費の増大の他、工場での生産停止など種々の問題を解決することができる。
【図面の簡単な説明】
【図1】この発明による循環水系の水処理システムの実施の形態を模式的に示す図である。
【図2】図1のスライムモニターの断面図である。
【図3】図1の電位モニターを模式的に示す図である。
【図4】図2の電位モニターの詳細な構成を示す断面図である。
【図5】図1の測定部の制御ブロック図である。
【図6】この発明の水処理システムが適用された循環水系における自然電位および残留塩素濃度の各測定値の推移を示すグラフである。
【図7】この発明の水処理システムが適用された循環水系における透過光強度および残留塩素濃度の各測定値の推移を示すグラフである。
【図8】この発明における循環水系の水処理システムの他の実施の形態を模式的に示す図である。
【図9】この発明の他の実施の形態における試料電極の直列配置を示す、図3に対応する図である。
【図10】この発明の他の実施の形態における試料電極の並列配置を示す、図3に対応する図である。
【符号の説明】
1 測定部
2 スライム防止剤貯留タンク(薬剤添加手段)
3 酸化型スライム防止剤添加用ポンプ(スライム防止剤添加手段)
4 制御部
5 スライム防止剤貯留タンク(薬剤添加手段)
6 非酸化型スライム防止剤添加用ポンプ(スライム防止剤添加手段)
10 水処理システム
12 スライムモニター(スライム測定手段)
13 電位モニター(電位測定手段)
14 残留塩素濃度測定器
18 電位モニター(電位測定手段)
35 テストチューブ(鋭敏化処理された試料電極)
50 水処理システム
65 テストチューブ(溶体化処理された試料電極)
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a water treatment method and a water treatment system for a circulating water system. More specifically, a water treatment method capable of appropriately managing the water system operating conditions and water quality changes at any time while preventing the corrosion of pipes and other materials used in the circulating water system and the method. The present invention relates to an applied water treatment system.
[0002]
[Prior art]
Industrial water, seawater, lake water, river water, groundwater, etc. are used for process cooling at various steelworks, chemicals, petrochemicals and other factories, thermal power plants, and nuclear power plants, and for air conditioning at schools, hospitals, hotels and other buildings. It is used in large quantities as cooling water. Along with such increased use of cooling water, a cooling water system has been adopted in which a cooling tower is provided to circulate and reuse the water, and further, in order to save water, a highly concentrated operation is performed as much as possible. Is effectively used. Further, even in a system that uses a large amount of industrial water such as papermaking process water as manufacturing process water, the water is circulated as much as possible to save water for effective use.
[0003]
One of the obstacles in these circulating water systems is slime damage. Slime failure is a failure caused by microorganisms in the water, which causes a decrease in heat transfer efficiency in heat exchangers, poor water flow through pipes, etc., or corrosion. An inhibitor is added. As a slime inhibitor in a cooling water system, an oxidized slime inhibitor such as sodium hypochlorite is generally used.
[0004]
On the other hand, corrosion resistant materials such as stainless steel are generally widely used as materials for heat exchangers and piping in cooling water systems. However, in stainless steel, the passive film on the surface is lost at the welded seam, and local corrosion called pitting corrosion is likely to occur due to the anti-slime agent.
This failure causes various problems such as loss of resources and energy, increase in maintenance costs, and production stoppage in the factory, such as reduction in the service life of equipment and piping, breakage and reduction in thermal efficiency.
[0005]
[Problems to be solved by the invention]
In the circulating water system, the natural potential in the system may increase due to the addition of the slime inhibitor. At this time, if the passive film on the surface of piping or the like used in the circulating water system is torn and the chemically active metal surface (active part) is exposed to the circulating water system, the active part and other parts A battery is formed between the metal surface and local corrosion such as pitting corrosion and crevice corrosion is likely to occur in the active portion.
[0006]
The present invention has been made in view of the above problems, and an object of the present invention is to provide a water treatment method and a water treatment system capable of responding to changes in operating conditions and water quality of a circulating water system as needed.
[0007]
[Means for Solving the Problems]
  According to this invention, the circulating water systemAntioxidant and non-oxidizing anti-slime agents are added individually as anti-slime agentsAnti-slime additive addition means,The metal material used in the water system as a sample electrodeA potential measuring means for measuring a natural potential in the system; and a slime measuring means for measuring a slime adhesion state in the system., SuNatural potential measured by potential measuring means when adding anti-slime agent by means of adding lime inhibitorAbout the sample electrodeControl the anti-slime additive so that it does not exceed the potential threshold as the pre-set corrosion gap repassivation potentialWhen the measured natural potential exceeds the potential threshold value and the slime measuring means confirms the adhesion of the slime, the slime inhibitor adding means is controlled and the oxidized slime is added. Add non-oxidizing anti-slime agent instead of inhibitorA water treatment method for a circulating water system is provided.
[0008]
  According to another aspect of the present invention, the circulating water systemAntioxidant and non-oxidizing anti-slime agents are added individually as anti-slime agentsAnti-slime additive addition means,The metal material used in the water system as a sample electrodeA potential measuring means for measuring a natural potential in the system; and a slime measuring means for measuring a slime adhesion state in the system;A control unit, the control unit,When adding the anti-slime agent by the anti-slime agent adding means, the natural potential measured by the electric potential measuring meansAbout the sample electrodeControl the anti-slime additive so that it does not exceed the potential threshold as the pre-set corrosion gap repassivation potentialWhen the measured natural potential exceeds the potential threshold value and the slime measuring means confirms the adhesion of the slime, the slime inhibitor adding means is controlled and the oxidized slime is added. Add non-oxidizing anti-slime agent instead of inhibitorThe water treatment system of the circulating water system characterized by this is provided.
[0009]
In the present invention, corrosion such as pitting corrosion and crevice corrosion occurring in a metal material used in a circulating water system such as circulating cooling water is likely to occur with an aqueous system to which a slime inhibitor is added. Focusing on the electrochemical corrosion that occurs between the piping material and the addition of the slime inhibitor so that the aqueous system does not become an environment in which the electrochemical corrosion occurs.
In this invention, the circulating water system is used for various processes such as steelmaking, chemical, petrochemical, etc., process cooling of thermal power, nuclear power plants, etc., air conditioning of schools, hospitals, hotels and other buildings, and manufacturing processes such as papermaking processes. Examples of the circulating water system used include tap water, industrial water, seawater, lake water, river water, and groundwater.
The metal material used in the circulating water system in this invention means a metal pipe material that forms a flow path for industrial water, specifically, copper, nickel, aluminum, titanium, or an alloy containing these. And stainless steel.
[0010]
A corrosion-resistant film (passive film) is formed on the surface of the metal either naturally or by electric polarization or immersion in a passivating solution. By removing the coating, it means a phenomenon that a chemically active metal surface is obtained. Examples of the treatment that causes such sensitization include heating at a temperature at which the passive film is oxidized or reduced, welding, and the like. On the metal surface subjected to the sensitization treatment, a battery is formed between the active metal surface from which the passive film has been removed and another metal surface, and corrosion such as pitting corrosion is likely to occur.
Among the above stainless steels, SUS304 stainless steel and SUS316 stainless steel, which are generally used as piping materials in the water system, are made of stainless steel by sensitization treatment such as welding that is locally exposed to a high temperature of about 700 ° C. The formed Cr (chromium) is deficient on the surface and becomes a chemically active metal surface.
The solution treatment of the metal material in the present invention is a heat treatment in which the heat-treated alloy is heated to an appropriate temperature that is equal to or higher than the solid solution limit temperature, and the alloy components are sufficiently dissolved, and then rapidly cooled to a supersaturated solid solution state. In the process of producing an alloy such as stainless steel as described above, it means an inevitable heat treatment. By such solution formation, the alloy becomes a solid solution having a mixed phase in which other substances are considered to have dissolved in the crystal phase.
On the metal surface that has undergone solution treatment, the dissolved oxygen is not sufficiently supplied at the contaminated portion or gap portion, so that the potential drops and shifts to the active state. The outside becomes a cathode and crevice corrosion is likely to occur, and if corrosion further progresses, it may lead to a through hole.
[0011]
As a slime inhibitor in this invention, a well-known slime inhibitor can be used. For example, organic nitrogen sulfur such as ozone, chlorine, hypochlorous acid or salts thereof, hydrogen peroxide, chlorine dioxide, radical type active oxygen and other antioxidative slime inhibitors, 3-isothiazolone compounds, S-triazine compounds, etc. Compounds, organic bromine compounds such as 2-bromo-2-nitropropane-1,3-diol, 2,2-dibromo-2-nitroethanol, organic nitrogen compounds such as quaternary ammonium compounds, sodium pyrithione, etc. Non-oxidizing slime inhibitors such as organic sulfur compounds and glutaraldehyde can be applied to the present invention.
[0012]
The natural potential in the present invention means a potential difference between the reference electrode and the sample electrode in water.
The potential measuring means in this invention includes a pitting potential test method based on “Method for measuring pitting corrosion potential of stainless steel” defined in JIS G0577, or “a corrosion clearance repassivation potential for stainless steel defined in JIS G0592. Examples thereof include those used in the repassivation potential test method based on the “measurement method”.
Crevice corrosion is more likely to occur than pitting corrosion. Therefore, especially when using a metal material that has been subjected to solution treatment in advance for the sample electrode, it is used in the repassivation potential test method as the potential measurement means described above. Is preferably adopted.
[0013]
The potential threshold in the present invention means the lower limit of the natural potential at which pitting corrosion or crevice corrosion occurs when the sample electrode is held at a constant potential for a long time. Therefore, in the present invention, it is preferable to control the aqueous potential so as not to exceed a preset potential threshold. However, even if the potential threshold is temporarily exceeded, the natural potential can be reduced in a short time. Since the occurrence of pitting corrosion or crevice corrosion can be prevented by returning to a normal value, the above-described potential threshold can be appropriately set depending on the circulating water system to be applied. In the present invention, the natural potential having the potential threshold is hereinafter referred to as pitting potential and corrosion gap repassivation potential.
By configuring the potential measuring means to measure the natural potential using the metal material used in the circulating water system as a sample electrode, the water system between the water system to which the anti-slime agent is added and the piping material that is susceptible to corrosion is used. Since the environment of electrochemical corrosion generated in the water system is simulated by the potential measuring means, it is possible to perform highly accurate monitoring corresponding to a sudden change in water quality in the water system.
Further, when the sample electrode is composed of two different sample electrodes, one is a metal material subjected to sensitization treatment and the other is a metal material subjected to solution treatment, the electrochemical system in the aqueous system It is possible to quickly and accurately grasp the tendency to shift to an environment in which excessive corrosion occurs.
[0014]
The slime measuring means in this invention includes an optical method for measuring the transmitted light intensity of the test water, a method for measuring the overall heat transfer coefficient of the heat exchanger, a method for measuring the slime volume of the pipe, and the inlet side and outlet of the pipe And a method of measuring the pressure difference on the side.
The slime inhibitor addition means comprises means for adding the oxidized slime inhibitor and the non-oxidized slime inhibitor individually or simultaneously to the circulating water system as the slime inhibitor, and the control unit is configured to control the natural potential in the system and / or Depending on the state of slime adhesion, the anti-slime inhibitor and the non-oxidized slime inhibitor are controlled individually or simultaneously so that the anti-slime additive is added to the circulating water system. Can be quickly suppressed.
[0015]
DETAILED DESCRIPTION OF THE INVENTION
Embodiments of the present invention will be specifically described below with reference to the drawings. However, the scope of the present invention is not limited thereby.
FIG. 1 is a schematic view showing an embodiment of a circulating water system water treatment system according to the present invention.
[0016]
As shown in FIG. 1, the water treatment system 10 includes, for example, a water supply pipe 54 extending from the cooling water tank 51 to the heat exchanger 53 via the water supply pump 52, and the heat exchanger 53 to the cooling water tank 51 via the cooling tower 55. The present invention is applied to a circulating water system having a return pipe 56 that returns.
[0017]
This water treatment system 10 includes branch pipes 15, 16, and 17 that are branched from the water feed pipe 54 and arranged in parallel with the water feed pipe 54, and measuring units 1 that have respective sensors interposed in these branch pipes. And a tank 2 for storing the slime inhibitor, a pump 3 for adding the slime inhibitor stored in the tank 2 to the water system, and a control unit 4.
The measurement unit 1 includes sensors of a slime monitor 12, a potential monitor 13, and a residual chlorine concentration measuring instrument 14.
[0018]
As shown in the cross-sectional view of FIG. 2, the slime monitor 12 is interposed between the upstream opening end and the downstream opening end of the branch pipe 15 and has a measurement cell 22 having a rectangular tube-shaped measurement chamber 21 in the center. A light emitting unit 23 and a light receiving unit 24 which are arranged so as to sandwich the measurement cell 22 in a direction perpendicular to the axis of the measurement chamber 21, the openings at both ends of the measurement chamber 21, the upstream open end and the downstream of the branch pipe 15. It consists of nipples 26 and 27 that connect the side open ends.
The measurement cell 22 is formed of a transparent acrylic resin and is accommodated in a case (not shown) for shielding light from the outside.
The light emitting unit 23 includes an incandescent bulb such as a general bulb or a halogen bulb, a fluorescent lamp such as a bulb-type fluorescent lamp, an HID lamp such as a mercury lamp or a metal halide lamp, a semiconductor such as a light emitting diode (LED) or a semiconductor laser. Light emitting element, He-Ne laser or CO2A gas laser such as a laser, a solid-state laser such as a liquid laser, a YAG laser, or the like is used.
As the light receiving unit 24, a photodiode, a phototransistor, a pin photodetector, an avalanche photodetector, or the like is used.
The slime monitor 12 is substantially the same as the water monitoring device disclosed in the previous application (Japanese Patent Laid-Open No. 2000-185276) filed by the applicant of the present invention, and thus detailed description thereof is omitted.
[0019]
As shown in the schematic diagram of FIG. 3, the potential monitor 13 is electrically connected to an electrode probe 32 having a reference electrode 31, a test tube 35 as a metal sample for corrosion testing, and the electrode probe 32 and the test tube 35. Potential measuring device 39.
[0020]
FIG. 4 is a cross-sectional view showing a state in which the potential monitor 13 is attached to the branch pipe 16.
As shown in FIG. 4, the electrode probe 32 is housed in an insulating resin case 34 so that the reference electrode 31 maintains insulation from the outside and the tip portion is exposed. The resin case 34 passes through the vicinity of the upstream opening end of the branch pipe 16 and is fixed to the branch pipe 16 while maintaining water tightness.
[0021]
The test tube 35 has the same outer diameter as the branch pipe 16, is located between the upstream opening end and the downstream opening end of the branch pipe 16, and the both end openings are in contact with the opening ends of the branch pipe 16. It is accommodated in the sleeve 36. The sleeve 36 has an inner diameter that fits closely to the outer diameter of the branch pipe 16, and covers the branch pipe 16 including the butted portions of the test tube 35 and the branch pipe 16. Both ends of the sleeve 36 and the branch pipe 16 are sealed between the sleeve 36 and the branch pipe 16 (or the test tube 35) according to the materials of the sleeve 36 and the branch pipe 16 in order to maintain watertightness.
[0022]
A part of the sleeve 36 is formed with a through hole 36 a for drawing out the lead wire 37 from the test tube 35. The base end of the lead wire 37 that is electrically connected to the test tube 35 in the through hole 36 a is connected to the sample electrode terminal of the potential measuring device 39. The base end of the reference electrode 31 is connected to the reference electrode terminal of the potential measuring device 39.
[0023]
The residual chlorine concentration measuring instrument 14 has a residual chlorine sensor (not shown) in which a known probe for measuring the residual chlorine amount is interposed in the branch pipe 17.
In addition, as shown in FIG. 1, the valves 61-64 can be arbitrarily arrange | positioned in piping of the measurement part 1 which has the said branch pipes 15-17.
[0024]
FIG. 5 is a block diagram showing the configuration of the water treatment system 10 of the present invention.
The water treatment system 10 includes a control unit 4 including a computer having a CPU, a ROM, a RAM, a timer, and the like.
The control unit 4 includes an interface 41 (for example, an amplifier, an AC, and an AC) that converts output signals from the light receiving unit 24 of the slime monitor 12, the potential measuring device 39 of the potential monitor 13, and the residual chlorine concentration measuring device 14 into predetermined measurement data. A DC / DC converter), an input unit 43 for inputting calculation conditions, calculation programs, and the like, a calculation unit 44 for calculating the calculation conditions and calculation program and the measurement data inputted from the input unit 43, and a liquid crystal display device A display unit 46 including a display device such as a display unit, a storage unit 42 that stores the measurement data and programs as information, and a display control unit 45 that displays information stored in the storage unit 42 on the display unit 46. .
[0025]
The storage unit 42 stores the input data in a writable / readable storage medium (for example, a memory card or a floppy disk).
The calculation unit 44 includes a comparison unit that compares a preset potential threshold value with the measurement result of the natural potential of the water system, and sets transmitted light that is set in advance based on the input calculation conditions and calculation program. The threshold values of the strength and pitting corrosion potential are compared with the measurement results in the water system, and the drive of the pump 3 is controlled based on the comparison results.
[0026]
An example of the water treatment method of the present invention using the water treatment system 10 will be described below based on the operation of the control unit 4.
First, an oil factory having a circulating water system shown in FIG. 1 was selected as a model plant. A test tube 35 was made of the same material as SUS304 stainless steel used as a piping material in the water system of the model plant.
Next, a pitting corrosion potential test (based on the “method for measuring pitting corrosion potential of stainless steel” defined in JIS G0577) is performed using the test tube 35 as a sample electrode. Was measured for the lower limit of the natural potential at which pitting corrosion occurred when held at a constant potential for a long time.
[0027]
For the test tube 35, a SUS304 stainless steel pipe having an outer diameter of 16 mm and a thickness of 1 mm was cut into a length of 100 mm, and subjected to a sensitization treatment at a heating temperature of 700 ° C. This sensitization treatment corresponds to a welded portion of SUS304 stainless steel used in the water system.
[0028]
Next, the measurement unit 1 of FIG. 1 was provided in the water system.
The measuring unit 1 branches branch pipes 15 to 17 made of rigid PVC pipe (outer diameter 16 mm, thickness 1 mm) from the water supply pipe 54, and the sensors (12, 13 and 14) are respectively connected to the branch pipes 15 to 17. Attached.
The potential monitor 13 has a sleeve 36 made of hard PVC covering the branch pipe 16 including the butted portions of both ends of the test tube 35 and the branch pipe 16 over a length of 150 mm, and the sleeve 36 and the branch pipe 16 are mutually connected. The contact surface of was sealed with an adhesive. As the reference electrode 31, an Ag / AgCl electrode was used.
As the potential measuring device 39, an electrometer [model HE-106] manufactured by Hokuto Denko Co., Ltd. was used.
[0029]
First, the circulating water system of FIG. 1 was operated for 130 hours with the valves 61 to 64 of the measuring unit 1 closed and the water treatment system 10 not operating.
Meanwhile, the components contained in the water collected from the water system were analyzed to determine a water treatment agent containing an appropriate slime inhibitor. In this example, 12% sodium hypochlorite from Nankai Chemical Industry was used.
Next, the valves 61 and 62 are opened, the slime monitor 12 is driven to accumulate a large amount of measurement data, and the accumulated measurement data is analyzed to maintain the transmitted light intensity at a predetermined value or higher (for example, 50% or higher). The driving conditions of the pump 3 were found out (this procedure is described in the above-mentioned Japanese Patent Application Laid-Open No. 2000-185276, so the description is omitted).
[0030]
The found driving conditions of the pump 3 and the threshold value of the pitting corrosion potential were input from the input unit 43 and set in the calculation unit 44. Based on the setting, the control unit 4 automatically adds an appropriate amount of water treatment chemical from the tank 2 to the water system based on the transmitted light intensity obtained from the light receiving unit 24 and measures obtained from the potential measuring device 39. When the potential reaches the threshold value of the pitting potential, if the pump 3 is in the driving state, the driving is stopped, and the pump 3 is driven until the measured potential returns to a normal value (below the threshold value of the pitting potential). A program for instructing the pump 3 to be limited is input.
The display unit 46 is configured to display the measured transmitted light intensity and residual chlorine concentration.
[0031]
130 hours after the start of the operation of the water system, the valves 63 and 64 were further opened, and water flow was started to the potential monitor 13 and the residual chlorine concentration measuring device 14. The water treatment chemical was prepared so that the amount of sodium hypochlorite added at the start of addition was 0.5 mg / L (the amount of chlorine was 0.2-1 mg / L). Further, the threshold value of the pitting potential was set to 45 mV vsAg / AgCl.
Changes in measured values of the natural potential, transmitted light intensity, and residual chlorine concentration until 330 hours have passed since the start of water flow are shown in the graphs of FIGS. 6 and 7.
[0032]
As shown in FIG. 6, after 180 hours from the start of operation, the measured values of the natural potential and the residual chlorine concentration temporarily exceeded the threshold value of the pitting potential and reached the danger zone. The natural potential could be immediately returned to the normal value by the control operation of the processing system 10. As a result, it became clear that pitting corrosion of the water-based piping can be prevented in advance. In addition, the natural potential is maintained at a substantially constant value except before and after reaching the danger zone, which indicates that the slime is properly controlled.
Further, as can be seen from FIGS. 6 and 7, in the water system, the measured values of the residual chlorine concentration and the natural potential are correlated by the control operation of the water treatment system 10, and the residual chlorine concentration and the transmitted light intensity are measured. The values are correlated. This is because the measurement of transmitted light intensity by the slime monitor 12 and the measurement of the natural potential by the potential measuring device 39 can prevent pitting corrosion and provide highly accurate slime control under the use of an anti-slime agent containing an oxidizing agent. It shows what is possible.
[0033]
As described above, the water treatment system 10 of the present invention includes the potential measuring device 39 that measures the natural potential using the test tube 35 made of a metal material used for the circulating water system as a sample electrode. The potential measuring device 39 simulates the environment of electrochemical corrosion that occurs between the water system to which the anti-slime agent composed of the agent is added and the piping material that is susceptible to corrosion. Therefore, highly accurate monitoring is possible in response to sudden water quality fluctuations in the water system.
Furthermore, by subjecting the test tube 35 to sensitization in advance, the electrochemical corrosion in the aqueous system can be accelerated, so that the tendency to shift to an environment in which the electrochemical corrosion in the aqueous system occurs is quickly observed. I can grasp it.
[0034]
[Other Embodiments]
In the above-described embodiment, the test tube 35 in which the metal material used in the circulating water system is previously sensitized is used as the sample electrode. However, in this embodiment, the test tube that has been subjected to the sensitizing process described above. The structure which uses 35 and the test tube which performed the solution treatment previously as each sample electrode is demonstrated.
[0035]
FIG. 8 is a diagram schematically showing an embodiment of a water treatment system having test tubes subjected to sensitization treatment and solution treatment.
As shown in FIG. 8, the water treatment system 50 has a potential monitor 18 provided with a test tube 35 subjected to sensitization and a test tube 65 subjected to solution treatment in the circulating water system of FIG. 1, This is a configuration in which a tank 5 for storing a non-oxidizing slime inhibitor and a pump 6 for adding the non-oxidizing slime inhibitor stored in the tank 5 to the aqueous system are added. Other than the above, the description is omitted because it is the same as that described in the above embodiment.
[0036]
9 and 10 are views corresponding to FIG. 3 and showing the arrangement of the sample electrodes in this embodiment.
As shown in FIG. 9, a test tube 35 that has been subjected to sensitization in advance and a test tube 65 that has been subjected to solution treatment in advance can be disposed in series with the branch pipe 16.
Further, as shown in FIG. 10, a test tube 35 that has been subjected to a sensitization process in advance and a test tube 65 that has been subjected to a solution treatment in advance can be disposed in parallel to the branch pipe 16.
[0037]
The test tube 35 subjected to the sensitization process and the potential monitor including the test tube 35 are the same as those described in the above embodiment.
By using this test tube 35 as a sample electrode, the corrosion gap repassivation potential test (based on “Method for measuring the corrosion gap repassivation potential of stainless steel” defined in JIS G0592) is used to remove the sensitizing treatment material. Threshold (E1), That is, the lower limit value of the natural potential at which crevice corrosion occurs when a sample electrode made of a sensitizing treatment material is held at a constant potential for a long time is measured by one of the potential measuring devices 39 shown in FIGS.
The test tube 65 subjected to the solution treatment was made of SUS304 stainless steel in the same size and shape as the test tube 35 subjected to the sensitization treatment, and the corrosion gap repassivation potential test (as defined in JIS G0592). The threshold of the solution treatment material (E2) That is, the lower limit value of the natural potential at which crevice corrosion occurs when the test tube 65 made of a solution-treated material is used as a sample electrode and the sample electrode is held at a constant potential for a long time is shown in FIG. 9 and FIG. Measure with the other of the potential measuring device 39.
[0038]
An example of the water treatment method of the present invention using the water treatment system 50 will be described below based on the operation of the control unit 4.
First, the driving conditions of the pump 3 and the pump 6 found in the same manner as in the above embodiment and the threshold value (E1) And the solution treatment threshold (E2) Is input from the input unit 43 and set in the calculation unit 44. Based on the setting, the control unit 4 automatically adds an appropriate amount of water treatment chemical from the tank 2 and the tank 5 to the water system based on the transmitted light intensity obtained from the light receiving unit 24, and each potential measuring device 39. A program for instructing each pump so as to limit the driving of the pump 3 and the pump 6 is input based on the measured potential obtained from the above.
Tank 2 contains 12% sodium hypochlorite as an oxidized slime inhibitor, and tank 5 contains 5-chloro-2-methyl-4-isothiazoline-3-one as a non-oxidized slime inhibitor. Each is stored.
[0039]
In the above program, (1) one of each natural potential measured after the start of operation of the water system is E1And E2If lower, an oxidation type slime inhibitor is added, and (2) one of the above natural potentials is E1E higher2If lower, the injection amount of the oxidation-type slime inhibitor is decreased, and (3) one of the natural potentials is E2When it is higher, it is set to further lower the injection amount of the oxidation-type slime inhibitor, and the natural potential can be returned to the normal value by this setting.
Further, in (2) and (3), when the slime monitor 12 detects the occurrence of slime after reducing the injection amount of the oxidized slime inhibitor and before the natural potential returns to the normal value, The driving is stopped, and the pump 6 is driven so that the non-oxidized slime inhibitor stored in the tank 5 is added to the water system instead of the oxidized slime inhibitor.
Thereafter, the natural potential returns to a normal value, and when it is determined that the slime has disappeared based on the measured value of the slime monitor 12, the pump 3 is driven to return to the injection of the oxidized slime inhibitor.
[0040]
As described above, the branch pipe 16 is further branched and two potential monitors are installed in series or in parallel. The test tube 35 in one potential monitor is preliminarily sensitized and the test tube in the other potential monitor. 65 is subjected to a solution treatment, and a corrosion gap repassivation potential test (based on “corrosion gap measurement method for stainless steel” stipulated in JIS G0592) using each test tube as a sample electrode. By setting the threshold value, the tendency to shift to an environment where electrochemical corrosion occurs in the water system can be quickly and accurately grasped.
[0041]
【The invention's effect】
  In this invention, the natural potential of the water system is monitored in the circulating water system where the slime inhibitor is used, and the water system piping is used.ToSince the addition of the slime inhibitor is controlled so as not to exceed the potential at which crevice corrosion occurs,NoseCrevice corrosion can be prevented in advance.
  Optimal anti-fouling effect can be obtained by responding to changes in the operating status and water quality of the circulating water system at any time, reducing the service life of equipment and piping in the water system, loss of resources and energy such as damage and reduced thermal efficiency, and maintenance costs In addition to the increase, various problems such as production stoppage in the factory can be solved.
[Brief description of the drawings]
FIG. 1 is a diagram schematically showing an embodiment of a circulating water treatment system according to the present invention.
FIG. 2 is a cross-sectional view of the slime monitor of FIG.
FIG. 3 is a diagram schematically showing the potential monitor of FIG. 1;
4 is a cross-sectional view showing a detailed configuration of the potential monitor of FIG. 2;
FIG. 5 is a control block diagram of the measurement unit in FIG. 1;
FIG. 6 is a graph showing changes in measured values of natural potential and residual chlorine concentration in a circulating water system to which the water treatment system of the present invention is applied.
FIG. 7 is a graph showing changes in measured values of transmitted light intensity and residual chlorine concentration in a circulating water system to which the water treatment system of the present invention is applied.
FIG. 8 is a diagram schematically showing another embodiment of the water treatment system of the circulating water system according to the present invention.
FIG. 9 is a view corresponding to FIG. 3 and showing a series arrangement of sample electrodes in another embodiment of the present invention.
FIG. 10 is a view corresponding to FIG. 3, showing a parallel arrangement of sample electrodes according to another embodiment of the present invention.
[Explanation of symbols]
1 Measurement unit
2 Anti-slime agent storage tank (medicine addition means)
3 Pump for adding oxidation type slime inhibitor (means for adding slime inhibitor)
4 Control unit
5 Anti-slime agent storage tank (medicine addition means)
6 Pump for adding non-oxidizing anti-slime agent (means for adding anti-slime agent)
10 Water treatment system
12 Slime monitor (slime measuring means)
13 Potential monitor (potential measurement means)
14 Residual chlorine concentration meter
18 Potential monitor (potential measurement means)
35 Test tube (sensitized sample electrode)
50 Water treatment system
65 Test tube (sample electrode subjected to solution treatment)

Claims (13)

循環水系にスライム防止剤として酸化型スライム防止剤と非酸化型スライム防止剤のそれぞれを個別に添加するスライム防止剤添加手段と、前記水系に使用される金属材料を試料電極として前記系内の自然電位を測定する電位測定手段と、前記系内のスライム付着状況を測定するスライム測定手段とを備え、スライム防止剤添加手段によりスライム防止剤を添加する際、電位測定手段により測定された自然電位が前記試料電極について予め設定された腐食すきま再不動態化電位としての電位しきい値を超えないようにスライム防止剤添加手段を制御して酸化型スライム防止剤を添加し、測定された自然電位が電位しきい値を超え、かつ、スライム測定手段によりスライムの付着が確認されたときにスライム防止剤添加手段を制御し酸化型スライム防止剤に代えて非酸化型スライム防止剤を添加することを特徴とする循環水系の水処理方法。 Anti- slime agent adding means for individually adding an oxidized anti-slime agent and a non-oxidized anti-slime agent as anti-slime agents to the circulating water system, and a metal material used in the aqueous system as a sample electrode, comprising a potential measuring means for measuring the potential, and a slime measuring means for measuring a slime deposition conditions in the system, when adding slime preventing agent by scan lime inhibitor adding means, the natural potential measured by the potential measuring means The anti-slime additive is added by controlling the slime inhibitor addition means so that the corrosion threshold repassivation potential set in advance for the sample electrode does not exceed the potential threshold, and the measured natural potential is When the potential threshold is exceeded and slime adhesion is confirmed by the slime measuring means, the anti-slime additive adding means is controlled to control the oxidized type slurry. Water treatment method of the circulating water system, which comprises adding a non-oxidative slime preventing agent instead of the beam inhibitor. 循環水系にスライム防止剤として酸化型スライム防止剤と非酸化型スライム防止剤のそれぞれを個別に添加するスライム防止剤添加手段と、前記水系に使用される金属材料を試料電極として前記系内の自然電位を測定する電位測定手段と、前記系内のスライム付着状況を測定するスライム測定手段と、制御部とを備え、制御部は、スライム防止剤添加手段によりスライム防止剤を添加する際、電位測定手段により測定された自然電位が前記試料電極について予め設定された腐食すきま再不動態化電位としての電位しきい値を超えないようにスライム防止剤添加手段を制御して酸化型スライム防止剤を添加し、測定された自然電位が電位しきい値を超え、かつ、スライム測定手段によりスライムの付着が確認されたときにスライム防止剤添加手段を制御し酸化型スライム防止剤に代えて非酸化型スライム防止剤を添加することを特徴とする循環水系の水処理システム。 Anti- slime agent adding means for individually adding an oxidized anti-slime agent and a non-oxidized anti-slime agent as anti-slime agents to the circulating water system, and a metal material used in the aqueous system as a sample electrode, An electric potential measuring means for measuring an electric potential, a slime measuring means for measuring the slime adhesion state in the system, and a control unit, and the control unit measures the electric potential when adding the anti-slime agent by the anti-slime agent adding means. controlling slime preventing agent adding means so that the self-potential measured does not exceed the potential threshold as preset corrosion gap repassivation potential for the sample electrode by means the addition of oxidized slime preventing agent When the measured natural potential exceeds the potential threshold and slime adhesion is confirmed by the slime measuring means, Water treatment system of circulating water system, which comprises adding controlled in place of the oxidized slime preventing agent unoxidized form slime preventing agents. 前記の試料電極が、予め鋭敏化処理または溶体化処理が施された金属材料の少なくとも1つからなる請求項に記載の水処理システム。The water treatment system according to claim 2 , wherein the sample electrode is made of at least one metal material that has been subjected to sensitization or solution treatment in advance. 循環水系の系内に使用される金属材料が、銅、ニッケル、アルミニウム、チタンまたはこれらを含む合金、ステンレス鋼のうちのいずれかである請求項またはに記載の水処理システム。The water treatment system according to claim 2 or 3 , wherein the metal material used in the circulating water system is any one of copper, nickel, aluminum, titanium, an alloy containing these, and stainless steel. 制御部が、予め設定された電位しきい値と前記系内の自然電位の測定結果とを比較する比較手段を有する請求項2からのいずれか1つに記載の水処理システム。The water treatment system according to any one of claims 2 to 4 , wherein the control unit includes a comparison unit that compares a preset potential threshold value with a measurement result of the natural potential in the system. スライム測定手段が、循環水系の流路の一部となる筒状の測定室と、水の流れと直角方向に測定室を挟んで配置される発光部および受光部とからなる請求項2から5のいずれか1つに記載の水処理システム。Slime measuring means, a cylindrical measuring chamber comprising a part of the flow path of the circulating water system, from a light emitting portion and a light receiving portion Toka Ranaru claim 2 that sandwich the measuring chamber in the flow direction perpendicular Water 5 The water treatment system as described in any one of these. 試料電極が異なる2つの試料電極からなり、一方は鋭敏化処理が施された金属材料であり、他方は溶体化処理が施された金属材料である請求項に記載の水処理システム。The water treatment system according to claim 2 , wherein the sample electrode is composed of two different sample electrodes, one of which is a metal material subjected to sensitization treatment and the other is a metal material subjected to solution treatment. 鋭敏化処理が施された金属材料からなる試料電極と溶体化処理が施された金属材料からなる試料電極についてそれぞれ腐食すきま再不動体化電位としての電位しきい値が予め設定され、電位測定手段により測定された自然電位が鋭敏化処理が施された金属材料からなる試料電極について設定された電位しきい値を超えたときに酸化型スライム防止剤の添加量を減らすようにスライム防止剤添加手段を制御し、酸化型スライム防止剤の添加量が減らされた状況下で電位測定手段により測定された自然電位が溶体化処理が施された金属材料からなる試料電極について設定された電位しきい値を超えたときに酸化型スライム防止剤の添加量をさらに減らすようにスライム防止剤添加手段を制御する請求項7に記載の水処理システム。A potential threshold is set in advance as a corrosion clearance re-immobilization potential for a sample electrode made of a metal material subjected to sensitization treatment and a sample electrode made of a metal material subjected to solution treatment. Anti-slime additive addition means to reduce the amount of oxidized anti-slime additive added when the measured natural potential exceeds the potential threshold set for a sample electrode made of a metal material subjected to sensitization treatment The potential threshold value set for the sample electrode made of a metal material subjected to solution treatment is controlled by the natural potential measured by the potential measuring means in a state where the amount of addition of the oxidation-type slime inhibitor is reduced. The water treatment system according to claim 7, wherein when it exceeds, the slime inhibitor addition means is controlled so as to further reduce the addition amount of the oxidized slime inhibitor. 前記の試料電極が、予め鋭敏化処理または溶体化処理が施された金属材料の少なくとも1つからなる請求項1に記載の水処理方法。The water treatment method according to claim 1, wherein the sample electrode is made of at least one metal material that has been subjected to sensitization treatment or solution treatment in advance. 循環水系の系内に使用される金属材料が、銅、ニッケル、アルミニウム、チタンまたはこれらを含む合金、ステンレス鋼のうちのいずれかである請求項1または9に記載の水処理方法。The water treatment method according to claim 1 or 9, wherein the metal material used in the circulating water system is any one of copper, nickel, aluminum, titanium, an alloy containing these, and stainless steel. スライム測定手段が、循環水系の流路の一部となる筒状の測定室と、水の流れと直角方向に測定室を挟んで配置される発光部および受光部とからなる請求項1、9および10のいずれか1つに記載の水処理方法。10. The slime measuring means comprises a cylindrical measurement chamber that is a part of the flow path of the circulating water system, and a light emitting portion and a light receiving portion that are arranged with the measurement chamber sandwiched in a direction perpendicular to the flow of water. And the water treatment method according to any one of 10. 試料電極が異なる2つの試料電極からなり、一方は鋭敏化処理が施された金属材料であり、他方は溶体化処理が施された金属材料である請求項1に記載の水処理方法。The water treatment method according to claim 1, wherein the sample electrode is composed of two different sample electrodes, one of which is a metal material subjected to sensitization treatment and the other is a metal material subjected to solution treatment. 鋭敏化処理が施された金属材料からなる試料電極と溶体化処理が施された金属材料からなる試料電極についてそれぞれ腐食すきま再不動体化電位としての電位しきい値が予め設定され、電位測定手段により測定された自然電位が鋭敏化処理が施された金属材料からなる試料電極について設定された電位しきい値を超えたときに酸化型スライム防止剤の添加量を減らすようにスライム防止剤添加手段を制御し、酸化型スライム防止剤の添加量が減らされた状況下で電位測定手段により測定された自然電位が溶体化処理が施された金属材料からなる試料電極について設定された電位しきい値を超えたときに酸化型スライム防止剤の添加量をさらに減らすようにスライム防止剤添加手段を制御する請求項12に記載の水処理方法。A potential threshold is set in advance as a corrosion clearance re-immobilization potential for a sample electrode made of a metal material subjected to sensitization treatment and a sample electrode made of a metal material subjected to solution treatment. Anti-slime additive addition means to reduce the amount of oxidized anti-slime additive added when the measured natural potential exceeds the potential threshold set for a sample electrode made of a metal material subjected to sensitization treatment The potential threshold value set for the sample electrode made of a metal material subjected to solution treatment is controlled by the natural potential measured by the potential measuring means in a state where the amount of addition of the oxidation-type slime inhibitor is reduced. The water treatment method according to claim 12, wherein the anti-slime additive adding means is controlled so as to further reduce the addition amount of the oxidation-type anti-slime inhibitor when exceeding the limit.
JP2002283729A 2002-09-27 2002-09-27 Water treatment method and water treatment system for circulating water system Expired - Fee Related JP4378512B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002283729A JP4378512B2 (en) 2002-09-27 2002-09-27 Water treatment method and water treatment system for circulating water system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002283729A JP4378512B2 (en) 2002-09-27 2002-09-27 Water treatment method and water treatment system for circulating water system

Publications (2)

Publication Number Publication Date
JP2004113981A JP2004113981A (en) 2004-04-15
JP4378512B2 true JP4378512B2 (en) 2009-12-09

Family

ID=32277514

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002283729A Expired - Fee Related JP4378512B2 (en) 2002-09-27 2002-09-27 Water treatment method and water treatment system for circulating water system

Country Status (1)

Country Link
JP (1) JP4378512B2 (en)

Families Citing this family (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4672473B2 (en) * 2004-07-23 2011-04-20 国立大学法人 名古屋工業大学 Method and apparatus for measuring scale inhibitor concentration
JP2008039473A (en) * 2006-08-02 2008-02-21 Kurimoto Ltd Method for estimating corrosion of stainless steel caused by microorganisms
JP5458551B2 (en) * 2008-11-14 2014-04-02 栗田工業株式会社 Concentration control method for aqueous treatment agent and aqueous sterilization method using the control method
JP5467989B2 (en) * 2010-11-30 2014-04-09 株式会社神戸製鋼所 In-pipe monitoring device
JP5665524B2 (en) * 2010-12-21 2015-02-04 伯東株式会社 Water treatment method for suppressing microbial damage in water
JP5773708B2 (en) * 2011-03-31 2015-09-02 三菱重工業株式会社 Heat exchanger and method for estimating remaining life of heat exchanger
JP2013000698A (en) * 2011-06-20 2013-01-07 Miura Co Ltd Water treatment system
JP5868229B2 (en) * 2012-03-13 2016-02-24 日立Geニュークリア・エナジー株式会社 Organic matter decomposition system using ozone
JP6015358B2 (en) * 2012-11-01 2016-10-26 栗田エンジニアリング株式会社 Corrosion prevention method for copper alloy heat exchangers
JP6024544B2 (en) * 2013-03-18 2016-11-16 富士通株式会社 Biofilm formation sensor and electronic device cooling system
JP6079401B2 (en) * 2013-04-17 2017-02-15 栗田工業株式会社 Slime monitoring device, slime monitoring method, slime remover addition device, and slime remover addition method
JP2015038422A (en) * 2014-11-25 2015-02-26 三菱重工業株式会社 Heat exchanger and method of estimating residual life of heat exchanger
JP6455201B2 (en) * 2015-02-09 2019-01-23 三浦工業株式会社 Water treatment system

Also Published As

Publication number Publication date
JP2004113981A (en) 2004-04-15

Similar Documents

Publication Publication Date Title
JP4378512B2 (en) Water treatment method and water treatment system for circulating water system
US7635449B2 (en) Method of inhibiting corrosion in hot water systems
US7581874B2 (en) Apparatuses and systems for monitoring fouling of aqueous systems including enhanced heat exchanger tubes
CA2694312C (en) Method and device for creating and analyzing an at temperature and pressure oxidation-reduction potential signature in hot water systems for preventing corrosion
US20020043650A1 (en) Corrosion control utilizing a hydrogen peroxide donor
JP5612822B2 (en) Slime control method
EP2179076B1 (en) Method for preventing corrosion in hot water systems
JP4959062B2 (en) Water treatment method
JP4431688B2 (en) Water treatment method and water treatment system for circulating cooling water system
JP2018105794A (en) Plant, water quality control system for circulation water system, and water quality control method for circulation water system
JP5868229B2 (en) Organic matter decomposition system using ozone
US6451212B2 (en) Method of treating water in a water system
JP4363163B2 (en) Corrosion potential sensor
EP0816846A1 (en) A system for monitoring biocide treatments
JP2008286441A (en) Absorption refrigerator
Bruijs et al. Biocide optimisation using an on-line biofilm monitor
JP2002372396A (en) Method and system for treating water of circulating cooling water system
Licina Optimizing biocide additions via real time monitoring of biofilms
KR20220000080A (en) Rectifier for electrolysis device
JPH1030196A (en) Method for preventing microorganismic corrosion of stainless steel
Salvago et al. Biofilm monitoring and on-line control: 20-month experience in seawater
ES2673126T3 (en) Systems and methods to monitor and control in hot water systems
Licina Biocide optimization: performance improvements and reduced chemical usage
JP2014091843A (en) Corrosion prevention method for heat exchanger narrow pipe made of copper alloy
JP5458551B2 (en) Concentration control method for aqueous treatment agent and aqueous sterilization method using the control method

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20050713

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20080115

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080122

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080319

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090526

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20090723

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20090818

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20090826

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121002

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 4378512

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121002

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131002

Year of fee payment: 4

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees