JP2013204147A - Agent for suppressing corrosion of iron and copper - Google Patents

Agent for suppressing corrosion of iron and copper Download PDF

Info

Publication number
JP2013204147A
JP2013204147A JP2012078140A JP2012078140A JP2013204147A JP 2013204147 A JP2013204147 A JP 2013204147A JP 2012078140 A JP2012078140 A JP 2012078140A JP 2012078140 A JP2012078140 A JP 2012078140A JP 2013204147 A JP2013204147 A JP 2013204147A
Authority
JP
Japan
Prior art keywords
iron
copper
corrosion
water
anticorrosive
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2012078140A
Other languages
Japanese (ja)
Inventor
Kikumi Kamematsu
貴久美 亀松
Hiroyuki Mitsumoto
洋幸 光本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Miura Co Ltd
Original Assignee
Miura Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Miura Co Ltd filed Critical Miura Co Ltd
Priority to JP2012078140A priority Critical patent/JP2013204147A/en
Publication of JP2013204147A publication Critical patent/JP2013204147A/en
Pending legal-status Critical Current

Links

Images

Abstract

PROBLEM TO BE SOLVED: To provide an agent capable of suppressing corrosion of iron and copper due to water in a water system flow path while minimizing the usage of an iron corrosion inhibitor and a copper corrosion inhibitor.SOLUTION: An agent for suppressing corrosion of iron and copper due to water in a water system flow path includes an iron corrosion inhibitor, a copper corrosion inhibitor, and at least one silica component selected from a group consisting silicic acid and silicate. In the agent, it is preferable that a ratio of a weight of the iron corrosion inhibitor: a weight of the copper corrosion inhibitor: an SiOequivalent weight of the silica component is 10-40:1-3:50 or higher.

Description

本発明は、水系流路内の水による鉄及び銅の腐食を抑制するための薬剤に関する。   The present invention relates to a chemical for suppressing corrosion of iron and copper by water in an aqueous channel.

循環水系流路内の循環水は、一般的に、塩化物イオンや硫酸イオン等の腐食性イオンを含む。循環水の水分が蒸発すると、循環水中における腐食性イオンの濃度が高まる。これに伴って、各種の配管系(ライン)において金属の腐食が促進される。   Circulating water in the circulating water system channel generally contains corrosive ions such as chloride ions and sulfate ions. When the water in the circulating water evaporates, the concentration of corrosive ions in the circulating water increases. Along with this, metal corrosion is promoted in various piping systems (lines).

従来、水分の影響により生じる金属の腐食を抑制するための薬剤として、シリカを含む水処理剤が公知である(特許文献1)。また、水系流路で用いられる金属の腐食を抑制するために、鉄防食剤や銅防食剤が使用されている。   Conventionally, as a chemical | medical agent for suppressing the corrosion of the metal produced by the influence of a water | moisture content, the water treatment agent containing a silica is well-known (patent document 1). Moreover, in order to suppress the corrosion of the metal used in an aqueous channel, an iron anticorrosive and a copper anticorrosive are used.

特開2003−159597号公報Japanese Patent Laid-Open No. 2003-159597

特許文献1の水処理剤は、シリカを用いて金属の腐食を抑制しようとするものであるが、シリカによる防食効果は十分ではない。また、鉄防食剤及び銅防食剤は、防食効果を発揮させるのに必要な濃度が高く、薬品の省資源化及び低コスト化を図りにくい。   The water treatment agent of Patent Document 1 is intended to suppress metal corrosion using silica, but the anticorrosive effect of silica is not sufficient. Further, the iron anticorrosive and the copper anticorrosive have a high concentration necessary for exhibiting the anticorrosive effect, and it is difficult to achieve resource saving and cost reduction of the chemical.

本発明は、鉄防食剤及び銅防食剤の使用量を抑えつつ、水系流路内の水による鉄及び銅の腐食を抑制できる薬剤を提供することを目的とする。   An object of this invention is to provide the chemical | medical agent which can suppress the corrosion of iron and copper by the water in a water-system flow path, suppressing the usage-amount of an iron anticorrosive and a copper anticorrosive.

本発明は、鉄防食剤と、銅防食剤と、ケイ酸及びケイ酸塩からなる群より選択される少なくとも1種のシリカ成分と、を含む、水系流路内の水による鉄及び銅の腐食を抑制するための薬剤に関する。   The present invention relates to corrosion of iron and copper by water in an aqueous channel, comprising an iron anticorrosive, a copper anticorrosive, and at least one silica component selected from the group consisting of silicic acid and silicate. It is related with the medicine for controlling.

上記薬剤において、上記鉄防食剤の重量:上記銅防食剤の重量:上記シリカ成分のSiO換算重量の比が30〜95:1〜3:50以上であることが好ましい。 In the above agent, the ratio of the weight of the iron anticorrosive agent: the weight of the copper anticorrosive agent: the weight of the silica component in terms of SiO 2 is preferably 30 to 95: 1 to 3:50 or more.

本発明によれば、鉄防食剤及び銅防食剤の使用量を抑えつつ、水系流路内の水による鉄及び銅の腐食を抑制できる薬剤を提供することができる。   ADVANTAGE OF THE INVENTION According to this invention, the chemical | medical agent which can suppress the corrosion of iron and copper by the water in an aqueous channel can be provided, suppressing the usage-amount of an iron anticorrosive and a copper anticorrosive.

試験水中のケイ酸濃度が50mg/Lである場合に、鉄防食剤又は銅防食剤の濃度を変化させ、鉄又は銅の腐食試験を行った結果を示すグラフである。It is a graph which shows the result of having performed the corrosion test of iron or copper, changing the density | concentration of an iron anticorrosive or a copper anticorrosive, when the silicic acid density | concentration in test water is 50 mg / L. 鉄防食剤又は銅防食剤の非存在下又は存在下で、試験水中のケイ酸濃度を変化させ、鉄又は銅の腐食試験を行った結果を示すグラフである。It is a graph which shows the result of having performed the corrosion test of iron or copper by changing the silicic acid density | concentration in test water in absence or presence of an iron anticorrosive or a copper anticorrosive. 鉄防食剤又は銅防食剤の存在下で、試験水中のケイ酸濃度を変化させ、鉄又は銅の腐食試験を行った別の結果を示すグラフである。It is a graph which shows another result which changed the silicic acid concentration in test water in the presence of an iron corrosion inhibitor or a copper corrosion inhibitor, and performed an iron or copper corrosion test.

以下、本発明の実施形態について詳細に説明する。なお、「鉄及び銅の腐食を抑制するための薬剤」を「腐食抑制剤」という場合がある。
本発明の薬剤は、水系流路内の水による鉄及び銅の腐食を抑制するための薬剤であって、鉄防食剤と、銅防食剤と、ケイ酸及びケイ酸塩からなる群より選択される少なくとも1種のシリカ成分と、を含む。
Hereinafter, embodiments of the present invention will be described in detail. In addition, the “chemical for suppressing corrosion of iron and copper” may be referred to as “corrosion inhibitor”.
The chemical | medical agent of this invention is a chemical | medical agent for suppressing the corrosion of iron and copper by the water in a water-system flow path, Comprising: It selects from the group which consists of an iron corrosion inhibitor, a copper corrosion inhibitor, a silicic acid, and a silicate. And at least one silica component.

[水系流路]
水系流路としては、例えば、循環水系流路が挙げられる。水系流路は、例えば、管路を含み、更に開放式冷却塔及び密閉式冷却塔等の冷却塔、及び熱交換器等を含んでいてもよい。管路、冷却塔、及び熱交換器を含む水系流路の一例としては、循環水を冷却する冷却塔と、熱交換器と、冷却された循環水を冷却塔から熱交換器へ供給する循環水供給管路と、循環水を熱交換器から冷却塔へ回収する循環水回収管路とを備える水系流路が挙げられる。
[Water channel]
An example of the water channel is a circulating water channel. The water system flow path includes, for example, a pipe line, and may further include a cooling tower such as an open cooling tower and a closed cooling tower, a heat exchanger, and the like. As an example of a water system flow path including a pipe line, a cooling tower, and a heat exchanger, a cooling tower for cooling circulating water, a heat exchanger, and a circulation for supplying cooled circulating water from the cooling tower to the heat exchanger A water system flow path provided with a water supply line and a circulating water recovery line for recovering the circulating water from the heat exchanger to the cooling tower can be mentioned.

[鉄防食剤]
本発明で用いられる鉄防食剤としては、特に限定されず、公知の鉄防食剤を用いることができる。鉄防食剤としては、例えば、ホスホン酸系化合物、(メタ)アクリル酸系重合体、及び重合リン酸系化合物が挙げられる。鉄防食剤は、1種単独で使用しても2種以上を併用してもよい。
[Iron corrosion inhibitor]
It does not specifically limit as an iron anticorrosive used by this invention, A well-known iron anticorrosive can be used. Examples of the iron anticorrosive include phosphonic acid compounds, (meth) acrylic acid polymers, and polymerized phosphoric acid compounds. An iron anticorrosive may be used individually by 1 type, or may use 2 or more types together.

ホスホン酸系化合物としては、例えば、2−ホスホノブタン−1,2,4−トリカルボン酸、ホスホノエタン−1,2−ジカルボン酸、ホスホノブタン−1,2,3,4−テトラカルボン酸、1−ヒドロキシエチリデン−1,1−ジホスホン酸等のホスホン酸、及び、2−ホスホノブタン−1,2,4−トリカルボン酸ナトリウム、ホスホノエタン−1,2−ジカルボン酸四ナトリウム、ホスホノブタン−1,2,3,4−テトラカルボン酸六ナトリウム、1−ヒドロキシエチリデン−1,1−ジホスホン酸三ナトリウム、1−ヒドロキシエチリデン−1,1−ジホスホン酸四ナトリウム等のホスホン酸塩が挙げられる。   Examples of the phosphonic acid compounds include 2-phosphonobutane-1,2,4-tricarboxylic acid, phosphonoethane-1,2-dicarboxylic acid, phosphonobutane-1,2,3,4-tetracarboxylic acid, 1-hydroxyethylidene- Phosphonic acid such as 1,1-diphosphonic acid, and sodium 2-phosphonobutane-1,2,4-tricarboxylate, tetrasodium phosphonoethane-1,2-dicarboxylate, phosphonobutane-1,2,3,4-tetracarboxylic acid Examples include phosphonates such as hexasodium acid, trisodium 1-hydroxyethylidene-1,1-diphosphonate, and tetrasodium 1-hydroxyethylidene-1,1-diphosphonate.

(メタ)アクリル酸系重合体としては、例えば、(メタ)アクリル酸単独重合体、2−アクリルアミド−2−メチルプロパンスルホン酸・アクリル酸共重合体等が挙げられる。   Examples of the (meth) acrylic acid polymer include (meth) acrylic acid homopolymer, 2-acrylamido-2-methylpropanesulfonic acid / acrylic acid copolymer, and the like.

重合リン酸系化合物としては、例えば、トリポリリン酸、ヘキサメタリン酸等の重合リン酸、及び、トリポリリン酸ナトリウム、ヘキサメタリン酸ナトリウム等の重合リン酸塩が挙げられる。   Examples of the polymerized phosphoric acid compound include polymerized phosphoric acid such as tripolyphosphoric acid and hexametaphosphoric acid, and polymerized phosphate such as sodium tripolyphosphate and sodium hexametaphosphate.

[銅防食剤]
本発明で用いられる銅防食剤としては、特に限定されず、公知の銅防食剤を用いることができる。銅防食剤としては、例えば、1,2,3−ベンゾトリアゾール、トリルトリアゾール等のアゾール系化合物が挙げられる。銅防食剤は、1種単独で使用しても2種以上を併用してもよい。
[Copper anticorrosive]
It does not specifically limit as a copper anticorrosive used by this invention, A well-known copper anticorrosive can be used. Examples of the copper anticorrosive include azole compounds such as 1,2,3-benzotriazole and tolyltriazole. A copper anticorrosive may be used individually by 1 type, or may use 2 or more types together.

[シリカ成分]
本発明で用いられるシリカ成分は、ケイ酸及びケイ酸塩からなる群より選択される少なくとも1種である。ケイ酸塩としては、例えば、ケイ酸ナトリウム、ケイ酸カリウム等のケイ酸アルカリ金属塩、ケイ酸カルシウム、ケイ酸マグネシウム等のケイ酸アルカリ土類金属塩が挙げられる。ケイ酸塩は、1種単独で使用しても2種以上を併用してもよい。シリカ成分は、粉末の状態で使用しても、水溶液の状態で使用してもよい。
[Silica component]
The silica component used in the present invention is at least one selected from the group consisting of silicic acid and silicate. Examples of the silicate include alkali metal silicates such as sodium silicate and potassium silicate, and alkaline earth metal silicates such as calcium silicate and magnesium silicate. Silicates may be used alone or in combination of two or more. The silica component may be used in a powder state or in an aqueous solution state.

[その他の成分]
本発明の腐食抑制剤は、上記の成分に加えて、必要に応じて、マレイン酸重合体等の硬度分散剤、水酸化カリウム、水酸化ナトリウム等のpH調整剤、リチウム塩等のトレーサ(水系流路内の水に添加された本発明の腐食抑制剤の濃度を測定するための成分。トレーサの濃度を測定することで、間接的に上記腐食抑制剤の濃度を測定する)、次亜塩素酸ナトリウム、次亜臭素酸等の殺菌剤、水等の溶媒等を含んでもよい。
[Other ingredients]
In addition to the above components, the corrosion inhibitor of the present invention includes a hardness dispersant such as a maleic acid polymer, a pH adjuster such as potassium hydroxide and sodium hydroxide, and a tracer such as a lithium salt (aqueous system). A component for measuring the concentration of the corrosion inhibitor of the present invention added to the water in the flow path.The concentration of the corrosion inhibitor is indirectly measured by measuring the concentration of the tracer), hypochlorous acid Bactericides such as sodium acid and hypobromite, and solvents such as water may be included.

[製造方法]
本発明の腐食抑制剤は、上記の成分を混合することで製造することができる。また、シリカ成分を含む第1パートとシリカ成分以外の成分を含む第2パートとからなる2パート型の薬剤として製造してもよい。本発明の腐食抑制剤において、鉄防食剤の重量:銅防食剤の重量:シリカ成分のSiO換算重量の比は、10〜40:1〜3:50以上であることが好ましく、15〜35:1.5〜2.5:50以上であることがより好ましい。これらの成分の含有量の重量比が上記の範囲内であると、鉄防食剤及び銅防食剤の使用量を抑えつつ、高い腐食抑制効果を得ることが容易である。
[Production method]
The corrosion inhibitor of the present invention can be produced by mixing the above components. Moreover, you may manufacture as a 2 part type chemical | medical agent which consists of the 1st part containing a silica component, and the 2nd part containing components other than a silica component. In the corrosion inhibitor of the present invention, the ratio of the weight of the iron anticorrosive agent: the weight of the copper anticorrosive agent: the weight of the silica component in terms of SiO 2 is preferably 10 to 40: 1 to 3:50 or more, and preferably 15 to 35. : It is more preferable that it is 1.5-2.5: 50 or more. When the weight ratio of the content of these components is within the above range, it is easy to obtain a high corrosion inhibitory effect while suppressing the use amounts of the iron anticorrosive and the copper anticorrosive.

更に、水系流路内の水に添加したときにシリカ成分を原因とするスケールが発生しにくいことから、本発明の腐食抑制剤において、鉄防食剤の重量:銅防食剤の重量:シリカ成分のSiO換算重量の比は、10〜40:1〜3:50〜250であることが好ましく、15〜35:1.5〜2.5:50〜250であることがより好ましい。 Furthermore, since the scale caused by the silica component is less likely to occur when added to the water in the aqueous channel, in the corrosion inhibitor of the present invention, the weight of the iron anticorrosive: the weight of the copper anticorrosive: The ratio of the weight in terms of SiO 2 is preferably 10 to 40: 1 to 3:50 to 250, and more preferably 15 to 35: 1.5 to 2.5: 50 to 250.

鉄防食剤の重量、銅防食剤の重量、及びシリカ成分のSiO換算重量の合計が本発明の腐食抑制剤の重量に占める割合は、20〜80重量%であることが好ましく、30〜70重量%であることがより好ましい。 The ratio of the total of the weight of the iron corrosion inhibitor, the weight of the copper corrosion inhibitor, and the weight of the silica component in terms of SiO 2 to the weight of the corrosion inhibitor of the present invention is preferably 20 to 80% by weight, and 30 to 70%. More preferably, it is% by weight.

[使用方法]
本発明の腐食抑制剤は、水系流路内の水による鉄及び銅の腐食を抑制するために用いられる。具体的には、水系流路の少なくとも一部を構成する鉄及び銅の腐食を抑制するために用いられる。この場合、上記腐食抑制剤は、水系流路内の水に添加される。
[how to use]
The corrosion inhibitor of this invention is used in order to suppress the corrosion of iron and copper by the water in an aqueous channel. Specifically, it is used to suppress corrosion of iron and copper constituting at least a part of the water-based flow path. In this case, the corrosion inhibitor is added to the water in the aqueous channel.

上記腐食抑制剤の添加量は、水系流路内の水に含まれる全シリカ成分のSiO換算濃度が100mg/L以上となり、鉄防食剤の濃度が10〜40mg/Lとなり、銅防食剤の濃度が1〜3mg/Lとなるように設定することが好ましく、上記全シリカ成分のSiO換算濃度が100mg/L以上となり、鉄防食剤の濃度が15〜35mg/Lとなり、銅防食剤の濃度が1.5〜2.5mg/Lとなるように設定することがより好ましい。腐食抑制剤の添加量を上記の範囲に設定すると、鉄防食剤及び銅防食剤の使用量を抑えつつ、高い腐食抑制効果を得ることが容易である。 The amount of the corrosion inhibitor added is such that the concentration of SiO 2 in all silica components contained in the water in the aqueous channel is 100 mg / L or more, the concentration of the iron corrosion inhibitor is 10 to 40 mg / L, and the copper corrosion inhibitor The concentration is preferably set to 1 to 3 mg / L, the SiO 2 equivalent concentration of all the silica components is 100 mg / L or more, the concentration of the iron anticorrosive is 15 to 35 mg / L, and the copper anticorrosive It is more preferable to set the concentration to be 1.5 to 2.5 mg / L. When the addition amount of the corrosion inhibitor is set within the above range, it is easy to obtain a high corrosion inhibitory effect while suppressing the use amounts of the iron anticorrosive and the copper anticorrosive.

更に、上記腐食抑制剤の添加量は、水系流路内の水に含まれる全シリカ成分のSiO換算濃度が300mg/L以下となるように設定することが好ましい。シリカ成分のSiO換算濃度が300mg/L以下であると、シリカ成分を原因とするスケールが発生しにくい。
上記腐食抑制剤は、水系流路内の水に連続的に添加してもよいし、断続的に添加してもよい。
Furthermore, the addition amount of the corrosion inhibitor is preferably set so that the SiO 2 equivalent concentration of all silica components contained in the water in the aqueous channel is 300 mg / L or less. When the SiO 2 equivalent concentration of the silica component is 300 mg / L or less, a scale caused by the silica component is difficult to occur.
The corrosion inhibitor may be added continuously to the water in the aqueous channel or may be added intermittently.

以下、本発明の実施例を説明するが、本発明の範囲はこれらの実施例に限定されるものではない。   Examples of the present invention will be described below, but the scope of the present invention is not limited to these examples.

[腐食試験]
本発明の腐食抑制剤による腐食抑制効果を評価するために、JIS K 0100−1990(工業用水腐食性試験方法)に規定の回転法に準じて腐食試験を行った。即ち、鉄試験片2枚と銅試験片2枚とを試験片保持器に交互に取付け、1Lビーカーに満たした試験水中に浸漬した。ビーカーを恒温槽中に入れて、試験水の温度を37℃に保った。試験片保持器をモーター回転軸に取り付け、上記試験片を150rpmで回転させた。6日間、マイクロチューブポンプを用いて流速50mL/時で連続的に試験水を上記ビーカーに補給した。試験前後の試験片の重量減少量より腐食量(mdd)を下記式:
腐食量(mdd)=X/(Y×Z)
(式中、Xは、試験前後の試験片の重量減少量(mg)を、Yは、試験片の表面積(dm)を、Zは、試験日数(日)を示す)
により計算した。鉄については、腐食量(mdd)が200以下であれば、腐食抑制効果が良好であると判断し、銅については、腐食量(mdd)が1.5以下であれば、腐食抑制効果が良好であると判断した。
[Corrosion test]
In order to evaluate the corrosion inhibitory effect of the corrosion inhibitor of the present invention, a corrosion test was conducted in accordance with the rotation method specified in JIS K 0100-1990 (industrial water corrosion test method). That is, two iron test pieces and two copper test pieces were alternately attached to the test piece holder and immersed in test water filled in a 1 L beaker. The beaker was placed in a thermostat and the temperature of the test water was kept at 37 ° C. A test piece holder was attached to a motor rotating shaft, and the test piece was rotated at 150 rpm. For 6 days, the test water was continuously supplied to the beaker using a microtube pump at a flow rate of 50 mL / hour. The amount of corrosion (mdd) is calculated from the following formula:
Corrosion amount (mdd) = X / (Y × Z)
(Wherein, X represents the weight loss (mg) of the test piece before and after the test, Y represents the surface area (dm 2 ) of the test piece, and Z represents the number of days of the test (days)).
Calculated by For iron, if the corrosion amount (mdd) is 200 or less, it is judged that the corrosion inhibition effect is good. For copper, if the corrosion amount (mdd) is 1.5 or less, the corrosion inhibition effect is good. It was judged that.

なお、用いた試験片の詳細は以下のとおりである。
鉄試験片(SS400、寸法:1.6mm×30mm×30mm、全面#400研磨、主面中心に4mmφの貫通孔)
銅試験片(C1220P、寸法:1.6mm×30mm×30mm、全面#400研磨、主面中心に4mmφの貫通孔)
また、試験水の詳細は、各実施例及び比較例中で説明する。
The details of the test piece used are as follows.
Iron test piece (SS400, dimensions: 1.6mm x 30mm x 30mm, whole surface # 400 polished, 4mmφ through hole at the center of the main surface)
Copper test piece (C1220P, dimensions: 1.6 mm × 30 mm × 30 mm, entire surface # 400 polished, 4 mmφ through hole at the center of the main surface)
The details of the test water will be described in each example and comparative example.

[実施例1〜2、比較例1〜5]
下記の水質を有する軟水1に、表1に示す添加量で、ケイ酸及び表2に示す防食剤混合物を添加して、試験水を調製した。この試験水を用いて腐食試験を行った。結果を表1並びに図1及び2に示す。
軟水1の水質:塩化物イオン200mg/L、硫酸イオン200mg/L、酸消費量(pH4.8)300mgCaCO/L、ケイ酸50mg/L(SiO換算)、硬度0mgCaCO/L
[Examples 1 and 2, Comparative Examples 1 to 5]
Test water was prepared by adding silicic acid and the anticorrosive mixture shown in Table 2 to the soft water 1 having the following water quality in the addition amount shown in Table 1. A corrosion test was conducted using this test water. The results are shown in Table 1 and FIGS.
Water quality of soft water 1: chloride ion 200 mg / L, sulfate ion 200 mg / L, acid consumption (pH 4.8) 300 mg CaCO 3 / L, silicic acid 50 mg / L (SiO 2 equivalent), hardness 0 mg CaCO 3 / L

Figure 2013204147
注)ケイ酸についてはSiO換算濃度
Figure 2013204147
Note) SiO 2 in terms of concentration for silicate

Figure 2013204147
Figure 2013204147

表2中の各成分の詳細は以下のとおりである。
鉄防食剤1:ホスホノエタン−1,2−ジカルボン酸四ナトリウムとホスホノブタン−1,2,3,4−テトラカルボン酸六ナトリウムとの混合物
鉄防食剤2:2−アクリルアミド−2−メチルプロパンスルホン酸・アクリル酸共重合物
銅防食剤:1,2,3−ベンゾトリアゾール
pH調整剤1:48重量%水酸化カリウム
pH調整剤2:25重量%水酸化ナトリウム
トレーサ:リチウム塩
Details of each component in Table 2 are as follows.
Iron anticorrosive 1: Mixture of phosphonoethane-1,2-dicarboxylic acid tetrasodium and phosphonobutane-1,2,3,4-tetracarboxylic acid hexasodium Iron anticorrosive 2: 2-acrylamido-2-methylpropanesulfonic acid Acrylic acid copolymer Copper anticorrosive: 1,2,3-benzotriazole pH adjuster 1: 48 wt% potassium hydroxide pH adjuster 2: 25 wt% sodium hydroxide Tracer: Lithium salt

[実施例3〜4、比較例6]
下記の水質を有する軟水2に、表3に示す添加量で、ケイ酸及び表2に示す防食剤混合物を添加して、試験水を調製した。この試験水を用いて腐食試験を行った。結果を表3及び図3に示す。
軟水2の水質:塩化物イオン140mg/L、硫酸イオン140mg/L、酸消費量(pH4.8)120mgCaCO/L、ケイ酸50mg/L(SiO換算)、硬度0mgCaCO/L
[Examples 3 to 4, Comparative Example 6]
Test water was prepared by adding silicic acid and the anticorrosive mixture shown in Table 2 to the soft water 2 having the following water quality in the addition amount shown in Table 3. A corrosion test was conducted using this test water. The results are shown in Table 3 and FIG.
Water quality of soft water 2: chloride ion 140 mg / L, sulfate ion 140 mg / L, acid consumption (pH 4.8) 120 mg CaCO 3 / L, silicic acid 50 mg / L (in terms of SiO 2 ), hardness 0 mg CaCO 3 / L

Figure 2013204147
注)ケイ酸についてはSiO換算濃度
Figure 2013204147
Note) SiO 2 in terms of concentration for silicate

[評価]
(1)鉄の腐食試験について
比較例1〜3の結果(表1、図1(a))から分かるように、試験水中のケイ酸濃度が50mg/Lという低い値である場合、鉄防食剤を合計で24.8mg/Lの濃度となるように添加しても、鉄防食剤を全く添加しなかった場合にほぼ等しい鉄腐食量を示した。鉄防食剤を合計で49.6mg/Lの濃度となるように添加して初めて鉄腐食量は49mddまで減少した。
[Evaluation]
(1) Iron corrosion test As can be seen from the results of Comparative Examples 1 to 3 (Table 1, Fig. 1 (a)), when the concentration of silicic acid in the test water is a low value of 50 mg / L, an iron corrosion inhibitor Even when added to a total concentration of 24.8 mg / L, the amount of iron corrosion was almost the same as when no iron corrosion inhibitor was added. The iron corrosion amount was reduced to 49 mdd only after the iron corrosion inhibitor was added to a total concentration of 49.6 mg / L.

比較例1、4、及び5の結果(表1、図2(a))から、鉄防食剤非存在下では、ケイ酸濃度を50mg/Lから150mg/Lまで上昇させても、十分な腐食抑制効果は見られなかった。これに対し、比較例2並びに実施例1及び2の結果(表1、図2(a))から、24.8mg/Lの鉄防食剤存在下では、ケイ酸濃度を50mg/Lから100mg/L又は150mg/Lまで上昇させることで、十分な腐食抑制効果が得られた。このとき、鉄腐食剤非存在下の場合と比べて、ケイ酸濃度を上昇させたことによる鉄腐食量の減少幅が大きかった。例えば、ケイ酸濃度を50mg/Lから100mg/Lに上昇させたとき、鉄腐食量の減少幅は、鉄腐食剤非存在下では121mddだったのに対し、24.8mg/Lの鉄防食剤存在下では237mddという約2倍の大きな値を示した。また、ケイ酸濃度を100mg/Lから150mg/Lに上昇させたとき、鉄腐食量の減少幅は、鉄腐食剤非存在下では75mddだったのに対し、24.8mg/Lの鉄防食剤存在下では160mddという2倍以上の大きな値を示した。よって、ケイ酸と鉄防食剤とが相乗的に作用して、十分な腐食抑制効果が得られたことが分かる。   From the results of Comparative Examples 1, 4, and 5 (Table 1, FIG. 2 (a)), in the absence of an iron anticorrosive, even if the silicic acid concentration is increased from 50 mg / L to 150 mg / L, sufficient corrosion is caused. No inhibitory effect was seen. In contrast, from the results of Comparative Example 2 and Examples 1 and 2 (Table 1, FIG. 2 (a)), in the presence of 24.8 mg / L of an iron anticorrosive, the silicic acid concentration was changed from 50 mg / L to 100 mg / L. A sufficient corrosion inhibitory effect was obtained by increasing to L or 150 mg / L. At this time, the amount of decrease in the amount of iron corrosion caused by increasing the concentration of silicic acid was larger than that in the absence of iron corrosive agent. For example, when the concentration of silicic acid is increased from 50 mg / L to 100 mg / L, the amount of decrease in the iron corrosion amount was 121 mdd in the absence of the iron corrosion agent, whereas 24.8 mg / L of the iron corrosion inhibitor. In the presence, it showed a large value of about 237 mdd, about twice as large. In addition, when the silicic acid concentration was increased from 100 mg / L to 150 mg / L, the amount of decrease in the iron corrosion amount was 75 mdd in the absence of the iron corrosion agent, whereas 24.8 mg / L of the iron corrosion inhibitor. In the presence, a large value of 160 mdd or more, which was twice or more, was shown. Therefore, it turns out that a silicic acid and an iron anticorrosive acted synergistically and sufficient corrosion inhibitory effect was acquired.

この傾向は比較例6並びに実施例3及び4の場合に特に強く現れており(表3、図3(a))、24.8mg/Lの鉄防食剤存在下でケイ酸濃度を50mg/Lから100mg/Lに上昇させたときに鉄腐食量が急激に低下した。   This tendency is particularly strong in the case of Comparative Example 6 and Examples 3 and 4 (Table 3, FIG. 3 (a)), and the silicic acid concentration is 50 mg / L in the presence of 24.8 mg / L of an iron anticorrosive. When the amount was increased from 100 to 100 mg / L, the amount of iron corrosion decreased rapidly.

以上のとおり、ケイ酸濃度が100mg/L以上であれば、鉄防食剤の濃度が24.8mg/Lという低い値であっても、十分な腐食抑制効果が得られることが分かった。   As described above, it has been found that if the silicic acid concentration is 100 mg / L or more, even if the concentration of the iron anticorrosive is a low value of 24.8 mg / L, a sufficient corrosion inhibiting effect can be obtained.

(2)銅の腐食試験について
比較例1〜3の結果(表1、図1(b))から分かるように、試験水中のケイ酸濃度が50mg/Lである場合、銅防食剤を2mg/L以上の濃度となるように添加することで、十分な腐食抑制効果が得られた。
(2) About copper corrosion test As can be seen from the results of Comparative Examples 1 to 3 (Table 1, FIG. 1 (b)), when the concentration of silicic acid in the test water is 50 mg / L, the copper corrosion inhibitor is 2 mg / L. By adding so as to have a concentration of L or more, a sufficient corrosion inhibiting effect was obtained.

比較例1、4、及び5の結果(表1、図2(b))から、銅防食剤非存在下では、ケイ酸濃度を50mg/Lから150mg/Lまで上昇させるにつれて、腐食量が増加したが、比較例2並びに実施例1及び2の結果(表1、図2(b))が示すように、2mg/Lの銅防食剤を添加することで、十分な腐食抑制効果が得られた。   From the results of Comparative Examples 1, 4, and 5 (Table 1, FIG. 2 (b)), in the absence of a copper anticorrosive, the amount of corrosion increased as the silicic acid concentration was increased from 50 mg / L to 150 mg / L. However, as the results of Comparative Example 2 and Examples 1 and 2 (Table 1, FIG. 2 (b)) show, a sufficient corrosion inhibitory effect can be obtained by adding 2 mg / L of copper anticorrosive. It was.

比較例6並びに実施例3及び4の場合(図3(b))も同様に、ケイ酸濃度を50mg/Lから150mg/Lまで上昇させても、2mg/Lの銅防食剤を添加することで、十分な腐食抑制効果が得られた。   Similarly, in the case of Comparative Example 6 and Examples 3 and 4 (FIG. 3B), 2 mg / L of copper anticorrosive should be added even if the silicic acid concentration is increased from 50 mg / L to 150 mg / L. Thus, a sufficient corrosion inhibiting effect was obtained.

以上のとおり、銅防食剤の濃度が2mg/Lという低い値であっても、十分な腐食抑制効果が得られることが分かった。   As described above, it has been found that even when the concentration of the copper anticorrosive is a low value of 2 mg / L, a sufficient corrosion inhibiting effect can be obtained.

(3)まとめ
(1)及び(2)より、50mg/L(SiO換算)のケイ酸を含む軟水に対し、24.8mg/Lの鉄防食剤、2mg/Lの銅防食剤、及び50又は100mg/L(SiO換算)のシリカ成分を添加することにより、十分な腐食抑制効果が得られることが分かった。
(3) Summary From (1) and (2), 24.8 mg / L iron corrosion inhibitor, 2 mg / L copper corrosion inhibitor, and 50 against soft water containing 50 mg / L (SiO 2 equivalent) of silicic acid. or by adding silica component of 100mg / L (SiO 2 conversion), it was found that a sufficient corrosion inhibiting effect is obtained.

Claims (2)

鉄防食剤と、銅防食剤と、ケイ酸及びケイ酸塩からなる群より選択される少なくとも1種のシリカ成分と、を含む、水系流路内の水による鉄及び銅の腐食を抑制するための薬剤。   In order to suppress corrosion of iron and copper by water in an aqueous channel, including an iron anticorrosive, a copper anticorrosive, and at least one silica component selected from the group consisting of silicic acid and silicate Drugs. 前記薬剤において、前記鉄防食剤の重量:前記銅防食剤の重量:前記シリカ成分のSiO換算重量の比が10〜40:1〜3:50以上である請求項1に記載の薬剤。 In the medicament, the weight of the iron corrosion inhibitor: the weight of the copper anticorrosive ratio of SiO 2 reduced weight of the silica component is 10 to 40: 1 to 3: more than 50 in the drug according to claim 1.
JP2012078140A 2012-03-29 2012-03-29 Agent for suppressing corrosion of iron and copper Pending JP2013204147A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2012078140A JP2013204147A (en) 2012-03-29 2012-03-29 Agent for suppressing corrosion of iron and copper

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2012078140A JP2013204147A (en) 2012-03-29 2012-03-29 Agent for suppressing corrosion of iron and copper

Publications (1)

Publication Number Publication Date
JP2013204147A true JP2013204147A (en) 2013-10-07

Family

ID=49523561

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2012078140A Pending JP2013204147A (en) 2012-03-29 2012-03-29 Agent for suppressing corrosion of iron and copper

Country Status (1)

Country Link
JP (1) JP2013204147A (en)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4830219B1 (en) * 1969-04-17 1973-09-18
JPS51115249A (en) * 1975-11-25 1976-10-09 Kurita Industrial Co Ltd Anticorrosive
JPS59200770A (en) * 1983-04-20 1984-11-14 エア・リファイナ・インコーポレイテッド Anticorrosive additive for liquid conditioning
JP2004132636A (en) * 2002-10-11 2004-04-30 Japan Organo Co Ltd Corrosion inhibition method of iron-based metal
WO2007116478A1 (en) * 2006-03-31 2007-10-18 Shishiai-Kabushikigaisha Coolant composition

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4830219B1 (en) * 1969-04-17 1973-09-18
JPS51115249A (en) * 1975-11-25 1976-10-09 Kurita Industrial Co Ltd Anticorrosive
JPS59200770A (en) * 1983-04-20 1984-11-14 エア・リファイナ・インコーポレイテッド Anticorrosive additive for liquid conditioning
JP2004132636A (en) * 2002-10-11 2004-04-30 Japan Organo Co Ltd Corrosion inhibition method of iron-based metal
WO2007116478A1 (en) * 2006-03-31 2007-10-18 Shishiai-Kabushikigaisha Coolant composition

Similar Documents

Publication Publication Date Title
CN100357199C (en) Green environment-protective composite slow-corrosion scale resistor for circulated cooling-water treatment
CN104071906B (en) High-efficiency composite scale corrosion inhibitor
JP5946363B2 (en) Silica scale prevention method and scale inhibitor in water system, and water treatment method and water treatment agent that suppress silica scale and suppress metal corrosion
CN101759300A (en) Composite scale and corrosion inhibitor
JP2015174018A (en) Scale inhibition method and scale inhibitor
JP6057002B1 (en) Anti-scale agent for reverse osmosis membrane and reverse osmosis membrane treatment method
RU2017133852A (en) COMPOSITION OF SOLUTION OF SUPERCONCENTRATED ADDITIVE
JP2017507243A (en) Use of phosphotartaric acid and its salts for water treatment in water transfer systems.
JP5099884B2 (en) Corrosion inhibitor
JP5978711B2 (en) Iron corrosion control method
JP2010058079A (en) Water treatment agent and water treatment method
JP6589286B2 (en) Initial processing agent for circulating cooling water and initial processing method of circulating cooling water system
JP2004513102A (en) Multifunctional water treatment composition and water treatment method using the same
JP4970674B2 (en) Scale prevention method
JP4923664B2 (en) Scale adhesion inhibitor and cooling water treatment method
JP2013204147A (en) Agent for suppressing corrosion of iron and copper
JP4110768B2 (en) Boiler water treatment agent
JP6792247B2 (en) Method for suppressing local corrosion of metals in water systems
JP5925593B2 (en) Metal anticorrosive and treatment method for boiler water system
JP6566010B2 (en) Metal anticorrosive for cooling water and processing method of cooling water system
WO2020122173A1 (en) Cooling water scale prevention agent and cooling water scale prevention method
JP2007144369A (en) Scale inhibiting agent and method for water system
JP4218673B2 (en) Scale adhesion inhibitor and cooling water treatment method
JP2009299161A (en) Metal corrosion suppression method of water system
JP2005220396A (en) Boiler corrosion/pitting corrosion preventive agent, and method of preventing corrosion/pitting corrosion using the same

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20141219

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20150907

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20150915

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20151111

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20160202