JP2012201967A - Method for inhibiting corrosion of copper member and corrosion inhibitor - Google Patents
Method for inhibiting corrosion of copper member and corrosion inhibitor Download PDFInfo
- Publication number
- JP2012201967A JP2012201967A JP2011070262A JP2011070262A JP2012201967A JP 2012201967 A JP2012201967 A JP 2012201967A JP 2011070262 A JP2011070262 A JP 2011070262A JP 2011070262 A JP2011070262 A JP 2011070262A JP 2012201967 A JP2012201967 A JP 2012201967A
- Authority
- JP
- Japan
- Prior art keywords
- group
- copper
- corrosion
- formula
- salt
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
Landscapes
- Preventing Corrosion Or Incrustation Of Metals (AREA)
Abstract
Description
本発明は、水に接した銅系部材の腐食抑制技術に関する。詳しくは、冷却水系などの水系に接する銅管等の銅系部材に対し、薬剤を用いて腐食を抑制する技術に関する。 The present invention relates to a technique for inhibiting corrosion of a copper-based member in contact with water. More specifically, the present invention relates to a technique for suppressing corrosion of a copper-based member such as a copper pipe in contact with an aqueous system such as a cooling water system using a chemical.
銅は熱伝導性に優れる特性を有し、空調機器や熱交換器などの伝熱管などに広く使用されているが、これらの水系に接する銅系部材には腐食の問題がある。特に、最近の機器は高効率化が進んでおり、熱交換器に用いられる銅管の肉厚が非常に薄くなっていることから、腐食の発生は銅管の貫通漏洩につながる危険性が高い。よって、銅系部材に腐食を発生させないこと、発生した腐食を進行させないことが、機器の安定稼動、長寿命化に不可欠である。 Copper has a characteristic of excellent thermal conductivity, and is widely used for heat transfer tubes such as air conditioners and heat exchangers. However, these copper-based members in contact with water systems have a problem of corrosion. In particular, the efficiency of recent equipment is increasing, and the thickness of copper pipes used in heat exchangers is extremely thin. Therefore, the occurrence of corrosion has a high risk of lead-through leakage of copper pipes. . Therefore, it is indispensable for stable operation and long life of the equipment that the copper-based member does not corrode and does not proceed with the generated corrosion.
一般に、腐食反応は金属の溶出反応(アノード反応)と酸化剤の還元反応(カソード反応)が対になって進行する。例えば、冷却水のようなpH中性から弱アルカリ性の環境では、水中の溶存酸素が酸化剤としてカソード反応の担い手になる。 In general, the corrosion reaction proceeds by a pair of metal elution reaction (anode reaction) and oxidant reduction reaction (cathode reaction). For example, in a pH neutral to weakly alkaline environment such as cooling water, dissolved oxygen in the water becomes a catalyst for the cathode reaction as an oxidizing agent.
従来、水系に接する銅系部材の腐食を抑制するために、ベンゾトリアゾール、トリルトリアゾール、メルカプトベンゾチアゾールといったアゾール系の銅用防食剤を水系に添加する水処理が行われている(例えば、特許文献1,2)。冷却水系などの水系に、これらのアゾール系銅用防食剤を添加することにより、水系に接する銅系部材に対して優れた腐食抑制効果を発揮することが知られており、広く適用されている。
即ち、アゾール系の銅用防食剤は、腐食反応における金属の溶出反応(アノード反応)を抑制する効果に優れており、良好な腐食抑制効果を示す。
Conventionally, in order to suppress corrosion of a copper-based member in contact with an aqueous system, water treatment in which an azole-based anticorrosive agent for copper such as benzotriazole, tolyltriazole, or mercaptobenzothiazole is added to the aqueous system has been performed (for example, Patent Documents). 1, 2). It is known that by adding these azole copper anticorrosives to an aqueous system such as a cooling water system, it exhibits an excellent corrosion-inhibiting effect on copper-based members in contact with the aqueous system, and is widely applied. .
That is, the azole-type anticorrosive agent for copper is excellent in the effect of suppressing the metal elution reaction (anode reaction) in the corrosion reaction, and exhibits a good corrosion-inhibiting effect.
しかしながら、アゾール系銅用防食剤を添加した場合においても、腐食の発生及び進行を十分に抑制できない場合もある。例えば、酸化剤の過剰添加など、何らかの原因によりアゾール系銅用防食剤よりなる防食皮膜が局部的に破壊され、皮膜の破壊された部分からの銅の溶出をアゾール系銅用防食剤が抑えきれない結果、皮膜破壊部が局部的なアノードとなり、腐食が進行する場合がある。 However, even when an azole copper anticorrosive is added, the occurrence and progression of corrosion may not be sufficiently suppressed. For example, an anti-corrosion film made of an azole copper anti-corrosion agent is locally destroyed for some reason, such as excessive addition of an oxidizing agent, and the elution of copper from the destroyed part of the film can be suppressed by the azole copper anti-corrosion agent. As a result, the film destruction part becomes a local anode, and corrosion may proceed.
本発明は、上記従来の問題を解決し、冷却水系などの水系に接する銅管等の銅系部材に対して、少量の薬剤を用いて、腐食の発生を効果的に抑制する腐食抑制方法及び腐食抑制剤を提供することを課題とする。 The present invention solves the above-mentioned conventional problems, and uses a small amount of chemicals for a copper-based member such as a copper pipe in contact with an aqueous system such as a cooling water system, and effectively suppresses the occurrence of corrosion and It is an object to provide a corrosion inhibitor.
本発明者は上記課題を解決すべく鋭意検討を重ねた結果、下記一般式(1)で表される特定の化合物が、水系に接した銅系部材のカソード反応抑制効果に優れること、この化合物と、アノード反応抑制効果に優れるアゾール系銅用防食剤との併用により、少量の薬剤添加で、銅系部材の腐食を効果的に抑制することができることを見出した。 As a result of intensive studies to solve the above-mentioned problems, the present inventor is that the specific compound represented by the following general formula (1) is excellent in the cathode reaction suppression effect of a copper-based member in contact with an aqueous system, and this compound In addition, the present inventors have found that the corrosion of copper-based members can be effectively suppressed with the addition of a small amount of chemicals by the combined use with an azole-based anticorrosive for copper having an excellent anode reaction suppression effect.
本発明はこのような知見に基いて達成されたものであり、以下を要旨とする。 The present invention has been achieved on the basis of such findings, and the gist thereof is as follows.
[1] 銅系部材と接する水系に対し、下記式(1)で表される化合物とアゾール系銅用防食剤とを添加することを特徴とする銅系部材の腐食抑制方法。 [1] A method for inhibiting corrosion of a copper-based member, comprising adding a compound represented by the following formula (1) and an azole-based anticorrosive for copper to an aqueous system in contact with the copper-based member.
(上記(1)式中、Rはアルキル基又はアルケニル基を表し、X,Y,Zはそれぞれ独立に水素原子、アルキル基、ベンジル基、ヒドロキシアルキル基、又はカルボキシアルキル基を表し、ヒドロキシアルキル基、カルボキシアルキル基は塩を形成していてもよい。) (In the formula (1), R represents an alkyl group or an alkenyl group, and X, Y, and Z each independently represent a hydrogen atom, an alkyl group, a benzyl group, a hydroxyalkyl group, or a carboxyalkyl group, and a hydroxyalkyl group. The carboxyalkyl group may form a salt.)
[2] 前記(1)式中のRのアルキル基又はアルケニルキル基の炭素数が6〜18であることを特徴とする[1]に記載の銅系部材の腐食抑制方法。 [2] The method for inhibiting corrosion of a copper-based member according to [1], wherein the alkyl group or alkenylkill group of R in the formula (1) has 6 to 18 carbon atoms.
[3] 前記(1)式中のX、Y、Zが、水素原子、ヒドロキシエチル基、カルボキシメチル基、塩を形成したヒドロキシエチル基、及び塩を形成したカルボキシメチル基から選ばれることを特徴とする[1]又は[2]に記載の銅系部材の腐食抑制方法。 [3] X, Y, Z in the formula (1) is selected from a hydrogen atom, a hydroxyethyl group, a carboxymethyl group, a hydroxyethyl group forming a salt, and a carboxymethyl group forming a salt. The method for inhibiting corrosion of a copper-based member according to [1] or [2].
[4] 前記(1)式のRが炭素数11のアルキル基で、Xが水素原子で、Yがヒドロキシエチル基で、Zがカルボキシメチル基又は塩を形成したカルボキシメチル基である[3]に記載の銅系部材の腐食抑制方法。 [4] In the formula (1), R is an alkyl group having 11 carbon atoms, X is a hydrogen atom, Y is a hydroxyethyl group, and Z is a carboxymethyl group or a carboxymethyl group forming a salt. [3] The method for inhibiting corrosion of a copper-based member according to claim 1.
[5] 前記アゾール系銅用防食剤がベンゾトリアゾールであることを特徴とする[1]ないし[4]のいずれかに記載の銅系部材の腐食抑制方法。 [5] The method for inhibiting corrosion of a copper-based member according to any one of [1] to [4], wherein the azole-based copper anticorrosive is benzotriazole.
[6] 前記水系が、酸化性スライムコントロール剤が添加されている水系であることを特徴とする[1]ないし[5]のいずれかに記載の銅系部材の腐食抑制方法。 [6] The method for inhibiting corrosion of a copper-based member according to any one of [1] to [5], wherein the aqueous system is an aqueous system to which an oxidizing slime control agent is added.
[7] 水系に接する銅系部材の腐食を抑制する腐食抑制剤であって、下記(1)で表される化合物と、アゾール系銅用防食剤とを含むことを特徴とする銅系部材の腐食抑制剤。 [7] A corrosion inhibitor for suppressing corrosion of a copper-based member in contact with an aqueous system, comprising a compound represented by the following (1) and an anti-corrosive agent for azole-based copper, Corrosion inhibitor.
(上記(1)式中、Rはアルキル基又はアルケニル基を表し、X,Y,Zはそれぞれ独立に水素原子、アルキル基、ベンジル基、ヒドロキシアルキル基、又はカルボキシアルキル基を表し、ヒドロキシアルキル基、カルボキシアルキル基は塩を形成していてもよい。) (In the formula (1), R represents an alkyl group or an alkenyl group, and X, Y, and Z each independently represent a hydrogen atom, an alkyl group, a benzyl group, a hydroxyalkyl group, or a carboxyalkyl group, and a hydroxyalkyl group. The carboxyalkyl group may form a salt.)
[8] 前記(2)式中のRのアルキル基又はアルケニルキル基の炭素数が6〜18であることを特徴とする[7]に記載の銅系部材の腐食抑制剤。 [8] The corrosion inhibitor for copper-based members according to [7], wherein the alkyl group or alkenylkill group of R in the formula (2) has 6 to 18 carbon atoms.
[9] 前記(1)式中のX、Y、Zが、水素原子、ヒドロキシエチル基、カルボキシメチル基、塩を形成したヒドロキシエチル基、及び塩を形成したカルボキシメチル基から選ばれることを特徴とする[7]又は[8]に記載の銅系部材の腐食抑制剤。 [9] X, Y and Z in the formula (1) are selected from a hydrogen atom, a hydroxyethyl group, a carboxymethyl group, a hydroxyethyl group forming a salt, and a carboxymethyl group forming a salt. The corrosion inhibitor for copper-based members according to [7] or [8].
[10] 前記(1)式のRが炭素数11のアルキル基で、Xが水素原子で、Yがヒドロキシエチル基で、Zがカルボキシメチル基又は塩を形成したカルボキシメチル基である[9]に記載の銅系部材の腐食抑制剤。 [10] R in the formula (1) is an alkyl group having 11 carbon atoms, X is a hydrogen atom, Y is a hydroxyethyl group, and Z is a carboxymethyl group or a carboxymethyl group forming a salt [9]. The corrosion inhibitor for copper-based members according to 1.
[11] 前記アゾール系銅用防食剤がベンゾトリアゾールであることを特徴とする[7]ないし[10]のいずれかに記載の銅系部材の腐食抑制剤。 [11] The corrosion inhibitor for copper-based members according to any one of [7] to [10], wherein the azole copper anticorrosive is benzotriazole.
一般に、腐食反応は金属の溶出反応(アノード反応)と酸化剤の還元反応(カソード反応)が対になって進行する。
従って、銅管等の銅系部材が接する水系に対し、アノード反応抑制効果に優れる薬剤とカソード反応抑制効果に優れる薬剤を添加することにより、銅系部材表面に耐食性、耐久性に優れる皮膜が形成され、腐食の発生及び進行を有効に抑制することが可能となる。
In general, the corrosion reaction proceeds by a pair of metal elution reaction (anode reaction) and oxidant reduction reaction (cathode reaction).
Therefore, a coating with excellent corrosion resistance and durability is formed on the surface of a copper-based member by adding a chemical having an excellent anodic reaction suppressing effect and a chemical having an excellent cathodic reaction-suppressing effect to an aqueous system in contact with a copper-based member such as a copper tube. Thus, the occurrence and progression of corrosion can be effectively suppressed.
本発明で用いる前記一般式(1)で表される化合物(以下「化合物(1)」と称す場合がある。)は、銅系部材のカソード反応抑制効果に優れ、一方、アゾール系銅用防食剤はアノード反応抑制効果に優れることから、本発明によれば、水系に対し化合物(1)とアゾール系銅用防食剤とを添加することにより、優れた防食効果を得ることが可能となる。 The compound represented by the general formula (1) used in the present invention (hereinafter sometimes referred to as “compound (1)”) is excellent in the effect of suppressing the cathode reaction of the copper-based member, while the anti-corrosion for azole-based copper. Since the agent is excellent in the anode reaction suppressing effect, according to the present invention, an excellent anticorrosive effect can be obtained by adding the compound (1) and the azole copper anticorrosive to the aqueous system.
従って、本発明によれば、水系に接した銅系部材の腐食を効果的に抑制して、水系の機器を長期に亘り安定に稼動させると共に、その寿命を大幅に延長させることが可能となる。 Therefore, according to the present invention, it is possible to effectively suppress the corrosion of the copper-based member in contact with the aqueous system, to stably operate the water-based equipment for a long period of time, and to greatly extend its life. .
以下に本発明の銅系部材の腐食抑制方法及び腐食抑制剤の実施の形態を詳細に説明する。 DESCRIPTION OF EMBODIMENTS Embodiments of a method for inhibiting corrosion of a copper-based member and a corrosion inhibitor according to the present invention will be described in detail below.
本発明においては、以下の化合物(1)とアゾール系銅用防食剤とを銅系部材に接する水系に添加する。 In the present invention, the following compound (1) and an azole copper anticorrosive are added to the aqueous system in contact with the copper-based member.
<化合物(1)>
本発明に係る化合物(1)は、下記式(1)で表される化合物である。
<Compound (1)>
The compound (1) according to the present invention is a compound represented by the following formula (1).
(上記(1)式中、Rはアルキル基又はアルケニル基を表し、X,Y,Zはそれぞれ独立に水素原子、アルキル基、ベンジル基、ヒドロキシアルキル基、又はカルボキシアルキル基を表し、ヒドロキシアルキル基、カルボキシアルキル基は塩を形成していてもよい。) (In the formula (1), R represents an alkyl group or an alkenyl group, and X, Y, and Z each independently represent a hydrogen atom, an alkyl group, a benzyl group, a hydroxyalkyl group, or a carboxyalkyl group, and a hydroxyalkyl group. The carboxyalkyl group may form a salt.)
上記式(1)中のRのアルキル基又はアルケニル基の炭素数は6〜18、特に11であることが好ましい。 The carbon number of the alkyl group or alkenyl group of R in the above formula (1) is preferably 6 to 18, particularly 11.
また、X,Y,Zとしては、それぞれ独立に、水素原子、ヒドロキシエチル基、カルボキシメチル基(ヒドロキシエチル基、カルボキシメチル基はナトリウム塩、カリウム塩等のアルカリ金属塩などの塩を形成していてもよい。)であることが好ましい。 X, Y, and Z each independently form a hydrogen atom, a hydroxyethyl group, or a carboxymethyl group (hydroxyethyl group or carboxymethyl group is a salt such as an alkali metal salt such as sodium salt or potassium salt). It is preferable that
化合物(1)としては、前記(1)式のRが炭素数11のアルキル基で、Xが水素原子で、Yがヒドロキシエチル基で、Zがカルボキシメチル基又は塩を形成したカルボキシメチル基であるものが特に好ましい。 As the compound (1), R in the formula (1) is an alkyl group having 11 carbon atoms, X is a hydrogen atom, Y is a hydroxyethyl group, and Z is a carboxymethyl group or a carboxymethyl group forming a salt. Some are particularly preferred.
化合物(1)は、1種を単独で用いてもよく、2種以上を併用してもよい。 A compound (1) may be used individually by 1 type, and may use 2 or more types together.
<アゾール系銅用防食剤>
アゾール系銅用防食剤としては、トリルトリアゾール、ベンゾトリアゾール、メルカプトベンゾチアゾール及びそれぞれの誘導体などが例示され、ベンゾトリアゾールが特に好適である。
<Azole copper anticorrosive>
Examples of the azole copper anticorrosive include tolyltriazole, benzotriazole, mercaptobenzothiazole and their derivatives, and benzotriazole is particularly preferred.
これらのアゾール系銅用防食剤は、1種を単独で用いてもよく、2種以上を併用してもよい。 These azole copper anticorrosives may be used alone or in combination of two or more.
<水系への添加量>
本発明に用いる化合物(1)及びアゾール系銅用防食剤の水系への添加に際しては、処理対象水系の水質、銅系部材の表面積などにより最適な効果を得られる濃度に調整して用いることができる。
<Amount added to water system>
When adding the compound (1) and the azole copper anticorrosive used in the present invention to the aqueous system, it is necessary to adjust the concentration to obtain an optimal effect depending on the water quality of the water system to be treated, the surface area of the copper-based member, and the like. it can.
化合物(1)の水系への添加濃度は、通常0.2〜100mg/Lの範囲であり、好ましくは0.5〜20mg/Lである。 The concentration of compound (1) added to the aqueous system is usually in the range of 0.2 to 100 mg / L, preferably 0.5 to 20 mg / L.
アゾール系銅用防食剤の水系への添加濃度は、通常0.2〜20mg/Lの範囲であり、好ましくは0.5〜10mg/Lである。 The concentration of the azole copper anticorrosive added to the aqueous system is usually in the range of 0.2 to 20 mg / L, preferably 0.5 to 10 mg / L.
化合物(1)とアゾール系銅用防食剤との添加濃度の相関については特に制限はないが、アゾール系銅用防食剤の添加濃度に対して化合物(1)の添加濃度が0.1〜10重量倍程度となるように用いることが好ましい。 Although there is no restriction | limiting in particular about the correlation of the addition density | concentration of a compound (1) and an azole-type copper anticorrosive, The addition density | concentration of a compound (1) is 0.1-10 with respect to the addition concentration of an azole-type copper anticorrosive. It is preferable to use so that it may become about a weight times.
<処理対象水系の条件>
本発明による処理時(即ち、化合物(1)とアゾール系銅用防食剤の添加時)の水系の温度(水温)としては、本発明の効果を得ることができる条件であれば特に制限はないが、5〜60℃の範囲が好ましい。また、処理時の水系のpHとしては、通常4〜11の範囲で処理が行われる。
<Conditions of target water system>
The aqueous temperature (water temperature) at the time of treatment according to the present invention (that is, at the time of addition of compound (1) and azole copper anticorrosive) is not particularly limited as long as the effect of the present invention can be obtained. However, the range of 5-60 degreeC is preferable. Moreover, as a pH of the aqueous system at the time of a process, a process is normally performed in the range of 4-11.
本発明による処理時の水系の流速についても、本発明の効果を得ることができる条件であれば特に制限はないが、通常0.1〜2m/secの範囲で処理を行う。静止条件においても処理を行うことが可能であるが、この場合には、添加した薬剤の銅系部材表面への拡散が律速となるため、添加濃度を高めるなどの措置が必要となる。 The flow rate of the aqueous system during the treatment according to the present invention is not particularly limited as long as the effect of the present invention can be obtained, but the treatment is usually performed in the range of 0.1 to 2 m / sec. Although it is possible to perform the treatment even in a stationary condition, in this case, since the diffusion of the added drug to the surface of the copper-based member becomes rate-limiting, measures such as increasing the concentration of addition are required.
化合物(1)とアゾール系銅用防食剤の水系への添加方法には特に制限はなく、各成分を別々に添加することも可能であり、あらかじめ化合物(1)とアゾール系銅用防食剤とを一剤に配合した水処理剤として水系へ添加することも可能である。 There is no restriction | limiting in particular in the addition method to the aqueous system of a compound (1) and an azole type copper anticorrosive agent, It is also possible to add each component separately, Compound (1) and an azole type copper anticorrosive agent beforehand It is also possible to add to a water system as a water treatment agent blended in one agent.
本発明においては、本発明の効果を阻害しない範囲で、化合物(1)及びアゾール系銅用防食剤以外の他の水処理剤、例えば防食剤、スケール防止剤、分散剤、スライムコントロール剤、剥離剤、消泡剤、界面活性剤、キレート剤などを併用することが可能である。 In the present invention, water treatment agents other than the compound (1) and the azole copper anticorrosive agent, for example, anticorrosive agents, scale inhibitors, dispersants, slime control agents, peeling, as long as the effects of the present invention are not impaired. Agents, antifoaming agents, surfactants, chelating agents and the like can be used in combination.
特に、本発明の銅系部材の腐食抑制方法は、適用水系に酸化性スライムコントロール剤が添加されている水系においても、良好な腐食抑制効果を発揮することができるという特長を有し、本発明の適用水系には、酸化性スライムコントロール剤が添加されていてもよい。このような酸化性スライムコントロール剤としては、次亜塩素酸及びその塩、次亜臭素酸及びその塩、塩素化イソシアヌル酸及びその塩、例えば塩素化スルファミン酸及びその塩や臭素化スルファミン酸及びその塩のようなクロラミン化合物やブロマミン化合物、過酸化水素などが挙げられる。 In particular, the method for inhibiting corrosion of a copper-based member of the present invention has a feature that it can exhibit a good corrosion-inhibiting effect even in an aqueous system in which an oxidizing slime control agent is added to the applied aqueous system. An oxidizing slime control agent may be added to the applied water system. Such oxidizing slime control agents include hypochlorous acid and salts thereof, hypobromite and salts thereof, chlorinated isocyanuric acid and salts thereof, such as chlorinated sulfamic acid and salts thereof, brominated sulfamic acid and salts thereof. Examples include chloramine compounds such as salts, bromamine compounds, and hydrogen peroxide.
また、スケール防止剤として低分子量ポリマーを併用添加しても良い。 Further, a low molecular weight polymer may be added in combination as a scale inhibitor.
低分子量ポリマーとしては特に制限はなく、冷却水系のスケール防止剤として用いられているものをいずれも好適に用いることができる。例えば、アクリル酸、メタアクリル酸、HAPS(2−ヒドロキシ−3−アリルオキシ−1−プロパンスルホン酸)、マレイン酸、AMPS(2−アクリルアミド−2−メチルプロパンスルホン酸)、HEMA(2−ヒドロキシエチルメタアクリレート)、アクリル酸メチル、スチレンスルホン酸、イソブチレンよりなる群から選ばれる1種又は2種以上のモノマーが重合又は共重合した、ホモポリマー又はコポリマー、好ましくはアクリル酸、メタアクリル酸、HAPS、マレイン酸、AMPS、イソブチレンよりなる群から選ばれる1種又は2種以上のモノマーが重合又は共重合した、ホモポリマー又はコポリマーであって、平均分子量が5,000〜50,000の低分子量水溶性ポリマーが挙げられる。 There is no restriction | limiting in particular as a low molecular weight polymer, All can be used suitably as what is used as a scale inhibitor of a cooling water system. For example, acrylic acid, methacrylic acid, HAPS (2-hydroxy-3-allyloxy-1-propanesulfonic acid), maleic acid, AMPS (2-acrylamido-2-methylpropanesulfonic acid), HEMA (2-hydroxyethylmeta) Acrylate), methyl acrylate, styrene sulfonic acid, isobutylene, one or two or more monomers polymerized or copolymerized, homopolymer or copolymer, preferably acrylic acid, methacrylic acid, HAPS, male A low molecular weight water-soluble polymer having an average molecular weight of 5,000 to 50,000, which is a homopolymer or copolymer obtained by polymerizing or copolymerizing one or more monomers selected from the group consisting of acid, AMPS, and isobutylene Is mentioned.
これらの低分子ポリマーは1種を単独で用いても良く、2種以上を併用しても良い。 These low molecular weight polymers may be used alone or in combination of two or more.
低分子量ポリマーの添加量としては、冷却水系の循環水中の固形分濃度として5〜50mg/Lとすることが好ましい。 The addition amount of the low molecular weight polymer is preferably 5 to 50 mg / L as the solid content concentration in the circulating water of the cooling water system.
<銅系部材の腐食抑制剤>
本発明の銅系部材の腐食抑制剤は、前述の化合物(1)とアゾール系銅用防食剤とを含有するものであり、これらが一剤化されたものであってもよく、各成分が別々に提供されるものであってもよい。
<Corrosion inhibitor for copper-based materials>
The corrosion inhibitor for copper-based members of the present invention contains the above-mentioned compound (1) and an azole-based anticorrosive for copper, and these may be combined into a single component. It may be provided separately.
本発明の銅系部材の腐食抑制剤中の各成分の含有割合には特に制限はなく、また、本発明の銅系部材の腐食抑制剤は、化合物(1)及びアゾール系銅用防食剤以外の防食剤、スケール防止剤、分散剤、スライムコントロール剤、剥離剤、消泡剤、界面活性剤、キレート剤等の他の薬剤を含むものであってもよいが、化合物(1)とアゾール系銅用防食剤との併用による優れた効果を十分に得るために、本発明の銅系部材の腐食抑制剤は、化合物(1)に対して、アゾール系銅用防食剤の割合が10〜1000重量%、特に50〜500重量%程度となるようにこれらを含有することが好ましい。 There is no restriction | limiting in particular in the content rate of each component in the corrosion inhibitor of the copper-type member of this invention, Moreover, the corrosion inhibitor of the copper-type member of this invention is other than a compound (1) and an azole-type copper anticorrosive. May contain other chemicals such as anticorrosive, scale inhibitor, dispersant, slime control agent, release agent, antifoaming agent, surfactant, chelating agent, etc., but compound (1) and azole series In order to sufficiently obtain the excellent effect of the combined use with the copper anticorrosive, the corrosion inhibitor for the copper-based member of the present invention has a ratio of the azole-based copper anticorrosive to the compound (1) of 10 to 1000. It is preferable to contain these in an amount of about 50% by weight, particularly about 50 to 500% by weight.
以下に実施例を挙げて本発明をより具体的に説明する。 Hereinafter, the present invention will be described more specifically with reference to examples.
[実施例1〜3、比較例1〜5]
JIS K0100「工業用水腐食試験方法」に記載された「回転法」に準拠した評価を行った。ビーカー内の1Lの試験水に、試験片1枚を取り付けた支持棒を浸漬し、試験片表面の線流速が0.5m/secとなるよう支持棒を回転させた。試験前後の試験片の重量変化より銅の腐食速度を測定する方法で評価を行った。
[Examples 1 to 3, Comparative Examples 1 to 5]
Evaluation based on "Rotation method" described in JIS K0100 "Industrial water corrosion test method" was performed. A support rod attached with one test piece was immersed in 1 L of test water in a beaker, and the support rod was rotated so that the linear flow velocity on the surface of the test piece was 0.5 m / sec. Evaluation was performed by measuring the corrosion rate of copper from the change in weight of the test piece before and after the test.
試験水、用いた薬剤、試験片、試験条件は以下の通りである。 Test water, chemicals used, test pieces, and test conditions are as follows.
<試験水>
模擬冷却水に、マレイン酸イソブチレン共重合体(マレイン酸:イソブチレン=50:50(モノマーモル比),分子量20,000)を固形分濃度として5mg/L、モノクロロスルファミン酸塩(ナトリウム塩を主体とする)をDPD法による全残留塩素測定値として10mg/Lとなるよう添加したものを試験水とした。
模擬冷却水は、純水に塩化カルシウム、硫酸マグネシウム、炭酸水素ナトリウム、ケイ酸ナトリウム3号を所定量添加し、水酸化ナトリウムあるいは硫酸によりpHを所定の値に調整したものを用いた。
試験に用いた模擬冷却水の水質を表1に示す。
<Test water>
In simulated cooling water, maleic acid isobutylene copolymer (maleic acid: isobutylene = 50: 50 (monomer molar ratio), molecular weight 20,000) as a solid content concentration of 5 mg / L, monochlororosulphate (mainly sodium salt) ) Was added so that the total residual chlorine measured value by the DPD method was 10 mg / L.
As the simulated cooling water, a predetermined amount of calcium chloride, magnesium sulfate, sodium bicarbonate, sodium silicate No. 3 was added to pure water, and the pH was adjusted to a predetermined value with sodium hydroxide or sulfuric acid.
Table 1 shows the water quality of the simulated cooling water used in the test.
<薬剤>
化合物(1):前記一般式(1)中、X、Y、Zが水素原子、ヒドロキシエチル基、カルボキシメチル基またはその塩の少なくとも一種以上より選ばれた構造の物質を含む混合物であって、下記一般式(2)で表される化合物を主体とする混合物
<Drug>
Compound (1): A mixture containing a substance having a structure in which, in the general formula (1), X, Y and Z are selected from at least one of a hydrogen atom, a hydroxyethyl group, a carboxymethyl group or a salt thereof, A mixture mainly composed of a compound represented by the following general formula (2)
(Rが炭素数6〜18のアルキル基あるいはアルケニル基であって、Rが炭素数11のアルキル基である化合物を主体とする混合物)
アゾール系銅用防食剤:ベンゾトリアゾール
(A mixture mainly composed of a compound in which R is an alkyl group or alkenyl group having 6 to 18 carbon atoms and R is an alkyl group having 11 carbon atoms)
Azole copper anticorrosive: benzotriazole
<試験片>
長辺50mm、短辺30mm、厚さ1mmの銅(C1220)製試験片(ねじ止め用のφ4mm穴あき)
<Specimen>
Copper (C1220) test piece with a long side of 50 mm, a short side of 30 mm, and a thickness of 1 mm (φ4 mm hole for screwing)
<試験条件>
試験温度:40℃
試験期間:7日間(試験開始3日目に試験水を全量交換)
<Test conditions>
Test temperature: 40 ° C
Test period: 7 days (change all test water on the 3rd day of the test)
表2に示す試験水に、表2に示す薬剤を表3に示す添加濃度で添加して(ただし、比較例1では薬剤添加せず)、銅製試験片の腐食速度(mdd)を求め、結果を表2に示した。 The chemicals shown in Table 2 were added to the test water shown in Table 2 at the addition concentrations shown in Table 3 (however, no chemicals were added in Comparative Example 1), and the corrosion rate (mdd) of the copper test piece was determined. Are shown in Table 2.
<考察>
表2より、化合物(1)とアゾール系銅用防食剤とを併用することにより、それぞれ単独添加条件に比べて腐食速度が大きく抑制されていることが明らかであり、両成分を併用することによる相乗効果が確認された。
<Discussion>
From Table 2, it is clear that the corrosion rate is greatly suppressed by using the compound (1) and the azole copper anticorrosive agent in combination with each other, and both components are used in combination. A synergistic effect was confirmed.
Claims (11)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2011070262A JP2012201967A (en) | 2011-03-28 | 2011-03-28 | Method for inhibiting corrosion of copper member and corrosion inhibitor |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2011070262A JP2012201967A (en) | 2011-03-28 | 2011-03-28 | Method for inhibiting corrosion of copper member and corrosion inhibitor |
Publications (1)
Publication Number | Publication Date |
---|---|
JP2012201967A true JP2012201967A (en) | 2012-10-22 |
Family
ID=47183273
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2011070262A Pending JP2012201967A (en) | 2011-03-28 | 2011-03-28 | Method for inhibiting corrosion of copper member and corrosion inhibitor |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP2012201967A (en) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2014091843A (en) * | 2012-11-01 | 2014-05-19 | Kurita Engineering Co Ltd | Corrosion prevention method for heat exchanger narrow pipe made of copper alloy |
Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS5265141A (en) * | 1975-11-25 | 1977-05-30 | Kao Corp | Corrosion inhibitor for metals |
JPH06128767A (en) * | 1992-10-16 | 1994-05-10 | Seiwa Koki Kk | Corrosion inhibitor composition for nonferrous metal |
JP2007255788A (en) * | 2006-03-23 | 2007-10-04 | Aquas Corp | Management method for heat storage cold and hot water system |
-
2011
- 2011-03-28 JP JP2011070262A patent/JP2012201967A/en active Pending
Patent Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS5265141A (en) * | 1975-11-25 | 1977-05-30 | Kao Corp | Corrosion inhibitor for metals |
JPH06128767A (en) * | 1992-10-16 | 1994-05-10 | Seiwa Koki Kk | Corrosion inhibitor composition for nonferrous metal |
JP2007255788A (en) * | 2006-03-23 | 2007-10-04 | Aquas Corp | Management method for heat storage cold and hot water system |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2014091843A (en) * | 2012-11-01 | 2014-05-19 | Kurita Engineering Co Ltd | Corrosion prevention method for heat exchanger narrow pipe made of copper alloy |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP2012509410A (en) | Compositions and methods for controlling copper release and copper alloy erosion in industrial systems | |
TWI708867B (en) | Corrosion inhibition method in closed cooling water system, corrosion inhibitor for closed cooling water system, and corrosion inhibition system | |
JP2012201966A (en) | Method for inhibiting corrosion of copper member, and corrosion inhibitor | |
JP5099884B2 (en) | Corrosion inhibitor | |
JP4361812B2 (en) | Treatment method for open circulating cooling water system | |
JP2012201967A (en) | Method for inhibiting corrosion of copper member and corrosion inhibitor | |
JP5789916B2 (en) | Pitting corrosion inhibitor and pitting corrosion suppression method | |
US20050023506A1 (en) | Organic corrosion inhibitors and corrosion control methods for water systems | |
JP4923664B2 (en) | Scale adhesion inhibitor and cooling water treatment method | |
JP4641027B2 (en) | Metal pitting corrosion inhibitor and suppression method | |
JP5559629B2 (en) | Water-based metal anticorrosion method | |
JP6504748B2 (en) | Method of inhibiting metal corrosion | |
JP5085962B2 (en) | Silica-based antifouling agent and silica-based antifouling method | |
JP2003082479A (en) | Anticorrosive, and corrosion prevention method | |
JP4787433B2 (en) | Water treatment method | |
JP2001137892A (en) | Water treating chemical | |
JP2008036562A (en) | Silica-stain adhesion inhibitor and adhesion inhibiting method | |
JP5824841B2 (en) | Method for inhibiting corrosion of copper-based parts | |
JP5147271B2 (en) | Silica-based antifouling agent and silica-based antifouling method | |
JP6331364B2 (en) | Corrosion reducing method and corrosion reducing agent | |
JP2014079719A (en) | Scale cleaning liquid composition and scale cleaning method | |
JP4467046B2 (en) | Metal corrosion inhibitor | |
JP6340767B2 (en) | Cooling water metal anticorrosion treatment method | |
JP2004107782A (en) | Corrosion prevention method | |
JP6566010B2 (en) | Metal anticorrosive for cooling water and processing method of cooling water system |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20140318 |
|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20150108 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20150120 |
|
A02 | Decision of refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A02 Effective date: 20150728 |