JP2009299161A - Metal corrosion suppression method of water system - Google Patents

Metal corrosion suppression method of water system Download PDF

Info

Publication number
JP2009299161A
JP2009299161A JP2008156529A JP2008156529A JP2009299161A JP 2009299161 A JP2009299161 A JP 2009299161A JP 2008156529 A JP2008156529 A JP 2008156529A JP 2008156529 A JP2008156529 A JP 2008156529A JP 2009299161 A JP2009299161 A JP 2009299161A
Authority
JP
Japan
Prior art keywords
water
metal corrosion
zinc
acid
concentration
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2008156529A
Other languages
Japanese (ja)
Inventor
Takuya Tokifuji
卓也 時藤
Yasushi Murano
靖 村野
Noriko Odagiri
紀子 小田切
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kurita Water Industries Ltd
Original Assignee
Kurita Water Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kurita Water Industries Ltd filed Critical Kurita Water Industries Ltd
Priority to JP2008156529A priority Critical patent/JP2009299161A/en
Publication of JP2009299161A publication Critical patent/JP2009299161A/en
Pending legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23FNON-MECHANICAL REMOVAL OF METALLIC MATERIAL FROM SURFACE; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL; MULTI-STEP PROCESSES FOR SURFACE TREATMENT OF METALLIC MATERIAL INVOLVING AT LEAST ONE PROCESS PROVIDED FOR IN CLASS C23 AND AT LEAST ONE PROCESS COVERED BY SUBCLASS C21D OR C22F OR CLASS C25
    • C23F11/00Inhibiting corrosion of metallic material by applying inhibitors to the surface in danger of corrosion or adding them to the corrosive agent
    • C23F11/08Inhibiting corrosion of metallic material by applying inhibitors to the surface in danger of corrosion or adding them to the corrosive agent in other liquids

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Preventing Corrosion Or Incrustation Of Metals (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a corrosion suppression method of metal exhibiting an excellent corrosion prevention effect without causing environmental pollution. <P>SOLUTION: The metal corrosion suppression method of a water system is characterized in that at least phosphate, zinc salt, and M alkalinity component are added to the water system, total phosphorus concentration and total zinc concentration respectively exceed 0 and ≤1 mg/L and the Langelier's index at 30°C is specified to ≥1.2. <P>COPYRIGHT: (C)2010,JPO&INPIT

Description

本発明は、水系の金属腐食抑制方法に関する。より詳しくは、環境汚染を発生させることのない水系の金属腐食抑制方法に関する。   The present invention relates to an aqueous metal corrosion suppression method. More specifically, the present invention relates to a water-based metal corrosion suppression method that does not cause environmental pollution.

冷却水系等の水系において、各種の水処理剤を添加することにより、金属の腐食やスケールの抑制が図られている。   In water systems such as cooling water systems, various kinds of water treatment agents are added to suppress metal corrosion and scale.

水処理剤のうち、金属の腐食抑制の目的で、りん酸塩等や、亜鉛塩等の重金属塩が使用されているが、りん酸塩は、湖沼や海洋の富栄養化などの環境問題を引き起こす原因となる。また、重金属塩は近年の環境規制の強化により、その使用が制限されている。   Among water treatment agents, heavy metal salts such as phosphates and zinc salts are used for the purpose of inhibiting metal corrosion. Phosphate is an environmental problem such as eutrophication of lakes and oceans. Cause it to cause. In addition, the use of heavy metal salts has been restricted due to recent stricter environmental regulations.

しかしながら、りん酸塩等と、亜鉛塩等を含まない薬剤による水処理では、金属の防食性が劣り、水系の金属の腐食を充分に抑制することができないという問題があった。   However, the water treatment with a phosphate salt or the like and a chemical containing no zinc salt has a problem that the corrosion resistance of the metal is inferior and corrosion of the aqueous metal cannot be sufficiently suppressed.

特に、カルシウム硬度が100mgCaCO/L以下の場合は、十分な金属の防食効果を得るために、一定量以上のりん酸塩等を添加する必要があった(非特許文献1参照)。
栗田工業薬品ハンドブック編集委員会編,薬品ハンドブック第3版 第183頁。
In particular, when the calcium hardness is 100 mgCaCO 3 / L or less, it is necessary to add a certain amount or more of phosphate or the like in order to obtain a sufficient metal anticorrosive effect (see Non-Patent Document 1).
Kurita Kogyo Handbook Editorial Committee, Pharmaceutical Handbook 3rd Edition, page 183.

本発明は、環境汚染を引き起こすことなく、優れた防食効果を発揮する金属の腐食抑制方法を提供することを主目的とする。   The main object of the present invention is to provide a method for inhibiting corrosion of a metal that exhibits an excellent anticorrosion effect without causing environmental pollution.

上記課題を解決するために、本発明は、水系の金属腐食抑制方法であって、少なくともりん酸塩と、亜鉛塩と、Mアルカリ度成分と、が添加され、全りん濃度及び全亜鉛濃度がそれぞれ0を超え1mg/L以下、かつ、ランゲリア指数を1.2以上とすることを特徴とする水系の金属腐食抑制方法を提供する。かかる構成とすることにより、全りん濃度及び全亜鉛濃度を低減しつつ、充分な金属の防食効果を得ることができる。
また、本発明に係る水系の金属腐食抑制方法において、用いられる前記Mアルカリ度成分は特に限定されないが、水酸化ナトリウムが好適に用いられる。水酸化ナトリウムを用いることにより、少ない添加量でランゲリア指数を上昇させることができ、コスト面で有利である。
さらに、本発明に係る水系の金属腐食抑制方法において、前記ランゲリア指数は1.2以上であれば特に限定されないが、1.3〜2.0以上とするのが好適である。
本発明に係る水系の金属腐食抑制方法は、カルシウム硬度が100mgCaCO/L以下であっても、充分な金属の防食効果が得られる。
また、本発明に係る水系の金属腐食抑制方法が用いられる水系は、特に限定されないが、開放循環冷却水系に好適に用いられる。
In order to solve the above-mentioned problems, the present invention is a water-based metal corrosion inhibiting method, wherein at least a phosphate, a zinc salt, and an M alkalinity component are added, and the total phosphorus concentration and the total zinc concentration are Provided is a water-based metal corrosion suppression method characterized in that each exceeds 0 and is 1 mg / L or less and the Langelia index is 1.2 or more. By adopting such a configuration, it is possible to obtain a sufficient metal anticorrosion effect while reducing the total phosphorus concentration and the total zinc concentration.
In the water-based metal corrosion inhibiting method according to the present invention, the M alkalinity component used is not particularly limited, but sodium hydroxide is preferably used. By using sodium hydroxide, the Langeria index can be increased with a small addition amount, which is advantageous in terms of cost.
Furthermore, in the water-based metal corrosion inhibiting method according to the present invention, the Langeria index is not particularly limited as long as it is 1.2 or more, but is preferably 1.3 to 2.0 or more.
The water-based metal corrosion inhibiting method according to the present invention can provide a sufficient metal anticorrosion effect even when the calcium hardness is 100 mgCaCO 3 / L or less.
Moreover, the water system in which the water-based metal corrosion inhibiting method according to the present invention is used is not particularly limited, but is preferably used for an open circulation cooling water system.

ここで、本発明に用いられる用語の説明をする。「Mアルカリ度成分」とは、水中に溶解している炭酸水素塩、炭酸塩、りん酸塩、水酸化物などの全てのアルカリ成分をいい、総アルカリ度ともいう。   Here, terms used in the present invention will be described. The “M alkalinity component” refers to all alkali components dissolved in water, such as bicarbonate, carbonate, phosphate, hydroxide, and is also referred to as total alkalinity.

「ランゲリア指数」とは、水の腐食性を判定する指数であり、(1)式にて示される。本発明において使用するランゲリア指数は30℃における値「LSI(30)」とし、その計算式は下記式(1)のとおりである。   The “Langeria index” is an index for determining the corrosiveness of water, and is represented by equation (1). The Langeria index used in the present invention is the value “LSI (30)” at 30 ° C., and the calculation formula is as shown in the following formula (1).

(数1)
LSI(30) = log[Ca2+] + log[A] + pH−11.79

LSI :ランゲリア指数(飽和指数)
pH :水の実際のpH値
log[Ca2+] :カルシウムイオン濃度の対数
log[A] :総アルカリ度の対数
(Equation 1)
LSI (30) = log [Ca 2+ ] + log [A] + pH−11.79

LSI: Langeria index (saturation index)
pH: Actual pH value of water
log [Ca 2+ ]: Logarithm of calcium ion concentration
log [A]: Logarithm of total alkalinity

本発明によれば、環境汚染を引き起こすことなく、優れた防食効果を発揮する金属の腐食抑制方法を提供することができる。   ADVANTAGE OF THE INVENTION According to this invention, the corrosion inhibition method of the metal which exhibits the outstanding anticorrosion effect can be provided, without causing environmental pollution.

以下、本発明を実施するための好適な形態について説明する。なお、以下に説明する実施形態は、本発明の代表的な実施形態の一例を示したものであり、これにより本発明の範囲が狭く解釈されることはない。   Hereinafter, preferred embodiments for carrying out the present invention will be described. In addition, embodiment described below shows an example of typical embodiment of this invention, and, thereby, the range of this invention is not interpreted narrowly.

本発明に係る水系の金属腐食抑制方法は、少なくともりん酸塩と、亜鉛塩と、Mアルカリ度成分と、が添加され、全りん濃度及び全亜鉛濃度がそれぞれ0を超え1mg/L以下、かつ、ランゲリア指数が1.2以上であることを特徴とするものである。   In the water-based metal corrosion inhibiting method according to the present invention, at least a phosphate, a zinc salt, and an M alkalinity component are added, and the total phosphorus concentration and the total zinc concentration are each greater than 0 and less than 1 mg / L, and The Langellia index is 1.2 or more.

本発明に係る水系の金属腐食抑制方法において、水系に添加されるりん酸塩の種類は特に限定されず、例えば、無機りん酸(正りん酸、重合りん酸)やその塩、有機りん酸やその塩あるいはそのエステル、各種ホスホン酸が挙げられる。より具体的にはヘキサメタりん酸、トリポリりん酸、オルソりん酸、ホスホノブタントリカルボン酸、ヒドロキシエチリデンジホスホン酸(HEDP)、アミノトリメチルホスホン酸等を単独で、或いは2種以上を組み合わせて用いることができる。   In the aqueous metal corrosion inhibiting method according to the present invention, the type of phosphate added to the aqueous system is not particularly limited, and examples thereof include inorganic phosphoric acid (normal phosphoric acid, polymerized phosphoric acid) and salts thereof, organic phosphoric acid, Examples thereof include salts thereof, esters thereof, and various phosphonic acids. More specifically, hexametaphosphoric acid, tripolyphosphoric acid, orthophosphoric acid, phosphonobutanetricarboxylic acid, hydroxyethylidene diphosphonic acid (HEDP), aminotrimethylphosphonic acid, etc. may be used alone or in combination of two or more. Can do.

また、前記水系の全りん濃度は、0を超え1mg/L以下であれば特に限定されない。本発明に係る方法によれば、全りん濃度が0を超え1mg/L以下という低濃度であっても、充分な金属腐食抑制効果を得ることができる。   The total phosphorus concentration in the aqueous system is not particularly limited as long as it exceeds 0 and is 1 mg / L or less. According to the method of the present invention, even if the total phosphorus concentration is as low as 0 to 1 mg / L or less, a sufficient metal corrosion inhibiting effect can be obtained.

本発明に係る水系の金属腐食抑制方法において、水系に添加される亜鉛塩の種類は特に限定されず、例えば、塩化亜鉛、硫酸亜鉛、硝酸亜鉛、酢酸亜鉛、リンゴ酸亜鉛、クエン酸亜鉛等を単独で、或いは2種以上を組み合わせて用いることができる。   In the aqueous metal corrosion inhibiting method according to the present invention, the kind of zinc salt added to the aqueous system is not particularly limited. For example, zinc chloride, zinc sulfate, zinc nitrate, zinc acetate, zinc malate, zinc citrate, etc. It can be used alone or in combination of two or more.

また、前記水系の全亜鉛濃度は、0を超え1mg/L以下であれば特に限定されない。本発明に係る方法によれば、全亜鉛濃度が0を超え1mg/L以下という低濃度であっても、充分な金属腐食抑制効果を得ることができる。   The total zinc concentration in the aqueous system is not particularly limited as long as it exceeds 0 and is 1 mg / L or less. According to the method of the present invention, a sufficient metal corrosion inhibitory effect can be obtained even when the total zinc concentration is as low as 0 to 1 mg / L or less.

本発明に係る水系の金属腐食抑制方法に用いられるMアルカリ成分の種類は特に限定されず、例えば、アルカリ水酸化物塩、アルカリ重炭酸塩、アルカリ炭酸塩、カルシウム塩等を用いることができる。
前記アルカリ水酸化物塩の具体例として、例えば、水酸化ナトリウム、水酸化カリウム等が挙げられる。
前記アルカリ重炭酸塩の具体例として、例えば、重炭酸ナトリウム、重炭酸カリウム等が挙げられる。
前記アルカリ炭酸塩の具体例として、例えば、炭酸ナトリウム、炭酸カリウム等が挙げられる。
前記カルシウム塩の具体例として、例えば、炭酸カルシウム、水酸化カルシウム、塩化カルシウム等が挙げられる。
The kind of M alkali component used in the water-based metal corrosion inhibiting method according to the present invention is not particularly limited, and for example, alkali hydroxide salt, alkali bicarbonate, alkali carbonate, calcium salt and the like can be used.
Specific examples of the alkali hydroxide salt include sodium hydroxide and potassium hydroxide.
Specific examples of the alkali bicarbonate include sodium bicarbonate and potassium bicarbonate.
Specific examples of the alkali carbonate include sodium carbonate and potassium carbonate.
Specific examples of the calcium salt include calcium carbonate, calcium hydroxide, calcium chloride and the like.

また、前記Mアルカリ度成分の濃度は、水系のランゲリア指数が1.2以上となるように添加されれば特に限定されず、水系のpH、カルシウム濃度等を考慮して適宜設定することができる。Mアルカリ度成分を添加することにより、りん及び亜鉛が低濃度であっても、水系の金属の腐食を効果的に抑制することができる。
特に、従来は、水系のカルシウム硬度が低い場合には、比較的高濃度のりん酸塩及び亜鉛塩を添加しなければ充分な金属腐食抑制効果を得ることができなかった。しかしながら、本発明に係る方法によれば、水系のカルシウム硬度が低い場合においても、りん酸塩及び亜鉛塩の濃度を上げることなく金属の腐食を抑制することができる。
Further, the concentration of the M alkalinity component is not particularly limited as long as it is added so that the water-based Langeria index is 1.2 or more, and can be appropriately set in consideration of the pH, calcium concentration, etc. of the water-based material. . By adding the M alkalinity component, corrosion of aqueous metals can be effectively suppressed even when phosphorus and zinc are at low concentrations.
In particular, conventionally, when the aqueous calcium hardness is low, a sufficient metal corrosion inhibitory effect cannot be obtained unless a relatively high concentration of phosphate and zinc salt is added. However, according to the method of the present invention, even when the aqueous calcium hardness is low, metal corrosion can be suppressed without increasing the concentration of phosphate and zinc salt.

本発明に係る水系の金属腐食抑制方法において、水系のランゲリア指数は1.2以上であれば特に限定されないが、好適には1.3〜2.0とするのが望ましい。ランゲリア指数を前記範囲とすることにより、りん及び亜鉛が低濃度であっても、水系の金属の腐食を効果的に抑制することができる。   In the water-based metal corrosion inhibiting method according to the present invention, the water-based Langeria index is not particularly limited as long as it is 1.2 or more, but is preferably 1.3 to 2.0. By setting the Langeria index in the above range, corrosion of water-based metals can be effectively suppressed even if phosphorus and zinc are at low concentrations.

本発明に係る水系の金属腐食抑制方法において、水系のカルシウム硬度は特に限定されないが、従来、充分な金属の腐食抑制が困難であった、100mgCaCO/L以下の低カルシウム硬度条件下においても、効果的に金属の腐食を抑制することができる。 In the water-based metal corrosion suppression method according to the present invention, the water-based calcium hardness is not particularly limited, but conventionally, even under low calcium hardness conditions of 100 mg CaCO 3 / L or less, which has been difficult to sufficiently suppress metal corrosion, Metal corrosion can be effectively suppressed.

本発明に係る水系の金属腐食抑制方法は、あらゆる水系に用いることができ、例えば、開放循環冷却水系、密閉冷却水系等の冷却水系に用いることができる。   The water-based metal corrosion inhibiting method according to the present invention can be used for any water system, for example, a cooling water system such as an open circulation cooling water system and a sealed cooling water system.

さらに、本発明に係る水系の金属腐食抑制方法において、水系に水溶性ポリマー等を併用することにより、金属の腐食抑制効果を更に向上させるとともに、過飽和の炭酸カルシウム、シリカ、ケイ酸カルシウム、ケイ酸マグネシウムなどの金属表面へのスケールとしての付着を抑制することができる。   Furthermore, in the water-based metal corrosion inhibiting method according to the present invention, by using a water-soluble polymer or the like in the water system, the metal corrosion inhibiting effect is further improved, and supersaturated calcium carbonate, silica, calcium silicate, silicic acid Adhesion as a scale to a metal surface such as magnesium can be suppressed.

用いられる水溶性ポリマーは特に限定されず、例えば、アクリル酸、メタクリル酸、マレイン酸、無水マレイン酸、イタコン酸、ビニルスルホン酸、アリルスルホン酸、スチレンスルホン酸、2−ヒドロキシ−3−アクリロキシ−1−プロパンスルホン酸、2−アクリルアミド−2−メチルプロパンスルホン酸、イソプレンスルホン酸、それらの塩などのホモポリマー、コポリマーなどを挙げることができる。これらの水溶性ポリマーは、単独で、或いは2種以上を組み合わせて用いることができる。   The water-soluble polymer used is not particularly limited. For example, acrylic acid, methacrylic acid, maleic acid, maleic anhydride, itaconic acid, vinyl sulfonic acid, allyl sulfonic acid, styrene sulfonic acid, 2-hydroxy-3-acryloxy-1 -Homopolymers, copolymers, etc., such as propanesulfonic acid, 2-acrylamido-2-methylpropanesulfonic acid, isoprenesulfonic acid and their salts. These water-soluble polymers can be used alone or in combination of two or more.

次亜塩素酸塩、次亜臭素酸塩、5−クロロ−2−メチル−4−イソチアゾリン−3−オン、2−メチル−4−イソチアゾリン−3−オンなどのスライムコントロール剤を添加することができる。   Slime control agents such as hypochlorite, hypobromite, 5-chloro-2-methyl-4-isothiazolin-3-one, 2-methyl-4-isothiazolin-3-one can be added. .

以下、実施例をあげて本発明を詳細に説明するが、本発明は、以下の実施例に限定されるものではない。   EXAMPLES Hereinafter, although an Example is given and this invention is demonstrated in detail, this invention is not limited to a following example.

図1に示すベンチスケール冷却水系評価試験装置を用い、下記実施例及び比較例の腐食抑制効果を調べる実験を行った。   Using the bench scale cooling water system evaluation test apparatus shown in FIG. 1, an experiment for examining the corrosion inhibition effect of the following examples and comparative examples was conducted.

図1に示すベンチスケール冷却水系評価試験装置において、冷却塔1から、ポンプP1を有する循環配管2により循環冷却水が熱交換器3に送給され、戻り水が配管4より冷却塔1に戻される。5は補給水の導入配管、6は実施例及び比較例に係る評価薬剤の導入配管、7は冷却水の水質調整剤タンク、8は強制ブロー配管であり、各々ポンプP2〜P4を備える。熱交換器3は、外径19mm、長さ1300mm、厚さ2.3mmの炭素鋼製チューブ2本が設けられた蒸気加熱チューブ側通水熱交換器である。   In the bench scale cooling water system evaluation test apparatus shown in FIG. 1, the circulating cooling water is fed from the cooling tower 1 to the heat exchanger 3 through the circulation pipe 2 having the pump P 1, and the return water is returned to the cooling tower 1 through the pipe 4. It is. 5 is a supply water introduction pipe, 6 is an introduction pipe for an evaluation drug according to Examples and Comparative Examples, 7 is a cooling water quality adjusting agent tank, and 8 is a forced blow pipe, each having pumps P2 to P4. The heat exchanger 3 is a steam heating tube side water-flow heat exchanger provided with two carbon steel tubes having an outer diameter of 19 mm, a length of 1300 mm, and a thickness of 2.3 mm.

以下の運転条件にて評価試験を行った。
<運転条件>
保有水量:350L
流速:0.3m/秒
熱交換器入口水温:30℃
熱交換器出口水温:50℃
評価薬剤添加方法:下記実施例及び比較例に係る評価薬剤を用い、冷却水中の保持濃度が60mg/Lとなるように連続注入
An evaluation test was conducted under the following operating conditions.
<Operating conditions>
Retained water volume: 350L
Flow rate: 0.3 m / sec Heat exchanger inlet water temperature: 30 ° C
Heat exchanger outlet water temperature: 50 ° C
Evaluation drug addition method: Continuously infused so that the retained concentration in cooling water is 60 mg / L using the evaluation drugs according to the following Examples and Comparative Examples

市販の初期処理薬剤により初期防食皮膜を形成した炭素鋼製テストチューブを用い、上記の運転を14日間行い、熱交換器チューブに生じた局部腐食の最大深さで腐食抑制効果の評価を行った。14日間の運転後に、熱交換器よりテストチューブを取り出した。インヒビター入り塩酸でテストチューブを酸洗し、腐食生成物を取り除いた。テストチューブ表面に生じた局部腐食深さをデプスゲージで測定し、その最大値を求めた。   Using a carbon steel test tube on which an initial anticorrosion film was formed with a commercially available initial treatment chemical, the above operation was performed for 14 days, and the corrosion inhibition effect was evaluated at the maximum depth of local corrosion that occurred in the heat exchanger tube. . After 14 days of operation, the test tube was removed from the heat exchanger. The test tube was pickled with hydrochloric acid containing inhibitor to remove corrosion products. The depth of local corrosion occurring on the test tube surface was measured with a depth gauge, and the maximum value was obtained.

<評価方法>
初期処理はリン亜鉛初期処理とし、野木町水(カルシウム硬度50mgCaCO/L)にクリロイヤルP−320(栗田工業株式会社製 防食剤)400mg/L、クリロイヤルP−652(栗田工業株式会社製 防食剤)200mg/Lを添加することにより行った。初期処理期間は、1日間とした。保持処理水への切り替えは、あらかじめ所定の水質に調整した保持処理水に一括で切り替える方法とした。保持処理水の水質は、評価薬剤を添加し、カルシウム硬度、酸消費量(pH4.8)シリカ濃度をそれぞれ変化させた。なお、カルシウム硬度を調整する目的には塩化カルシウムを、酸消費量(pH4.8)を調整する目的には炭酸水素ナトリウム又は水酸化ナトリウムを、シリカ濃度を調整する目的にはケイ酸3号をそれぞれ使用した。また、水温は、熱交換器入口が30℃、熱交換器出口がチューブ側通水50℃とし、流速は、チューブ側通水0.3m/sとした。保持処理期間は、14日間とした。
スライムコントロール処理は次亜塩素酸ナトリウムを用い、全残留塩素が0.3〜0.5mgCl/L検出されるように連続添加を実施した。
<Evaluation method>
The initial treatment is phosphorous zinc initial treatment, Nogicho water (calcium hardness 50 mg CaCO 3 / L), Cryroy P-320 (corrosion inhibitor made by Kurita Kogyo Co., Ltd.) 400 mg / L, Cry Royal P-652 (made by Kurita Kogyo Co., Ltd.) Anticorrosive agent) was performed by adding 200 mg / L. The initial treatment period was 1 day. Switching to the holding treated water, it was how to switch collectively holding process water adjusted in advance a predetermined water quality. The quality of the retained treated water was changed by adding an evaluation agent and changing the calcium hardness and the acid consumption (pH 4.8) silica concentration. For the purpose of adjusting calcium hardness, calcium chloride is used. For the purpose of adjusting acid consumption (pH 4.8), sodium hydrogen carbonate or sodium hydroxide is used. For adjusting the silica concentration, silicic acid No. 3 is used. Each was used. The water temperature was 30 ° C. at the heat exchanger inlet, the tube side water flow was 50 ° C. at the heat exchanger outlet, and the flow rate was 0.3 m / s. The retention treatment period was 14 days.
For slime control treatment, sodium hypochlorite was used, and continuous addition was performed so that the total residual chlorine was detected at 0.3 to 0.5 mg Cl 2 / L.

<評価薬剤A>
ディクエスト2010(サームフォス社製、1−ヒドロキシエチリデン1,1−ジホスホリン酸)をPO換算で1mg/L、75%正りん酸をPO換算で2mg/L、塩化亜鉛を亜鉛換算で1mg/L、アクアリックGL−386(日本触媒社製、アクリル酸系ポリマー)を固形分換算で5mg/Lとなるように試験水に添加した。
<Evaluation drug A>
Dequest 2010 (Thermphos, 1-hydroxyethylidene 1,1-diphosphophosphoric acid) is 1 mg / L in terms of PO 4 , 75% normal phosphoric acid is 2 mg / L in terms of PO 4 , and zinc chloride is 1 mg / L in terms of zinc L, Aquaric GL-386 (manufactured by Nippon Shokubai Co., Ltd., acrylic acid polymer) was added to the test water so that the solid content was 5 mg / L.

<評価薬剤B>
バイヒビットAM(バイエル社製、2−ホスホノ−1,2,4−ブタントリカルボン酸)をPO4換算で0.2mg/L、75%正りん酸をPO4換算で5.8mg/L、塩化亜鉛を亜鉛換算で3mg/L、ダイナクリンW−111(JSR株式会社製、アクリル酸・2ーヒドロキシエチルメタクリレート・2−メチルブタ−1,3−ジエン−1−スルホン酸共重合物の部分ナトリウム塩)を固形分換算で5mg/Lとなるように試験水に添加した。
<Evaluation drug B>
Bayhibit AM (manufactured by Bayer, 2-phosphono-1,2,4-butanetricarboxylic acid) is 0.2 mg / L in terms of PO4, 75% orthophosphoric acid is 5.8 mg / L in terms of PO4, and zinc chloride is zinc 3 mg / L in conversion, Dynaclin W-111 (manufactured by JSR Corporation, solid sodium salt of acrylic acid, 2-hydroxyethyl methacrylate, 2-methylbuta-1,3-diene-1-sulfonic acid copolymer) It added to test water so that it might become 5 mg / L in terms of minutes.

各実施例及び各比較例の評価条件を表1に示す。   Table 1 shows the evaluation conditions of each example and each comparative example.

従来の金属腐食抑制方法における局部腐食深さを図2に示す。充分な防食効果を得るためには、全りん濃度及び全亜鉛濃度を高濃度にしなければならず、全りん濃度1mg/L、全亜鉛濃度1mg/Lでは充分な防食効果が得られなかった(比較例1、比較例2参照)。   FIG. 2 shows the local corrosion depth in the conventional method for inhibiting metal corrosion. In order to obtain a sufficient anticorrosive effect, the total phosphorus concentration and the total zinc concentration must be increased, and a sufficient anticorrosive effect could not be obtained with a total phosphorus concentration of 1 mg / L and a total zinc concentration of 1 mg / L ( Comparative Examples 1 and 2)

塩化カルシウム量を変化させ、ランゲリア係数LSI(30)を変化させた際の局部腐食深さを図3に示す。LSI(30)が1.4以上では、局部腐食深さが0.6mm以下となり、充分な防食効果が得られることを確認した(実施例1、実施例2、比較例1参照)。   FIG. 3 shows the local corrosion depth when the amount of calcium chloride is changed and the Langeria coefficient LSI (30) is changed. When the LSI (30) was 1.4 or more, the local corrosion depth was 0.6 mm or less, and it was confirmed that a sufficient anticorrosive effect was obtained (see Example 1, Example 2, and Comparative Example 1).

低カルシウム硬度条件における局部腐食深さを図4に示す。逆に、低カルシウム硬度(50mg/L)の場合であっても、Mアルカリ度を300mg/LとしてLSI(30)を1.2以上とすることにより、局部腐食深さを0.6mm以下とすることができ、充分な防食効果が得られることを確認した(実施例1、実施例3参照)。   FIG. 4 shows the local corrosion depth under the low calcium hardness condition. Conversely, even in the case of low calcium hardness (50 mg / L), by setting the M alkalinity to 300 mg / L and making LSI (30) 1.2 or more, the local corrosion depth is 0.6 mm or less. It was confirmed that a sufficient anticorrosion effect was obtained (see Example 1 and Example 3).

以上より、本発明に係る水系の金属腐食抑制方法では、全りん濃度及び全亜鉛濃度がそれぞれ0を超え1mg/L以下であっても、充分な金属腐食抑制効果が得られることが明らかとなった。   From the above, it is clear that the water-based metal corrosion inhibition method according to the present invention can provide a sufficient metal corrosion inhibition effect even when the total phosphorus concentration and the total zinc concentration are each greater than 0 and less than 1 mg / L. It was.

ベンチスケール冷却水系評価試験装置の概念図である。It is a conceptual diagram of a bench scale cooling water system evaluation test apparatus. 従来の金属腐食抑制方法における局部腐食深さを示す図である。It is a figure which shows the local corrosion depth in the conventional metal corrosion suppression method. 塩化カルシウム量を変化させ、ランゲリア係数LSI(30)を変化させた際の局部腐食深さを示す図である。It is a figure which shows the local corrosion depth at the time of changing the amount of calcium chloride and changing the Langeria coefficient LSI (30). 低カルシウム硬度条件における局部腐食深さ示す図である。It is a figure which shows the local corrosion depth in low calcium hardness conditions.

符号の説明Explanation of symbols

1 冷却塔
2 循環配管
3 熱交換器
4 配管
5 補給水の導入配管
6 評価薬剤の導入配管
7 水質調整剤の導入配管
8 強制ブロー配管
P1,P2,P3,P4,P5 ポンプ
DESCRIPTION OF SYMBOLS 1 Cooling tower 2 Circulation piping 3 Heat exchanger 4 Piping 5 Supply water introduction piping 6 Evaluation chemical introduction piping 7 Water quality adjusting agent introduction piping 8 Forced blow piping P1, P2, P3, P4, P5 Pump

Claims (4)

水系の金属腐食抑制方法であって、
少なくともりん酸塩と、亜鉛塩と、Mアルカリ度成分と、が添加され、
全りん濃度及び全亜鉛濃度がそれぞれ0を超え1mg/L以下、かつ、30℃におけるランゲリア指数を1.2以上とすることを特徴とする水系の金属腐食抑制方法。
An aqueous metal corrosion control method,
At least a phosphate, a zinc salt, and an M alkalinity component are added;
An aqueous metal corrosion inhibiting method, wherein the total phosphorus concentration and the total zinc concentration are each greater than 0 and less than 1 mg / L, and the Langelia index at 30 ° C. is 1.2 or more.
前記ランゲリア指数は、1.3〜2.0であることを特徴とする請求項1又は2記載の水系の金属腐食抑制方法。   3. The water-based metal corrosion suppression method according to claim 1, wherein the Langeria index is 1.3 to 2.0. カルシウム硬度が150mgCaCO/L以下であることを特徴とする請求項1〜3のいずれか1項記載の水系の金属腐食抑制方法。 The water-based metal corrosion inhibiting method according to any one of claims 1 to 3, wherein the calcium hardness is 150 mgCaCO 3 / L or less. 前記水系は、開放循環冷却水系であることを特徴とする請求項1〜4のいずれか1項記載の水系の金属腐食抑制方法。   5. The method for inhibiting metal corrosion of an aqueous system according to claim 1, wherein the aqueous system is an open circulation cooling water system.
JP2008156529A 2008-06-16 2008-06-16 Metal corrosion suppression method of water system Pending JP2009299161A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2008156529A JP2009299161A (en) 2008-06-16 2008-06-16 Metal corrosion suppression method of water system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2008156529A JP2009299161A (en) 2008-06-16 2008-06-16 Metal corrosion suppression method of water system

Publications (1)

Publication Number Publication Date
JP2009299161A true JP2009299161A (en) 2009-12-24

Family

ID=41546351

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008156529A Pending JP2009299161A (en) 2008-06-16 2008-06-16 Metal corrosion suppression method of water system

Country Status (1)

Country Link
JP (1) JP2009299161A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011174786A (en) * 2010-02-24 2011-09-08 Kurita Water Ind Ltd Hardness measuring reagent
WO2014054661A1 (en) 2012-10-03 2014-04-10 栗田工業株式会社 Method for processing cooling water system

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6217191A (en) * 1985-06-25 1987-01-26 ナルコ ケミカル カンパニ− Method and composition for preventing formation of scale andcorrosion
JP2007119835A (en) * 2005-10-27 2007-05-17 Kurita Water Ind Ltd Method for suppressing corrosion in metal

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6217191A (en) * 1985-06-25 1987-01-26 ナルコ ケミカル カンパニ− Method and composition for preventing formation of scale andcorrosion
JP2007119835A (en) * 2005-10-27 2007-05-17 Kurita Water Ind Ltd Method for suppressing corrosion in metal

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011174786A (en) * 2010-02-24 2011-09-08 Kurita Water Ind Ltd Hardness measuring reagent
WO2014054661A1 (en) 2012-10-03 2014-04-10 栗田工業株式会社 Method for processing cooling water system

Similar Documents

Publication Publication Date Title
JP3928182B2 (en) Corrosion prevention and scale prevention method for open circulation cooling water system
WO2015122264A1 (en) Scale removal method and scale removal agent for steam generating facilities
JP5946363B2 (en) Silica scale prevention method and scale inhibitor in water system, and water treatment method and water treatment agent that suppress silica scale and suppress metal corrosion
JP2010202893A (en) Liquid composition for preventing corrosion and scaling, and method for preventing corrosion and scaling
JP5128839B2 (en) Water treatment method for open circulation type cooling water system and water treatment agent for open circulation type cooling water system
JP5098378B2 (en) Magnesium scale inhibitor
WO2011118389A1 (en) Treatment method of cooling water system
KR19980070381A (en) How to prevent water corrosion
JPH05230676A (en) Synergistic combination of sodium silicate and orthophosphate for inhibiting corrosion of carbon steel
JP2002054894A (en) Method and device for water treatment in open circulation cooling water system
JP2008240132A (en) Corrosion inhibitor
JP4361812B2 (en) Treatment method for open circulating cooling water system
US4416785A (en) Scale-inhibiting compositions of matter
JP2009299161A (en) Metal corrosion suppression method of water system
EP0866148B1 (en) Method for inhibiting corrosion in water systems
JP5891630B2 (en) Boiler water scale removal method
JP5978711B2 (en) Iron corrosion control method
JP6504748B2 (en) Method of inhibiting metal corrosion
JP4467046B2 (en) Metal corrosion inhibitor
JP2007144369A (en) Scale inhibiting agent and method for water system
JP2002018487A (en) Water treatment method for boiler system
JP2008088475A (en) Corrosion preventive and corrosion prevention method
WO2013140913A1 (en) Water treatment method for boiler having economizer
JP4244983B2 (en) Metal corrosion control method
JPS6099396A (en) Obstruction preventive agent of water system

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20110204

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20121129

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20121204

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20130201

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20130924