JP5978711B2 - Iron corrosion control method - Google Patents

Iron corrosion control method Download PDF

Info

Publication number
JP5978711B2
JP5978711B2 JP2012078141A JP2012078141A JP5978711B2 JP 5978711 B2 JP5978711 B2 JP 5978711B2 JP 2012078141 A JP2012078141 A JP 2012078141A JP 2012078141 A JP2012078141 A JP 2012078141A JP 5978711 B2 JP5978711 B2 JP 5978711B2
Authority
JP
Japan
Prior art keywords
iron
corrosion
water
acid
anticorrosive
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2012078141A
Other languages
Japanese (ja)
Other versions
JP2013204148A (en
Inventor
貴久美 亀松
貴久美 亀松
洋幸 光本
洋幸 光本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Miura Co Ltd
Original Assignee
Miura Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Miura Co Ltd filed Critical Miura Co Ltd
Priority to JP2012078141A priority Critical patent/JP5978711B2/en
Publication of JP2013204148A publication Critical patent/JP2013204148A/en
Application granted granted Critical
Publication of JP5978711B2 publication Critical patent/JP5978711B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Preventing Corrosion Or Incrustation Of Metals (AREA)

Description

本発明は、水系流路の少なくとも一部を構成する鉄の腐食抑制方法に関する。   The present invention relates to a method for inhibiting corrosion of iron constituting at least a part of an aqueous flow path.

循環水系流路内の循環水は、一般的に、塩化物イオンや硫酸イオン等の腐食性イオンを含む。循環水の水分が蒸発すると、循環水中における腐食性イオンの濃度が高まる。これに伴って、各種の配管系(ライン)において金属の腐食が促進される。   Circulating water in the circulating water system channel generally contains corrosive ions such as chloride ions and sulfate ions. When the water in the circulating water evaporates, the concentration of corrosive ions in the circulating water increases. Along with this, metal corrosion is promoted in various piping systems (lines).

従来、水分の影響により生じる金属の腐食を抑制するための薬剤として、シリカを含む水処理剤が公知である(特許文献1)。また、水系流路で用いられる鉄の腐食を抑制するために、鉄防食剤が使用されている。   Conventionally, as a chemical | medical agent for suppressing the corrosion of the metal produced by the influence of a water | moisture content, the water treatment agent containing a silica is well-known (patent document 1). Moreover, in order to suppress the corrosion of the iron used in the aqueous channel, an iron corrosion inhibitor is used.

特開2003−159597号公報Japanese Patent Laid-Open No. 2003-159597

特許文献1の水処理剤は、シリカを用いて金属の腐食を抑制しようとするものであるが、シリカによる防食効果は十分ではない。また、鉄防食剤は、防食効果を発揮させるのに必要な濃度が高く、薬品の省資源化及び低コスト化を図りにくい。   The water treatment agent of Patent Document 1 is intended to suppress metal corrosion using silica, but the anticorrosive effect of silica is not sufficient. Further, the iron anticorrosive has a high concentration necessary for exerting the anticorrosive effect, and it is difficult to save resources and reduce costs of chemicals.

本発明は、鉄防食剤の使用量を抑えつつ、水系流路の少なくとも一部を構成する鉄の腐食を抑制できる方法を提供することを目的とする。   An object of this invention is to provide the method of suppressing the corrosion of the iron which comprises at least one part of a water-system flow path, suppressing the usage-amount of an iron corrosion inhibitor.

本発明は、水系流路の少なくとも一部を構成する鉄の腐食抑制方法であって、前記水系流路内の水において、ケイ酸及びケイ酸塩からなる群より選択される少なくとも1種のシリカ成分と鉄防食剤との共存下で、前記シリカ成分のSiO換算濃度を100mg/L以上に設定し、上記鉄防食剤は、ホスホノエタン−1,2−ジカルボン酸四ナトリウムホスホノブタン−1,2,3,4−テトラカルボン酸六ナトリウムとの混合物と、2−アクリルアミド−2−メチルプロパンスルホン酸・アクリル酸共重合体との組み合わせである腐食抑制方法に関する。 The present invention relates to a method for inhibiting corrosion of iron constituting at least a part of an aqueous channel, wherein the water in the aqueous channel is at least one silica selected from the group consisting of silicic acid and silicate. in the presence of the component and the iron corrosion inhibitor, said SiO 2 concentration in terms of the silica component is set more than 100 mg / L, the iron anticorrosive, ho Suhonoetan 1,2-dicarboxylic acid tetrasodium and phosphonobutane -1, The present invention relates to a method for inhibiting corrosion, which is a combination of a mixture of hexasodium 2,3,4-tetracarboxylate and 2 -acrylamido-2-methylpropanesulfonic acid / acrylic acid copolymer.

上記水系流路内の水において、上記鉄防食剤の濃度を1040mg/Lに設定することが好ましい。
In the water in the aqueous channel, the concentration of the iron anticorrosive is preferably set to 10 to 40 mg / L.

本発明によれば、鉄防食剤の使用量を抑えつつ、水系流路の少なくとも一部を構成する鉄の腐食を抑制できる方法を提供することができる。   ADVANTAGE OF THE INVENTION According to this invention, the method which can suppress the corrosion of the iron which comprises at least one part of a water-system flow path can be provided, suppressing the usage-amount of an iron corrosion inhibitor.

試験水中のケイ酸濃度が50mg/Lである場合に、鉄防食剤の濃度を変化させ、鉄の腐食試験を行った結果を示すグラフである。It is a graph which shows the result of having changed the density | concentration of the iron anticorrosive agent and performing the corrosion test of iron, when the silicic acid density | concentration in test water is 50 mg / L. 鉄防食剤の非存在下又は存在下で、試験水中のケイ酸濃度を変化させ、鉄の腐食試験を行った結果を示すグラフである。It is a graph which shows the result of having changed the silicic-acid density | concentration in test water in the absence or presence of an iron anticorrosive, and having performed the corrosion test of iron. 鉄防食剤の存在下で、試験水中のケイ酸濃度を変化させ、鉄の腐食試験を行った別の結果を示すグラフである。It is a graph which shows another result which changed the silicic acid density | concentration in test water in presence of an iron corrosion inhibitor, and performed the corrosion test of iron.

以下、本発明の実施形態について詳細に説明する。
本発明の腐食抑制方法は、水系流路の少なくとも一部を構成する鉄の腐食抑制方法であって、上記水系流路内の水において、ケイ酸及びケイ酸塩からなる群より選択される少なくとも1種のシリカ成分と鉄防食剤との共存下で、上記シリカ成分のSiO換算濃度を100mg/L以上に設定する。
Hereinafter, embodiments of the present invention will be described in detail.
The method for inhibiting corrosion of the present invention is a method for inhibiting corrosion of iron constituting at least a part of an aqueous channel, wherein the water in the aqueous channel is at least selected from the group consisting of silicic acid and silicate. Under the coexistence of one kind of silica component and an iron anticorrosive, the SiO 2 equivalent concentration of the silica component is set to 100 mg / L or more.

[水系流路]
水系流路としては、例えば、循環水系流路が挙げられる。水系流路は、例えば、管路を含み、更に開放式冷却塔及び密閉式冷却塔等の冷却塔、及び熱交換器等を含んでいてもよい。管路、冷却塔、及び熱交換器を含む水系流路の一例としては、循環水を冷却する冷却塔と、熱交換器と、冷却された循環水を冷却塔から熱交換器へ供給する循環水供給管路と、循環水を熱交換器から冷却塔へ回収する循環水回収管路とを備える水系流路が挙げられる。
[Water channel]
An example of the water channel is a circulating water channel. The water system flow path includes, for example, a pipe line, and may further include a cooling tower such as an open cooling tower and a closed cooling tower, a heat exchanger, and the like. As an example of a water system flow path including a pipe line, a cooling tower, and a heat exchanger, a cooling tower for cooling circulating water, a heat exchanger, and a circulation for supplying cooled circulating water from the cooling tower to the heat exchanger A water system flow path provided with a water supply line and a circulating water recovery line for recovering the circulating water from the heat exchanger to the cooling tower can be mentioned.

[シリカ成分]
本発明で用いられるシリカ成分は、ケイ酸及びケイ酸塩からなる群より選択される少なくとも1種である。ケイ酸塩としては、例えば、ケイ酸ナトリウム、ケイ酸カリウム等のケイ酸アルカリ金属塩、ケイ酸カルシウム、ケイ酸マグネシウム等のケイ酸アルカリ土類金属塩が挙げられる。ケイ酸塩は、1種単独で使用しても2種以上を併用してもよい。シリカ成分は、粉末の状態で使用しても、水溶液の状態で使用してもよい。
[Silica component]
The silica component used in the present invention is at least one selected from the group consisting of silicic acid and silicate. Examples of the silicate include alkali metal silicates such as sodium silicate and potassium silicate, and alkaline earth metal silicates such as calcium silicate and magnesium silicate. Silicates may be used alone or in combination of two or more. The silica component may be used in a powder state or in an aqueous solution state.

[鉄防食剤]
本発明で用いられる鉄防食剤としては、特に限定されず、公知の鉄防食剤を用いることができる。鉄防食剤としては、例えば、ホスホン酸系化合物、(メタ)アクリル酸系重合体、及び重合リン酸系化合物が挙げられる。鉄防食剤は、1種単独で使用しても2種以上を併用してもよい。
[Iron corrosion inhibitor]
It does not specifically limit as an iron anticorrosive used by this invention, A well-known iron anticorrosive can be used. Examples of the iron anticorrosive include phosphonic acid compounds, (meth) acrylic acid polymers, and polymerized phosphoric acid compounds. An iron anticorrosive may be used individually by 1 type, or may use 2 or more types together.

ホスホン酸系化合物としては、例えば、2−ホスホノブタン−1,2,4−トリカルボン酸、ホスホノエタン−1,2−ジカルボン酸、ホスホノブタン−1,2,3,4−テトラカルボン酸、1−ヒドロキシエチリデン−1,1−ジホスホン酸等のホスホン酸、及び、2−ホスホノブタン−1,2,4−トリカルボン酸ナトリウム、ホスホノエタン−1,2−ジカルボン酸四ナトリウム、ホスホノブタン−1,2,3,4−テトラカルボン酸六ナトリウム、1−ヒドロキシエチリデン−1,1−ジホスホン酸三ナトリウム、1−ヒドロキシエチリデン−1,1−ジホスホン酸四ナトリウム等のホスホン酸塩が挙げられる。   Examples of the phosphonic acid compounds include 2-phosphonobutane-1,2,4-tricarboxylic acid, phosphonoethane-1,2-dicarboxylic acid, phosphonobutane-1,2,3,4-tetracarboxylic acid, 1-hydroxyethylidene- Phosphonic acid such as 1,1-diphosphonic acid, and sodium 2-phosphonobutane-1,2,4-tricarboxylate, tetrasodium phosphonoethane-1,2-dicarboxylate, phosphonobutane-1,2,3,4-tetracarboxylic acid Examples include phosphonates such as hexasodium acid, trisodium 1-hydroxyethylidene-1,1-diphosphonate, and tetrasodium 1-hydroxyethylidene-1,1-diphosphonate.

(メタ)アクリル酸系重合体としては、例えば、(メタ)アクリル酸単独重合体、2−アクリルアミド−2−メチルプロパンスルホン酸・アクリル酸共重合体等が挙げられる。   Examples of the (meth) acrylic acid polymer include (meth) acrylic acid homopolymer, 2-acrylamido-2-methylpropanesulfonic acid / acrylic acid copolymer, and the like.

重合リン酸系化合物としては、例えば、トリポリリン酸、ヘキサメタリン酸等の重合リン酸、及び、トリポリリン酸ナトリウム、ヘキサメタリン酸ナトリウム等の重合リン酸塩が挙げられる。   Examples of the polymerized phosphoric acid compound include polymerized phosphoric acid such as tripolyphosphoric acid and hexametaphosphoric acid, and polymerized phosphate such as sodium tripolyphosphate and sodium hexametaphosphate.

[その他の成分]
本発明の腐食抑制方法では、シリカ成分及び鉄防食剤に加えて、必要に応じて、マレイン酸重合体等の硬度分散剤、水酸化カリウム、水酸化ナトリウム等のpH調整剤、リチウム塩等のトレーサ(水系流路内の水に添加された鉄防食剤等の濃度を測定するための成分。鉄防食剤等とともに添加されたトレーサの濃度を測定することで、間接的に鉄防食剤等の濃度を測定する)、次亜塩素酸ナトリウム、次亜臭素酸等の殺菌剤、銅防食剤等を水系流路内の水に共存させてもよい。銅防食剤としては、特に限定されず、公知の銅防食剤を用いることができる。銅防食剤としては、例えば、1,2,3−ベンゾトリアゾール等のアゾール系化合物が挙げられる。銅防食剤は、1種単独で使用しても2種以上を併用してもよい。
[Other ingredients]
In the corrosion inhibition method of the present invention, in addition to the silica component and the iron anticorrosive agent, if necessary, a hardness dispersant such as a maleic acid polymer, a pH adjuster such as potassium hydroxide or sodium hydroxide, a lithium salt, etc. Tracer (component for measuring the concentration of iron anticorrosive added to the water in the water channel. By measuring the concentration of the tracer added together with iron anticorrosive, etc. Concentration), bactericides such as sodium hypochlorite and hypobromite, copper anticorrosives and the like may coexist in the water in the aqueous channel. It does not specifically limit as a copper anticorrosive, A well-known copper anticorrosive can be used. Examples of the copper anticorrosive include azole compounds such as 1,2,3-benzotriazole. A copper anticorrosive may be used individually by 1 type, or may use 2 or more types together.

[腐食抑制方法]
本発明の腐食抑制方法では、水系流路内の水において、シリカ成分と鉄防食剤との共存下で、シリカ成分のSiO換算濃度を100mg/L以上に設定する。シリカ成分のSiO換算濃度が100mg/L以上であると、鉄防食剤の使用量を抑えつつ、高い腐食抑制効果を得ることが容易である。更に、シリカ成分のSiO換算濃度は、300mg/L以下に設定することが好ましい。シリカ成分のSiO換算濃度が300mg/L以下であると、シリカ成分を原因とするスケールが発生しにくい。
[Corrosion control method]
In the corrosion inhibiting method of the present invention, the SiO 2 equivalent concentration of the silica component is set to 100 mg / L or more in the water in the aqueous channel in the presence of the silica component and the iron anticorrosive. When the SiO 2 equivalent concentration of the silica component is 100 mg / L or more, it is easy to obtain a high corrosion inhibitory effect while suppressing the amount of iron anticorrosive used. Further, the SiO 2 equivalent concentration of the silica component is preferably set to 300 mg / L or less. When the SiO 2 equivalent concentration of the silica component is 300 mg / L or less, a scale caused by the silica component is difficult to occur.

鉄防食剤の濃度は10〜40mg/Lであることが好ましく、15〜35mg/Lであることがより好ましい。鉄防食剤の濃度が上記の範囲内であると、鉄防食剤の使用量を抑えつつ、高い腐食抑制効果を得ることが容易である。   The concentration of the iron anticorrosive is preferably 10 to 40 mg / L, and more preferably 15 to 35 mg / L. When the concentration of the iron anticorrosive is within the above range, it is easy to obtain a high corrosion inhibitory effect while suppressing the amount of iron anticorrosive used.

以下、本発明の実施例を説明するが、本発明の範囲はこれらの実施例に限定されるものではない。   Examples of the present invention will be described below, but the scope of the present invention is not limited to these examples.

[腐食試験]
本発明の腐食抑制方法による腐食抑制効果を評価するために、JIS K 0100−1990(工業用水腐食性試験方法)に規定の回転法に準じて腐食試験を行った。即ち、鉄試験片2枚を試験片保持器に取付け、1Lビーカーに満たした試験水中に浸漬した。ビーカーを恒温槽中に入れて、試験水の温度を37℃に保った。試験片保持器をモーター回転軸に取り付け、上記試験片を150rpmで回転させた。6日間、マイクロチューブポンプを用いて流速50mL/時で連続的に試験水を上記ビーカーに補給した。試験前後の試験片の重量減少量より腐食量(mdd)を下記式:
腐食量(mdd)=X/(Y×Z)
(式中、Xは、試験前後の試験片の重量減少量(mg)を、Yは、試験片の表面積(dm)を、Zは、試験日数(日)を示す)
により計算した。腐食量(mdd)が200以下であれば、腐食抑制効果が良好であると判断した。
[Corrosion test]
In order to evaluate the corrosion-inhibiting effect of the corrosion-inhibiting method of the present invention, a corrosion test was conducted according to the rotation method specified in JIS K 0100-1990 (industrial water corrosion test method). That is, two iron test pieces were attached to a test piece holder and immersed in test water filled in a 1 L beaker. The beaker was placed in a thermostat and the temperature of the test water was kept at 37 ° C. A test piece holder was attached to a motor rotating shaft, and the test piece was rotated at 150 rpm. For 6 days, the test water was continuously supplied to the beaker using a microtube pump at a flow rate of 50 mL / hour. The amount of corrosion (mdd) is calculated from the following formula:
Corrosion amount (mdd) = X / (Y × Z)
(Wherein, X represents the weight loss (mg) of the test piece before and after the test, Y represents the surface area (dm 2 ) of the test piece, and Z represents the number of days of the test (days)).
Calculated by If the amount of corrosion (mdd) was 200 or less, it was judged that the corrosion inhibition effect was good.

なお、用いた鉄試験片の詳細は以下のとおりである。
鉄試験片(SS400、寸法:1.6mm×30mm×30mm、全面#400研磨、主面中心に4mmφの貫通孔)
また、試験水の詳細は、各実施例及び比較例中で説明する。
In addition, the detail of the used iron test piece is as follows.
Iron test piece (SS400, dimensions: 1.6mm x 30mm x 30mm, whole surface # 400 polished, 4mmφ through hole at the center of the main surface)
The details of the test water will be described in each example and comparative example.

[実施例1〜2、比較例1〜5]
下記の水質を有する軟水1に、表1に示す添加量で、ケイ酸及び表2に示す防食剤混合物を添加して、試験水を調製した。この試験水を用いて腐食試験を行った。結果を表1並びに図1及び2に示す。
軟水1の水質:塩化物イオン200mg/L、硫酸イオン200mg/L、酸消費量(pH4.8)300mgCaCO/L、ケイ酸50mg/L(SiO換算)、硬度0mgCaCO/L
[Examples 1 and 2, Comparative Examples 1 to 5]
Test water was prepared by adding silicic acid and the anticorrosive mixture shown in Table 2 to the soft water 1 having the following water quality in the addition amount shown in Table 1. A corrosion test was conducted using this test water. The results are shown in Table 1 and FIGS.
Water quality of soft water 1: chloride ion 200 mg / L, sulfate ion 200 mg / L, acid consumption (pH 4.8) 300 mg CaCO 3 / L, silicic acid 50 mg / L (SiO 2 equivalent), hardness 0 mg CaCO 3 / L

Figure 0005978711
注)ケイ酸についてはSiO換算濃度
Figure 0005978711
Note) SiO 2 in terms of concentration for silicate

Figure 0005978711
Figure 0005978711

表2中の各成分の詳細は以下のとおりである。
鉄防食剤1:ホスホノエタン−1,2−ジカルボン酸四ナトリウムとホスホノブタン−1,2,3,4−テトラカルボン酸六ナトリウムとの混合物
鉄防食剤2:2−アクリルアミド−2−メチルプロパンスルホン酸・アクリル酸共重合物
銅防食剤:1,2,3−ベンゾトリアゾール
pH調整剤1:48重量%水酸化カリウム
pH調整剤2:25重量%水酸化ナトリウム
トレーサ:リチウム塩
Details of each component in Table 2 are as follows.
Iron anticorrosive 1: Mixture of phosphonoethane-1,2-dicarboxylic acid tetrasodium and phosphonobutane-1,2,3,4-tetracarboxylic acid hexasodium Iron anticorrosive 2: 2-acrylamido-2-methylpropanesulfonic acid Acrylic acid copolymer Copper anticorrosive: 1,2,3-benzotriazole pH adjuster 1: 48 wt% potassium hydroxide pH adjuster 2: 25 wt% sodium hydroxide Tracer: Lithium salt

[実施例3〜4、比較例6]
下記の水質を有する軟水2に、表3に示す添加量で、ケイ酸及び表2に示す防食剤混合物を添加して、試験水を調製した。この試験水を用いて腐食試験を行った。結果を表3及び図3に示す。
軟水2の水質:塩化物イオン140mg/L、硫酸イオン140mg/L、酸消費量(pH4.8)120mgCaCO/L、ケイ酸50mg/L(SiO換算)、硬度0mgCaCO/L
[Examples 3 to 4, Comparative Example 6]
Test water was prepared by adding silicic acid and the anticorrosive mixture shown in Table 2 to the soft water 2 having the following water quality in the addition amount shown in Table 3. A corrosion test was conducted using this test water. The results are shown in Table 3 and FIG.
Water quality of soft water 2: chloride ion 140 mg / L, sulfate ion 140 mg / L, acid consumption (pH 4.8) 120 mg CaCO 3 / L, silicic acid 50 mg / L (in terms of SiO 2 ), hardness 0 mg CaCO 3 / L

Figure 0005978711
注)ケイ酸についてはSiO換算濃度
Figure 0005978711
Note) SiO 2 in terms of concentration for silicate

[評価]鉄の腐食試験について
比較例1〜3の結果(表1、図1)から分かるように、試験水中のケイ酸濃度が50mg/Lという低い値である場合、鉄防食剤を合計で24.8mg/Lの濃度となるように添加しても、鉄防食剤を全く添加しなかった場合にほぼ等しい鉄腐食量を示した。鉄防食剤を合計で49.6mg/Lの濃度となるように添加して初めて鉄腐食量は49mddまで減少した。
[Evaluation] Iron Corrosion Test As can be seen from the results of Comparative Examples 1 to 3 (Table 1 and FIG. 1), when the concentration of silicic acid in the test water is a low value of 50 mg / L, the iron anticorrosive agent is added in total. Even when added to a concentration of 24.8 mg / L, the amount of iron corrosion was almost the same as when no iron corrosion inhibitor was added. The iron corrosion amount was reduced to 49 mdd only after the iron corrosion inhibitor was added to a total concentration of 49.6 mg / L.

比較例1、4、及び5の結果(表1、図2)から、鉄防食剤非存在下では、ケイ酸濃度を50mg/Lから150mg/Lまで上昇させても、十分な腐食抑制効果は見られなかった。これに対し、比較例2並びに実施例1及び2の結果(表1、図2)から、24.8mg/Lの鉄防食剤存在下では、ケイ酸濃度を50mg/Lから100mg/L又は150mg/Lまで上昇させることで、十分な腐食抑制効果が得られた。このとき、鉄腐食剤非存在下の場合と比べて、ケイ酸濃度を上昇させたことによる鉄腐食量の減少幅が大きかった。例えば、ケイ酸濃度を50mg/Lから100mg/Lに上昇させたとき、鉄腐食量の減少幅は、鉄腐食剤非存在下では121mddだったのに対し、24.8mg/Lの鉄防食剤存在下では237mddという約2倍の大きな値を示した。また、ケイ酸濃度を100mg/Lから150mg/Lに上昇させたとき、鉄腐食量の減少幅は、鉄腐食剤非存在下では75mddだったのに対し、24.8mg/Lの鉄防食剤存在下では160mddという2倍以上の大きな値を示した。よって、ケイ酸と鉄防食剤とが相乗的に作用して、十分な腐食抑制効果が得られたことが分かる。   From the results of Comparative Examples 1, 4, and 5 (Table 1, FIG. 2), in the absence of an iron anticorrosive, even if the silicic acid concentration is increased from 50 mg / L to 150 mg / L, sufficient corrosion inhibition effect is obtained. I couldn't see it. On the other hand, from the results of Comparative Example 2 and Examples 1 and 2 (Table 1, FIG. 2), in the presence of 24.8 mg / L of an iron anticorrosive, the silicic acid concentration was changed from 50 mg / L to 100 mg / L or 150 mg. A sufficient corrosion inhibitory effect was obtained by increasing to / L. At this time, the amount of decrease in the amount of iron corrosion caused by increasing the concentration of silicic acid was larger than that in the absence of iron corrosive agent. For example, when the concentration of silicic acid is increased from 50 mg / L to 100 mg / L, the amount of decrease in the iron corrosion amount was 121 mdd in the absence of the iron corrosion agent, whereas 24.8 mg / L of the iron corrosion inhibitor. In the presence, it showed a large value of about 237 mdd, about twice as large. In addition, when the silicic acid concentration was increased from 100 mg / L to 150 mg / L, the amount of decrease in the iron corrosion amount was 75 mdd in the absence of the iron corrosion agent, whereas 24.8 mg / L of the iron corrosion inhibitor. In the presence, a large value of 160 mdd or more, which was twice or more, was shown. Therefore, it turns out that a silicic acid and an iron anticorrosive acted synergistically and sufficient corrosion inhibitory effect was acquired.

この傾向は比較例6並びに実施例3及び4の場合に特に強く現れており(表3、図3)、24.8mg/Lの鉄防食剤存在下でケイ酸濃度を50mg/Lから100mg/Lに上昇させたときに鉄腐食量が急激に低下した。   This tendency is particularly strong in the case of Comparative Example 6 and Examples 3 and 4 (Table 3, FIG. 3), and the silicic acid concentration is changed from 50 mg / L to 100 mg / L in the presence of 24.8 mg / L of an iron anticorrosive. When it was raised to L, the amount of iron corrosion decreased rapidly.

以上のとおり、ケイ酸濃度が100mg/L以上であれば、鉄防食剤の濃度が24.8mg/Lという低い値であっても、十分な腐食抑制効果が得られることが分かった。   As described above, it has been found that if the silicic acid concentration is 100 mg / L or more, even if the concentration of the iron anticorrosive is a low value of 24.8 mg / L, a sufficient corrosion inhibiting effect can be obtained.

Claims (2)

水系流路の少なくとも一部を構成する鉄の腐食抑制方法であって、前記水系流路内の水において、ケイ酸及びケイ酸塩からなる群より選択される少なくとも1種のシリカ成分と鉄防食剤との共存下で、前記シリカ成分のSiO換算濃度を100mg/L以上に設定し、
前記鉄防食剤は、ホスホノエタン−1,2−ジカルボン酸四ナトリウムホスホノブタン−1,2,3,4−テトラカルボン酸六ナトリウムとの混合物と、2−アクリルアミド−2−メチルプロパンスルホン酸・アクリル酸共重合体との組み合わせである腐食抑制方法。
A method for inhibiting corrosion of iron constituting at least a part of an aqueous channel, wherein the water in the aqueous channel is at least one silica component selected from the group consisting of silicic acid and silicate and iron corrosion protection In the coexistence with the agent, the SiO 2 equivalent concentration of the silica component is set to 100 mg / L or more,
Wherein the iron corrosion inhibitor is a mixture of E Suhonoetan-1,2-dicarboxylic acid tetrasodium and phosphonobutane-1,2,3,4-tetracarboxylic acid hexasodium, 2 - acrylamido-2-methylpropanesulfonic acid-acrylic A method for inhibiting corrosion, which is a combination with an acid copolymer.
前記水系流路内の水において、前記鉄防食剤の濃度を10〜40mg/Lに設定する請求項1に記載の腐食抑制方法。   The method for inhibiting corrosion according to claim 1, wherein the concentration of the iron anticorrosive is set to 10 to 40 mg / L in the water in the aqueous channel.
JP2012078141A 2012-03-29 2012-03-29 Iron corrosion control method Active JP5978711B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2012078141A JP5978711B2 (en) 2012-03-29 2012-03-29 Iron corrosion control method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2012078141A JP5978711B2 (en) 2012-03-29 2012-03-29 Iron corrosion control method

Publications (2)

Publication Number Publication Date
JP2013204148A JP2013204148A (en) 2013-10-07
JP5978711B2 true JP5978711B2 (en) 2016-08-24

Family

ID=49523562

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2012078141A Active JP5978711B2 (en) 2012-03-29 2012-03-29 Iron corrosion control method

Country Status (1)

Country Link
JP (1) JP5978711B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6354814B2 (en) * 2016-09-30 2018-07-11 ダイキン工業株式会社 Manufacturing method of piping and forming method of oxide film on inner surface of copper pipe
US11149202B1 (en) 2016-12-13 2021-10-19 Ecolab Usa Inc. Tetracarboxylic acid combinations for corrosion inhibition

Family Cites Families (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS51115249A (en) * 1975-11-25 1976-10-09 Kurita Industrial Co Ltd Anticorrosive
GB9125115D0 (en) * 1991-11-23 1992-01-22 Ciba Geigy Ag Corrosion and/or scale inhibition
JPH0874076A (en) * 1994-09-01 1996-03-19 Hakuto Co Ltd Method for inhibiting metal corrosion
JP4237853B2 (en) * 1998-12-07 2009-03-11 アクアス株式会社 Corrosion inhibitor and corrosion prevention method for ferrous metals in cooling water system
JP2002018487A (en) * 2000-07-10 2002-01-22 Miura Co Ltd Water treatment method for boiler system
JP2002054894A (en) * 2000-08-09 2002-02-20 Ebara Corp Method and device for water treatment in open circulation cooling water system
JP2003213464A (en) * 2002-01-21 2003-07-30 Hakuto Co Ltd Method for corrosion inhibition of metal in open type circulating cooling water system
JP4195262B2 (en) * 2002-08-30 2008-12-10 伯東株式会社 Method for inhibiting metal corrosion in open circulating cooling water system
JP2004107782A (en) * 2002-09-20 2004-04-08 Kurita Water Ind Ltd Corrosion prevention method
JP2004132636A (en) * 2002-10-11 2004-04-30 Japan Organo Co Ltd Corrosion inhibition method of iron-based metal
JP2008088475A (en) * 2006-09-29 2008-04-17 Kurita Water Ind Ltd Corrosion preventive and corrosion prevention method

Also Published As

Publication number Publication date
JP2013204148A (en) 2013-10-07

Similar Documents

Publication Publication Date Title
JPS58177479A (en) Method of controlling corrosion and sedimentation in aqueous system and composition therefor
JP5800044B2 (en) Descaling method and descaling agent for steam generating equipment
JP5946363B2 (en) Silica scale prevention method and scale inhibitor in water system, and water treatment method and water treatment agent that suppress silica scale and suppress metal corrosion
JP5098378B2 (en) Magnesium scale inhibitor
JP2017507243A (en) Use of phosphotartaric acid and its salts for water treatment in water transfer systems.
JP5978711B2 (en) Iron corrosion control method
JP5099884B2 (en) Corrosion inhibitor
TW201908247A (en) Composition and method for inhibiting corrosion and scale
JP4970674B2 (en) Scale prevention method
WO2015119528A1 (en) Inhibitor of metal corrosion and scaling
JP6589286B2 (en) Initial processing agent for circulating cooling water and initial processing method of circulating cooling water system
JP4277072B2 (en) Boiler corrosion / pitting corrosion inhibitor and corrosion / pitting corrosion prevention method using the same
JP2848672B2 (en) High-temperature water-based corrosion inhibitor
JP2007253119A (en) Scale adhesion preventing agent and treatment method of cooling water system
JP6792247B2 (en) Method for suppressing local corrosion of metals in water systems
JP2013204147A (en) Agent for suppressing corrosion of iron and copper
JP2003159597A (en) Water treating agent
JP2013022535A (en) Scale removing method for boiler water system
JP5879699B2 (en) Corrosion prevention method for boiler water supply system
WO2020122173A1 (en) Cooling water scale prevention agent and cooling water scale prevention method
JP6566010B2 (en) Metal anticorrosive for cooling water and processing method of cooling water system
WO2014199523A1 (en) Water treatment method for steam generating facility
JP4244983B2 (en) Metal corrosion control method
JP2009299161A (en) Metal corrosion suppression method of water system
JP2015183285A (en) Method of suppressing metal corrosion

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20141219

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20150907

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20150915

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20151111

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20160202

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20160329

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20160628

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20160711

R150 Certificate of patent or registration of utility model

Ref document number: 5978711

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250