WO2020122173A1 - Cooling water scale prevention agent and cooling water scale prevention method - Google Patents

Cooling water scale prevention agent and cooling water scale prevention method Download PDF

Info

Publication number
WO2020122173A1
WO2020122173A1 PCT/JP2019/048678 JP2019048678W WO2020122173A1 WO 2020122173 A1 WO2020122173 A1 WO 2020122173A1 JP 2019048678 W JP2019048678 W JP 2019048678W WO 2020122173 A1 WO2020122173 A1 WO 2020122173A1
Authority
WO
WIPO (PCT)
Prior art keywords
acid
component
cooling water
salt
structural unit
Prior art date
Application number
PCT/JP2019/048678
Other languages
French (fr)
Japanese (ja)
Inventor
奈津美 谷山
健 栗原
卓也 時藤
Original Assignee
栗田工業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Family has litigation
First worldwide family litigation filed litigation Critical https://patents.darts-ip.com/?family=71076495&utm_source=google_patent&utm_medium=platform_link&utm_campaign=public_patent_search&patent=WO2020122173(A1) "Global patent litigation dataset” by Darts-ip is licensed under a Creative Commons Attribution 4.0 International License.
Application filed by 栗田工業株式会社 filed Critical 栗田工業株式会社
Priority to JP2019569508A priority Critical patent/JP6753543B1/en
Priority to CN201980079050.4A priority patent/CN113165925A/en
Publication of WO2020122173A1 publication Critical patent/WO2020122173A1/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F5/00Softening water; Preventing scale; Adding scale preventatives or scale removers to water, e.g. adding sequestering agents
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F5/00Softening water; Preventing scale; Adding scale preventatives or scale removers to water, e.g. adding sequestering agents
    • C02F5/08Treatment of water with complexing chemicals or other solubilising agents for softening, scale prevention or scale removal, e.g. adding sequestering agents
    • C02F5/10Treatment of water with complexing chemicals or other solubilising agents for softening, scale prevention or scale removal, e.g. adding sequestering agents using organic substances
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F5/00Softening water; Preventing scale; Adding scale preventatives or scale removers to water, e.g. adding sequestering agents
    • C02F5/08Treatment of water with complexing chemicals or other solubilising agents for softening, scale prevention or scale removal, e.g. adding sequestering agents
    • C02F5/10Treatment of water with complexing chemicals or other solubilising agents for softening, scale prevention or scale removal, e.g. adding sequestering agents using organic substances
    • C02F5/12Treatment of water with complexing chemicals or other solubilising agents for softening, scale prevention or scale removal, e.g. adding sequestering agents using organic substances containing nitrogen
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F5/00Softening water; Preventing scale; Adding scale preventatives or scale removers to water, e.g. adding sequestering agents
    • C02F5/08Treatment of water with complexing chemicals or other solubilising agents for softening, scale prevention or scale removal, e.g. adding sequestering agents
    • C02F5/10Treatment of water with complexing chemicals or other solubilising agents for softening, scale prevention or scale removal, e.g. adding sequestering agents using organic substances
    • C02F5/14Treatment of water with complexing chemicals or other solubilising agents for softening, scale prevention or scale removal, e.g. adding sequestering agents using organic substances containing phosphorus
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K5/00Use of organic ingredients
    • C08K5/16Nitrogen-containing compounds
    • C08K5/17Amines; Quaternary ammonium compounds
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K5/00Use of organic ingredients
    • C08K5/49Phosphorus-containing compounds
    • C08K5/51Phosphorus bound to oxygen
    • C08K5/53Phosphorus bound to oxygen bound to oxygen and to carbon only
    • C08K5/5317Phosphonic compounds, e.g. R—P(:O)(OR')2
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L33/00Compositions of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and only one being terminated by only one carboxyl radical, or of salts, anhydrides, esters, amides, imides or nitriles thereof; Compositions of derivatives of such polymers
    • C08L33/02Homopolymers or copolymers of acids; Metal or ammonium salts thereof
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F19/00Preventing the formation of deposits or corrosion, e.g. by using filters or scrapers
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28GCLEANING OF INTERNAL OR EXTERNAL SURFACES OF HEAT-EXCHANGE OR HEAT-TRANSFER CONDUITS, e.g. WATER TUBES OR BOILERS
    • F28G9/00Cleaning by flushing or washing, e.g. with chemical solvents

Definitions

  • the present invention relates to a scale inhibitor for cooling water and a scale prevention method for cooling water for preventing scale generated in a cooling water system containing at least one selected from iron, manganese, and aluminum.
  • a polymer having a carboxyl group obtained by polymerizing maleic acid, acrylic acid, itaconic acid, etc. is useful, and acrylic acid and 2-acrylamido-2-methylpropanesulfonic acid
  • a copolymer hereinafter, also referred to as "AA/AMPS copolymer” or a copolymer of acrylic acid and 2-hydroxy-3-allyloxypropanesulfonic acid (hereinafter, "AA/HAPS copolymer”) (Also referred to as ".”), etc.
  • AA/AMPS copolymer acrylic acid and 2-hydroxy-3-allyloxypropanesulfonic acid
  • AA/HAPS copolymer a copolymer obtained by combining nonionic vinyl monomers according to the target water quality is generally used as a scale adhesion preventing agent.
  • Patent Document 1 discloses a scale prevention method using an AA/AMPS copolymer.
  • Patent Document 2 discloses a cooling water treatment method using an AA/HAPS copo
  • a cooling water system containing iron, manganese, aluminum, etc. has a problem that the scale prevention effect of these copolymers is reduced.
  • acrylic acid, 2-acrylamido-2-methylpropanesulfonic acid, and tert-butylacrylamide, which are nonionic monomers are used. It has been considered to use the copolymer of (hereinafter, also referred to as “AA/AMPS/t-BuAAM copolymer”) as a scale adhesion preventive agent, but cooling with the presence of iron, manganese, aluminum, etc.
  • the present invention has been made in view of the above circumstances, and in one or more selected from iron, manganese, and aluminum, in a cooling water system such as an open circulation cooling water system, carbon steel, copper, copper alloy, etc.
  • An object of the present invention is to provide a scale inhibitor for cooling water and a scale prevention method for cooling water, which prevent scale adhesion to metallic equipment, piping, equipment, and the like, and scale failure accompanying it.
  • the present invention in a cooling water system containing one or more selected from iron, manganese, and aluminum, by using a cooling water scale inhibitor containing a specific copolymer and compound, an excellent scale prevention effect can be obtained. It was made based on the finding that it was done.
  • a scale inhibitor for cooling water in a cooling water system containing one or more selected from iron, manganese, and aluminum, Copolymer containing structural unit derived from acrylic acid and structural unit derived from 2-acrylamido-2-methylpropanesulfonic acid and salt thereof, and structural unit derived from acrylic acid and 2-hydroxy-3-allyloxypropane
  • Component (A) which is one or more compounds selected from copolymers containing structural units derived from sulfonic acid and salts thereof, Ethylenediaminetetraacetic acid and salts thereof, 3-hydroxy-2,2-iminodisuccinate tetrasodium and salts thereof, [(phosphonomethyl)imino]bis(6,1-hexanediylnitrilobismethylene)tetrakisphosphonic acid and salts thereof, and 1
  • a scale inhibitor for cooling water which comprises component (B) which is one or more compounds selected from hydroxyethane
  • a copolymer containing a structural unit derived from acrylic acid and a structural unit derived from 2-acrylamido-2-methylpropanesulfonic acid and a salt thereof are acrylic acid and 2-acrylamido-2-methylpropanesulfonic acid. And a salt thereof, and a copolymer of acrylic acid and 2-acrylamido-2-methylpropanesulfonic acid and tert-butylacrylamide and a salt thereof, which are one or more compounds selected from the above [[ [1] A scale inhibitor for cooling water.
  • a copolymer containing a structural unit derived from acrylic acid and a structural unit derived from 2-hydroxy-3-allyloxypropanesulfonic acid and a salt thereof are acrylic acid and 2-hydroxy-3-allyloxypropane sulfone.
  • the mass ratio of the component (A) to the ethylenediaminetetraacetic acid and its salt, and the component (B1) which is one or more compounds selected from tetrahydroxy 3-hydroxy-2,2-iminodisuccinate and its salt is 98:2 to 13:87, the scale inhibitor for cooling water according to any one of the above [1] to [4].
  • a method for preventing scale scale for cooling water which comprises using a scale inhibitor for cooling water, comprising component (B) which is one or more compounds selected from
  • a copolymer containing a structural unit derived from acrylic acid and a structural unit derived from 2-acrylamido-2-methylpropanesulfonic acid and a salt thereof are acrylic acid and 2-acrylamido-2-methylpropanesulfonic acid. And a salt thereof, and a copolymer of acrylic acid, 2-acrylamido-2-methylpropanesulfonic acid, and tert-butylacrylamide, and a salt thereof, and [7] above.
  • the scale prevention method for cooling water according to.
  • a copolymer containing a structural unit derived from acrylic acid and a structural unit derived from 2-hydroxy-3-allyloxypropanesulfonic acid and a salt thereof are acrylic acid and 2-hydroxy-3-allyloxypropane.
  • the component (A) is added so that the concentration of the component (A) in the cooling water system is 3.0 mg/L or more and 20.0 mg/L or less.
  • the concentration of the component (B1), which is one or more compounds selected from ethylenediaminetetraacetic acid and a salt thereof, and tetrasodium 3-hydroxy-2,2-iminodisuccinate and a salt thereof, in the cooling water system is 0.
  • the cooling water scale prevention method according to any one of the above [7] to [11], wherein the component (B1) is added so as to be 5 mg/L or more and 20.0 mg/L or less.
  • [13] selected from [(phosphonomethyl)imino]bis(6,1-hexanediylnitrilobismethylene)tetrakisphosphonic acid and salts thereof in the cooling water system, and 1-hydroxyethane-1,1-diphosphonic acid and salts thereof Any of [7] to [11] above, wherein the component (B2) is added so that the concentration of the component (B2), which is one or more compounds, is 0.5 mg/L or more and 5.0 mg/L or less.
  • the scale inhibitor for cooling water and the scale prevention method for cooling water of the present invention can contribute to stable and safe operation of the cooling water system and reduction of energy cost.
  • cooling water scale preventive agent of the present invention and the cooling water scale preventive method using the same are described in detail below.
  • the scale inhibitor for cooling water of the present invention is a scale inhibitor for cooling water of a cooling water system containing at least one selected from iron, manganese, and aluminum, and comprises structural units derived from acrylic acid and 2-acrylamide.
  • -Copolymers containing structural units derived from 2-methylpropanesulfonic acid and salts thereof, and copolymers containing structural units derived from acrylic acid and structural units derived from 2-hydroxy-3-allyloxypropanesulfonic acid Component (A), which is one or more compounds selected from the combination and salts thereof, ethylenediaminetetraacetic acid and salts thereof, 3-hydroxy-2,2-iminodisuccinate tetrasodium and salts thereof, [(phosphonomethyl)imino] Bis(6,1-hexanediylnitrilobismethylene)tetrakisphosphonic acid and its salt, and component (B) which is one or more compounds selected from 1-hydroxyethane-1,1-diphosphonic acid
  • the scale inhibitor may be a mixture in which the component (A) and the component (B) are prepared and mixed in advance, or may be a mixture in which each component is added at the time of use.
  • the total content of the component (A) and the component (B) in the scale inhibitor preliminarily adjusted and mixed is preferably 0.001% by mass or more and 1.000% by mass or less from the viewpoint of ease of handling and viscosity. , And more preferably 0.010 mass% or more and 0.500 mass% or less. Further, the total content of the component (A) and the component (B) in the active ingredient in the scale inhibitor mixed and adjusted in advance is preferably 80.0% by mass or more, more preferably 90.0% by mass.
  • the content of the component (A) in the scale inhibitor containing the component (A) and not the component (B) is 0.001 mass from the viewpoint of easy handling and viscosity. % Or more and 1.000 mass% or less, more preferably 0.010 mass% or more and 0.500 mass% or less, and still more preferably 0.020 mass% or more and 0.100 mass% or less.
  • the content of the component (A) in the active ingredient in the scale inhibitor containing the component (A) and not the component (B) is preferably 80.0% by mass or more, more preferably 90.
  • the content of the component (B) in the scale inhibitor containing the component (B) and not containing the component (A) when each component is added at the time of use is 0.001 from the viewpoint of easy handling and viscosity. It is preferably at least 1% by mass and at most 1.000% by mass, more preferably at least 0.010% by mass and at most 0.500% by mass, still more preferably at least 0.020% by mass and at most 0.100% by mass. ..
  • the content of the component (B) in the active ingredient in the scale inhibitor containing the component (B) and not the component (A) is preferably 80.0% by mass or more, more preferably 90. It is 0 mass% or more, more preferably 95.0 mass% or more, and particularly preferably 100 mass%.
  • the scale inhibitor for cooling water of the present invention is applied to a cooling water system containing one or more selected from iron, manganese, and aluminum. If the concentration of one or more selected from iron, manganese, and aluminum in the cooling water is 0.1 mg/L or more and 12.0 mg/L or less, the effect of the cooling water scale inhibitor is more significantly exhibited. Is preferably 0.3 mg/L or more and 10.0 mg/L or less, more preferably 0.4 mg/L or more and 7.0 mg/L or less, still more preferably 0.5 mg/L or more and 5.0 mg/L or less, and particularly preferably. Is more than 0.5 mg/L and not more than 4.0 mg/L, a more excellent effect is exhibited.
  • the concentrations of iron, manganese, and aluminum are values measured by a method such as an atomic absorption method or a thiocyanic acid method (absorbance method).
  • Component (A) is a copolymer containing a structural unit derived from acrylic acid (AA) and a structural unit derived from 2-acrylamido-2-methylpropanesulfonic acid (AMPS) and a salt thereof, and acrylic acid (AA).
  • AMPS 2-acrylamido-2-methylpropanesulfonic acid
  • AA acrylic acid
  • These copolymers may be used alone or in combination of two or more.
  • a copolymer containing a structural unit derived from acrylic acid and a structural unit derived from 2-acrylamido-2-methylpropanesulfonic acid and a salt thereof include acrylic acid (AA) and 2-acrylamido-2-methylpropanesulfonic acid ( It may be a copolymer consisting only of AMPS) and a salt thereof, and may be a copolymer other than acrylic acid (AA) and 2-acrylamido-2-methylpropanesulfonic acid (AMPS) as long as it does not interfere with the object and effect of the present invention. It may be a copolymer having a structural unit derived from another monomer and a salt thereof.
  • a salt of a copolymer containing a structural unit derived from acrylic acid and a structural unit derived from 2-acrylamido-2-methylpropanesulfonic acid is, for example, a structural unit derived from acrylic acid and 2-acrylamido-2-methylpropane. It can be obtained by neutralizing a copolymer containing a structural unit derived from sulfonic acid.
  • acrylic acid (2-acrylamido-2-methyl) which is a raw material monomer, is neutralized with acrylic acid (AA), 2-acrylamido-2-methylpropanesulfonic acid (AMPS), and other monomers as necessary.
  • the salt of the copolymer containing the structural unit derived from acrylic acid and the structural unit derived from 2-acrylamido-2-methylpropanesulfonic acid thus obtained is limited to a completely neutralized product of the copolymer. It may be a partially neutralized product instead of a product.
  • the salt of the copolymer containing the structural unit derived from acrylic acid and the structural unit derived from 2-acrylamido-2-methylpropanesulfonic acid include structural units derived from acrylic acid and 2-acrylamido-2- Examples thereof include alkali metal salts such as sodium salts and potassium salts of copolymers containing a structural unit derived from methylpropanesulfonic acid, ammonium salts, amine salts and the like. These salts can be appropriately selected and used according to the cooling water system in which the scale inhibitor is used.
  • a copolymer containing a structural unit derived from acrylic acid and a structural unit derived from 2-acrylamido-2-methylpropanesulfonic acid and a salt thereof include acrylic acid (AA) and 2-acrylamido-2-methylpropanesulfonic acid (A copolymer with AMPS (hereinafter also referred to as “AA/AMPS copolymer”) and its salt, acrylic acid (AA), 2-acrylamido-2-methylpropanesulfonic acid (AMPS), tert.
  • AA/AMPS/t-BuAAM copolymer -Copolymer with butyl acrylamide
  • AA/AMPS/t-BuAAM copolymer -Copolymer with butyl acrylamide
  • salts thereof are preferable, and AA/AMPS copolymer and AA/ More preferably, it is an AMPS/t-BuAAM copolymer.
  • the weight average molecular weight of the AA/AMPS copolymer and its salt is preferably 1,000 to 200,000, more preferably 2,000 to 80,000, and 5,000 to 75,000. It is more preferable that the amount is from 10,000 to 50,000. When the weight average molecular weight is within the above range, a good dispersion effect on the scale can be obtained.
  • the weight average molecular weight, the AA/HAPS copolymer and its salt to be described later, and the weight average molecular weight of the AA/AMPS/t-BuAAM copolymer and its salt are the standards determined by gel permeation chromatography (GPC). It is a weight average molecular weight in terms of polystyrene.
  • the molar ratio of the constitutional unit derived from AA and its salt constituting the AA/AMPS copolymer and its salt to the constitutional unit derived from AMPS and its salt is 99:1-5. :95 is preferable, more preferably 95:5 to 50:50, and further preferably 90:10 to 70:30.
  • the weight average molecular weight of the AA/AMPS/t-BuAAM copolymer and its salt is preferably 3,000 to 12,000, more preferably 3,000 to 10,000, and more preferably 4,000 to More preferably, it is 7,000. When the weight average molecular weight is within the above range, a good dispersion effect on the scale can be obtained.
  • the content of the structural unit derived from AA and its salt in all the structural units of the AA/AMPS/t-BuAAM copolymer and its salt is preferably 10 to 90 mol% from the viewpoint of scale dispersion effect. %, more preferably 40 to 85 mol %, further preferably 70 to 80 mol %.
  • the content of the constitutional unit derived from AMPS and its salt in all the constitutional units of the AA/AMPS/t-BuAAM copolymer and its salt is preferably 5 to 40 mol% from the viewpoint of the scale dispersion effect. %, more preferably 7 to 20 mol %, and further preferably 10 to 15 mol %.
  • the content of the structural unit derived from t-BuAAM in all the structural units of the AA/AMPS/t-BuAAM copolymer and a salt thereof is preferably 5 to 50 mol% from the viewpoint of the scale dispersion effect, It is more preferably 7 to 20 mol %, and further preferably 10 to 15 mol %.
  • the content thereof is It is preferably 50% by mass or less, and 30% by mass based on the total mass of the copolymer containing the structural unit derived from acrylic acid and the structural unit derived from 2-acrylamido-2-methylpropanesulfonic acid and its salt. % Or less, more preferably 20% by mass or less.
  • Examples of the other monomers include carboxylic acids, monoethylenically unsaturated hydrocarbons, alkyl esters of monoethylenically unsaturated acids, vinyl esters of monoethylenically unsaturated acids, substituted acrylamides, N-vinyl monomers, One or more of a hydroxyl group-containing unsaturated monomer, a (meth)acrylic acid ester, an aromatic unsaturated monomer, and a sulfonic acid may be used.
  • a copolymer containing a structural unit derived from acrylic acid and a structural unit derived from 2-hydroxy-3-allyloxypropane sulfonic acid, and a salt thereof are prepared from acrylic acid (AA) and 2-hydroxy-3-allyloxy propane sulfone. It may be a copolymer consisting only of an acid (HAPS) and a salt thereof, and acrylic acid (AA) and 2-hydroxy-3-allyloxypropanesulfonic acid (HAPS) may be used as long as they do not interfere with the objects and effects of the present invention.
  • a copolymer having a structural unit derived from another monomer other than the above) and a salt thereof may be used.
  • a salt of a copolymer containing a structural unit derived from acrylic acid and a structural unit derived from 2-hydroxy-3-allyloxypropanesulfonic acid is, for example, a structural unit derived from acrylic acid and 2-hydroxy-3-ali. It can be obtained by neutralizing a copolymer containing a structural unit derived from roxypropanesulfonic acid.
  • acrylic acid (2-hydroxy-3-hydroxy-3-hydroxy-3-alkyl-3-oxypropyl sulfonic acid (HAPS), which is a raw material monomer, and acrylic acid salt 2-hydroxy-3- It is also possible to obtain a salt of allyloxypropane sulfonate and, if necessary, another monomer, and copolymerize this.
  • the salt of the copolymer containing the structural unit derived from acrylic acid and the structural unit derived from 2-hydroxy-3-allyloxypropanesulfonic acid thus obtained is It is not limited to the completely neutralized product of the copolymer containing a structural unit derived from -3-allyloxypropanesulfonic acid, and may be a partially neutralized product.
  • Specific examples of the salt of the copolymer containing the structural unit derived from acrylic acid and the structural unit derived from 2-hydroxy-3-allyloxypropanesulfonic acid include structural units derived from acrylic acid and 2-hydroxy-3.
  • Alkali metal salts such as sodium salts and potassium salts of copolymers containing structural units derived from allyloxypropane sulfonic acid, ammonium salts, amine salts and the like. These salts can be appropriately selected and used according to the cooling water system in which the scale inhibitor is used.
  • Copolymers and salts containing a structural unit derived from acrylic acid and a structural unit derived from 2-hydroxy-3-allyloxypropane sulfonic acid are acrylic acid (AA) and 2-hydroxy-3-allyloxy propane sulfonic acid.
  • a copolymer with (HAPS) hereinafter, also referred to as “AA/HAPS copolymer”
  • AA/HAPS copolymer a copolymer with (HAPS)
  • AA/HAPS copolymer a salt thereof are preferable, and an AA/HAPS copolymer is more preferable.
  • the weight average molecular weight of the AA/HAPS copolymer and its salt is preferably 1,000 to 200,000, more preferably 2,000 to 80,000, and 5,000 to 75,000. It is more preferable to be present, and it is most preferable to be 10,000 to 50,000. When the weight average molecular weight is within the above range, a good dispersion effect on the scale can be obtained.
  • the molar ratio of the constitutional unit derived from AA and its salt constituting the AA/HAPS copolymer and its salt to the constitutional unit derived from HAPS and its salt is from 99:1 to 5 from the viewpoint of scale dispersion effect. :95 is preferable, more preferably 95:5 to 50:50, and further preferably 90:10 to 70:30.
  • the content thereof is It is preferably 50% by mass or less based on the total mass of the copolymer containing a structural unit derived from acrylic acid and a structural unit derived from 2-hydroxy-3-allyloxypropanesulfonic acid and a salt thereof. It is more preferably 30% by mass or less, and further preferably 20% by mass or less.
  • Examples of the other monomer include carboxylic acid, monoethylenically unsaturated hydrocarbon, alkyl ester of monoethylenically unsaturated acid, vinyl ester of monoethylenically unsaturated acid, substituted acrylamide, N-vinyl monomer, and hydroxyl group-containing.
  • unsaturated monomers (meth)acrylic acid esters, aromatic unsaturated monomers, and sulfonic acids may be used.
  • Component (B) is ethylenediaminetetraacetic acid (hereinafter, also referred to as “EDTA”) and its salt (hereinafter, also referred to as “EDTA salt”), 3-hydroxy-2,2-iminodisuccinate 4 sodium (hereinafter, “HIDS”) and salts thereof (hereinafter also referred to as “HIDS salt”), [(phosphonomethyl)imino]bis(6,1,1-hexanediylnitrilobismethylene)tetrakisphosphonic acid (hereinafter also referred to as “BHMTPMP”).
  • EDTA ethylenediaminetetraacetic acid
  • HIDS salt 3-hydroxy-2,2-iminodisuccinate 4 sodium
  • BHMTPMP [(phosphonomethyl)imino]bis(6,1,1-hexanediylnitrilobismethylene)tetrakisphosphonic acid
  • the scale inhibitor for cooling water of the present invention exhibits an excellent scale preventing effect by containing the component (B) in addition to the component (A). Although the reason is not clear, the chelating agent and phosphonic acid block the metal ions such as iron ions, manganese ions, and aluminum ions present in the cooling water, thereby effectively suppressing the scale deposition. it is conceivable that.
  • Component (B) can be classified into chelating agent (component (B1)) and phosphonic acid (component (B2)).
  • the chelating agent and the phosphonic acid may be used alone, or the chelating agent and the phosphonic acid may be used in combination.
  • the component (B1) is composed of ethylenediaminetetraacetic acid (EDTA) and its salt (EDTA salt), and one or more kinds selected from tetrahydroxy 3-hydroxy-2,2-iminodisuccinate (HIDS) and its salt (HIDS salt). It is a compound. These chelating agents (B1) may be used alone or in combination of two or more.
  • the component (B2) is [(phosphonomethyl)imino]bis(6,1-hexanediylnitrilobismethylene)tetrakisphosphonic acid (BHMTPMP) and its salt (BHMTPMP salt), and 1-hydroxyethane-1,1-diphosphonic acid. (HEDP) and one or more compounds selected from salts thereof (HEDP salt). These phosphonic acid components (B2) may be used alone or in combination of two or more.
  • the mass ratio of the component (A) to the component (B) in the scale inhibitor for cooling water is preferably 98:2 to 13:87, and 94:6 to 30 from the viewpoint of obtaining a good scale inhibiting effect. : 70 is more preferable, and 90:10 to 40: 60 is further preferable.
  • the mass ratio of the component (A) to the component (B1) in the scale inhibitor for cooling water is preferably 98:2 to 13:87, and 94:6 to 30 from the viewpoint of obtaining a good scale inhibiting effect. : 70 is more preferable, and 90:10 to 40: 60 is further preferable.
  • the mass ratio of the component (A) to the component (B2) in the scale inhibitor for cooling water is preferably 98:2 to 13:87, and 98:2, from the viewpoint of obtaining a good scale inhibiting effect. It is more preferably ⁇ 38:62, even more preferably 94:6 to 60:40, and particularly preferably 90:10 to 80:20.
  • the scale inhibitor is added in addition to the components (A) and (B) as long as the effects of the present invention are not impaired, and is used in conventional scale inhibitors such as alkalis, oxygen scavengers and anticorrosive agents.
  • Agent components, other chelating agents, and other phosphonic acids may be added and contained as necessary.
  • chelating agents include trans-1,2,diaminocyclohexanetetraacetic acid (CyDTA), o,o'-bis(2-aminoethyl)ethylene glycol tetraacetic acid (GEDTA), diethylenetriaminepentaacetic acid (DTPA), tri Examples thereof include ethylene tetraamine hexaacetic acid (TTHA), nitrilotriacetic acid (NTA), acetylacetone, and glycine.
  • CyDTA trans-1,2,diaminocyclohexanetetraacetic acid
  • GEDTA o,o'-bis(2-aminoethyl)ethylene glycol tetraacetic acid
  • DTPA diethylenetriaminepentaacetic acid
  • TTHA ethylene tetraamine hexaacetic acid
  • NTA nitrilotriacetic acid
  • acetylacetone glycine
  • phosphonic acids include 2-phosphonobutane-1,2,3-tricarboxylic acid (PBTC), aminotrimethylenephosphonic acid (ATMP), ethylenediaminetetramethylenephosphonic acid (EDTMP), hydroxyethylidene diphosphonic acid (HEDP), And nitrilotrimesmethylenephosphonic acid (NTMP) and the like.
  • PBTC 2-phosphonobutane-1,2,3-tricarboxylic acid
  • ATMP aminotrimethylenephosphonic acid
  • ETMP ethylenediaminetetramethylenephosphonic acid
  • HEDP hydroxyethylidene diphosphonic acid
  • NTMP nitrilotrimesmethylenephosphonic acid
  • the scale prevention method for cooling water of the present invention is a scale prevention method for a cooling water system containing at least one selected from iron, manganese, and aluminum, and comprises a structural unit derived from acrylic acid and 2-acrylamide-2- Copolymer containing structural unit derived from methylpropane sulfonic acid and salt thereof, copolymer containing structural unit derived from acrylic acid and structural unit derived from 2-hydroxy-3-allyloxypropane sulfonic acid and salt thereof Component (A), which is one or more compounds selected from, ethylenediaminetetraacetic acid and its salt, 4-hydroxy-3-hydroxy-2,2-iminodisuccinate and its salt, [(phosphonomethyl)imino]bis(6, ,1-hexanediylnitrilobismethylene)tetrakisphosphonic acid and salts thereof, and component (B) which is one or more compounds selected from 1-hydroxyethane-1,1-diphosphonic acid and salts
  • the method for adding the scale inhibitor is not particularly limited, and for example, a mixture prepared by mixing the components (A) and (B) in advance may be added, or each component may be added separately.
  • the scale prevention method for cooling water of the present invention is applied to a cooling water system containing one or more selected from iron, manganese, and aluminum.
  • the scale prevention method for cooling water of the present invention if the concentration of one or more selected from iron, manganese, and aluminum in the cooling water is 0.1 mg/L or more and 12.0 mg/L or less, the scale suppressing effect However, preferably 0.3 mg/L or more and 10.0 mg/L or less, more preferably 0.4 mg/L or more and 7.0 mg/L or less, and further preferably 0.5 mg/L or more and 5.0 mg/L. Below, if it is particularly preferably 0.5 mg/L or more and 4.0 mg/L or less, a more excellent scale suppressing effect is exhibited. Further, in the scale prevention method of the present invention, the cooling water system is preferably a circulating water system.
  • the concentration of the component (A) in the cooling water system is preferably 3.0 mg/L or more and 20.0 mg/L or less, and the component (A) is preferably added.
  • the component (A) is more preferably added so as to be 0 mg/L or more and 15.0 mg/L or less, and the component (A) is added so as to be 5.0 mg/L or more and 10.0 mg/L or less. Is more preferable. Within the above range, it becomes possible to prevent scale precipitation efficiently and economically.
  • the concentration of the component (B1) in the cooling water system is preferably 0.5 mg/L or more and 20.0 mg/L or less, and the concentration of the component (B1) is preferably 0.
  • the component (B1) is more preferably added so as to be 7 mg/L or more and 15.0 mg/L or less, and the component (B1) is added so as to be 0.8 mg/L or more and 12.0 mg/L or less. Is more preferable. Within the above range, it becomes possible to prevent scale precipitation efficiently and economically.
  • the concentration of the component (B2) in the cooling water system is preferably 0.5 mg/L or more and 5.0 mg/L or less, and the component (B2) is preferably added.
  • the component (B2) is more preferably added so as to be 7 mg/L or more and 4.0 mg/L or less, and the component (B2) is added so as to be 0.8 mg/L or more and 3.0 mg/L or less. Is more preferable. Within the above range, it becomes possible to prevent scale precipitation efficiently and economically.
  • the mass ratio of the component (A) to the component (B1) in the circulating water circulating in the cooling water system is preferably 98:2 to 13:87, and 94:6 to 30 from the viewpoint of obtaining a good scale prevention effect. : 70 is more preferable, and 90:10 to 40: 60 is further preferable. Further, the mass ratio of the component (A) and the component (B2) in the circulating water circulating through the cooling water system is preferably 98:2 to 13:87, and 98:2, from the viewpoint of obtaining a good scale preventing effect. It is more preferably ⁇ 38:62, even more preferably 94:6 to 60:40, and particularly preferably 90:10 to 80:20.
  • the scale prevention method for example, by detecting the concentration of iron, manganese, and aluminum in the cooling water, depending on the concentration, by automatically controlling the addition amount of the scale inhibitor to the cooling water, it is safe and continuous. In addition, the scale prevention effect can be exhibited.
  • Component (A) aqueous solution As the aqueous solution of the component (A), all commercially available products in which the concentration of the component (A) was 0.05% by mass. Table 1 shows the weight average molecular weight of the component (A) in the aqueous solution of the component (A).
  • A-3 "Aron A-6620" (AA/AMPS/t-BuAAM copolymer, manufactured by Toagosei Co., Ltd.)
  • Component (B) aqueous solution ⁇ Component (B1) aqueous solution> [3-hydroxy-2,2'-iminodisuccinate tetrasodium (HIDS) aqueous solution]
  • Ultrapure water was added to 5 g of HIDS to make 100 mL, and the mixture was stirred. 1 mL of the obtained aqueous solution was collected, and the volume was adjusted to 100 mL with ultrapure water to prepare an HIDS aqueous solution having a concentration of 0.05% by mass.
  • EDTA ethylenediaminetetraacetic acid
  • Example 1 Put 447.5 mL of ultrapure water in a 500 mL screw cap beaker, then 5 mL of acid consumption solution, 25 mL of calcium ion solution, 10 mL of phosphate ion solution, AA/AMPS (A-1) aqueous solution as component (A) 7.5 mL, 1 mL of a HIDS (B1-1) aqueous solution as the component (B), and 4 mL of an iron ion solution were added and mixed in this order, and the pH was adjusted to 8.5 with a 0.1 N sodium hydroxide aqueous solution and a 0.1 N sulfuric acid aqueous solution. The test water to which the component (A) was added was obtained.
  • the screw cap bottle was taken out from the thermostat and filtered using a filter having a pore size of 0.45 ⁇ m.
  • the filtered test water is cooled at room temperature, diluted with ultrapure water, and the phosphate ion concentration (component (A)) in the test water after the test is determined by the above-described ascorbic acid reduction-molybdenum blue absorptiometry.
  • Test water added: C d , test water not added component (A): C b ) were measured. From the obtained phosphate ion concentration (C b ), the calcium phosphate precipitation inhibition rate (scale generation inhibition rate) was calculated by the following formula (1).
  • Table 2 shows the concentration, Mn concentration, acid consumption, phosphate ion concentration, and calcium ion hardness.
  • Table 2 shows the calcium phosphate precipitation inhibition rate calculated from the formula (1). The higher the value of the calcium phosphate inhibition rate, the more the generation of scale is suppressed.
  • the calcium phosphate precipitation inhibition rate is preferably about 70% or more.
  • Example 2 In the same manner as in Example 1, except that 443.5 mL of ultrapure water was added and 5.0 mL of a HIDS(B1-1) aqueous solution was added as the component (B), the calcium phosphate precipitation inhibition rate was calculated in the same manner.
  • Table 2 shows the results and the concentration of the component (A), the concentration of the component (B), the Fe concentration, the Mn concentration, the acid consumption amount, the phosphate ion concentration, and the calcium ion hardness in the test water before standing in a constant temperature bath. Shown in.
  • Example 3 In the same manner as in Example 1, except that 438.5 mL of ultrapure water was added and 10.0 mL of a HIDS(B1-1) aqueous solution was added as the component (B), the calcium phosphate precipitation inhibition rate was calculated in the same manner.
  • Table 2 shows the results and the concentration of the component (A), the concentration of the component (B), the Fe concentration, the Mn concentration, the acid consumption amount, the phosphate ion concentration, and the calcium ion hardness in the test water before standing in a constant temperature bath. Shown in.
  • Example 1 In Example 1, 448.5 mL of ultrapure water was added, and the calcium phosphate precipitation inhibition rate was calculated in the same manner except that the component (B) was not added. Table 2 shows the results and the concentration of the component (A), the concentration of the component (B), the Fe concentration, the Mn concentration, the acid consumption amount, the phosphate ion concentration, and the calcium ion hardness in the test water before standing in a constant temperature bath. Shown in.
  • Example 4 The calcium phosphate precipitation inhibition rate was calculated in the same manner as in Example 2 except that 4 mL of the manganese ion solution was added instead of the iron ion solution.
  • Table 2 shows the results and the concentration of the component (A), the concentration of the component (B), the Fe concentration, the Mn concentration, the acid consumption amount, the phosphate ion concentration, and the calcium ion hardness in the test water before standing in a constant temperature bath. Shown in.
  • Example 5 In the same manner as in Example 4, except that 438.5 mL of ultrapure water was added and 10.0 mL of a HIDS(B1-1) aqueous solution was added as the component (B), the calcium phosphate precipitation inhibition rate was calculated in the same manner.
  • Table 2 shows the results and the concentration of the component (A), the concentration of the component (B), the Fe concentration, the Mn concentration, the acid consumption amount, the phosphate ion concentration, and the calcium ion hardness in the test water before standing in a constant temperature bath. Shown in.
  • Example 4 the calcium phosphate precipitation inhibition rate was calculated in the same manner as in Example 4 except that 448.5 mL of ultrapure water was added and the component (B) was not added.
  • Table 2 shows the results and the concentration of the component (A), the concentration of the component (B), the Fe concentration, the Mn concentration, the acid consumption amount, the phosphate ion concentration, and the calcium ion hardness in the test water before standing in a constant temperature bath. Shown in.
  • Example 6 The calcium phosphate precipitation inhibition rate was calculated in the same manner as in Example 1 except that 2 mL of the iron ion solution was added and 2 mL of the manganese ion solution was added after the addition of the iron ion solution.
  • Table 2 shows the results and the concentration of the component (A), the concentration of the component (B), the Fe concentration, the Mn concentration, the acid consumption amount, the phosphate ion concentration, and the calcium ion hardness in the test water before standing in a constant temperature bath. Shown in.
  • Example 7 The calcium phosphate precipitation inhibition rate was calculated in the same manner as in Example 6 except that 1 mL of an EDTA (B1-2) aqueous solution was added as the component (B) instead of the HIDS (B1-1) aqueous solution.
  • Table 2 shows the results and the concentration of the component (A), the concentration of the component (B), the Fe concentration, the Mn concentration, the acid consumption amount, the phosphate ion concentration, and the calcium ion hardness in the test water before standing in a constant temperature bath. Shown in.
  • Example 6 In Example 6, 448.5 mL of ultrapure water was added, and the calcium phosphate precipitation inhibition rate was calculated in the same manner except that the component (B) was not added.
  • Table 2 shows the results and the concentration of the component (A), the concentration of the component (B), the Fe concentration, the Mn concentration, the acid consumption amount, the phosphate ion concentration, and the calcium ion hardness in the test water before standing in a constant temperature bath. Shown in.
  • Example 8 The calcium phosphate precipitation inhibition rate was calculated in the same manner as in Example 1, except that 443.5 mL of ultrapure water was added and 4 mL of the manganese ion solution was added after the addition of the iron ion solution.
  • Table 2 shows the results and the concentration of the component (A), the concentration of the component (B), the Fe concentration, the Mn concentration, the acid consumption amount, the phosphate ion concentration, and the calcium ion hardness in the test water before standing in a constant temperature bath. Shown in.
  • Example 9 In the same manner as in Example 8, except that 441.5 mL of ultrapure water was added and 3.0 mL of a HIDS(B1-1) aqueous solution was added as the component (B), the calcium phosphate precipitation inhibition rate was calculated in the same manner.
  • Table 2 shows the results and the concentration of the component (A), the concentration of the component (B), the Fe concentration, the Mn concentration, the acid consumption amount, the phosphate ion concentration, and the calcium ion hardness in the test water before standing in a constant temperature bath. Shown in.
  • Example 10 The calcium phosphate precipitation inhibition rate was calculated in the same manner as in Example 8 except that 439.5 mL of ultrapure water was added and 5.0 mL of an aqueous HIDS(B1-1) solution was added as the component (B).
  • Table 2 shows the results and the concentration of the component (A), the concentration of the component (B), the Fe concentration, the Mn concentration, the acid consumption amount, the phosphate ion concentration, and the calcium ion hardness in the test water before standing in a constant temperature bath. Shown in.
  • Example 11 The calcium phosphate precipitation inhibition rate was calculated in the same manner as in Example 8 except that 1.0 mL of an EDTA (B1-2) aqueous solution was added as the component (B) instead of the HIDS (B1-1) aqueous solution.
  • Table 2 shows the results and the concentration of the component (A), the concentration of the component (B), the Fe concentration, the Mn concentration, the acid consumption amount, the phosphate ion concentration, and the calcium ion hardness in the test water before standing in a constant temperature bath. Shown in.
  • Example 12 The calcium phosphate precipitation inhibition rate was calculated in the same manner as in Example 11, except that 441.5 mL of ultrapure water was added and 3.0 mL of an EDTA (B1-2) aqueous solution was added as the component (B).
  • Table 2 shows the results and the concentration of the component (A), the concentration of the component (B), the Fe concentration, the Mn concentration, the acid consumption amount, the phosphate ion concentration, and the calcium ion hardness in the test water before standing in a constant temperature bath. Shown in.
  • Example 13 The calcium phosphate precipitation inhibition rate was calculated in the same manner as in Example 11 except that 439.5 mL of ultrapure water was added and 5.0 mL of an aqueous EDTA (B1-2) solution was added as the component (B).
  • Table 2 shows the results and the concentration of the component (A), the concentration of the component (B), the Fe concentration, the Mn concentration, the acid consumption amount, the phosphate ion concentration, and the calcium ion hardness in the test water before standing in a constant temperature bath. Shown in.
  • Example 14 Instead of the HIDS(B1-1) aqueous solution as the component (B) in Example 8, BHMTPMP(B2-1) aqueous solution was added in Example 14, and HEDP(B2-2) aqueous solution was used in Example 15.
  • the calcium phosphate precipitation inhibition rate was calculated in the same manner except the above.
  • Table 2 shows the results and the concentration of the component (A), the concentration of the component (B), the Fe concentration, the Mn concentration, the acid consumption amount, the phosphate ion concentration, and the calcium ion hardness in the test water before standing in a constant temperature bath. Shown in.
  • Example 8 the calcium phosphate precipitation suppression rate was calculated in the same manner as in Example 8 except that 444.5 mL of ultrapure water was added and the component (B) was not used.
  • Table 2 shows the results and the concentration of the component (A), the concentration of the component (B), the Fe concentration, the Mn concentration, the acid consumption amount, the phosphate ion concentration, and the calcium ion hardness in the test water before standing in a constant temperature bath. Shown in.
  • Example 16 Example 8 was repeated except that AA/AMPS/t-BuAAM copolymer (A-3) was used instead of AA/AMPS copolymer (A-1) as the component (A).
  • the calcium phosphate precipitation inhibition rate was calculated.
  • Table 2 shows the results and the concentration of the component (A), the concentration of the component (B), the Fe concentration, the Mn concentration, the acid consumption amount, the phosphate ion concentration, and the calcium ion hardness in the test water before standing in a constant temperature bath. Shown in.
  • Example 17 The calcium phosphate precipitation inhibitory rate was calculated in the same manner as in Example 16 except that 439.5 mL of ultrapure water was added and 5.0 mL of an aqueous HIDS(B1-1) solution was added as the component (B).
  • Table 2 shows the results and the concentration of the component (A), the concentration of the component (B), the Fe concentration, the Mn concentration, the acid consumption amount, the phosphate ion concentration, and the calcium ion hardness in the test water before standing in a constant temperature bath. Shown in.
  • Example 18 The calcium phosphate precipitation inhibitory rate was calculated in the same manner as in Example 16 except that 434.5 mL of ultrapure water was added and 10.0 mL of the HIDS(B1-1) aqueous solution was added as the component (B).
  • Table 2 shows the results and the concentration of the component (A), the concentration of the component (B), the Fe concentration, the Mn concentration, the acid consumption amount, the phosphate ion concentration, and the calcium ion hardness in the test water before standing in a constant temperature bath. Shown in.
  • Example 19 In Example 1, 435.5 mL of ultrapure water was added, and instead of the AA/AMPS copolymer (A-1), the AA/HAPS copolymer (A-2) was used as the component (A). The calcium phosphate precipitation inhibition rate was calculated in the same manner except that 10.0 mL of the solution and 10.0 mL of the manganese ion solution were added. Table 2 shows the results and the concentration of the component (A), the concentration of the component (B), the Fe concentration, the Mn concentration, the acid consumption amount, the phosphate ion concentration, and the calcium ion hardness in the test water before standing in a constant temperature bath. Shown in.
  • Example 20 The calcium phosphate precipitation inhibitory rate was calculated in the same manner as in Example 19 except that 431.5 mL of ultrapure water was added and 5.0 mL of an aqueous HIDS(B1-1) solution was added as the component (B).
  • Table 2 shows the results and the concentration of the component (A), the concentration of the component (B), the Fe concentration, the Mn concentration, the acid consumption amount, the phosphate ion concentration, and the calcium ion hardness in the test water before standing in a constant temperature bath. Shown in.
  • Example 21 The calcium phosphate precipitation inhibition rate was calculated in the same manner as in Example 19 except that 426.5 mL of ultrapure water was added and 10.0 mL of the HIDS(B1-1) aqueous solution was added as the component (B).
  • Table 2 shows the results and the concentration of the component (A), the concentration of the component (B), the Fe concentration, the Mn concentration, the acid consumption amount, the phosphate ion concentration, and the calcium ion hardness in the test water before standing in a constant temperature bath. Shown in.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Hydrology & Water Resources (AREA)
  • Water Supply & Treatment (AREA)
  • Environmental & Geological Engineering (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Polymers & Plastics (AREA)
  • General Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Medicinal Chemistry (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Preventing Corrosion Or Incrustation Of Metals (AREA)
  • Compositions Of Macromolecular Compounds (AREA)

Abstract

A cooling water scale prevention agent for a cooling water system that contains iron, manganese, and/or aluminum. The cooling water scale prevention agent includes a component (A) and a component (B). Component (A) is one or more compound selected from among: copolymers, and salts thereof, that include a structural unit that is derived from acrylic acid and a structural unit that is derived from 2-acrylamido-2-methylpropane sulfonic acid; and copolymers, and salts thereof, that include a structural unit that is derived from acrylic acid and a structural unit that is derived from 2-hydroxy-3-allyloxypropane sulfonic acid. Component (B) is one or more compound selected from among: ethylenediaminetetraacetic acid and salts thereof; tetrasodium 3-hydroxy-2,2-iminodisuccinic acid and salts thereof; [(phosphonomethyl)imino]bis(6,1-hexanediylnitrilobismethylene)tetrakisphosphonic acid and salts thereof; and 1-hydroxyethane-1,1-diphosphonic acid and salts thereof.

Description

冷却水用スケール防止剤及び冷却水用スケール防止方法Cooling water scale inhibitor and cooling water scale prevention method
 本発明は、鉄、マンガン、及びアルミニウムから選ばれる1種以上を含む冷却水系で発生するスケールを防止するための冷却水用スケール防止剤、及び冷却水用スケール防止方法に関する。 The present invention relates to a scale inhibitor for cooling water and a scale prevention method for cooling water for preventing scale generated in a cooling water system containing at least one selected from iron, manganese, and aluminum.
 開放循環冷却水系において、冷却水の系外への排棄(ブロー)を少なくして高濃縮運転を行う場合、溶解している塩類が濃縮されて、難溶性の塩となってスケール化する場合がある。このようなスケールは、熱効率の低下、配管の閉塞等、熱交換器の運転に重要な障害を引き起こす恐れがある。 In an open-circulation cooling water system, when the highly concentrated operation is performed by reducing the discharge (blowing) of the cooling water to the outside of the system, the dissolved salts are concentrated and scaled into insoluble salts. There is. Such a scale may cause important obstacles to the operation of the heat exchanger, such as reduction in thermal efficiency and blockage of piping.
 スケールの一種であるカルシウム系スケールに対しては、マレイン酸、アクリル酸、イタコン酸等を重合したカルボキシル基を有するポリマーが有用であり、アクリル酸と2-アクリルアミド-2-メチルプロパンスルホン酸との共重合体(以下、「AA/AMPS共重合体」ともいう。)や、アクリル酸と2-ヒドロキシ-3-アリロキシプロパンスルホン酸との共重合体(以下、「AA/HAPS共重合体」ともいう。)等、ノニオン性ビニルモノマーを対象水質に応じて組み合わせた共重合体がスケール付着防止剤として一般的に使用されている。
 例えば、特許文献1には、AA/AMPS共重合体を用いたスケール防止方法が開示されている。又、特許文献2には、AA/HAPS共重合体を用いた冷却水系の処理方法が開示されている。
For a calcium-based scale, which is a type of scale, a polymer having a carboxyl group obtained by polymerizing maleic acid, acrylic acid, itaconic acid, etc. is useful, and acrylic acid and 2-acrylamido-2-methylpropanesulfonic acid A copolymer (hereinafter, also referred to as "AA/AMPS copolymer") or a copolymer of acrylic acid and 2-hydroxy-3-allyloxypropanesulfonic acid (hereinafter, "AA/HAPS copolymer") (Also referred to as "."), etc., a copolymer obtained by combining nonionic vinyl monomers according to the target water quality is generally used as a scale adhesion preventing agent.
For example, Patent Document 1 discloses a scale prevention method using an AA/AMPS copolymer. Further, Patent Document 2 discloses a cooling water treatment method using an AA/HAPS copolymer.
特開昭50-86489号公報JP-A-50-86489 特開2013-212435号公報JP, 2013-212435, A
 しかし、鉄、マンガン、及びアルミニウム等が存在する冷却水系では、これらの共重合体のスケール防止効果が低下するという課題を有していた。
 又、シリカ系スケールの防止や、鉄が存在する冷却水系に対するスケール防止効果を改善する目的で、ノニオン性モノマーである、アクリル酸と2-アクリルアミド-2-メチルプロパンスルホン酸とtert-ブチルアクリルアミドとの共重合体(以下、「AA/AMPS/t-BuAAM共重合体」ともいう。)をスケール付着防止剤として使用することが検討されているが、鉄、マンガン、及びアルミニウム等が存在する冷却水系では、このようなスケール付着防止剤であっても、スケール防止効果が低下するという課題を有していた。
 このような冷却水系におけるスケール防止効果を改善するため、スケール防止剤である共重合体の添加量を増やす取り組みが行われているが、スケール防止効果が不十分な場合がある。又、効果が改善しても水処理コストが見合わない場合があり、効率的かつ経済的にスケールの析出を防止する方法が望まれている。
However, a cooling water system containing iron, manganese, aluminum, etc. has a problem that the scale prevention effect of these copolymers is reduced.
In addition, for the purpose of preventing silica-based scale and improving the scale-preventing effect on a cooling water system in which iron is present, acrylic acid, 2-acrylamido-2-methylpropanesulfonic acid, and tert-butylacrylamide, which are nonionic monomers, are used. It has been considered to use the copolymer of (hereinafter, also referred to as “AA/AMPS/t-BuAAM copolymer”) as a scale adhesion preventive agent, but cooling with the presence of iron, manganese, aluminum, etc. In the water system, even such a scale adhesion preventing agent has a problem that the scale preventing effect is lowered.
In order to improve the scale prevention effect in such a cooling water system, efforts have been made to increase the amount of the copolymer that is the scale inhibitor added, but the scale prevention effect may be insufficient. Further, even if the effect is improved, the water treatment cost may not be met, and a method for efficiently and economically preventing scale precipitation is desired.
 本発明は、上記実情に鑑みてなされたものであり、鉄、マンガン、及びアルミニウムから選ばれる1種以上を含有する、開放循環冷却水系等の冷却水系において、炭素鋼や銅、銅合金等の金属性の設備や配管、機器等へのスケールの付着、及びそれに伴うスケール障害を防止する、冷却水用スケール防止剤、及び冷却水用スケール防止方法を提供することを課題とする。 The present invention has been made in view of the above circumstances, and in one or more selected from iron, manganese, and aluminum, in a cooling water system such as an open circulation cooling water system, carbon steel, copper, copper alloy, etc. An object of the present invention is to provide a scale inhibitor for cooling water and a scale prevention method for cooling water, which prevent scale adhesion to metallic equipment, piping, equipment, and the like, and scale failure accompanying it.
 本発明は、鉄、マンガン、及びアルミニウムから選ばれる1種以上を含有する冷却水系において、特定の共重合体及び化合物を含む冷却水用スケール防止剤を用いることにより、優れたスケール防止効果が得られることを見出したことに基づいてなされたものである。 The present invention, in a cooling water system containing one or more selected from iron, manganese, and aluminum, by using a cooling water scale inhibitor containing a specific copolymer and compound, an excellent scale prevention effect can be obtained. It was made based on the finding that it was done.
 すなわち、本発明は、次の[1]~[13]を提供する。
[1]鉄、マンガン、及びアルミニウムから選ばれる1種以上を含有する冷却水系の冷却水用スケール防止剤であって、
 アクリル酸に由来する構造単位と2-アクリルアミド-2-メチルプロパンスルホン酸に由来する構造単位を含む共重合体及びその塩、並びにアクリル酸に由来する構造単位と2-ヒドロキシ-3-アリロキシプロパンスルホン酸に由来する構造単位を含む共重合体及びその塩、から選ばれる1種以上の化合物である成分(A)と、
 エチレンジアミン四酢酸及びその塩、3-ヒドロキシ-2,2-イミノジコハク酸4ナトリウム及びその塩、[(ホスホノメチル)イミノ]ビス(6、1-ヘキサンジイルニトリロビスメチレン)テトラキスホスホン酸及びその塩、並びに1-ヒドロキシエタン-1,1-ジホスホン酸及びその塩から選ばれる1種以上の化合物である成分(B)とを含む、冷却水用スケール防止剤。
[2]前記アクリル酸に由来する構造単位と2-アクリルアミド-2-メチルプロパンスルホン酸に由来する構造単位を含む共重合体及びその塩が、アクリル酸と2-アクリルアミド-2-メチルプロパンスルホン酸との共重合体及びその塩、並びにアクリル酸と2-アクリルアミド-2-メチルプロパンスルホン酸とtert-ブチルアクリルアミドとの共重合体及びその塩、から選ばれる1種以上の化合物である、上記[1]に記載の冷却水用スケール防止剤。
[3]アクリル酸に由来する構造単位と2-ヒドロキシ-3-アリロキシプロパンスルホン酸に由来する構造単位を含む共重合体及びその塩が、アクリル酸と2-ヒドロキシ-3-アリロキシプロパンスルホン酸との共重合体及びその塩である、上記[1]又は[2]に記載の冷却水用スケール防止剤。
[4]前記冷却水系が、鉄、マンガン、及びアルミニウムから選ばれる1種以上を0.5mg/L以上5.0mg/L以下含有する、上記[1]~[3]のいずれかに記載の冷却水用スケール防止剤。
[5]前記成分(A)とエチレンジアミン四酢酸及びその塩、並びに3-ヒドロキシ-2,2-イミノジコハク酸4ナトリウム及びその塩から選ばれる1種以上の化合物である成分(B1)の質量比が、98:2~13:87である、上記[1]~[4]のいずれかに記載の冷却水用スケール防止剤。
[6]前記成分(A)と[(ホスホノメチル)イミノ]ビス(6、1-ヘキサンジイルニトリロビスメチレン)テトラキスホスホン酸及びその塩、並びに1-ヒドロキシエタン-1,1-ジホスホン酸及びその塩から選ばれる1種以上の化合物である成分(B2)の質量比が、98:2~38:62である、上記[1]~[4]のいずれかに記載の冷却水用スケール防止剤。
[7]鉄、マンガン、及びアルミニウムから選ばれる1種以上を含有する冷却水系の冷却水用スケール防止方法であって、
 アクリル酸に由来する構造単位と2-アクリルアミド-2-メチルプロパンスルホン酸に由来する構造単位を含む共重合体及びその塩、アクリル酸に由来する構造単位と2-ヒドロキシ-3-アリロキシプロパンスルホン酸に由来する構造単位を含む共重合体及びその塩、から選ばれる1種以上の化合物である成分(A)と、
 エチレンジアミン四酢酸及びその塩、3-ヒドロキシ-2,2-イミノジコハク酸4ナトリウム及びその塩、[(ホスホノメチル)イミノ]ビス(6、1-ヘキサンジイルニトリロビスメチレン)テトラキスホスホン酸及びその塩、並びに1-ヒドロキシエタン-1,1-ジホスホン酸及びその塩から選ばれる1種以上の化合物である成分(B)とを含む、冷却水用スケール防止剤を用いる、冷却水用スケール防止方法。
[8]前記アクリル酸に由来する構造単位と2-アクリルアミド-2-メチルプロパンスルホン酸に由来する構造単位を含む共重合体及びその塩が、アクリル酸と2-アクリルアミド-2-メチルプロパンスルホン酸との共重合体及びその塩、並びにアクリル酸と2-アクリルアミド-2-メチルプロパンスルホン酸とtert-ブチルアクリルアミドとの共重合体及びその塩、から選ばれる1種以上である、上記[7]に記載の冷却水用スケール防止方法。
[9]前記アクリル酸に由来する構造単位と2-ヒドロキシ-3-アリロキシプロパンスルホン酸に由来する構造単位を含む共重合体及びその塩が、アクリル酸と2-ヒドロキシ-3-アリロキシプロパンスルホン酸との共重合体及びその塩である、上記[7]又は[8]に記載の冷却水用スケール防止方法。
[10]前記冷却水系が、鉄、マンガン、及びアルミニウムから選ばれる1種以上を0.5mg/L以上5.0mg/L以下含有する、上記[7]~[9]のいずれかに記載の冷却水用スケール防止方法。
[11]前記冷却水系における前記成分(A)の濃度が、3.0mg/L以上20.0mg/L以下となるように前記成分(A)を添加する、上記[7]~[10]のいずれかに記載の冷却水用スケール防止方法。
[12]前記冷却水系におけるエチレンジアミン四酢酸及びその塩、並びに3-ヒドロキシ-2,2-イミノジコハク酸4ナトリウム及びその塩から選ばれる1種以上の化合物である成分(B1)の濃度が、0.5mg/L以上20.0mg/L以下となるように前記成分(B1)を添加する、上記[7]~[11]のいずれかに記載の冷却水用スケール防止方法。
[13]前記冷却水系における[(ホスホノメチル)イミノ]ビス(6、1-ヘキサンジイルニトリロビスメチレン)テトラキスホスホン酸及びその塩、並びに1-ヒドロキシエタン-1,1-ジホスホン酸及びその塩から選ばれる1種以上の化合物である成分(B2)の濃度が、0.5mg/L以上5.0mg/L以下となるように前記成分(B2)を添加する、上記[7]~[11]のいずれかに記載の冷却水用スケール防止方法。
That is, the present invention provides the following [1] to [13].
[1] A scale inhibitor for cooling water in a cooling water system, containing one or more selected from iron, manganese, and aluminum,
Copolymer containing structural unit derived from acrylic acid and structural unit derived from 2-acrylamido-2-methylpropanesulfonic acid and salt thereof, and structural unit derived from acrylic acid and 2-hydroxy-3-allyloxypropane Component (A), which is one or more compounds selected from copolymers containing structural units derived from sulfonic acid and salts thereof,
Ethylenediaminetetraacetic acid and salts thereof, 3-hydroxy-2,2-iminodisuccinate tetrasodium and salts thereof, [(phosphonomethyl)imino]bis(6,1-hexanediylnitrilobismethylene)tetrakisphosphonic acid and salts thereof, and 1 A scale inhibitor for cooling water, which comprises component (B) which is one or more compounds selected from hydroxyethane-1,1-diphosphonic acid and salts thereof.
[2] A copolymer containing a structural unit derived from acrylic acid and a structural unit derived from 2-acrylamido-2-methylpropanesulfonic acid and a salt thereof are acrylic acid and 2-acrylamido-2-methylpropanesulfonic acid. And a salt thereof, and a copolymer of acrylic acid and 2-acrylamido-2-methylpropanesulfonic acid and tert-butylacrylamide and a salt thereof, which are one or more compounds selected from the above [[ [1] A scale inhibitor for cooling water.
[3] A copolymer containing a structural unit derived from acrylic acid and a structural unit derived from 2-hydroxy-3-allyloxypropanesulfonic acid and a salt thereof are acrylic acid and 2-hydroxy-3-allyloxypropane sulfone. The scale inhibitor for cooling water according to the above [1] or [2], which is a copolymer with an acid and a salt thereof.
[4] The cooling water system according to any one of [1] to [3] above, which contains one or more selected from iron, manganese, and aluminum in an amount of 0.5 mg/L or more and 5.0 mg/L or less. Scale inhibitor for cooling water.
[5] The mass ratio of the component (A) to the ethylenediaminetetraacetic acid and its salt, and the component (B1) which is one or more compounds selected from tetrahydroxy 3-hydroxy-2,2-iminodisuccinate and its salt is 98:2 to 13:87, the scale inhibitor for cooling water according to any one of the above [1] to [4].
[6] From the component (A) and [(phosphonomethyl)imino]bis(6,1-hexanediylnitrilobismethylene)tetrakisphosphonic acid and salts thereof, and 1-hydroxyethane-1,1-diphosphonic acid and salts thereof The scale inhibitor for cooling water according to any one of the above [1] to [4], wherein the mass ratio of the component (B2) which is one or more selected compounds is 98:2 to 38:62.
[7] A method for preventing scaling of cooling water in a cooling water system containing at least one selected from iron, manganese, and aluminum,
Copolymer containing structural unit derived from acrylic acid and structural unit derived from 2-acrylamido-2-methylpropanesulfonic acid and salt thereof, structural unit derived from acrylic acid and 2-hydroxy-3-allyloxypropane sulfone Component (A), which is one or more compounds selected from a copolymer containing a structural unit derived from an acid and a salt thereof,
Ethylenediaminetetraacetic acid and salts thereof, 3-hydroxy-2,2-iminodisuccinate tetrasodium and salts thereof, [(phosphonomethyl)imino]bis(6,1-hexanediylnitrilobismethylene)tetrakisphosphonic acid and salts thereof, and 1 A method for preventing scale scale for cooling water, which comprises using a scale inhibitor for cooling water, comprising component (B) which is one or more compounds selected from hydroxyethane-1,1-diphosphonic acid and salts thereof.
[8] A copolymer containing a structural unit derived from acrylic acid and a structural unit derived from 2-acrylamido-2-methylpropanesulfonic acid and a salt thereof are acrylic acid and 2-acrylamido-2-methylpropanesulfonic acid. And a salt thereof, and a copolymer of acrylic acid, 2-acrylamido-2-methylpropanesulfonic acid, and tert-butylacrylamide, and a salt thereof, and [7] above. The scale prevention method for cooling water according to.
[9] A copolymer containing a structural unit derived from acrylic acid and a structural unit derived from 2-hydroxy-3-allyloxypropanesulfonic acid and a salt thereof are acrylic acid and 2-hydroxy-3-allyloxypropane. The scale prevention method for cooling water according to the above [7] or [8], which is a copolymer with sulfonic acid and a salt thereof.
[10] The cooling water system according to any one of the above [7] to [9], wherein the cooling water system contains one or more selected from iron, manganese, and aluminum in an amount of 0.5 mg/L or more and 5.0 mg/L or less. Scale prevention method for cooling water.
[11] In the above [7] to [10], the component (A) is added so that the concentration of the component (A) in the cooling water system is 3.0 mg/L or more and 20.0 mg/L or less. The method for preventing scale scale for cooling water according to any one of claims.
[12] The concentration of the component (B1), which is one or more compounds selected from ethylenediaminetetraacetic acid and a salt thereof, and tetrasodium 3-hydroxy-2,2-iminodisuccinate and a salt thereof, in the cooling water system is 0. The cooling water scale prevention method according to any one of the above [7] to [11], wherein the component (B1) is added so as to be 5 mg/L or more and 20.0 mg/L or less.
[13] selected from [(phosphonomethyl)imino]bis(6,1-hexanediylnitrilobismethylene)tetrakisphosphonic acid and salts thereof in the cooling water system, and 1-hydroxyethane-1,1-diphosphonic acid and salts thereof Any of [7] to [11] above, wherein the component (B2) is added so that the concentration of the component (B2), which is one or more compounds, is 0.5 mg/L or more and 5.0 mg/L or less. The method for preventing scales for cooling water according to claim 1.
 本発明によれば、鉄、マンガン、及びアルミニウムから選ばれる1種以上を含有する、開放循環冷却水系等の冷却水系において、炭素鋼や銅、銅合金等の金属性の設備や配管、機器等へのスケールの付着を効果的に防止することができる。又、スケールの付着に伴うスケール障害についても防止することができる。
 したがって、本発明の冷却水用スケール防止剤及び冷却水用スケール防止方法は、冷却水系の安定的かつ安全な運転、及びエネルギーコストの低減化に寄与し得る。
According to the present invention, in a cooling water system such as an open circulation cooling water system containing one or more selected from iron, manganese, and aluminum, metallic equipment such as carbon steel, copper, copper alloy, pipes, equipment, etc. It is possible to effectively prevent the scale from adhering to the surface. In addition, it is possible to prevent a scale failure due to the adhesion of the scale.
Therefore, the scale inhibitor for cooling water and the scale prevention method for cooling water of the present invention can contribute to stable and safe operation of the cooling water system and reduction of energy cost.
 以下、本発明の冷却水用スケール防止剤及びこれを用いた冷却水用スケール防止方法を詳細に説明する。 The cooling water scale preventive agent of the present invention and the cooling water scale preventive method using the same are described in detail below.
[冷却水用スケール防止剤]
 本発明の冷却水用スケール防止剤は、鉄、マンガン、及びアルミニウムから選ばれる1種以上を含有する冷却水系の冷却水用スケール防止剤であって、アクリル酸に由来する構造単位と2-アクリルアミド-2-メチルプロパンスルホン酸に由来する構造単位を含む共重合体及びその塩、並びにアクリル酸に由来する構造単位と2-ヒドロキシ-3-アリロキシプロパンスルホン酸に由来する構造単位を含む共重合体及びその塩、から選ばれる1種以上の化合物である成分(A)と、エチレンジアミン四酢酸及びその塩、3-ヒドロキシ-2,2-イミノジコハク酸4ナトリウム及びその塩、[(ホスホノメチル)イミノ]ビス(6、1-ヘキサンジイルニトリロビスメチレン)テトラキスホスホン酸及びその塩、並びに1-ヒドロキシエタン-1,1-ジホスホン酸及びその塩から選ばれる1種以上の化合物である成分(B)とを含有するものである。
 本発明の冷却水用スケール防止剤は、前記成分(A)及び成分(B)の2成分を必須成分とするものであり、冷却水系において、優れたスケール防止効果を発揮し得るものである。
[Scale inhibitor for cooling water]
The scale inhibitor for cooling water of the present invention is a scale inhibitor for cooling water of a cooling water system containing at least one selected from iron, manganese, and aluminum, and comprises structural units derived from acrylic acid and 2-acrylamide. -Copolymers containing structural units derived from 2-methylpropanesulfonic acid and salts thereof, and copolymers containing structural units derived from acrylic acid and structural units derived from 2-hydroxy-3-allyloxypropanesulfonic acid Component (A), which is one or more compounds selected from the combination and salts thereof, ethylenediaminetetraacetic acid and salts thereof, 3-hydroxy-2,2-iminodisuccinate tetrasodium and salts thereof, [(phosphonomethyl)imino] Bis(6,1-hexanediylnitrilobismethylene)tetrakisphosphonic acid and its salt, and component (B) which is one or more compounds selected from 1-hydroxyethane-1,1-diphosphonic acid and its salt It is contained.
The scale inhibitor for cooling water of the present invention contains two components, the component (A) and the component (B), as essential components, and can exhibit an excellent scale inhibiting effect in a cooling water system.
 前記スケール防止剤は、成分(A)及び成分(B)が予め調製混合されたものであっても、各成分が使用時にそれぞれ添加されるものであってもよい。
 予め調整混合されたスケール防止剤中の成分(A)及び成分(B)の合計含有量は、取り扱い易さや粘性の観点から、0.001質量%以上1.000質量%以下であることが好ましく、より好ましくは0.010質量%以上0.500質量%以下である。又、予め調整混合されたスケール防止剤中の有効成分中における成分(A)及び成分(B)の合計含有量は、80.0質量%以上であることが好ましく、より好ましくは90.0質量%以上、更に好ましくは95.0質量%以上であり、100質量%であることが特に好ましい。
 各成分が使用時にそれぞれ添加される場合、成分(A)を含み成分(B)を含まないスケール防止剤中の成分(A)の含有量は、取り扱い易さや粘性の観点から、0.001質量%以上1.000質量%以下であることが好ましく、より好ましくは0.010質量%以上0.500質量%以下であり、更に好ましくは0.020質量%以上0.100質量%以下である。又、成分(A)を含み成分(B)を含まないスケール防止剤中の有効成分中における成分(A)の含有量は、80.0質量%以上であることが好ましく、より好ましくは90.0質量%以上、更に好ましくは95.0質量%以上であり、100質量%であることが特に好ましい。
 各成分が使用時にそれぞれ添加される場合における、成分(B)を含み成分(A)を含まないスケール防止剤中の成分(B)の含有量は、取り扱い易さや粘性の観点から、0.001質量%以上1.000質量%以下であることが好ましく、より好ましくは0.010質量%以上0.500質量%以下であり、更に好ましくは0.020質量%以上0.100質量%以下である。又、成分(B)を含み成分(A)を含まないスケール防止剤中の有効成分中における成分(B)の含有量は、80.0質量%以上であることが好ましく、より好ましくは90.0質量%以上、更に好ましくは95.0質量%以上であり、100質量%であることが特に好ましい。
The scale inhibitor may be a mixture in which the component (A) and the component (B) are prepared and mixed in advance, or may be a mixture in which each component is added at the time of use.
The total content of the component (A) and the component (B) in the scale inhibitor preliminarily adjusted and mixed is preferably 0.001% by mass or more and 1.000% by mass or less from the viewpoint of ease of handling and viscosity. , And more preferably 0.010 mass% or more and 0.500 mass% or less. Further, the total content of the component (A) and the component (B) in the active ingredient in the scale inhibitor mixed and adjusted in advance is preferably 80.0% by mass or more, more preferably 90.0% by mass. % Or more, more preferably 95.0% by mass or more, and particularly preferably 100% by mass.
When each component is added at the time of use, the content of the component (A) in the scale inhibitor containing the component (A) and not the component (B) is 0.001 mass from the viewpoint of easy handling and viscosity. % Or more and 1.000 mass% or less, more preferably 0.010 mass% or more and 0.500 mass% or less, and still more preferably 0.020 mass% or more and 0.100 mass% or less. The content of the component (A) in the active ingredient in the scale inhibitor containing the component (A) and not the component (B) is preferably 80.0% by mass or more, more preferably 90. It is 0 mass% or more, more preferably 95.0 mass% or more, and particularly preferably 100 mass%.
The content of the component (B) in the scale inhibitor containing the component (B) and not containing the component (A) when each component is added at the time of use is 0.001 from the viewpoint of easy handling and viscosity. It is preferably at least 1% by mass and at most 1.000% by mass, more preferably at least 0.010% by mass and at most 0.500% by mass, still more preferably at least 0.020% by mass and at most 0.100% by mass. .. The content of the component (B) in the active ingredient in the scale inhibitor containing the component (B) and not the component (A) is preferably 80.0% by mass or more, more preferably 90. It is 0 mass% or more, more preferably 95.0 mass% or more, and particularly preferably 100 mass%.
 本発明の冷却水用スケール防止剤は、鉄、マンガン、及びアルミニウムから選ばれる1種以上を含有する冷却水系に適用される。
 冷却水中における鉄、マンガン、及びアルミニウムから選ばれる1種以上の濃度が、0.1mg/L以上12.0mg/L以下であれば、冷却水用スケール防止剤の効果がより顕著に発揮されるが、好ましくは0.3mg/L以上10.0mg/以下、より好ましくは0.4mg/L以上7.0mg/L以下、更に好ましくは0.5mg/L以上5.0mg/L以下、特に好ましくは0.5mg/L以上4.0mg/L以下であれば、より優れた効果が発揮される。
 なお、鉄、マンガン、及びアルミニウムの濃度は、原子吸光法、又はチオシアン酸法(吸光度法)等の方法により測定される値である。
The scale inhibitor for cooling water of the present invention is applied to a cooling water system containing one or more selected from iron, manganese, and aluminum.
If the concentration of one or more selected from iron, manganese, and aluminum in the cooling water is 0.1 mg/L or more and 12.0 mg/L or less, the effect of the cooling water scale inhibitor is more significantly exhibited. Is preferably 0.3 mg/L or more and 10.0 mg/L or less, more preferably 0.4 mg/L or more and 7.0 mg/L or less, still more preferably 0.5 mg/L or more and 5.0 mg/L or less, and particularly preferably. Is more than 0.5 mg/L and not more than 4.0 mg/L, a more excellent effect is exhibited.
The concentrations of iron, manganese, and aluminum are values measured by a method such as an atomic absorption method or a thiocyanic acid method (absorbance method).
(成分(A))
 成分(A)は、アクリル酸(AA)に由来する構造単位と2-アクリルアミド-2-メチルプロパンスルホン酸(AMPS)に由来する構造単位を含む共重合体及びその塩、並びにアクリル酸(AA)に由来する構造単位と2-ヒドロキシ-3-アリロキシプロパンスルホン酸(HAPS)に由来する構造単位を含む共重合体及びその塩、から選ばれる1種以上の化合物であり、スケールの分散剤として作用するものである。
 これらの共重合体は一種単独で用いてもよく、二種以上を組合せて用いてもよい。
(Component (A))
Component (A) is a copolymer containing a structural unit derived from acrylic acid (AA) and a structural unit derived from 2-acrylamido-2-methylpropanesulfonic acid (AMPS) and a salt thereof, and acrylic acid (AA). One or more compounds selected from a copolymer containing a structural unit derived from and a structural unit derived from 2-hydroxy-3-allyloxypropanesulfonic acid (HAPS), and a salt thereof, and used as a scale dispersant. It works.
These copolymers may be used alone or in combination of two or more.
 アクリル酸に由来する構造単位と2-アクリルアミド-2-メチルプロパンスルホン酸に由来する構造単位を含む共重合体及びその塩は、アクリル酸(AA)と2-アクリルアミド-2-メチルプロパンスルホン酸(AMPS)のみからなる共重合体及びその塩であってもよく、本発明の目的及び効果の妨げにならない限り、アクリル酸(AA)と2-アクリルアミド-2-メチルプロパンスルホン酸(AMPS)以外のその他のモノマーに由来する構造単位を有する共重合体及びその塩であってもよい。 A copolymer containing a structural unit derived from acrylic acid and a structural unit derived from 2-acrylamido-2-methylpropanesulfonic acid and a salt thereof include acrylic acid (AA) and 2-acrylamido-2-methylpropanesulfonic acid ( It may be a copolymer consisting only of AMPS) and a salt thereof, and may be a copolymer other than acrylic acid (AA) and 2-acrylamido-2-methylpropanesulfonic acid (AMPS) as long as it does not interfere with the object and effect of the present invention. It may be a copolymer having a structural unit derived from another monomer and a salt thereof.
 アクリル酸に由来する構造単位と2-アクリルアミド-2-メチルプロパンスルホン酸に由来する構造単位を含む共重合体の塩は、例えば、アクリル酸に由来する構造単位と2-アクリルアミド-2-メチルプロパンスルホン酸に由来する構造単位を含む共重合体を中和することにより得ることができる。又、原料モノマーであるアクリル酸(AA)、2-アクリルアミド-2-メチルプロパンスルホン酸(AMPS)、及び必要に応じてその他のモノマーを中和してアクリル酸塩、2-アクリルアミド-2-メチルプロパンスルホン酸塩、及び必要に応じてその他のモノマーの塩とし、これを共重合して得ることもできる。このようにして得られるアクリル酸に由来する構造単位と2-アクリルアミド-2-メチルプロパンスルホン酸に由来する構造単位を含む共重合体の塩は、該共重合体の完全中和物に限られるものではなく、部分中和物であってもよい。
 アクリル酸に由来する構造単位と2-アクリルアミド-2-メチルプロパンスルホン酸に由来する構造単位を含む共重合体の塩の具体例としては、アクリル酸に由来する構造単位と2-アクリルアミド-2-メチルプロパンスルホン酸に由来する構造単位を含む共重合体のナトリウム塩、カリウム塩等のアルカリ金属塩、アンモニウム塩、アミン塩等が挙げられる。これらの塩は、該スケール防止剤が用いられる冷却水系に応じて、適したものを適宜選択して使用することができる。
A salt of a copolymer containing a structural unit derived from acrylic acid and a structural unit derived from 2-acrylamido-2-methylpropanesulfonic acid is, for example, a structural unit derived from acrylic acid and 2-acrylamido-2-methylpropane. It can be obtained by neutralizing a copolymer containing a structural unit derived from sulfonic acid. In addition, acrylic acid (2-acrylamido-2-methyl), which is a raw material monomer, is neutralized with acrylic acid (AA), 2-acrylamido-2-methylpropanesulfonic acid (AMPS), and other monomers as necessary. It is also possible to obtain a salt of propane sulfonate and, if necessary, another monomer, and copolymerize this. The salt of the copolymer containing the structural unit derived from acrylic acid and the structural unit derived from 2-acrylamido-2-methylpropanesulfonic acid thus obtained is limited to a completely neutralized product of the copolymer. It may be a partially neutralized product instead of a product.
Specific examples of the salt of the copolymer containing the structural unit derived from acrylic acid and the structural unit derived from 2-acrylamido-2-methylpropanesulfonic acid include structural units derived from acrylic acid and 2-acrylamido-2- Examples thereof include alkali metal salts such as sodium salts and potassium salts of copolymers containing a structural unit derived from methylpropanesulfonic acid, ammonium salts, amine salts and the like. These salts can be appropriately selected and used according to the cooling water system in which the scale inhibitor is used.
 アクリル酸に由来する構造単位と2-アクリルアミド-2-メチルプロパンスルホン酸に由来する構造単位を含む共重合体及びその塩は、アクリル酸(AA)と2-アクリルアミド-2-メチルプロパンスルホン酸(AMPS)との共重合体(以下、「AA/AMPS共重合体」ともいう。)及びその塩、並びにアクリル酸(AA)と、2-アクリルアミド-2-メチルプロパンスルホン酸(AMPS)と、tert-ブチルアクリルアミド(t-BuAAM)との共重合体(以下、「AA/AMPS/t-BuAAM共重合体」ともいう。)及びその塩であることが好ましく、AA/AMPS共重合体及びAA/AMPS/t-BuAAM共重合体であることが更に好ましい。 A copolymer containing a structural unit derived from acrylic acid and a structural unit derived from 2-acrylamido-2-methylpropanesulfonic acid and a salt thereof include acrylic acid (AA) and 2-acrylamido-2-methylpropanesulfonic acid ( A copolymer with AMPS (hereinafter also referred to as “AA/AMPS copolymer”) and its salt, acrylic acid (AA), 2-acrylamido-2-methylpropanesulfonic acid (AMPS), tert. -Copolymer with butyl acrylamide (t-BuAAM) (hereinafter, also referred to as "AA/AMPS/t-BuAAM copolymer") and salts thereof are preferable, and AA/AMPS copolymer and AA/ More preferably, it is an AMPS/t-BuAAM copolymer.
 AA/AMPS共重合体及びその塩の重量平均分子量は、1,000~200,000であることが好ましく、2,000~80,000であることがより好ましく、5,000~75,000であることが更に好ましく、10,000~50,000であることが特に好ましい。重量平均分子量が上記範囲内であれば、スケールに対して良好な分散効果が得られる。
 なお、前記重量平均分子量、後述するAA/HAPS共重合体及びその塩、並びにAA/AMPS/t-BuAAM共重合体及びその塩の重量平均分子量は、ゲル浸透クロマトグラフィー(GPC)において求めた標準ポリスチレン換算の重量平均分子量である。
 AA/AMPS共重合体及びその塩を構成するAA及びその塩に由来する構成単位と、AMPS及びその塩に由来する構成単位とのモル比は、スケール分散効果の観点から、99:1~5:95であることが好ましく、より好ましくは95:5~50:50であり、更に好ましくは90:10~70:30である。
The weight average molecular weight of the AA/AMPS copolymer and its salt is preferably 1,000 to 200,000, more preferably 2,000 to 80,000, and 5,000 to 75,000. It is more preferable that the amount is from 10,000 to 50,000. When the weight average molecular weight is within the above range, a good dispersion effect on the scale can be obtained.
The weight average molecular weight, the AA/HAPS copolymer and its salt to be described later, and the weight average molecular weight of the AA/AMPS/t-BuAAM copolymer and its salt are the standards determined by gel permeation chromatography (GPC). It is a weight average molecular weight in terms of polystyrene.
From the viewpoint of the effect of scale dispersion, the molar ratio of the constitutional unit derived from AA and its salt constituting the AA/AMPS copolymer and its salt to the constitutional unit derived from AMPS and its salt is 99:1-5. :95 is preferable, more preferably 95:5 to 50:50, and further preferably 90:10 to 70:30.
 AA/AMPS/t-BuAAM共重合体及びその塩の重量平均分子量は、3,000~12,000であることが好ましく、3,000~10,000であることがより好ましく、4,000~7,000であることが更に好ましい。重量平均分子量が上記範囲内であれば、スケールに対して良好な分散効果が得られる。
 AA/AMPS/t-BuAAM共重合体及びその塩の全構成単位中におけるAA及びその塩に由来する構成単位の含有量は、スケール分散効果の観点から、10~90モル%であることが好ましく、より好ましくは40~85モル%、更に好ましくは70~80モル%である。
 AA/AMPS/t-BuAAM共重合体及びその塩の全構成単位中におけるAMPS及びその塩に由来する構成単位の含有量は、スケール分散効果の観点から、5~40モル%であることが好ましく、より好ましくは7~20モル%、更に好ましくは10~15モル%である。
 AA/AMPS/t-BuAAM共重合体及びその塩の全構成単位中におけるt-BuAAMに由来する構成単位の含有量は、スケール分散効果の観点から、5~50モル%であることが好ましく、より好ましくは7~20モル%、更に好ましくは10~15モル%である。
The weight average molecular weight of the AA/AMPS/t-BuAAM copolymer and its salt is preferably 3,000 to 12,000, more preferably 3,000 to 10,000, and more preferably 4,000 to More preferably, it is 7,000. When the weight average molecular weight is within the above range, a good dispersion effect on the scale can be obtained.
The content of the structural unit derived from AA and its salt in all the structural units of the AA/AMPS/t-BuAAM copolymer and its salt is preferably 10 to 90 mol% from the viewpoint of scale dispersion effect. %, more preferably 40 to 85 mol %, further preferably 70 to 80 mol %.
The content of the constitutional unit derived from AMPS and its salt in all the constitutional units of the AA/AMPS/t-BuAAM copolymer and its salt is preferably 5 to 40 mol% from the viewpoint of the scale dispersion effect. %, more preferably 7 to 20 mol %, and further preferably 10 to 15 mol %.
The content of the structural unit derived from t-BuAAM in all the structural units of the AA/AMPS/t-BuAAM copolymer and a salt thereof is preferably 5 to 50 mol% from the viewpoint of the scale dispersion effect, It is more preferably 7 to 20 mol %, and further preferably 10 to 15 mol %.
 アクリル酸に由来する構造単位と2-アクリルアミド-2-メチルプロパンスルホン酸に由来する構造単位を含む共重合体及びその塩が、その他のモノマーに由来する構造単位を有する場合、その含有量は、アクリル酸に由来する構造単位と2-アクリルアミド-2-メチルプロパンスルホン酸に由来する構造単位を含む共重合体及びその塩の合計質量に基づいて、50質量%以下であることが好ましく、30質量%以下であることがより好ましく、20質量%以下であることが更に好ましい。 When the copolymer containing a structural unit derived from acrylic acid and a structural unit derived from 2-acrylamido-2-methylpropanesulfonic acid or a salt thereof has a structural unit derived from another monomer, the content thereof is It is preferably 50% by mass or less, and 30% by mass based on the total mass of the copolymer containing the structural unit derived from acrylic acid and the structural unit derived from 2-acrylamido-2-methylpropanesulfonic acid and its salt. % Or less, more preferably 20% by mass or less.
 前記その他のモノマーとしては、例えば、カルボン酸、モノエチレン性不飽和炭化水素、モノエチレン性不飽和酸のアルキルエステル、モノエチレン性不飽和酸のビニルエステル、置換アクリルアミド、N-ビニル単量体、水酸基含有不飽和単量体、(メタ)アクリル酸エステル、芳香族不飽和単量体、及びスルホン酸の1種又は2種以上が挙げられる。 Examples of the other monomers include carboxylic acids, monoethylenically unsaturated hydrocarbons, alkyl esters of monoethylenically unsaturated acids, vinyl esters of monoethylenically unsaturated acids, substituted acrylamides, N-vinyl monomers, One or more of a hydroxyl group-containing unsaturated monomer, a (meth)acrylic acid ester, an aromatic unsaturated monomer, and a sulfonic acid may be used.
 アクリル酸に由来する構造単位と2-ヒドロキシ-3-アリロキシプロパンスルホン酸に由来する構造単位を含む共重合体及びその塩は、アクリル酸(AA)と2-ヒドロキシ-3-アリロキシプロパンスルホン酸(HAPS)のみからなる共重合体及びその塩であってもよく、本発明の目的及び効果の妨げにならない限り、アクリル酸(AA)と2-ヒドロキシ-3-アリロキシプロパンスルホン酸(HAPS)以外のその他のモノマーに由来する構造単位を有する共重合体及びその塩であってもよい。 A copolymer containing a structural unit derived from acrylic acid and a structural unit derived from 2-hydroxy-3-allyloxypropane sulfonic acid, and a salt thereof are prepared from acrylic acid (AA) and 2-hydroxy-3-allyloxy propane sulfone. It may be a copolymer consisting only of an acid (HAPS) and a salt thereof, and acrylic acid (AA) and 2-hydroxy-3-allyloxypropanesulfonic acid (HAPS) may be used as long as they do not interfere with the objects and effects of the present invention. A copolymer having a structural unit derived from another monomer other than the above) and a salt thereof may be used.
 アクリル酸に由来する構造単位と2-ヒドロキシ-3-アリロキシプロパンスルホン酸に由来する構造単位を含む共重合体の塩は、例えば、アクリル酸に由来する構造単位と2-ヒドロキシ-3-アリロキシプロパンスルホン酸に由来する構造単位を含む共重合体を中和することにより得ることができる。又、原料モノマーであるアクリル酸(AA)、2-ヒドロキシ-3-アリロキシプロパンスルホン酸(HAPS)、及び必要に応じてその他のモノマーを中和してアクリル酸塩、2-ヒドロキシ-3-アリロキシプロパンスルホン酸塩、及び必要に応じてその他のモノマーの塩とし、これを共重合して得ることもできる。このようにして得られるアクリル酸に由来する構造単位と2-ヒドロキシ-3-アリロキシプロパンスルホン酸に由来する構造単位を含む共重合体の塩は、アクリル酸に由来する構造単位と2-ヒドロキシ-3-アリロキシプロパンスルホン酸に由来する構造単位を含む共重合体の完全中和物に限られるものではなく、部分中和物であってもよい。
 アクリル酸に由来する構造単位と2-ヒドロキシ-3-アリロキシプロパンスルホン酸に由来する構造単位を含む共重合体の塩の具体例としては、アクリル酸に由来する構造単位と2-ヒドロキシ-3-アリロキシプロパンスルホン酸に由来する構造単位を含む共重合体のナトリウム塩、カリウム塩等のアルカリ金属塩、アンモニウム塩、アミン塩等が挙げられる。これらの塩は、該スケール防止剤が用いられる冷却水系に応じて、適したものを適宜選択して使用することができる。
A salt of a copolymer containing a structural unit derived from acrylic acid and a structural unit derived from 2-hydroxy-3-allyloxypropanesulfonic acid is, for example, a structural unit derived from acrylic acid and 2-hydroxy-3-ali. It can be obtained by neutralizing a copolymer containing a structural unit derived from roxypropanesulfonic acid. In addition, acrylic acid (2-hydroxy-3-hydroxy-3-hydroxy-3-alkyl-3-oxypropyl sulfonic acid (HAPS), which is a raw material monomer, and acrylic acid salt 2-hydroxy-3- It is also possible to obtain a salt of allyloxypropane sulfonate and, if necessary, another monomer, and copolymerize this. The salt of the copolymer containing the structural unit derived from acrylic acid and the structural unit derived from 2-hydroxy-3-allyloxypropanesulfonic acid thus obtained is It is not limited to the completely neutralized product of the copolymer containing a structural unit derived from -3-allyloxypropanesulfonic acid, and may be a partially neutralized product.
Specific examples of the salt of the copolymer containing the structural unit derived from acrylic acid and the structural unit derived from 2-hydroxy-3-allyloxypropanesulfonic acid include structural units derived from acrylic acid and 2-hydroxy-3. -Alkali metal salts such as sodium salts and potassium salts of copolymers containing structural units derived from allyloxypropane sulfonic acid, ammonium salts, amine salts and the like. These salts can be appropriately selected and used according to the cooling water system in which the scale inhibitor is used.
 アクリル酸に由来する構造単位と2-ヒドロキシ-3-アリロキシプロパンスルホン酸に由来する構造単位を含む共重合体及び塩は、アクリル酸(AA)と2-ヒドロキシ-3-アリロキシプロパンスルホン酸(HAPS)との共重合体(以下、「AA/HAPS共重合体」ともいう。)及びその塩であることが好ましく、AA/HAPS共重合体であることが更に好ましい。 Copolymers and salts containing a structural unit derived from acrylic acid and a structural unit derived from 2-hydroxy-3-allyloxypropane sulfonic acid are acrylic acid (AA) and 2-hydroxy-3-allyloxy propane sulfonic acid. A copolymer with (HAPS) (hereinafter, also referred to as “AA/HAPS copolymer”) and a salt thereof are preferable, and an AA/HAPS copolymer is more preferable.
 AA/HAPS共重合体及びその塩の重量平均分子量は、1,000~200,00であることが好ましく、2,000~80,000であることがより好ましく、5,000~75,000であることが更に好ましく、10,000~50,000であることが最も好ましい。重量平均分子量が上記範囲内であれば、スケールに対して良好な分散効果が得られる。
 AA/HAPS共重合体及びその塩を構成するAA及びその塩に由来する構成単位と、HAPS及びその塩に由来する構成単位とのモル比は、スケール分散効果の観点から、99:1~5:95であることが好ましく、より好ましくは95:5~50:50であり、更に好ましくは90:10~70:30である。
The weight average molecular weight of the AA/HAPS copolymer and its salt is preferably 1,000 to 200,000, more preferably 2,000 to 80,000, and 5,000 to 75,000. It is more preferable to be present, and it is most preferable to be 10,000 to 50,000. When the weight average molecular weight is within the above range, a good dispersion effect on the scale can be obtained.
The molar ratio of the constitutional unit derived from AA and its salt constituting the AA/HAPS copolymer and its salt to the constitutional unit derived from HAPS and its salt is from 99:1 to 5 from the viewpoint of scale dispersion effect. :95 is preferable, more preferably 95:5 to 50:50, and further preferably 90:10 to 70:30.
 アクリル酸に由来する構造単位と2-ヒドロキシ-3-アリロキシプロパンスルホン酸に由来する構造単位を含む共重合体及びその塩が、その他のモノマーに由来する構造単位を有する場合、その含有量は、アクリル酸に由来する構造単位と2-ヒドロキシ-3-アリロキシプロパンスルホン酸に由来する構造単位を含む共重合体及びその塩の合計質量に基づいて、50質量%以下であることが好ましく、30質量%以下であることがより好ましく、20質量%以下であることが更に好ましい。 When the copolymer containing a structural unit derived from acrylic acid and a structural unit derived from 2-hydroxy-3-allyloxypropanesulfonic acid and a salt thereof have a structural unit derived from another monomer, the content thereof is It is preferably 50% by mass or less based on the total mass of the copolymer containing a structural unit derived from acrylic acid and a structural unit derived from 2-hydroxy-3-allyloxypropanesulfonic acid and a salt thereof. It is more preferably 30% by mass or less, and further preferably 20% by mass or less.
 前記その他のモノマーとしては、カルボン酸、モノエチレン性不飽和炭化水素、モノエチレン性不飽和酸のアルキルエステル、モノエチレン性不飽和酸のビニルエステル、置換アクリルアミド、N-ビニル単量体、水酸基含有不飽和単量体、(メタ)アクリル酸エステル、芳香族不飽和単量体、及びスルホン酸の1種又は2種以上が挙げられる。 Examples of the other monomer include carboxylic acid, monoethylenically unsaturated hydrocarbon, alkyl ester of monoethylenically unsaturated acid, vinyl ester of monoethylenically unsaturated acid, substituted acrylamide, N-vinyl monomer, and hydroxyl group-containing. One or more of unsaturated monomers, (meth)acrylic acid esters, aromatic unsaturated monomers, and sulfonic acids may be used.
(成分(B))
 成分(B)は、エチレンジアミン四酢酸(以下、「EDTA」ともいう。)及びその塩(以下、「EDTA塩」ともいう。)、3-ヒドロキシ-2,2-イミノジコハク酸4ナトリウム(以下、「HIDS」ともいう。)及びその塩(以下、「HIDS塩」ともいう。)、[(ホスホノメチル)イミノ]ビス(6、,1-ヘキサンジイルニトリロビスメチレン)テトラキスホスホン酸(以下、「BHMTPMP」ともいう。)及びその塩(以下、「BHMTPMP塩」ともいう。)、並びに1-ヒドロキシエタン-1,1-ジホスホン酸(以下、「HEDP」ともいう。)及びその塩(以下、「HEDP塩」ともいう。)から選ばれる1種以上の化合物である。
 本発明の冷却水用スケール防止剤は、成分(A)に加えて成分(B)を含むことにより、優れたスケール防止効果を発揮する。その理由は定かではないが、冷却水中に存在する鉄イオン、マンガンイオン、及びアルミニウムイオン等の金属イオンを、キレート剤及びホスホン酸が封鎖することにより、スケールの析出を効果的に抑制していると考えられる。
(Component (B))
Component (B) is ethylenediaminetetraacetic acid (hereinafter, also referred to as “EDTA”) and its salt (hereinafter, also referred to as “EDTA salt”), 3-hydroxy-2,2-iminodisuccinate 4 sodium (hereinafter, “ HIDS”) and salts thereof (hereinafter also referred to as “HIDS salt”), [(phosphonomethyl)imino]bis(6,1,1-hexanediylnitrilobismethylene)tetrakisphosphonic acid (hereinafter also referred to as “BHMTPMP”). And its salts (hereinafter also referred to as “BHMTPMP salts”), and 1-hydroxyethane-1,1-diphosphonic acid (hereinafter also referred to as “HEDP”) and salts thereof (hereinafter “HEDP salts”). (Also referred to as ".").
The scale inhibitor for cooling water of the present invention exhibits an excellent scale preventing effect by containing the component (B) in addition to the component (A). Although the reason is not clear, the chelating agent and phosphonic acid block the metal ions such as iron ions, manganese ions, and aluminum ions present in the cooling water, thereby effectively suppressing the scale deposition. it is conceivable that.
 成分(B)は、キレート剤(成分(B1))とホスホン酸(成分(B2))に分類することができる。キレート剤及びホスホン酸は一種単独で用いてもよく、キレート剤とホスホン酸を併用して使用してもよい。 Component (B) can be classified into chelating agent (component (B1)) and phosphonic acid (component (B2)). The chelating agent and the phosphonic acid may be used alone, or the chelating agent and the phosphonic acid may be used in combination.
 成分(B1)は、エチレンジアミン四酢酸(EDTA)及びその塩(EDTA塩)、並びに3-ヒドロキシ-2,2-イミノジコハク酸4ナトリウム(HIDS)及びその塩(HIDS塩)から選ばれる1種以上の化合物である。
 これらのキレート剤である成分(B1)は、一種単独で用いてもよく、二種以上を組合せて用いてもよい。
 成分(B2)は、[(ホスホノメチル)イミノ]ビス(6,1-ヘキサンジイルニトリロビスメチレン)テトラキスホスホン酸(BHMTPMP)及びその塩(BHMTPMP塩)、並びに1-ヒドロキシエタン-1,1-ジホスホン酸(HEDP)及びその塩(HEDP塩)から選ばれる1種以上の化合物である。
 これらのホスホン酸である成分(B2)は、一種単独で用いてもよく、二種以上を組合せて用いてもよい。
The component (B1) is composed of ethylenediaminetetraacetic acid (EDTA) and its salt (EDTA salt), and one or more kinds selected from tetrahydroxy 3-hydroxy-2,2-iminodisuccinate (HIDS) and its salt (HIDS salt). It is a compound.
These chelating agents (B1) may be used alone or in combination of two or more.
The component (B2) is [(phosphonomethyl)imino]bis(6,1-hexanediylnitrilobismethylene)tetrakisphosphonic acid (BHMTPMP) and its salt (BHMTPMP salt), and 1-hydroxyethane-1,1-diphosphonic acid. (HEDP) and one or more compounds selected from salts thereof (HEDP salt).
These phosphonic acid components (B2) may be used alone or in combination of two or more.
 冷却水用スケール防止剤中の成分(A)と成分(B)の質量比は、良好なスケール防止効果を得る観点から、98:2~13:87であることが好ましく、94:6~30:70であることがより好ましく、90:10~40:60であることが更に好ましい。 The mass ratio of the component (A) to the component (B) in the scale inhibitor for cooling water is preferably 98:2 to 13:87, and 94:6 to 30 from the viewpoint of obtaining a good scale inhibiting effect. : 70 is more preferable, and 90:10 to 40: 60 is further preferable.
 冷却水用スケール防止剤中の成分(A)と成分(B1)の質量比は、良好なスケール防止効果を得る観点から、98:2~13:87であることが好ましく、94:6~30:70であることがより好ましく、90:10~40:60であることが更に好ましい。
 又、冷却水用スケール防止剤中の成分(A)と成分(B2)の質量比は、良好なスケール防止効果を得る観点から、98:2~13:87であることが好ましく、98:2~38:62であることがより好ましく、94:6~60:40であることが更に好ましく、90:10~80:20であることが特に好ましい。
The mass ratio of the component (A) to the component (B1) in the scale inhibitor for cooling water is preferably 98:2 to 13:87, and 94:6 to 30 from the viewpoint of obtaining a good scale inhibiting effect. : 70 is more preferable, and 90:10 to 40: 60 is further preferable.
The mass ratio of the component (A) to the component (B2) in the scale inhibitor for cooling water is preferably 98:2 to 13:87, and 98:2, from the viewpoint of obtaining a good scale inhibiting effect. It is more preferably ˜38:62, even more preferably 94:6 to 60:40, and particularly preferably 90:10 to 80:20.
 スケール防止剤は、本発明の効果を損なわない範囲であれば、成分(A)及び成分(B)以外に、アルカリや脱酸素剤、防食剤等の従来のスケール防止剤に用いられている添加剤成分や、その他のキレート剤、及びその他のホスホン酸を必要に応じて添加含有させてもよい。
 その他のキレート剤としては、トランス-1、,2-ジアミノシクロヘキサン四酢酸(CyDTA)、o,o'-ビス(2-アミノエチル)エチレングリコール四酢酸(GEDTA)、ジエチレントリアミン五酢酸(DTPA)、トリエチレンテトラアミン六酢酸(TTHA)、ニトリロ三酢酸(NTA)、アセチルアセトン、及びグリシン等が挙げられる。
 その他のホスホン酸としては、2-ホスホノブタン-1,2,3-トリカルボン酸(PBTC)、アミノトリメチレンホスホン酸(ATMP)、エチレンジアミンテトラメチレンホスホン酸(EDTMP)、ヒドロキシエチリデンジホスホン酸(HEDP)、及びニトリロトリスメチレンホスホン酸(NTMP)等が挙げられる。
The scale inhibitor is added in addition to the components (A) and (B) as long as the effects of the present invention are not impaired, and is used in conventional scale inhibitors such as alkalis, oxygen scavengers and anticorrosive agents. Agent components, other chelating agents, and other phosphonic acids may be added and contained as necessary.
Other chelating agents include trans-1,2,diaminocyclohexanetetraacetic acid (CyDTA), o,o'-bis(2-aminoethyl)ethylene glycol tetraacetic acid (GEDTA), diethylenetriaminepentaacetic acid (DTPA), tri Examples thereof include ethylene tetraamine hexaacetic acid (TTHA), nitrilotriacetic acid (NTA), acetylacetone, and glycine.
Other phosphonic acids include 2-phosphonobutane-1,2,3-tricarboxylic acid (PBTC), aminotrimethylenephosphonic acid (ATMP), ethylenediaminetetramethylenephosphonic acid (EDTMP), hydroxyethylidene diphosphonic acid (HEDP), And nitrilotrimesmethylenephosphonic acid (NTMP) and the like.
[冷却水用スケール防止方法]
 本発明の冷却水用スケール防止方法は、鉄、マンガン、及びアルミニウムから選ばれる1種以上を含有する冷却水系のスケール防止方法であって、アクリル酸に由来する構造単位と2-アクリルアミド-2-メチルプロパンスルホン酸に由来する構造単位を含む共重合体及びその塩、アクリル酸に由来する構造単位と2-ヒドロキシ-3-アリロキシプロパンスルホン酸に由来する構造単位を含む共重合体及びその塩、から選ばれる1種以上の化合物である成分(A)と、エチレンジアミン四酢酸及びその塩、3-ヒドロキシ-2,2-イミノジコハク酸4ナトリウム及びその塩、[(ホスホノメチル)イミノ]ビス(6、,1-ヘキサンジイルニトリロビスメチレン)テトラキスホスホン酸及びその塩、並びに1-ヒドロキシエタン-1,1-ジホスホン酸及びその塩から選ばれる1種以上の化合物である成分(B)とを含む、冷却水用スケール防止剤を用いる方法である。前記スケール防止剤を添加する工程を含んでいれば、通常の水系処理で行われる他の工程を含んでいてもよい。
 スケール防止剤を添加する方法は特に制限はなく、例えば、成分(A)及び成分(B)が予め調製混合されたものを添加してもよく、各成分をそれぞれ別に添加してもよい。
[Scale prevention method for cooling water]
The scale prevention method for cooling water of the present invention is a scale prevention method for a cooling water system containing at least one selected from iron, manganese, and aluminum, and comprises a structural unit derived from acrylic acid and 2-acrylamide-2- Copolymer containing structural unit derived from methylpropane sulfonic acid and salt thereof, copolymer containing structural unit derived from acrylic acid and structural unit derived from 2-hydroxy-3-allyloxypropane sulfonic acid and salt thereof Component (A), which is one or more compounds selected from, ethylenediaminetetraacetic acid and its salt, 4-hydroxy-3-hydroxy-2,2-iminodisuccinate and its salt, [(phosphonomethyl)imino]bis(6, ,1-hexanediylnitrilobismethylene)tetrakisphosphonic acid and salts thereof, and component (B) which is one or more compounds selected from 1-hydroxyethane-1,1-diphosphonic acid and salts thereof, and cooling This is a method of using a scale inhibitor for water. As long as it includes the step of adding the scale inhibitor, it may include other steps carried out in a normal aqueous treatment.
The method for adding the scale inhibitor is not particularly limited, and for example, a mixture prepared by mixing the components (A) and (B) in advance may be added, or each component may be added separately.
 本発明の冷却水用スケール防止方法は、鉄、マンガン、及びアルミニウムから選ばれる1種以上を含有する冷却水系に適用される。
 本発明の冷却水用スケール防止方法は、冷却水中における鉄、マンガン、及びアルミニウムから選ばれる1種以上の濃度が、0.1mg/L以上12.0mg/L以下であれば、スケールの抑制効果が発揮されるが、好ましくは0.3mg/L以上10.0mg/以下、より好ましくは0.4mg/L以上7.0mg/L以下、更に好ましくは0.5mg/L以上5.0mg/L以下、特に好ましくは0.5mg/L以上4.0mg/L以下であれば、より優れたスケールの抑制効果が発揮される。
 又、本発明のスケール防止方法は、冷却水系が循環水系であることが好ましい。
The scale prevention method for cooling water of the present invention is applied to a cooling water system containing one or more selected from iron, manganese, and aluminum.
The scale prevention method for cooling water of the present invention, if the concentration of one or more selected from iron, manganese, and aluminum in the cooling water is 0.1 mg/L or more and 12.0 mg/L or less, the scale suppressing effect However, preferably 0.3 mg/L or more and 10.0 mg/L or less, more preferably 0.4 mg/L or more and 7.0 mg/L or less, and further preferably 0.5 mg/L or more and 5.0 mg/L. Below, if it is particularly preferably 0.5 mg/L or more and 4.0 mg/L or less, a more excellent scale suppressing effect is exhibited.
Further, in the scale prevention method of the present invention, the cooling water system is preferably a circulating water system.
 冷却水系における成分(A)の濃度は、スケール防止効果を十分に得る観点から、3.0mg/L以上20.0mg/L以下となるように成分(A)を添加することが好ましく、4.0mg/L以上15.0mg/L以下となるように成分(A)を添加することがより好ましく、5.0mg/L以上10.0mg/L以下となるように成分(A)を添加することが更に好ましい。上記範囲であれば、効率的かつ経済的にスケールの析出を防止することが可能となる。 From the viewpoint of sufficiently obtaining the scale prevention effect, the concentration of the component (A) in the cooling water system is preferably 3.0 mg/L or more and 20.0 mg/L or less, and the component (A) is preferably added. The component (A) is more preferably added so as to be 0 mg/L or more and 15.0 mg/L or less, and the component (A) is added so as to be 5.0 mg/L or more and 10.0 mg/L or less. Is more preferable. Within the above range, it becomes possible to prevent scale precipitation efficiently and economically.
 冷却水系における成分(B1)の濃度は、スケール防止効果を十分に得る観点から、0.5mg/L以上20.0mg/L以下となるように成分(B1)を添加することが好ましく、0.7mg/L以上15.0mg/L以下となるように成分(B1)を添加することがより好ましく、0.8mg/L以上12.0mg/L以下となるように成分(B1)を添加することが更に好ましい。上記範囲であれば、効率的かつ経済的にスケールの析出を防止することが可能となる。 The concentration of the component (B1) in the cooling water system is preferably 0.5 mg/L or more and 20.0 mg/L or less, and the concentration of the component (B1) is preferably 0. The component (B1) is more preferably added so as to be 7 mg/L or more and 15.0 mg/L or less, and the component (B1) is added so as to be 0.8 mg/L or more and 12.0 mg/L or less. Is more preferable. Within the above range, it becomes possible to prevent scale precipitation efficiently and economically.
 冷却水系における成分(B2)の濃度は、スケール防止効果を十分に得る観点から、0.5mg/L以上5.0mg/L以下となるように成分(B2)を添加することが好ましく、0.7mg/L以上4.0mg/L以下となるように成分(B2)を添加することがより好ましく、0.8mg/L以上3.0mg/L以下となるように成分(B2)を添加することが更に好ましい。上記範囲であれば、効率的かつ経済的にスケールの析出を防止することが可能となる。 From the viewpoint of sufficiently obtaining the scale prevention effect, the concentration of the component (B2) in the cooling water system is preferably 0.5 mg/L or more and 5.0 mg/L or less, and the component (B2) is preferably added. The component (B2) is more preferably added so as to be 7 mg/L or more and 4.0 mg/L or less, and the component (B2) is added so as to be 0.8 mg/L or more and 3.0 mg/L or less. Is more preferable. Within the above range, it becomes possible to prevent scale precipitation efficiently and economically.
 冷却水系を循環する循環水中の成分(A)と成分(B1)の質量比は、良好なスケール防止効果を得る観点から、98:2~13:87であることが好ましく、94:6~30:70であることがより好ましく、90:10~40:60であることが更に好ましい。
 又、冷却水系を循環する循環水中の成分(A)と成分(B2)の質量比は、良好なスケール防止効果を得る観点から、98:2~13:87であることが好ましく、98:2~38:62であることがより好ましく、94:6~60:40であることが更に好ましく、90:10~80:20であることが特に好ましい。
The mass ratio of the component (A) to the component (B1) in the circulating water circulating in the cooling water system is preferably 98:2 to 13:87, and 94:6 to 30 from the viewpoint of obtaining a good scale prevention effect. : 70 is more preferable, and 90:10 to 40: 60 is further preferable.
Further, the mass ratio of the component (A) and the component (B2) in the circulating water circulating through the cooling water system is preferably 98:2 to 13:87, and 98:2, from the viewpoint of obtaining a good scale preventing effect. It is more preferably ˜38:62, even more preferably 94:6 to 60:40, and particularly preferably 90:10 to 80:20.
 前記スケール防止方法においては、例えば、冷却水中の鉄、マンガン、及びアルミニウムの濃度を検知し、その濃度に応じて、冷却水に対するスケール防止剤の添加量を自動制御することにより、安全かつ連続的に、スケール防止効果を発揮させることができる。 In the scale prevention method, for example, by detecting the concentration of iron, manganese, and aluminum in the cooling water, depending on the concentration, by automatically controlling the addition amount of the scale inhibitor to the cooling water, it is safe and continuous. In addition, the scale prevention effect can be exhibited.
 次に、本発明を実施例により更に詳細に説明するが、本発明はこれらの例によってなんら限定されるものではない。 Next, the present invention will be described in more detail with reference to examples, but the present invention is not limited to these examples.
[処理溶液の作製]
(酸消費量溶液)
 炭酸水素ナトリウム13.78gに超純水を加えて1000mLとし、混合攪拌した後、0.1N水酸化ナトリウム水溶液を用いてpH8.5に調整することにより、酸消費量が8200mgCaCO/Lの酸消費量溶液を作製した。
(カルシウムイオン溶液)
 塩化カルシウム2水和物14.7gに超純水を加えて1000mLとし、混合攪拌した後、0.1N水酸化ナトリウム水溶液を用いてpH8.5に調整することにより、カルシウム硬度が10000mgCaCO/Lのカルシウムイオン溶液を作製した。
(リン酸イオン溶液)
 リン酸水素ナトリウム0.6729gに超純水を加えて1000mLとし、混合攪拌した後、0.1N水酸化ナトリウム水溶液を用いてpH8.5に調整することにより、リン酸イオン濃度が450mg/Lのリン酸イオン溶液を作製した。
[Preparation of treatment solution]
(Acid consumption solution)
Ultrapure water was added to 13.78 g of sodium hydrogen carbonate to make 1000 mL, and the mixture was stirred with stirring, and then adjusted to pH 8.5 with a 0.1N sodium hydroxide aqueous solution to obtain an acid with an acid consumption of 8200 mg CaCO 3 /L. A consumption solution was made.
(Calcium ion solution)
Ultrapure water was added to 14.7 g of calcium chloride dihydrate to make 1000 mL, and the mixture was stirred with stirring, and then adjusted to pH 8.5 with 0.1N sodium hydroxide aqueous solution to give calcium hardness of 10000 mg CaCO 3 /L. A calcium ion solution was prepared.
(Phosphate ion solution)
Ultrapure water was added to 0.6729 g of sodium hydrogen phosphate to make 1000 mL, and after mixing and stirring, the pH was adjusted to pH 8.5 with a 0.1N sodium hydroxide aqueous solution to give a phosphate ion concentration of 450 mg/L. A phosphate ion solution was prepared.
(成分(A)水溶液)
 成分(A)水溶液は、全て、成分(A)の濃度が0.05質量%である市販品を用いた。
 成分(A)水溶液中の成分(A)の重量平均分子量を表1に示す。
A-1:「アキュゾール587」(AA/AMPS共重合体、ダウケミカル社製、モノマー比AA:AMPS=79:21)
A-2:「GS175」(AA/HAPS共重合体、株式会社日本触媒製、モノマー比AA/:HAPS=82:18)
A-3:「アロンA-6620」(AA/AMPS/t-BuAAM共重合体、東亜合成株式会社製)
(Component (A) aqueous solution)
As the aqueous solution of the component (A), all commercially available products in which the concentration of the component (A) was 0.05% by mass.
Table 1 shows the weight average molecular weight of the component (A) in the aqueous solution of the component (A).
A-1: “Acusol 587” (AA/AMPS copolymer, manufactured by Dow Chemical Co., monomer ratio AA:AMPS=79:21)
A-2: “GS175” (AA/HAPS copolymer, manufactured by Nippon Shokubai Co., Ltd., monomer ratio AA/:HAPS=82:18)
A-3: "Aron A-6620" (AA/AMPS/t-BuAAM copolymer, manufactured by Toagosei Co., Ltd.)
(成分(B)水溶液)
<成分(B1)水溶液>
〔3-ヒドロキシ-2,2’イミノジコハク酸4ナトリウム(HIDS)水溶液〕
 HIDS5gに超純水を加えて100mLとし、混合攪拌した。得られた水溶液を1mL分取し、超純水で100mLにメスアップすることにより、濃度が0.05質量%であるHIDS水溶液を作製した。
〔エチレンジアミン四酢酸(EDTA)水溶液〕
 EDTA5gに超純水を加えて100mLとし、混合攪拌した。得られた水溶液を1mL分取し、超純水で100mLにメスアップすることにより、濃度が0.05質量%であるEDTA水溶液を作製した。
<成分(B2)水溶液>
〔[(ホスホノメチル)イミノ]ビス(6,1-ヘキサンジイルニトリロビスメチレン)テトラキスホスホン酸(BHMTPMP)水溶液〕
 BHMTPMP5gに超純水を加えて100mLとし、混合攪拌した。得られた水溶液を1mL分取し、超純水で100mLにメスアップすることにより、濃度が0.05質量%であるBHMTPMP水溶液を作製した。
〔1-ヒドロキシエタン-1,1-ジホスホン酸(HEDP)水溶液〕
 HEDP5gに超純水を加えて100mLとし、混合攪拌した。得られた水溶液を1mL分取し、超純水で100mLにメスアップすることにより、濃度が0.05質量%であるHEDP水溶液を作製した。
(Component (B) aqueous solution)
<Component (B1) aqueous solution>
[3-hydroxy-2,2'-iminodisuccinate tetrasodium (HIDS) aqueous solution]
Ultrapure water was added to 5 g of HIDS to make 100 mL, and the mixture was stirred. 1 mL of the obtained aqueous solution was collected, and the volume was adjusted to 100 mL with ultrapure water to prepare an HIDS aqueous solution having a concentration of 0.05% by mass.
[Ethylenediaminetetraacetic acid (EDTA) aqueous solution]
Ultrapure water was added to 5 g of EDTA to make 100 mL, and the mixture was stirred. 1 mL of the obtained aqueous solution was collected, and the volume was adjusted to 100 mL with ultrapure water to prepare an EDTA aqueous solution having a concentration of 0.05% by mass.
<Component (B2) aqueous solution>
[[(Phosphonomethyl)imino]bis(6,1-hexanediylnitrilobismethylene)tetrakisphosphonic acid (BHMTPMP) aqueous solution]
Ultrapure water was added to 5 g of BHMTPMP to make 100 mL, and the mixture was stirred. 1 mL of the obtained aqueous solution was collected, and the volume was adjusted to 100 mL with ultrapure water to prepare a BHMTPMP aqueous solution having a concentration of 0.05% by mass.
[1-hydroxyethane-1,1-diphosphonic acid (HEDP) aqueous solution]
Ultrapure water was added to 5 g of HEDP to make 100 mL, and the mixture was stirred. 1 mL of the obtained aqueous solution was collected, and the volume was adjusted to 100 mL with ultrapure water to prepare an HEDP aqueous solution having a concentration of 0.05% by mass.
(鉄イオン溶液)
 塩化鉄(III)6水和物に超純水を加え、混合攪拌することにより、鉄濃度が250mg/Lである鉄イオン溶液を作製した。
(マンガンイオン溶液)
 塩化マンガン(II)4水和物に超純水を加え、混合攪拌することにより、マンガン濃度が250mg/Lであるマンガンイオン溶液を作製した。
(Iron ion solution)
Ultrapure water was added to iron (III) chloride hexahydrate and mixed and stirred to prepare an iron ion solution having an iron concentration of 250 mg/L.
(Manganese ion solution)
Ultrapure water was added to manganese (II) chloride tetrahydrate, and mixed and stirred to prepare a manganese ion solution having a manganese concentration of 250 mg/L.
[実施例1]
 500mLのネジ口ビーカーに、447.5mLの超純水を入れ、続いて酸消費量溶液5mL、カルシウムイオン溶液25mL、リン酸イオン溶液10mL、成分(A)としてAA/AMPS(A-1)水溶液7.5mL、成分(B)としてHIDS(B1-1)水溶液1mL、鉄イオン溶液4mLをこの順で添加混合し、0.1N水酸化ナトリウム水溶液と0.1N硫酸水溶液でpH8.5に調整し、成分(A)を添加した試験水を得た。得られた試験水を、10mL分取し、超純水を用いて希釈し、JIS K 0101:1998のアスコルビン酸還元-モリブデン青吸光光度法により、試験前の試験水のリン酸イオン濃度(C)を測定した。
 又、他の500mLのネジ口ビーカーに、成分(A)を添加せず、成分(A)のかわりに超純水を加えたこと以外は上記と同様に行い、成分(A)を添加していない試験水を得た。
 続いて、成分(A)を添加した試験水と成分(A)を添加していない試験水が入ったそれぞれのネジ口ビンの蓋をし、60℃の恒温槽中に24時間静置した。その後、ネジ口ビンを恒温槽から取り出し、孔径0.45μmのフィルターを用いてろ過した。ろ過した試験水は室温で冷却した後、超純水を用いて希釈し、上記アスコルビン酸還元-モリブデン青吸光光度法により、試験後の試験水におけるそれぞれのリン酸イオン濃度(成分(A)を添加した試験水:C、成分(A)を添加していない試験水:C)を測定した。
 得られたリン酸イオン濃度(C)から、下記式(1)によりリン酸カルシウム析出抑制率(スケール発生抑制率)を算出した。
リン酸カルシウム析出抑制率(%)=(C-C)/(C-C)×100  (1)
:成分(A)を添加した場合の試験後のリン酸イオン濃度
:成分(A)を添加しない場合の試験後のリン酸イオン濃度
:成分(A)を添加した場合の試験前のリン酸イオン濃度
 成分(A)及び成分(B)として使用した試薬を表1に、恒温槽に静置前の試験水中の成分(A)の濃度、成分(B)の濃度、Fe濃度、Mn濃度、酸消費量、リン酸イオン濃度、及びカルシウムイオン硬度を表2に示す。又、式(1)より算出したリン酸カルシウム析出抑制率を表2に示す。
 リン酸カルシウム抑制率の値が高い程、スケールの発生が抑制されていることを示す。
 リン酸カルシウム析出抑制率は、約70%以上であることが好ましい。
[Example 1]
Put 447.5 mL of ultrapure water in a 500 mL screw cap beaker, then 5 mL of acid consumption solution, 25 mL of calcium ion solution, 10 mL of phosphate ion solution, AA/AMPS (A-1) aqueous solution as component (A) 7.5 mL, 1 mL of a HIDS (B1-1) aqueous solution as the component (B), and 4 mL of an iron ion solution were added and mixed in this order, and the pH was adjusted to 8.5 with a 0.1 N sodium hydroxide aqueous solution and a 0.1 N sulfuric acid aqueous solution. The test water to which the component (A) was added was obtained. 10 mL of the obtained test water was sampled and diluted with ultrapure water, and the phosphate ion concentration (C) of the test water before the test was measured by ascorbic acid reduction-molybdenum blue absorptiometry according to JIS K 0101:1998. 0 ) was measured.
Further, the component (A) was added to the other 500 mL screw cap beaker, except that the component (A) was not added and ultrapure water was added instead of the component (A). I got no test water.
Subsequently, the screw cap bottles containing the test water to which the component (A) was added and the test water to which the component (A) was not added were capped and allowed to stand in a constant temperature bath at 60° C. for 24 hours. Then, the screw cap bottle was taken out from the thermostat and filtered using a filter having a pore size of 0.45 μm. The filtered test water is cooled at room temperature, diluted with ultrapure water, and the phosphate ion concentration (component (A)) in the test water after the test is determined by the above-described ascorbic acid reduction-molybdenum blue absorptiometry. Test water added: C d , test water not added component (A): C b ) were measured.
From the obtained phosphate ion concentration (C b ), the calcium phosphate precipitation inhibition rate (scale generation inhibition rate) was calculated by the following formula (1).
Calcium phosphate precipitation inhibition rate (%)=(C d −C b )/(C 0 −C b )×100 (1)
C d : Phosphate ion concentration after the test when the component (A) is added C b : Phosphate ion concentration after the test when the component (A) is not added C 0 : When the component (A) is added Concentration of phosphate ion before test The reagents used as the component (A) and the component (B) are shown in Table 1, the concentration of the component (A), the concentration of the component (B), and the concentration of Fe in the test water before standing in a thermostat. Table 2 shows the concentration, Mn concentration, acid consumption, phosphate ion concentration, and calcium ion hardness. Table 2 shows the calcium phosphate precipitation inhibition rate calculated from the formula (1).
The higher the value of the calcium phosphate inhibition rate, the more the generation of scale is suppressed.
The calcium phosphate precipitation inhibition rate is preferably about 70% or more.
[実施例2]
 実施例1において、超純水を443.5mL入れ、成分(B)としてHIDS(B1-1)水溶液を5.0mL添加したこと以外は同様にして、リン酸カルシウム析出抑制率を算出した。その結果及び、恒温槽に静置前の試験水中の成分(A)の濃度、成分(B)の濃度、Fe濃度、Mn濃度、酸消費量、リン酸イオン濃度、及びカルシウムイオン硬度を表2に示す。
[Example 2]
In the same manner as in Example 1, except that 443.5 mL of ultrapure water was added and 5.0 mL of a HIDS(B1-1) aqueous solution was added as the component (B), the calcium phosphate precipitation inhibition rate was calculated in the same manner. Table 2 shows the results and the concentration of the component (A), the concentration of the component (B), the Fe concentration, the Mn concentration, the acid consumption amount, the phosphate ion concentration, and the calcium ion hardness in the test water before standing in a constant temperature bath. Shown in.
[実施例3]
 実施例1において、超純水を438.5mL入れ、成分(B)としてHIDS(B1-1)水溶液を10.0mL添加したこと以外は同様にして、リン酸カルシウム析出抑制率を算出した。その結果及び、恒温槽に静置前の試験水中の成分(A)の濃度、成分(B)の濃度、Fe濃度、Mn濃度、酸消費量、リン酸イオン濃度、及びカルシウムイオン硬度を表2に示す。
[Example 3]
In the same manner as in Example 1, except that 438.5 mL of ultrapure water was added and 10.0 mL of a HIDS(B1-1) aqueous solution was added as the component (B), the calcium phosphate precipitation inhibition rate was calculated in the same manner. Table 2 shows the results and the concentration of the component (A), the concentration of the component (B), the Fe concentration, the Mn concentration, the acid consumption amount, the phosphate ion concentration, and the calcium ion hardness in the test water before standing in a constant temperature bath. Shown in.
[比較例1]
 実施例1において、超純水を448.5mL入れ、成分(B)を添加しなかったこと以外は同様にして、リン酸カルシウム析出抑制率を算出した。その結果及び、恒温槽に静置前の試験水中の成分(A)の濃度、成分(B)の濃度、Fe濃度、Mn濃度、酸消費量、リン酸イオン濃度、及びカルシウムイオン硬度を表2に示す。
[Comparative Example 1]
In Example 1, 448.5 mL of ultrapure water was added, and the calcium phosphate precipitation inhibition rate was calculated in the same manner except that the component (B) was not added. Table 2 shows the results and the concentration of the component (A), the concentration of the component (B), the Fe concentration, the Mn concentration, the acid consumption amount, the phosphate ion concentration, and the calcium ion hardness in the test water before standing in a constant temperature bath. Shown in.
[実施例4]
 実施例2において、鉄イオン溶液のかわりにマンガンイオン溶液を4mL添加したこと以外は同様にして、リン酸カルシウム析出抑制率を算出した。その結果及び、恒温槽に静置前の試験水中の成分(A)の濃度、成分(B)の濃度、Fe濃度、Mn濃度、酸消費量、リン酸イオン濃度、及びカルシウムイオン硬度を表2に示す。
[Example 4]
The calcium phosphate precipitation inhibition rate was calculated in the same manner as in Example 2 except that 4 mL of the manganese ion solution was added instead of the iron ion solution. Table 2 shows the results and the concentration of the component (A), the concentration of the component (B), the Fe concentration, the Mn concentration, the acid consumption amount, the phosphate ion concentration, and the calcium ion hardness in the test water before standing in a constant temperature bath. Shown in.
[実施例5]
 実施例4において、超純水を438.5mL入れ、成分(B)としてHIDS(B1-1)水溶液を10.0mL添加したこと以外は同様にして、リン酸カルシウム析出抑制率を算出した。その結果及び、恒温槽に静置前の試験水中の成分(A)の濃度、成分(B)の濃度、Fe濃度、Mn濃度、酸消費量、リン酸イオン濃度、及びカルシウムイオン硬度を表2に示す。
[Example 5]
In the same manner as in Example 4, except that 438.5 mL of ultrapure water was added and 10.0 mL of a HIDS(B1-1) aqueous solution was added as the component (B), the calcium phosphate precipitation inhibition rate was calculated in the same manner. Table 2 shows the results and the concentration of the component (A), the concentration of the component (B), the Fe concentration, the Mn concentration, the acid consumption amount, the phosphate ion concentration, and the calcium ion hardness in the test water before standing in a constant temperature bath. Shown in.
[比較例2]
 実施例4において、超純水を448.5mL入れ、成分(B)を添加しなかったこと以外は同様にして、リン酸カルシウム析出抑制率を算出した。その結果及び、恒温槽に静置前の試験水中の成分(A)の濃度、成分(B)の濃度、Fe濃度、Mn濃度、酸消費量、リン酸イオン濃度、及びカルシウムイオン硬度を表2に示す。
[Comparative example 2]
In Example 4, the calcium phosphate precipitation inhibition rate was calculated in the same manner as in Example 4 except that 448.5 mL of ultrapure water was added and the component (B) was not added. Table 2 shows the results and the concentration of the component (A), the concentration of the component (B), the Fe concentration, the Mn concentration, the acid consumption amount, the phosphate ion concentration, and the calcium ion hardness in the test water before standing in a constant temperature bath. Shown in.
[実施例6]
 実施例1において、鉄イオン溶液を2mL添加し、鉄イオン溶液添加後にマンガンイオン溶液を2mL添加したこと以外は同様にして、リン酸カルシウム析出抑制率を算出した。その結果及び、恒温槽に静置前の試験水中の成分(A)の濃度、成分(B)の濃度、Fe濃度、Mn濃度、酸消費量、リン酸イオン濃度、及びカルシウムイオン硬度を表2に示す。
[Example 6]
The calcium phosphate precipitation inhibition rate was calculated in the same manner as in Example 1 except that 2 mL of the iron ion solution was added and 2 mL of the manganese ion solution was added after the addition of the iron ion solution. Table 2 shows the results and the concentration of the component (A), the concentration of the component (B), the Fe concentration, the Mn concentration, the acid consumption amount, the phosphate ion concentration, and the calcium ion hardness in the test water before standing in a constant temperature bath. Shown in.
[実施例7]
 実施例6において、成分(B)として、HIDS(B1-1)水溶液のかわりに、EDTA(B1-2)水溶液を1mL添加したこと以外は同様にして、リン酸カルシウム析出抑制率を算出した。その結果及び、恒温槽に静置前の試験水中の成分(A)の濃度、成分(B)の濃度、Fe濃度、Mn濃度、酸消費量、リン酸イオン濃度、及びカルシウムイオン硬度を表2に示す。
[Example 7]
The calcium phosphate precipitation inhibition rate was calculated in the same manner as in Example 6 except that 1 mL of an EDTA (B1-2) aqueous solution was added as the component (B) instead of the HIDS (B1-1) aqueous solution. Table 2 shows the results and the concentration of the component (A), the concentration of the component (B), the Fe concentration, the Mn concentration, the acid consumption amount, the phosphate ion concentration, and the calcium ion hardness in the test water before standing in a constant temperature bath. Shown in.
[比較例3]
 実施例6において、超純水を448.5mL入れ、成分(B)を添加しなかったこと以外は同様にして、リン酸カルシウム析出抑制率を算出した。その結果及び、恒温槽に静置前の試験水中の成分(A)の濃度、成分(B)の濃度、Fe濃度、Mn濃度、酸消費量、リン酸イオン濃度、及びカルシウムイオン硬度を表2に示す。
[Comparative Example 3]
In Example 6, 448.5 mL of ultrapure water was added, and the calcium phosphate precipitation inhibition rate was calculated in the same manner except that the component (B) was not added. Table 2 shows the results and the concentration of the component (A), the concentration of the component (B), the Fe concentration, the Mn concentration, the acid consumption amount, the phosphate ion concentration, and the calcium ion hardness in the test water before standing in a constant temperature bath. Shown in.
[実施例8]
 実施例1において、超純水を443.5mL入れ、鉄イオン溶液添加後にマンガンイオン溶液を4mL添加したこと以外は同様にして、リン酸カルシウム析出抑制率を算出した。その結果及び、恒温槽に静置前の試験水中の成分(A)の濃度、成分(B)の濃度、Fe濃度、Mn濃度、酸消費量、リン酸イオン濃度、及びカルシウムイオン硬度を表2に示す。
[Example 8]
The calcium phosphate precipitation inhibition rate was calculated in the same manner as in Example 1, except that 443.5 mL of ultrapure water was added and 4 mL of the manganese ion solution was added after the addition of the iron ion solution. Table 2 shows the results and the concentration of the component (A), the concentration of the component (B), the Fe concentration, the Mn concentration, the acid consumption amount, the phosphate ion concentration, and the calcium ion hardness in the test water before standing in a constant temperature bath. Shown in.
[実施例9]
 実施例8において、超純水を441.5mL入れ、成分(B)としてHIDS(B1-1)水溶液を3.0mL添加したこと以外は同様にして、リン酸カルシウム析出抑制率を算出した。その結果及び、恒温槽に静置前の試験水中の成分(A)の濃度、成分(B)の濃度、Fe濃度、Mn濃度、酸消費量、リン酸イオン濃度、及びカルシウムイオン硬度を表2に示す。
[Example 9]
In the same manner as in Example 8, except that 441.5 mL of ultrapure water was added and 3.0 mL of a HIDS(B1-1) aqueous solution was added as the component (B), the calcium phosphate precipitation inhibition rate was calculated in the same manner. Table 2 shows the results and the concentration of the component (A), the concentration of the component (B), the Fe concentration, the Mn concentration, the acid consumption amount, the phosphate ion concentration, and the calcium ion hardness in the test water before standing in a constant temperature bath. Shown in.
[実施例10]
 実施例8において、超純水を439.5mL入れ、成分(B)としてHIDS(B1-1)水溶液を5.0mL添加したこと以外は同様にして、リン酸カルシウム析出抑制率を算出した。その結果及び、恒温槽に静置前の試験水中の成分(A)の濃度、成分(B)の濃度、Fe濃度、Mn濃度、酸消費量、リン酸イオン濃度、及びカルシウムイオン硬度を表2に示す。
[Example 10]
The calcium phosphate precipitation inhibition rate was calculated in the same manner as in Example 8 except that 439.5 mL of ultrapure water was added and 5.0 mL of an aqueous HIDS(B1-1) solution was added as the component (B). Table 2 shows the results and the concentration of the component (A), the concentration of the component (B), the Fe concentration, the Mn concentration, the acid consumption amount, the phosphate ion concentration, and the calcium ion hardness in the test water before standing in a constant temperature bath. Shown in.
[実施例11]
 実施例8において、成分(B)としてHIDS(B1-1)水溶液のかわりにEDTA(B1-2)水溶液を1.0mL添加したこと以外は同様にして、リン酸カルシウム析出抑制率を算出した。その結果及び、恒温槽に静置前の試験水中の成分(A)の濃度、成分(B)の濃度、Fe濃度、Mn濃度、酸消費量、リン酸イオン濃度、及びカルシウムイオン硬度を表2に示す。
[Example 11]
The calcium phosphate precipitation inhibition rate was calculated in the same manner as in Example 8 except that 1.0 mL of an EDTA (B1-2) aqueous solution was added as the component (B) instead of the HIDS (B1-1) aqueous solution. Table 2 shows the results and the concentration of the component (A), the concentration of the component (B), the Fe concentration, the Mn concentration, the acid consumption amount, the phosphate ion concentration, and the calcium ion hardness in the test water before standing in a constant temperature bath. Shown in.
[実施例12]
 実施例11において、超純水を441.5mL入れ、成分(B)としてEDTA(B1-2)水溶液を3.0mL添加したこと以外は同様にして、リン酸カルシウム析出抑制率を算出した。その結果及び、恒温槽に静置前の試験水中の成分(A)の濃度、成分(B)の濃度、Fe濃度、Mn濃度、酸消費量、リン酸イオン濃度、及びカルシウムイオン硬度を表2に示す。
[Example 12]
The calcium phosphate precipitation inhibition rate was calculated in the same manner as in Example 11, except that 441.5 mL of ultrapure water was added and 3.0 mL of an EDTA (B1-2) aqueous solution was added as the component (B). Table 2 shows the results and the concentration of the component (A), the concentration of the component (B), the Fe concentration, the Mn concentration, the acid consumption amount, the phosphate ion concentration, and the calcium ion hardness in the test water before standing in a constant temperature bath. Shown in.
[実施例13]
 実施例11において、超純水を439.5mL入れ、成分(B)としてEDTA(B1-2)水溶液を5.0mL添加したこと以外は同様にして、リン酸カルシウム析出抑制率を算出した。その結果及び、恒温槽に静置前の試験水中の成分(A)の濃度、成分(B)の濃度、Fe濃度、Mn濃度、酸消費量、リン酸イオン濃度、及びカルシウムイオン硬度を表2に示す。
[Example 13]
The calcium phosphate precipitation inhibition rate was calculated in the same manner as in Example 11 except that 439.5 mL of ultrapure water was added and 5.0 mL of an aqueous EDTA (B1-2) solution was added as the component (B). Table 2 shows the results and the concentration of the component (A), the concentration of the component (B), the Fe concentration, the Mn concentration, the acid consumption amount, the phosphate ion concentration, and the calcium ion hardness in the test water before standing in a constant temperature bath. Shown in.
[実施例14、15]
 実施例8において、成分(B)としてHIDS(B1-1)水溶液のかわりに、実施例14ではBHMTPMP(B2-1)水溶液を添加し、実施例15ではHEDP(B2-2)水溶液を使用したこと以外は同様にして、リン酸カルシウム析出抑制率を算出した。その結果及び、恒温槽に静置前の試験水中の成分(A)の濃度、成分(B)の濃度、Fe濃度、Mn濃度、酸消費量、リン酸イオン濃度、及びカルシウムイオン硬度を表2に示す。
[Examples 14 and 15]
Instead of the HIDS(B1-1) aqueous solution as the component (B) in Example 8, BHMTPMP(B2-1) aqueous solution was added in Example 14, and HEDP(B2-2) aqueous solution was used in Example 15. The calcium phosphate precipitation inhibition rate was calculated in the same manner except the above. Table 2 shows the results and the concentration of the component (A), the concentration of the component (B), the Fe concentration, the Mn concentration, the acid consumption amount, the phosphate ion concentration, and the calcium ion hardness in the test water before standing in a constant temperature bath. Shown in.
[比較例4]
 実施例8において、超純水を444.5mL入れ、成分(B)を使用しなかったこと以外は同様にして、リン酸カルシウム析出抑制率を算出した。その結果及び、恒温槽に静置前の試験水中の成分(A)の濃度、成分(B)の濃度、Fe濃度、Mn濃度、酸消費量、リン酸イオン濃度、及びカルシウムイオン硬度を表2に示す。
[Comparative Example 4]
In Example 8, the calcium phosphate precipitation suppression rate was calculated in the same manner as in Example 8 except that 444.5 mL of ultrapure water was added and the component (B) was not used. Table 2 shows the results and the concentration of the component (A), the concentration of the component (B), the Fe concentration, the Mn concentration, the acid consumption amount, the phosphate ion concentration, and the calcium ion hardness in the test water before standing in a constant temperature bath. Shown in.
[実施例16]
 実施例8において、成分(A)としてAA/AMPS共重合体(A-1)のかわりに、AA/AMPS/t-BuAAM共重合体(A-3)を使用したこと以外は同様にして、リン酸カルシウム析出抑制率を算出した。その結果及び、恒温槽に静置前の試験水中の成分(A)の濃度、成分(B)の濃度、Fe濃度、Mn濃度、酸消費量、リン酸イオン濃度、及びカルシウムイオン硬度を表2に示す。
[Example 16]
Example 8 was repeated except that AA/AMPS/t-BuAAM copolymer (A-3) was used instead of AA/AMPS copolymer (A-1) as the component (A). The calcium phosphate precipitation inhibition rate was calculated. Table 2 shows the results and the concentration of the component (A), the concentration of the component (B), the Fe concentration, the Mn concentration, the acid consumption amount, the phosphate ion concentration, and the calcium ion hardness in the test water before standing in a constant temperature bath. Shown in.
[実施例17]
 実施例16において、超純水を439.5mL入れ、成分(B)としてHIDS(B1-1)水溶液を5.0mL添加したこと以外は同様にして、リン酸カルシウム析出抑制率を算出した。その結果及び、恒温槽に静置前の試験水中の成分(A)の濃度、成分(B)の濃度、Fe濃度、Mn濃度、酸消費量、リン酸イオン濃度、及びカルシウムイオン硬度を表2に示す。
[Example 17]
The calcium phosphate precipitation inhibitory rate was calculated in the same manner as in Example 16 except that 439.5 mL of ultrapure water was added and 5.0 mL of an aqueous HIDS(B1-1) solution was added as the component (B). Table 2 shows the results and the concentration of the component (A), the concentration of the component (B), the Fe concentration, the Mn concentration, the acid consumption amount, the phosphate ion concentration, and the calcium ion hardness in the test water before standing in a constant temperature bath. Shown in.
[実施例18]
 実施例16において、超純水を434.5mL入れ、成分(B)としてHIDS(B1-1)水溶液を10.0mL添加したこと以外は同様にして、リン酸カルシウム析出抑制率を算出した。その結果及び、恒温槽に静置前の試験水中の成分(A)の濃度、成分(B)の濃度、Fe濃度、Mn濃度、酸消費量、リン酸イオン濃度、及びカルシウムイオン硬度を表2に示す。
[Example 18]
The calcium phosphate precipitation inhibitory rate was calculated in the same manner as in Example 16 except that 434.5 mL of ultrapure water was added and 10.0 mL of the HIDS(B1-1) aqueous solution was added as the component (B). Table 2 shows the results and the concentration of the component (A), the concentration of the component (B), the Fe concentration, the Mn concentration, the acid consumption amount, the phosphate ion concentration, and the calcium ion hardness in the test water before standing in a constant temperature bath. Shown in.
[実施例19]
 実施例1において、超純水を435.5mL入れ、成分(A)としてAA/AMPS共重合体(A-1)のかわりにAA/HAPS共重合体(A-2)を使用し、鉄イオン溶液を10.0mL、マンガンイオン溶液を10.0mL添加したこと以外は同様にして、リン酸カルシウム析出抑制率を算出した。その結果及び、恒温槽に静置前の試験水中の成分(A)の濃度、成分(B)の濃度、Fe濃度、Mn濃度、酸消費量、リン酸イオン濃度、及びカルシウムイオン硬度を表2に示す。
[Example 19]
In Example 1, 435.5 mL of ultrapure water was added, and instead of the AA/AMPS copolymer (A-1), the AA/HAPS copolymer (A-2) was used as the component (A). The calcium phosphate precipitation inhibition rate was calculated in the same manner except that 10.0 mL of the solution and 10.0 mL of the manganese ion solution were added. Table 2 shows the results and the concentration of the component (A), the concentration of the component (B), the Fe concentration, the Mn concentration, the acid consumption amount, the phosphate ion concentration, and the calcium ion hardness in the test water before standing in a constant temperature bath. Shown in.
[実施例20]
 実施例19において、超純水を431.5mL入れ、成分(B)としてHIDS(B1-1)水溶液を5.0mL添加したこと以外は同様にして、リン酸カルシウム析出抑制率を算出した。その結果及び、恒温槽に静置前の試験水中の成分(A)の濃度、成分(B)の濃度、Fe濃度、Mn濃度、酸消費量、リン酸イオン濃度、及びカルシウムイオン硬度を表2に示す。
[Example 20]
The calcium phosphate precipitation inhibitory rate was calculated in the same manner as in Example 19 except that 431.5 mL of ultrapure water was added and 5.0 mL of an aqueous HIDS(B1-1) solution was added as the component (B). Table 2 shows the results and the concentration of the component (A), the concentration of the component (B), the Fe concentration, the Mn concentration, the acid consumption amount, the phosphate ion concentration, and the calcium ion hardness in the test water before standing in a constant temperature bath. Shown in.
[実施例21]
 実施例19において、超純水を426.5mL入れ、成分(B)としてHIDS(B1-1)水溶液を10.0mL添加したこと以外は同様にして、リン酸カルシウム析出抑制率を算出した。その結果及び、恒温槽に静置前の試験水中の成分(A)の濃度、成分(B)の濃度、Fe濃度、Mn濃度、酸消費量、リン酸イオン濃度、及びカルシウムイオン硬度を表2に示す。
[Example 21]
The calcium phosphate precipitation inhibition rate was calculated in the same manner as in Example 19 except that 426.5 mL of ultrapure water was added and 10.0 mL of the HIDS(B1-1) aqueous solution was added as the component (B). Table 2 shows the results and the concentration of the component (A), the concentration of the component (B), the Fe concentration, the Mn concentration, the acid consumption amount, the phosphate ion concentration, and the calcium ion hardness in the test water before standing in a constant temperature bath. Shown in.
[参考例1]
 実施例1において、超純水を452.5mL入れ、成分(B)、鉄イオン溶液を添加しなかったこと以外は同様にして、リン酸カルシウム析出抑制率を算出した。その結果及び、恒温槽に静置前の試験水中の成分(A)の濃度、成分(B)の濃度、Fe濃度、Mn濃度、酸消費量、リン酸イオン濃度、及びカルシウムイオン硬度を表2に示す。
[Reference Example 1]
The calcium phosphate precipitation inhibition rate was calculated in the same manner as in Example 1 except that 452.5 mL of ultrapure water was added and the component (B) and the iron ion solution were not added. Table 2 shows the results and the concentration of the component (A), the concentration of the component (B), the Fe concentration, the Mn concentration, the acid consumption amount, the phosphate ion concentration, and the calcium ion hardness in the test water before standing in a constant temperature bath. Shown in.
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000002
 表2の結果より成分(A)と、成分(B)とを含む場合、成分(B)を含まない場合(比較例)に比べて、リン酸カルシウム抑制率が向上し、スケールの発生が抑制されていることが分かる。 From the results of Table 2, when the component (A) and the component (B) are included, the calcium phosphate inhibition rate is improved and the scale generation is suppressed as compared with the case where the component (B) is not included (Comparative Example). I understand that

Claims (13)

  1.  鉄、マンガン、及びアルミニウムから選ばれる1種以上を含有する冷却水系の冷却水用スケール防止剤であって、
     アクリル酸に由来する構造単位と2-アクリルアミド-2-メチルプロパンスルホン酸に由来する構造単位を含む共重合体及びその塩、並びにアクリル酸に由来する構造単位と2-ヒドロキシ-3-アリロキシプロパンスルホン酸に由来する構造単位を含む共重合体及びその塩、から選ばれる1種以上の化合物である成分(A)と、
     エチレンジアミン四酢酸及びその塩、3-ヒドロキシ-2,2-イミノジコハク酸4ナトリウム及びその塩、[(ホスホノメチル)イミノ]ビス(6,1-ヘキサンジイルニトリロビスメチレン)テトラキスホスホン酸及びその塩、並びに1-ヒドロキシエタン-1,1-ジホスホン酸及びその塩から選ばれる1種以上の化合物である成分(B)とを含む、冷却水用スケール防止剤。
    A scale inhibitor for cooling water of a cooling water system, containing one or more selected from iron, manganese, and aluminum,
    Copolymer containing structural unit derived from acrylic acid and structural unit derived from 2-acrylamido-2-methylpropanesulfonic acid and salt thereof, and structural unit derived from acrylic acid and 2-hydroxy-3-allyloxypropane Component (A), which is one or more compounds selected from copolymers containing structural units derived from sulfonic acid and salts thereof,
    Ethylenediaminetetraacetic acid and salts thereof, 3-hydroxy-2,2-iminodisuccinate tetrasodium and salts thereof, [(phosphonomethyl)imino]bis(6,1-hexanediylnitrilobismethylene)tetrakisphosphonic acid and salts thereof, and 1 A scale inhibitor for cooling water, which comprises component (B) which is one or more compounds selected from hydroxyethane-1,1-diphosphonic acid and salts thereof.
  2.  前記アクリル酸に由来する構造単位と2-アクリルアミド-2-メチルプロパンスルホン酸に由来する構造単位を含む共重合体及びその塩が、アクリル酸と2-アクリルアミド-2-メチルプロパンスルホン酸との共重合体及びその塩、並びにアクリル酸と2-アクリルアミド-2-メチルプロパンスルホン酸とtert-ブチルアクリルアミドとの共重合体及びその塩、から選ばれる1種以上の化合物である、請求項1に記載の冷却水用スケール防止剤。 The above-mentioned copolymer containing a structural unit derived from acrylic acid and a structural unit derived from 2-acrylamido-2-methylpropanesulfonic acid and a salt thereof are the same as the copolymer of acrylic acid and 2-acrylamido-2-methylpropanesulfonic acid. The polymer or a salt thereof, and the copolymer or a salt of acrylic acid, 2-acrylamido-2-methylpropanesulfonic acid, and tert-butylacrylamide, and a salt thereof, which are one or more kinds of compounds. Scale inhibitor for cooling water.
  3.  アクリル酸に由来する構造単位と2-ヒドロキシ-3-アリロキシプロパンスルホン酸に由来する構造単位を含む共重合体及びその塩が、アクリル酸と2-ヒドロキシ-3-アリロキシプロパンスルホン酸との共重合体及びその塩である、請求項1又は2に記載の冷却水用スケール防止剤。 A copolymer containing a structural unit derived from acrylic acid and a structural unit derived from 2-hydroxy-3-allyloxypropanesulfonic acid, and a salt thereof are prepared by combining acrylic acid and 2-hydroxy-3-allyloxypropanesulfonic acid. The scale inhibitor for cooling water according to claim 1 or 2, which is a copolymer or a salt thereof.
  4.  前記冷却水系が、鉄、マンガン、及びアルミニウムから選ばれる1種以上を0.5mg/L以上5.0mg/L以下含有する、請求項1~3のいずれかに記載の冷却水用スケール防止剤。 The scale inhibitor for cooling water according to any one of claims 1 to 3, wherein the cooling water system contains one or more selected from iron, manganese, and aluminum in an amount of 0.5 mg/L or more and 5.0 mg/L or less. ..
  5.  前記成分(A)とエチレンジアミン四酢酸及びその塩、並びに3-ヒドロキシ-2,2-イミノジコハク酸4ナトリウム及びその塩から選ばれる1種以上の化合物である成分(B1)の質量比が、98:2~13:87である、請求項1~4のいずれかに記載の冷却水用スケール防止剤。 The mass ratio of the component (A) to ethylenediaminetetraacetic acid and its salt, and the component (B1) which is one or more compounds selected from tetrahydroxy sodium 3-hydroxy-2,2-iminodisuccinate and its salt is 98: The scale inhibitor for cooling water according to any one of claims 1 to 4, which is 2 to 13:87.
  6.  前記成分(A)と[(ホスホノメチル)イミノ]ビス(6,1-ヘキサンジイルニトリロビスメチレン)テトラキスホスホン酸及びその塩、並びに1-ヒドロキシエタン-1,1-ジホスホン酸及びその塩から選ばれる1種以上の化合物である成分(B2)の質量比が、98:2~38:62である、請求項1~4のいずれかに記載の冷却水用スケール防止剤。 1 selected from the component (A) and [(phosphonomethyl)imino]bis(6,1-hexanediylnitrilobismethylene)tetrakisphosphonic acid and salts thereof, and 1-hydroxyethane-1,1-diphosphonic acid and salts thereof. The scale inhibitor for cooling water according to any one of claims 1 to 4, wherein the mass ratio of component (B2), which is one or more compounds, is 98:2 to 38:62.
  7.  鉄、マンガン、及びアルミニウムから選ばれる1種以上を含有する冷却水系の冷却水用スケール防止方法であって、
     アクリル酸に由来する構造単位と2-アクリルアミド-2-メチルプロパンスルホン酸に由来する構造単位を含む共重合体及びその塩、アクリル酸に由来する構造単位と2-ヒドロキシ-3-アリロキシプロパンスルホン酸に由来する構造単位を含む共重合体及びその塩、から選ばれる1種以上の化合物である成分(A)と、
     エチレンジアミン四酢酸及びその塩、3-ヒドロキシ-2,2-イミノジコハク酸4ナトリウム及びその塩、[(ホスホノメチル)イミノ]ビス(6,1-ヘキサンジイルニトリロビスメチレン)テトラキスホスホン酸及びその塩、並びに1-ヒドロキシエタン-1,1-ジホスホン酸及びその塩から選ばれる1種以上の化合物である成分(B)とを含む、冷却水用スケール防止剤を用いる、冷却水用スケール防止方法。
    Iron, manganese, and a cooling water system scale prevention method for cooling water containing one or more selected from aluminum,
    Copolymer containing structural unit derived from acrylic acid and structural unit derived from 2-acrylamido-2-methylpropanesulfonic acid and salt thereof, structural unit derived from acrylic acid and 2-hydroxy-3-allyloxypropane sulfone Component (A), which is one or more compounds selected from a copolymer containing a structural unit derived from an acid and a salt thereof,
    Ethylenediaminetetraacetic acid and salts thereof, 3-hydroxy-2,2-iminodisuccinate tetrasodium and salts thereof, [(phosphonomethyl)imino]bis(6,1-hexanediylnitrilobismethylene)tetrakisphosphonic acid and salts thereof, and 1 A method for preventing scale scale for cooling water, which comprises using a scale inhibitor for cooling water, comprising component (B) which is one or more compounds selected from hydroxyethane-1,1-diphosphonic acid and salts thereof.
  8.  前記アクリル酸に由来する構造単位と2-アクリルアミド-2-メチルプロパンスルホン酸に由来する構造単位を含む共重合体及びその塩が、アクリル酸と2-アクリルアミド-2-メチルプロパンスルホン酸との共重合体及びその塩、並びにアクリル酸と2-アクリルアミド-2-メチルプロパンスルホン酸とtert-ブチルアクリルアミドとの共重合体及びその塩、から選ばれる1種以上の化合物である、請求項7に記載の冷却水用スケール防止方法。 The above-mentioned copolymer containing a structural unit derived from acrylic acid and a structural unit derived from 2-acrylamido-2-methylpropanesulfonic acid and a salt thereof are the same as the copolymer of acrylic acid and 2-acrylamido-2-methylpropanesulfonic acid. 8. The compound or a salt thereof, and a compound or a salt thereof, a copolymer of acrylic acid, 2-acrylamido-2-methylpropanesulfonic acid, and tert-butylacrylamide, and a salt thereof, which are one or more kinds of compounds. Method for preventing scale from cooling water.
  9.  前記アクリル酸に由来する構造単位と2-ヒドロキシ-3-アリロキシプロパンスルホン酸に由来する構造単位を含む共重合体及びその塩が、アクリル酸と2-ヒドロキシ-3-アリロキシプロパンスルホン酸との共重合体及びその塩である、請求項7又は8に記載の冷却水用スケール防止方法。 The above-mentioned copolymer containing a structural unit derived from acrylic acid and a structural unit derived from 2-hydroxy-3-allyloxypropanesulfonic acid and a salt thereof include acrylic acid and 2-hydroxy-3-allyloxypropanesulfonic acid. The method for preventing scale scale for cooling water according to claim 7 or 8, which is a copolymer or a salt thereof.
  10.  前記冷却水系が、鉄、マンガン、及びアルミニウムから選ばれる1種以上を0.5mg/L以上5.0mg/L以下含有する、請求項7~9のいずれかに記載の冷却水用スケール防止方法。 10. The scale preventive method for cooling water according to claim 7, wherein the cooling water system contains one or more selected from iron, manganese, and aluminum in an amount of 0.5 mg/L or more and 5.0 mg/L or less. ..
  11.  前記冷却水系における前記成分(A)の濃度が、3.0mg/L以上20.0mg/L以下となるように前記成分(A)を添加する、請求項7~10のいずれかに記載の冷却水用スケール防止方法。 The cooling according to any one of claims 7 to 10, wherein the component (A) is added so that the concentration of the component (A) in the cooling water system is 3.0 mg/L or more and 20.0 mg/L or less. Water scale prevention method.
  12.  前記冷却水系におけるエチレンジアミン四酢酸及びその塩、並びに3-ヒドロキシ-2,2-イミノジコハク酸4ナトリウム及びその塩から選ばれる1種以上の化合物である成分(B1)の濃度が、0.5mg/L以上20.0mg/L以下となるように前記成分(B1)を添加する、請求項7~11のいずれかに記載の冷却水用スケール防止方法。 In the cooling water system, the concentration of the component (B1), which is one or more compounds selected from ethylenediaminetetraacetic acid and a salt thereof, and 3-hydroxy-2,2-iminodisuccinate tetrasodium and a salt thereof, is 0.5 mg/L. The cooling water scale prevention method according to any one of claims 7 to 11, wherein the component (B1) is added so as to be 20.0 mg/L or less.
  13.  前記冷却水系における[(ホスホノメチル)イミノ]ビス(6、1-ヘキサンジイルニトリロビスメチレン)テトラキスホスホン酸及びその塩、並びに1-ヒドロキシエタン-1,1-ジホスホン酸及びその塩から選ばれる1種以上の化合物である成分(B2)の濃度が、0.5mg/L以上5.0mg/L以下となるように前記成分(B2)を添加する、請求項7~11のいずれかに記載の冷却水用スケール防止方法。 One or more selected from [(phosphonomethyl)imino]bis(6,1-hexanediylnitrilobismethylene)tetrakisphosphonic acid and salts thereof, and 1-hydroxyethane-1,1-diphosphonic acid and salts thereof in the cooling water system The cooling water according to any one of claims 7 to 11, wherein the component (B2) is added so that the concentration of the component (B2) which is the compound of the above is 0.5 mg/L or more and 5.0 mg/L or less. Scale prevention method.
PCT/JP2019/048678 2018-12-13 2019-12-12 Cooling water scale prevention agent and cooling water scale prevention method WO2020122173A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2019569508A JP6753543B1 (en) 2018-12-13 2019-12-12 Cooling water scale inhibitor and cooling water scale prevention method
CN201980079050.4A CN113165925A (en) 2018-12-13 2019-12-12 Scale inhibitor for cooling water and scale inhibition method for cooling water

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2018-233602 2018-12-13
JP2018233602 2018-12-13

Publications (1)

Publication Number Publication Date
WO2020122173A1 true WO2020122173A1 (en) 2020-06-18

Family

ID=71076495

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2019/048678 WO2020122173A1 (en) 2018-12-13 2019-12-12 Cooling water scale prevention agent and cooling water scale prevention method

Country Status (4)

Country Link
JP (1) JP6753543B1 (en)
CN (1) CN113165925A (en)
TW (1) TWI788609B (en)
WO (1) WO2020122173A1 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114032582B (en) * 2021-11-02 2023-08-22 广州新奥环境技术有限公司 Scale inhibitor for sodium hypochlorite generator and scale inhibition method

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61125497A (en) * 1983-03-07 1986-06-13 カルゴン コ−ポレ−シヨン Corrosion suppressing composition containing acrylic acid/2-acryamide-2-methylproplylsulfonicacid polymer
JPH04356580A (en) * 1990-05-23 1992-12-10 Rohm & Haas Co Prevention of silica scale
JP2002105891A (en) * 2000-10-04 2002-04-10 Hakuto Co Ltd Method for suppressing scale in paper pulp manufacturing process
JP2003053389A (en) * 2001-08-22 2003-02-25 Kurita Water Ind Ltd Method for preventing scale build-up
JP2008006369A (en) * 2006-06-29 2008-01-17 Kurita Water Ind Ltd Scale prevention method
JP2013213234A (en) * 2012-03-30 2013-10-17 Kurita Water Ind Ltd Method for preventing scaling in steam generation equipment
JP2014036912A (en) * 2012-08-10 2014-02-27 Hakuto Co Ltd Method for preventing silica scale in water system and scale inhibitor, and water treatment method and water treatment agent for preventing silica scale and corrosion of metals
JP2014059076A (en) * 2012-09-14 2014-04-03 Kurita Water Ind Ltd Scale removal method for boiler water system

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
ES2146839T3 (en) * 1995-10-06 2000-08-16 Calgon Corp USE OF A SYNERGIC COMPOSITION TO CONTROL INCRUSTATIONS.
JP4270791B2 (en) * 2002-01-18 2009-06-03 ユニチカ株式会社 Water-based adhesive for synthetic paper and laminate
TWI634083B (en) * 2012-03-30 2018-09-01 羅門哈斯公司 Synergistic silica scale control
JP6582436B2 (en) * 2015-02-24 2019-10-02 栗田工業株式会社 Scale inhibitor and scale prevention method
CN107640833A (en) * 2017-10-12 2018-01-30 中节能六合天融环保科技有限公司 A kind of antisludging agent and its application

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61125497A (en) * 1983-03-07 1986-06-13 カルゴン コ−ポレ−シヨン Corrosion suppressing composition containing acrylic acid/2-acryamide-2-methylproplylsulfonicacid polymer
JPH04356580A (en) * 1990-05-23 1992-12-10 Rohm & Haas Co Prevention of silica scale
JP2002105891A (en) * 2000-10-04 2002-04-10 Hakuto Co Ltd Method for suppressing scale in paper pulp manufacturing process
JP2003053389A (en) * 2001-08-22 2003-02-25 Kurita Water Ind Ltd Method for preventing scale build-up
JP2008006369A (en) * 2006-06-29 2008-01-17 Kurita Water Ind Ltd Scale prevention method
JP2013213234A (en) * 2012-03-30 2013-10-17 Kurita Water Ind Ltd Method for preventing scaling in steam generation equipment
JP2014036912A (en) * 2012-08-10 2014-02-27 Hakuto Co Ltd Method for preventing silica scale in water system and scale inhibitor, and water treatment method and water treatment agent for preventing silica scale and corrosion of metals
JP2014059076A (en) * 2012-09-14 2014-04-03 Kurita Water Ind Ltd Scale removal method for boiler water system

Also Published As

Publication number Publication date
JP6753543B1 (en) 2020-09-09
JPWO2020122173A1 (en) 2021-02-15
TWI788609B (en) 2023-01-01
TW202031602A (en) 2020-09-01
CN113165925A (en) 2021-07-23

Similar Documents

Publication Publication Date Title
KR102040143B1 (en) Method for preventing scale deposition and scale inhibitor
JP6249123B1 (en) Scale inhibitor and scale prevention method
JP5884730B2 (en) Reverse osmosis membrane scale inhibitor and scale prevention method
JP6255690B2 (en) Scale prevention method and magnesium hydroxide scale inhibitor for reverse osmosis membrane
JPWO2012132892A1 (en) Reverse osmosis membrane scale inhibitor and scale prevention method
TWI705849B (en) Scale inhibitor for reverse osmosis membrane and reverse osmosis membrane treatment method
JPH0231894A (en) Agent for preventing scaling in cooling water system
JP2008221143A (en) Magnesium based scale preventive
WO2020122173A1 (en) Cooling water scale prevention agent and cooling water scale prevention method
JP4970674B2 (en) Scale prevention method
WO2013147112A1 (en) Method for treating cooling water system
JP5559629B2 (en) Water-based metal anticorrosion method
JP6504748B2 (en) Method of inhibiting metal corrosion
JP2003082479A (en) Anticorrosive, and corrosion prevention method
JP5978711B2 (en) Iron corrosion control method
JPS6056080A (en) Anticorrosive for metal preventing formation of scale
JP6357817B2 (en) Method for preventing zinc-based scale and zinc-based scale inhibitor
JP2006225742A (en) Boiler water system treatment agent and method for treating boiler water system using the same
JP4467046B2 (en) Metal corrosion inhibitor
JP5682727B2 (en) Water treatment method and water treatment agent for cooling water system
JP6566010B2 (en) Metal anticorrosive for cooling water and processing method of cooling water system
JP2020151624A (en) Scale prevention method
JP2001254191A (en) Corrosion inhibitor
JP2008307512A (en) Water treatment agent and control method of cooling water or the like
CN105073654A (en) Method and agent for treating water in cooling water system

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 2019569508

Country of ref document: JP

Kind code of ref document: A

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19896707

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19896707

Country of ref document: EP

Kind code of ref document: A1