JP2014091843A - Corrosion prevention method for heat exchanger narrow pipe made of copper alloy - Google Patents

Corrosion prevention method for heat exchanger narrow pipe made of copper alloy

Info

Publication number
JP2014091843A
JP2014091843A JP2012241906A JP2012241906A JP2014091843A JP 2014091843 A JP2014091843 A JP 2014091843A JP 2012241906 A JP2012241906 A JP 2012241906A JP 2012241906 A JP2012241906 A JP 2012241906A JP 2014091843 A JP2014091843 A JP 2014091843A
Authority
JP
Japan
Prior art keywords
copper alloy
heat exchanger
water
oxidizing agent
iron salt
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2012241906A
Other languages
Japanese (ja)
Other versions
JP6015358B2 (en
Inventor
Naoya Yamamoto
直哉 山本
Takeshi Ishihara
健 石原
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kurita Engineering Co Ltd
Original Assignee
Kurita Engineering Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kurita Engineering Co Ltd filed Critical Kurita Engineering Co Ltd
Priority to JP2012241906A priority Critical patent/JP6015358B2/en
Publication of JP2014091843A publication Critical patent/JP2014091843A/en
Application granted granted Critical
Publication of JP6015358B2 publication Critical patent/JP6015358B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Preventing Corrosion Or Incrustation Of Metals (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a corrosion prevention method for a heat exchanger narrow pipe made of a copper alloy, which has a high effect for preventing corrosion of the heat exchanger narrow pipe made of the copper alloy.SOLUTION: The corrosion prevention method for the heat exchanger narrow pipe made of the copper alloy which is in contact with the water includes adding an oxidizing agent having higher oxidation ability than that of oxygen and/or iron salt to the water. Oxidation-reduction potential of the water or natural electrode potential of the copper alloy is measured, and the amount of the oxidizing agent and/or the iron salt to be added is preferably controlled based on the measurement result. The oxidizing agent to be used includes chlorine, sodium hypochlorite, chlorine dioxide and hydrogen peroxide.

Description

本発明は、銅合金製熱交換器細管の防食方法に係り、詳しくは冷却水が導入される冷却管、特に、発電プラント、石油精製プラント、石油化学プラントに設置された熱交換器の冷却管の腐食防止に好適な方法に関する。   The present invention relates to an anticorrosion method for copper alloy heat exchanger capillaries, and more particularly to a cooling pipe into which cooling water is introduced, in particular, a heat exchanger cooling pipe installed in a power plant, an oil refinery plant, and a petrochemical plant. The present invention relates to a method suitable for preventing corrosion.

発電プラント、石油精製プラント、石油化学プラントに設置されたチューブ式熱交換器には、冷却水が流通する細管(冷却管)が取り付けられており、温度の高い気体や液体と冷却水との間で熱交換が行われる。この場合、細管を通る冷却水には、河川、海等から取水された水が利用される。   Tube-type heat exchangers installed in power plants, oil refining plants, and petrochemical plants are equipped with thin tubes (cooling tubes) through which cooling water circulates, and between high-temperature gases and liquids and cooling water. Heat exchange takes place at. In this case, the water taken from the river, the sea, etc. is used for the cooling water passing through the narrow tube.

河川、海等から取水された水は、硫化物イオン(S2-)を含んでいることがあり、銅合金製熱交換器細管の腐食の原因となる。すなわち、細管を流通する水中に硫化物イオンが含まれていると、銅と硫化物イオンとの反応により硫化銅(CuS)の皮膜が細管内面に形成され、この硫化銅皮膜が細管の内面から剥離したり、あるいは硫化銅皮膜と銅との間の電位差により、細管の母材を腐食させる。特に、富栄養化した閉鎖性海域では、水中の硫酸イオンから硫化物イオンを生成させるバクテリア(硫酸イオン還元バクテリア(SRB))によって、水中の硫化物イオンの濃度が高くなり、この水を取水すると、細管の局部腐食が著しく進行する。 Water taken from rivers, seas, etc. may contain sulfide ions (S 2− ), which causes corrosion of copper alloy heat exchanger tubes. That is, if sulfide water is contained in the water flowing through the narrow tube, a copper sulfide (CuS) film is formed on the inner surface of the thin tube by the reaction of copper and sulfide ions, and this copper sulfide film is formed from the inner surface of the thin tube. The base material of the thin tube is corroded by peeling or potential difference between the copper sulfide film and copper. In particular, in eutrophied closed waters, the concentration of sulfide ions in the water is increased by bacteria that produce sulfide ions from sulfate ions in the water (sulfate ion-reducing bacteria (SRB)). In this case, the local corrosion of the tubule proceeds significantly.

細管の腐食を防止するために、細管の内面にあらかじめ酸化鉄皮膜(水酸化鉄皮膜)を形成することが有効である。しかし、冷却水中に硫化物イオンが高濃度で含まれていたり、低濃度であっても長期間に渡って含まれていると、酸化鉄皮膜が還元されて硫化鉄となり、酸化皮膜の防食性能が低下する。   In order to prevent the corrosion of the narrow tube, it is effective to form an iron oxide film (iron hydroxide film) on the inner surface of the narrow tube in advance. However, if the cooling water contains a high concentration of sulfide ions or a low concentration even over a long period of time, the iron oxide film is reduced to iron sulfide and the anticorrosion performance of the oxide film. Decreases.

特許文献1には、冷却水として取水される水中に空気を送り込むことによって当該水中の硫化物イオンを低減ないしは除去し、冷却管の腐食を防止する方法が記載されている。しかしながら、空気中の酸素による酸化だけでは硫化物イオンの酸化が十分ではなく、腐食防止効果が十分ではない。   Patent Document 1 describes a method of preventing corrosion of a cooling pipe by reducing or removing sulfide ions in the water by sending air into the water taken as cooling water. However, the oxidation of sulfide ions is not sufficient only by oxidation with oxygen in the air, and the corrosion prevention effect is not sufficient.

特開2002−4071JP2002-4071

本発明は、上記従来技術の問題点を解消し、銅合金製熱交換器細管の腐食防止効果の高い銅合金製熱交換器細管の防食方法を提供することを目的とする。   An object of the present invention is to solve the above-mentioned problems of the prior art and to provide a method for preventing corrosion of a copper alloy heat exchanger capillary having a high corrosion prevention effect on the copper alloy heat exchanger capillary.

本発明の銅合金製熱交換器細管の防食方法は、水と接触する銅合金製熱交換器細管の防食方法において、該水に、酸素よりも酸化力が強い酸化剤及び/又は鉄塩を添加することを特徴とするものである。   The anticorrosion method for copper alloy heat exchanger capillaries according to the present invention is an anticorrosion method for copper alloy heat exchanger capillaries in contact with water. It is characterized by adding.

酸化剤としては、塩素、次亜塩素酸ナトリウム、二酸化塩素、過酸化水素、クロラミン、ブロマミン、臭化物、過マンガン酸塩、鉄酸塩、オゾンの少なくとも1種が好適である。   As the oxidizing agent, at least one of chlorine, sodium hypochlorite, chlorine dioxide, hydrogen peroxide, chloramine, bromamine, bromide, permanganate, ferrate, and ozone is suitable.

鉄塩としては、硫酸第一鉄、硫酸第二鉄、塩化第一鉄、塩化第二鉄の少なくとも1種が好適である。   As the iron salt, at least one of ferrous sulfate, ferric sulfate, ferrous chloride, and ferric chloride is suitable.

本発明では、水の酸化還元電位又は前記銅合金の自然電極電位を測定し、この測定結果に基づいて酸化剤及び/又は鉄塩の添加量を制御することが好ましい。   In the present invention, it is preferable to measure the redox potential of water or the natural electrode potential of the copper alloy, and to control the addition amount of the oxidizing agent and / or iron salt based on the measurement result.

本発明の銅合金製熱交換器細管の防食方法において、水に酸化剤を添加する場合、この酸化剤の酸化力は酸素よりも強いため、水中の硫化物イオンが硫酸イオンに効率よく酸化され、銅合金製熱交換器細管内面での硫化物皮膜形成が防止され、銅合金製熱交換器細管の腐食が防止される。   In the anticorrosion method for copper alloy heat exchanger capillaries according to the present invention, when an oxidizing agent is added to water, the oxidizing power of this oxidizing agent is stronger than that of oxygen, so that sulfide ions in water are efficiently oxidized to sulfate ions. The formation of a sulfide film on the inner surface of the copper alloy heat exchanger capillary is prevented, and corrosion of the copper alloy heat exchanger capillary is prevented.

本発明において、水に鉄塩を添加した場合、硫化物イオンが鉄イオンと反応して硫化鉄となる。このため、銅合金製熱交換器細管内面の酸化皮膜が還元されて硫化鉄となることが防止され、酸化皮膜の防食性低下が防止される。   In the present invention, when an iron salt is added to water, sulfide ions react with iron ions to form iron sulfide. For this reason, it is prevented that the oxide film on the inner surface of the copper alloy heat exchanger capillary is reduced to iron sulfide, and the corrosion resistance of the oxide film is prevented from being lowered.

本発明方法では、海水等の酸化還元電位や銅合金の自然電極電位に基づいて薬注制御することにより、薬品の過剰添加や添加不足を防止することが出来る。   In the method of the present invention, chemical addition control based on the oxidation-reduction potential of seawater or the like or the natural electrode potential of a copper alloy can prevent excessive addition or insufficient addition of chemicals.

実施の形態の説明図である。It is explanatory drawing of embodiment. 実験結果を示すグラフである。It is a graph which shows an experimental result. 実験結果を示すグラフである。It is a graph which shows an experimental result.

本発明において、腐食防止対象となる銅合金製熱交換器細管としては、発電プラント、石油精製プラント、石油化学プラントに設置されたチューブ式熱交換器細管などが例示される。   In the present invention, the heat exchanger capillaries made of copper alloy that are subject to corrosion prevention include tube heat exchanger capillaries installed in power plants, petroleum refining plants, and petrochemical plants.

銅合金製熱交換器細管の銅合金としては、JIS H3300−2012記載のC4430、C6870、C6871、C6872などの復水器用黄銅やC7060、C7100、C7150、C7164などの復水器用白銅が例示されるが、これに限定されない。この銅合金製熱交換器細管と接触する水としては、海水、湖沼水、河川水(以下、海水等ということがある。)などが例示される。   Examples of the copper alloy of the copper alloy heat exchanger capillary tube include brass for condensers such as C4430, C6870, C6871, and C6872 described in JIS H3300-2012 and white copper for condensers such as C7060, C7100, C7150, and C7164. However, it is not limited to this. Examples of the water that contacts the copper alloy heat exchanger capillary include seawater, lake water, river water (hereinafter sometimes referred to as seawater), and the like.

この水に対し添加する酸化剤としては、塩素(液体塩素、又は電解塩素)、次亜塩素酸ナトリウム、二酸化塩素、過酸化水素、クロラミン、ブロマミン、臭化物、過マンガン酸塩、鉄酸塩、及びオゾンの少なくとも1種が好適であり、特に次亜塩素酸ナトリウム、過酸化水素が好適である。   The oxidizing agent added to this water includes chlorine (liquid chlorine or electrolytic chlorine), sodium hypochlorite, chlorine dioxide, hydrogen peroxide, chloramine, bromamine, bromide, permanganate, ferrate, and At least one kind of ozone is preferable, and sodium hypochlorite and hydrogen peroxide are particularly preferable.

水に添加する鉄塩としては、硫酸第一鉄又は塩化第一鉄が好適であるが、硫酸第二鉄、塩化第二鉄等も用いることができる。   As the iron salt to be added to water, ferrous sulfate or ferrous chloride is suitable, but ferric sulfate, ferric chloride and the like can also be used.

酸化剤と鉄塩とは、一方のみを添加してもよく、双方を添加してもよい。酸化剤を海水等に添加するに際しては、海水等の酸化還元電位又は銅合金の自然電極電位を測定し、この測定電位が、銅合金製熱交換器細管が清浄な海水等と接触しているときの電位と同等以上となるように添加するのが好ましい。鉄塩を添加する場合には、海水等の酸化還元電位又は銅合金の自然電極電位を測定し、この測定値から推定される硫化物濃度と当量又はそれ以上の量の鉄塩を添加するのが好ましい。   Only one or both of the oxidizing agent and the iron salt may be added. When adding an oxidizing agent to seawater or the like, the redox potential of seawater or the natural electrode potential of the copper alloy is measured, and this measured potential is in contact with the seawater or the like where the copper alloy heat exchanger capillary is clean. It is preferable to add so as to be equal to or higher than the potential at that time. When adding an iron salt, measure the redox potential of seawater or the natural electrode potential of the copper alloy, and add an iron salt equivalent to or greater than the sulfide concentration estimated from this measured value. Is preferred.

酸化剤及び/又は鉄塩の添加による銅合金製熱交換器細管の防食性の評価を行うには、薬注箇所よりも下流域の熱交換器近傍に設置した、仮設の通水試験装置に取り付けられたテスト細管の自然電位および分極抵抗の測定を手動あるいは自動で測定して評価するとともに、一定期間通水後のテスト細管を取り外し、腐食量、付着物量や付着物成分を分析することで評価するのが好ましい。   In order to evaluate the corrosion resistance of copper alloy heat exchanger capillaries by adding oxidizer and / or iron salt, a temporary water flow test device installed near the heat exchanger in the downstream area from the chemical injection point By measuring the self-potential and polarization resistance of the attached test capillary manually or automatically, and removing the test capillary after water has passed for a certain period of time, and analyzing the amount of corrosion, the amount of deposits and deposit components It is preferable to evaluate.

このように、海水等に酸化剤を添加すると、硫化物イオンの硫酸イオンへの酸化が促進され、下流の銅合金製熱交換器細管への硫化物イオンの到達が低減され、硫化物皮膜の形成が防止される。   Thus, when an oxidizing agent is added to seawater or the like, the oxidation of sulfide ions to sulfate ions is promoted, the arrival of sulfide ions to the downstream copper alloy heat exchanger capillary is reduced, and the sulfide film Formation is prevented.

また、海水等に鉄塩を添加すると、海水等に溶存している硫化物イオンが鉄イオンと反応して硫化鉄となる。これにより、銅合金製熱交換器細管表面の酸化鉄皮膜が還元されて硫化鉄となることが防止され、細管の腐食が防止される。   When iron salt is added to seawater or the like, sulfide ions dissolved in seawater or the like react with iron ions to become iron sulfide. Thereby, it is prevented that the iron oxide film on the surface of the copper alloy heat exchanger capillary is reduced to iron sulfide, and corrosion of the capillary is prevented.

図1は本発明方法の一例を説明するフロー図である。取水された海水が配管1から熱交換器2へ流れ、放水口から放水される。薬品タンク3内の薬品(酸化剤又は鉄塩)が薬注装置4によって配管1に添加される。配管1からは検出配管5へ海水の一部が分取され、酸化還元電位及び/又は銅合金の自然電極電位が測定され、この測定結果に基づいて薬注が行われる。また、熱交換器2の直前から海水の一部が配管7へ分取され、評価部8に通水される。この評価部8には、熱交換器2の銅合金製熱交換器細管と同材質のテスト管が設けられている。このテスト管に海水を通水し、電位を測定したり腐食状況を観察し、腐食防止効果を評価する。   FIG. 1 is a flowchart for explaining an example of the method of the present invention. The taken seawater flows from the pipe 1 to the heat exchanger 2 and is discharged from the water outlet. A chemical (oxidant or iron salt) in the chemical tank 3 is added to the pipe 1 by the chemical injection device 4. A part of the seawater is separated from the pipe 1 to the detection pipe 5, the redox potential and / or the natural electrode potential of the copper alloy is measured, and drug injection is performed based on this measurement result. Further, a part of the seawater is collected into the pipe 7 immediately before the heat exchanger 2 and is passed through the evaluation unit 8. The evaluation section 8 is provided with a test tube made of the same material as the copper alloy heat exchanger thin tube of the heat exchanger 2. Pass seawater through this test tube, measure the potential and observe the corrosion status, and evaluate the corrosion prevention effect.

検出部6にて、海水の酸化還元電位または銅合金の自然電極電位を測定し、電位の卑化が確認された場合には海域から硫化物イオンが流入したものと判断し、薬注装置4を作動させる。   The detection unit 6 measures the redox potential of seawater or the natural electrode potential of copper alloy, and when the potential is confirmed to be reduced, it is determined that sulfide ions have flowed from the sea area, and the chemical injection device 4 Is activated.

酸化剤を添加する場合には、酸化還元電位や銅合金の自然電極電位が、硫化物イオン流入前の清浄海水中での電位と同等以上の電位を示すまで注入を行う。   When the oxidizing agent is added, injection is performed until the redox potential or the natural electrode potential of the copper alloy shows a potential equal to or higher than the potential in the clean seawater before the flow of sulfide ions.

鉄塩を添加する場合には、電位から推定される硫化物イオン濃度又は海水の分析により得た硫化物イオン濃度と当量又はそれ以上(例えば当量の1〜10倍)の量の鉄塩を添加する。   When adding an iron salt, add an amount of iron salt equivalent to or higher than the sulfide ion concentration estimated from the potential or analyzed by analysis of seawater (for example, 1 to 10 times the equivalent). To do.

薬品注入量の増減や抑制効果の確認は、評価部8に設置したテスト管の自然電位および分極抵抗値の推移を手動または自動で測定して行う。また、定期的にテスト管の腐食量、付着物量および付着物成分を測定して薬注効果を評価する。   The increase / decrease and the suppression effect of the chemical injection amount are confirmed manually or automatically by measuring the transition of the natural potential and polarization resistance value of the test tube installed in the evaluation unit 8. Also, periodically measure the amount of corrosion, amount of deposits, and deposit components of the test tube to evaluate the drug injection effect.

以下、本発明の効果を示すための実験例について説明する。   Hereinafter, experimental examples for showing the effects of the present invention will be described.

以下の実施例では、実機熱交換器で使用されたアルミニウム黄銅管の引抜管を切断して作成した酸化鉄皮膜付きの試験片(以下、鉄皮膜形成管ということがある。)と、この試験片を塩酸で洗浄して酸化鉄皮膜を除去した酸洗試験片(以下、酸洗管ということがある。)を用いた。   In the following examples, a test piece with an iron oxide film (hereinafter sometimes referred to as an iron film forming tube) prepared by cutting a drawn tube of an aluminum brass tube used in an actual heat exchanger, and this test. A pickling test piece (hereinafter sometimes referred to as a pickling tube) in which the piece was washed with hydrochloric acid to remove the iron oxide film was used.

模擬海水としては、人工海水(八洲薬品株式会社製金属腐食試験用アクアマリン)(実験1)又はこの人工海水に硫化ナトリウム9水和物を硫化物イオンとして100mg/Lになるように溶解したもの(実験2〜6)を用いた。   As simulated seawater, artificial seawater (Aquamarine for metal corrosion test manufactured by Yasu Pharmaceutical Co., Ltd.) (Experiment 1) or sodium sulfide nonahydrate was dissolved in this artificial seawater as sulfide ions to 100 mg / L. The ones (Experiments 2-6) were used.

実験1,2では、模擬海水に薬剤(酸化剤、鉄塩)は添加しなかった。
実験3,4では模擬海水に次亜塩素酸ナトリウム又は過酸化水素を酸化還元電位が200mV以上になるように添加した。
実験5,6では、模擬海水に鉄イオンとして100mg/L(実験5)又は1000mg/L(実験6)となるように硫酸第一鉄を添加した。
In Experiments 1 and 2, no chemicals (oxidant or iron salt) were added to the simulated seawater.
In Experiments 3 and 4, sodium hypochlorite or hydrogen peroxide was added to simulated seawater so that the redox potential was 200 mV or higher.
In Experiments 5 and 6, ferrous sulfate was added to the simulated seawater so that the iron ion was 100 mg / L (Experiment 5) or 1000 mg / L (Experiment 6).

各模擬海水(0.5L,25℃)に上記試験片を24時間浸漬し、模擬海水の酸化還元電位及び試験片の自然電極電位を測定した。結果を図2に示す。   The test piece was immersed in each simulated seawater (0.5 L, 25 ° C.) for 24 hours, and the redox potential of the simulated seawater and the natural electrode potential of the test piece were measured. The results are shown in FIG.

また、24時間後、各試験片を各模擬海水から引き上げ、薬剤が添加されていない前述の人工海水で洗浄し、ポテンショスタットにて−100mV陰分極した場合での電流密度からオームの法則で分極抵抗値を求めた。結果を図3に示す。   After 24 hours, each test piece was pulled up from each simulated seawater, washed with the above-mentioned artificial seawater to which no chemical was added, and polarized according to the Ohm's law from the current density when negatively polarized with a potentiostat at −100 mV. The resistance value was determined. The results are shown in FIG.

図2の実験1,2の結果を対比すると、実験2では硫化物イオンを添加していない実験1と比べて酸化還元電位及び自然電極電位が卑な電位を示しており、硫化物イオンの存在を電位により確認することができることが認められた。   Compared to the results of Experiments 1 and 2 in Fig. 2, in Experiment 2, the redox potential and natural electrode potential are lower than those in Experiment 1 in which no sulfide ions are added, and the presence of sulfide ions. It can be seen that can be confirmed by the potential.

また、酸化剤を添加した実験3,4では自然電極電位が実験2に比べて高くなっている。従って、酸化剤により硫化物イオンが酸化されることが認められた。   In Experiments 3 and 4 in which an oxidizing agent was added, the natural electrode potential was higher than that in Experiment 2. Therefore, it was recognized that sulfide ions were oxidized by the oxidizing agent.

図3に示すように、酸化剤を添加した実験3および実験4では実験2と比べ酸洗管および鉄皮膜形成管のいずれにおいても分極抵抗値の低下が抑制された。鉄イオンを添加した実験5および実験6を無添加の実験2と比べると、酸洗管では殆ど分極抵抗の抑制効果は無かったが、鉄皮膜形成管では分極抵抗値の低下を抑制する効果が認められた。   As shown in FIG. 3, in Experiment 3 and Experiment 4 in which an oxidizing agent was added, a decrease in polarization resistance value was suppressed in both the pickling tube and the iron film forming tube as compared with Experiment 2. Comparing Experiments 5 and 6 with addition of iron ions with Experiment 2 without addition, the pickling tube had almost no effect of suppressing polarization resistance, but the iron film forming tube had an effect of suppressing a decrease in polarization resistance value. Admitted.

なお、硫化物皮膜は黒色であるが、各試験片の外観を観察したところ、実験2以外では黒色の付着物は認められず、酸化剤又は鉄塩の添加により硫化物皮膜の形成が抑制されることが認められた。   The sulfide film was black, but when the appearance of each test piece was observed, no black deposit was observed except in Experiment 2, and the addition of an oxidizing agent or iron salt suppressed the formation of the sulfide film. It was recognized that

1 配管
2 熱交換器
3 薬品タンク
4 薬注装置
6 検出部
8 評価部
DESCRIPTION OF SYMBOLS 1 Piping 2 Heat exchanger 3 Chemical tank 4 Chemical injection apparatus 6 Detection part 8 Evaluation part

Claims (4)

水と接触する銅合金製熱交換器細管の防食方法において、該水に、酸素よりも酸化力が強い酸化剤及び/又は鉄塩を添加することを特徴とする銅合金製熱交換器細管の防食方法。   In the anticorrosion method for a copper alloy heat exchanger capillary in contact with water, an oxidizing agent having a higher oxidizing power than oxygen and / or an iron salt is added to the water. Anticorrosion method. 請求項1において、前記酸化剤は、塩素、次亜塩素酸ナトリウム、二酸化塩素、過酸化水素、クロラミン、ブロマミン、臭化物、過マンガン酸塩、鉄酸塩、及びオゾンの少なくとも1種であることを特徴とする銅合金製熱交換器細管の防食方法。   2. The oxidant according to claim 1, wherein the oxidizing agent is at least one of chlorine, sodium hypochlorite, chlorine dioxide, hydrogen peroxide, chloramine, bromamine, bromide, permanganate, ferrate, and ozone. A corrosion prevention method for copper alloy heat exchanger capillaries. 請求項1において、前記鉄塩は硫酸第一鉄、硫酸第二鉄、塩化第一鉄、及び塩化第二鉄の少なくとも1種であることを特徴とする銅合金製熱交換器細管の防食方法。   The method of claim 1, wherein the iron salt is at least one of ferrous sulfate, ferric sulfate, ferrous chloride, and ferric chloride. . 請求項1ないし3のいずれか1項において、水の酸化還元電位又は前記銅合金の自然電極電位を測定し、この測定結果に基づいて酸化剤及び/又は鉄塩の添加量を制御することを特徴とする銅合金製熱交換器細管の防食方法。   In any one of Claims 1 thru | or 3, it measures the oxidation-reduction potential of water or the natural electrode potential of the said copper alloy, and controls the addition amount of an oxidizing agent and / or an iron salt based on this measurement result. A corrosion prevention method for copper alloy heat exchanger capillaries.
JP2012241906A 2012-11-01 2012-11-01 Corrosion prevention method for copper alloy heat exchangers Active JP6015358B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2012241906A JP6015358B2 (en) 2012-11-01 2012-11-01 Corrosion prevention method for copper alloy heat exchangers

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2012241906A JP6015358B2 (en) 2012-11-01 2012-11-01 Corrosion prevention method for copper alloy heat exchangers

Publications (2)

Publication Number Publication Date
JP2014091843A true JP2014091843A (en) 2014-05-19
JP6015358B2 JP6015358B2 (en) 2016-10-26

Family

ID=50936165

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2012241906A Active JP6015358B2 (en) 2012-11-01 2012-11-01 Corrosion prevention method for copper alloy heat exchangers

Country Status (1)

Country Link
JP (1) JP6015358B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6134921B1 (en) * 2015-09-17 2017-05-31 株式会社片山化学工業研究所 Anticorrosion method and anticorrosive for seawater copper alloy piping
JP6216996B1 (en) * 2016-05-30 2017-10-25 株式会社片山化学工業研究所 Fault prevention method, fault prevention agent and fault prevention kit for seawater system

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS54101783A (en) * 1978-01-30 1979-08-10 Nippon Peroxide Co Ltd Slime removing method
JPH04278198A (en) * 1991-03-06 1992-10-02 Chubu Electric Power Co Inc Control method of contamination of copper alloy member
JPH09228080A (en) * 1996-02-23 1997-09-02 Kurita Water Ind Ltd Method for preventing pitting corrosion in copper
JPH1128479A (en) * 1997-07-11 1999-02-02 Tokyo Electric Power Co Inc:The Method for preventing trouble in aluminum brass pipe as seawater passage
JP2004113981A (en) * 2002-09-27 2004-04-15 Katayama Chem Works Co Ltd Water treatment method and water treatment system for circulating water system
JP2010173994A (en) * 2009-02-02 2010-08-12 Dia Aqua Solutions Co Ltd Multifunctional water treatment agent
JP2012201967A (en) * 2011-03-28 2012-10-22 Kurita Water Ind Ltd Method for inhibiting corrosion of copper member and corrosion inhibitor

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS54101783A (en) * 1978-01-30 1979-08-10 Nippon Peroxide Co Ltd Slime removing method
JPH04278198A (en) * 1991-03-06 1992-10-02 Chubu Electric Power Co Inc Control method of contamination of copper alloy member
JPH09228080A (en) * 1996-02-23 1997-09-02 Kurita Water Ind Ltd Method for preventing pitting corrosion in copper
JPH1128479A (en) * 1997-07-11 1999-02-02 Tokyo Electric Power Co Inc:The Method for preventing trouble in aluminum brass pipe as seawater passage
JP2004113981A (en) * 2002-09-27 2004-04-15 Katayama Chem Works Co Ltd Water treatment method and water treatment system for circulating water system
JP2010173994A (en) * 2009-02-02 2010-08-12 Dia Aqua Solutions Co Ltd Multifunctional water treatment agent
JP2012201967A (en) * 2011-03-28 2012-10-22 Kurita Water Ind Ltd Method for inhibiting corrosion of copper member and corrosion inhibitor

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6134921B1 (en) * 2015-09-17 2017-05-31 株式会社片山化学工業研究所 Anticorrosion method and anticorrosive for seawater copper alloy piping
JP2017214640A (en) * 2015-09-17 2017-12-07 株式会社片山化学工業研究所 Anticorrosion method and anticorrosive agent for copper alloy piping of seawater system
JP6216996B1 (en) * 2016-05-30 2017-10-25 株式会社片山化学工業研究所 Fault prevention method, fault prevention agent and fault prevention kit for seawater system
JP2017213549A (en) * 2016-05-30 2017-12-07 株式会社片山化学工業研究所 Method for preventing trouble in seawater system, trouble preventive, and kit for trouble prevention

Also Published As

Publication number Publication date
JP6015358B2 (en) 2016-10-26

Similar Documents

Publication Publication Date Title
Edwards et al. The pitting corrosion of copper
Rodolfo Jr et al. Influence of buffer capacity, chlorine residual, and flow rate on corrosion of mild steel and copper
Hasan Galvanic corrosion of carbon steel–brass couple in chloride containing water and the effect of different parameters
Carvalho Corrosion of copper alloys in natural seawater–Effects of hydrodynamics and pH
Crolet Microbial corrosion in the oil industry: a corrosionist's view
JP6015358B2 (en) Corrosion prevention method for copper alloy heat exchangers
Rossum Fundamentals of metallic corrosion in fresh water
Sosa et al. Concentration cells and pitting corrosion of copper
Schleich Typical failures of CuNi 90/10 seawater tubing systems and how to avoid them
Larché et al. Corrosion and corrosion management investigations in seawater reverse osmosis desalination plants
JP2017181486A (en) Corrosion evaluation method and corrosion evaluation device
Gaber et al. Comparative study of electrochemical corrosion of novel designs of 90/10 and 70/30 copper-nickel alloys in brine solutions
JP6762536B2 (en) Water corrosiveness judgment method and water corrosiveness judgment device
Hack Galvanic corrosion of piping and fitting alloys in sulfide-modified seawater
El Warraky et al. The electrochemical behaviour of 70-30 Cu-Ni alloy in LiBr solutions
Atshan et al. Effect of anode type and position on the cathodic protection of carbon steel in sea water
JPH02435B2 (en)
Maessen et al. Metal mobilization in home well water systems in Nova Scotia
Widder et al. Impacts of water quality on residential water heating equipment
Francis Effect of pollutants on corrosion of copper alloys in sea water: Part 2: Sulphide and chlorine
Al-Hashem et al. The use of electrochemical impedance spectroscopy to study the effect of chlorine and ammonia residuals on the corrosion of copper-based and nickel-based alloys in seawater
Shalaby et al. Study of effect of pollutant additions on corrosion behaviour of Al-brass in sea water
JP2004239638A (en) Method and apparatus for determining corrosiveness in water
Wagner et al. An investigation of microbiologically mediated corrosion of copper-nickel piping systems selectively treated with ferrous sulfate
Baumgartner Microbiological Corrosion What Causes It and How It Can Be Controlled

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20150526

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20160421

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20160426

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20160621

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20160830

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20160912

R150 Certificate of patent or registration of utility model

Ref document number: 6015358

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250