JP5085962B2 - Silica-based antifouling agent and silica-based antifouling method - Google Patents

Silica-based antifouling agent and silica-based antifouling method Download PDF

Info

Publication number
JP5085962B2
JP5085962B2 JP2007081337A JP2007081337A JP5085962B2 JP 5085962 B2 JP5085962 B2 JP 5085962B2 JP 2007081337 A JP2007081337 A JP 2007081337A JP 2007081337 A JP2007081337 A JP 2007081337A JP 5085962 B2 JP5085962 B2 JP 5085962B2
Authority
JP
Japan
Prior art keywords
silica
monomer
water
acid
polymer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2007081337A
Other languages
Japanese (ja)
Other versions
JP2008239764A (en
Inventor
藤田  和久
育子 西田
麻梨央 前田
啓一 別所
博史 崎山
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JSR Corp
Kurita Water Industries Ltd
Original Assignee
JSR Corp
Kurita Water Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by JSR Corp, Kurita Water Industries Ltd filed Critical JSR Corp
Priority to JP2007081337A priority Critical patent/JP5085962B2/en
Priority to PCT/JP2008/055444 priority patent/WO2008117780A1/en
Publication of JP2008239764A publication Critical patent/JP2008239764A/en
Application granted granted Critical
Publication of JP5085962B2 publication Critical patent/JP5085962B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F236/00Copolymers of compounds having one or more unsaturated aliphatic radicals, at least one having two or more carbon-to-carbon double bonds
    • C08F236/02Copolymers of compounds having one or more unsaturated aliphatic radicals, at least one having two or more carbon-to-carbon double bonds the radical having only two carbon-to-carbon double bonds
    • C08F236/04Copolymers of compounds having one or more unsaturated aliphatic radicals, at least one having two or more carbon-to-carbon double bonds the radical having only two carbon-to-carbon double bonds conjugated
    • C08F236/14Copolymers of compounds having one or more unsaturated aliphatic radicals, at least one having two or more carbon-to-carbon double bonds the radical having only two carbon-to-carbon double bonds conjugated containing elements other than carbon and hydrogen
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F5/00Softening water; Preventing scale; Adding scale preventatives or scale removers to water, e.g. adding sequestering agents
    • C02F5/08Treatment of water with complexing chemicals or other solubilising agents for softening, scale prevention or scale removal, e.g. adding sequestering agents
    • C02F5/10Treatment of water with complexing chemicals or other solubilising agents for softening, scale prevention or scale removal, e.g. adding sequestering agents using organic substances
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F220/00Copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and only one being terminated by only one carboxyl radical or a salt, anhydride ester, amide, imide or nitrile thereof
    • C08F220/02Monocarboxylic acids having less than ten carbon atoms; Derivatives thereof
    • C08F220/10Esters
    • C08F220/38Esters containing sulfur
    • C08F220/382Esters containing sulfur and containing oxygen, e.g. 2-sulfoethyl (meth)acrylate
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F220/00Copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and only one being terminated by only one carboxyl radical or a salt, anhydride ester, amide, imide or nitrile thereof
    • C08F220/02Monocarboxylic acids having less than ten carbon atoms; Derivatives thereof
    • C08F220/52Amides or imides
    • C08F220/54Amides, e.g. N,N-dimethylacrylamide or N-isopropylacrylamide
    • C08F220/56Acrylamide; Methacrylamide
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F220/00Copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and only one being terminated by only one carboxyl radical or a salt, anhydride ester, amide, imide or nitrile thereof
    • C08F220/02Monocarboxylic acids having less than ten carbon atoms; Derivatives thereof
    • C08F220/10Esters
    • C08F220/20Esters of polyhydric alcohols or phenols, e.g. 2-hydroxyethyl (meth)acrylate or glycerol mono-(meth)acrylate

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Organic Chemistry (AREA)
  • Health & Medical Sciences (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • General Chemical & Material Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Hydrology & Water Resources (AREA)
  • Engineering & Computer Science (AREA)
  • Environmental & Geological Engineering (AREA)
  • Water Supply & Treatment (AREA)
  • Addition Polymer Or Copolymer, Post-Treatments, Or Chemical Modifications (AREA)
  • Preventing Corrosion Or Incrustation Of Metals (AREA)

Description

本発明は、シリカ系汚れ防止剤及びシリカ系汚れ防止方法に関する。より詳しくは、冷却水系、ボイラ水系、膜処理装置等において発生するシリカ系の汚れ防止の技術に関する。   The present invention relates to a silica-based antifouling agent and a silica-based antifouling method. More specifically, the present invention relates to a technology for preventing silica-based dirt generated in a cooling water system, a boiler water system, a membrane processing apparatus, and the like.

冷却水系、ボイラ水系、膜処理装置等において、水と接触する伝熱面、配管、膜面等ではスケール障害が発生する。スケールは、水に含まれるカルシウムイオンやマグネシウムイオン等が濃縮されると析出し、配管や機器の内面に付着したものである。このようなスケール障害は、特に、省資源、省エネルギーの立場から、冷却水等の系外への排出量を抑えて、冷却水の高濃縮運転(分離膜の場合は高回収率での運転)を行なう循環水系の場合に発生しやすい。   In a cooling water system, a boiler water system, a membrane processing apparatus, etc., a scale failure occurs on a heat transfer surface, piping, membrane surface, etc. that come into contact with water. The scale is deposited when calcium ions, magnesium ions, and the like contained in water are concentrated, and adheres to the inner surfaces of pipes and equipment. Such scale obstacles are particularly conducive to resource conservation and energy conservation, while reducing the amount of cooling water discharged outside the system and highly concentrating cooling water (operation with a high recovery rate in the case of a separation membrane). It is likely to occur in the case of a circulating water system.

このスケールが熱交換部へ付着すると伝熱阻害を引き起こす。配管への付着は流量低下を引き起こす。膜への付着はフラックス低下を引き起こす。また、付着したスケールが剥離した場合には系内を循環するため、ポンプ、配管、熱交部等の閉塞・磨耗の原因ともなる。   If this scale adheres to the heat exchange section, it causes heat transfer inhibition. Adhesion to piping causes a decrease in flow rate. Adhesion to the film causes a decrease in flux. Further, when the attached scale is peeled off, it circulates in the system, which may cause clogging / wearing of pumps, piping, heat exchangers, and the like.

スケール種としては、炭酸カルシウム、硫酸カルシウム、亜硫酸カルシウム、リン酸カルシウム、水酸化マグネシウム、リン酸亜鉛、水酸化亜鉛、塩基性炭酸亜鉛、ケイ酸カルシウム、ケイ酸マグネシウム等が挙げられる。   Examples of the scale species include calcium carbonate, calcium sulfate, calcium sulfite, calcium phosphate, magnesium hydroxide, zinc phosphate, zinc hydroxide, basic zinc carbonate, calcium silicate, and magnesium silicate.

このうち、特に、シリカ系スケール(又はシリカ系汚れ)は、使用する水質(例えばpH等)に依存して多数の低溶解度の化学的形態をとる点で対応が困難である。例えば、単量体シリカが重合することでオリゴマーシリカやコロイドシリカ等として存在したり、ケイ酸イオンとして存在したりする。このシリカ系スケールの生成については、マグネシウムやアルミニウムや亜鉛等の金属水酸化物が関与している点でも対応を困難としている。   Among these, in particular, the silica-based scale (or silica-based soil) is difficult to cope with in that it takes a number of low-solubility chemical forms depending on the quality of water used (for example, pH). For example, when monomer silica is polymerized, it exists as oligomer silica, colloidal silica or the like, or exists as silicate ions. This generation of silica-based scale is difficult to cope with in that metal hydroxides such as magnesium, aluminum, and zinc are involved.

また、シリカ系スケール(又はシリカ系汚れ)が壁面等にこびりついた場合は固くなってしまい、ドライバー等でひっかいても削りにくいという性質を有する。このようなシリカ系スケールは、熱交換器等に付着することによる伝熱阻害や、配管等の非電熱面に付着することによる流量低下だけではなく、一度付着したシリカ系スケールが剥離して水系を循環することによる障害等も引き起こす。例えば、冷却水の場合、冷却水流量の低下により所定の冷却能力がとれなくなる障害や、冷却塔等に付着したスケールにより冷却効率が低下する障害や、冷却塔等に付着したスケールが剥離して熱交換器等を詰まらせるといった障害を引き起こしたりする。   Further, when silica-based scale (or silica-based soil) is stuck to a wall surface or the like, it becomes hard and has a property that it is difficult to scrape even if scratched with a screwdriver or the like. Such silica-based scales are not only for heat transfer inhibition due to adhesion to heat exchangers, etc., but also to flow reduction due to adhesion to non-heated surfaces such as piping, etc. It also causes problems due to circulation. For example, in the case of cooling water, a failure in which a predetermined cooling capacity cannot be obtained due to a decrease in the flow rate of cooling water, a failure in which cooling efficiency decreases due to a scale attached to a cooling tower, etc., or a scale attached to the cooling tower etc. It may cause troubles such as clogging heat exchangers.

カルシウム系スケールやマグネシウム系スケール等の防止剤としては、マレイン酸、アクリル酸、イタコン酸等のカルボキシル基含有化合物が有効で、必要に応じてビニルスルホン酸、アリルスルホン酸、2−アクリルアミド−2−メチル−1−プロパンスルホン酸(AMPS)等のスルホン酸基を有するビニルモノマーや、アクリルアミド等のノニオン性ビニルモノマーを対象水質に応じて組み合わせたコポリマーがスケール防止剤として使用されている。また、ヘキサメタリン酸ソーダやトリポリリン酸ソーダ等の無機ポリリン酸類、ヒドロキシエチリデンジホスホン酸やホスホノブタントリカルボン酸等のホスホン酸類も使用されている。   As an inhibitor for calcium scale and magnesium scale, carboxyl group-containing compounds such as maleic acid, acrylic acid and itaconic acid are effective, and vinyl sulfonic acid, allyl sulfonic acid, 2-acrylamide-2- As a scale inhibitor, a vinyl monomer having a sulfonic acid group such as methyl-1-propanesulfonic acid (AMPS) or a nonionic vinyl monomer such as acrylamide combined in accordance with the target water quality is used. In addition, inorganic polyphosphoric acids such as sodium hexametaphosphate and sodium tripolyphosphate, and phosphonic acids such as hydroxyethylidene diphosphonic acid and phosphonobutanetricarboxylic acid are also used.

一方、シリカ系スケール(又はシリカ系汚れ)の防止剤としては、ポリエチレングリコール(特許文献1)、ポリビニルホルムアミド(PNVF)(特許文献2)、ポリアクリルアミド(特許文献3)、アクリル酸とアクリルアミドメチルプロパンスルホン酸と置換アクリルアミドからなる三元共重合体(特許文献4)等が提案されている。また、スルホン酸比率の高いポリマーが有効であることについて開示されている(特許文献5)。   On the other hand, as an inhibitor for silica-based scale (or silica-based soil), polyethylene glycol (Patent Document 1), polyvinylformamide (PNVF) (Patent Document 2), polyacrylamide (Patent Document 3), acrylic acid and acrylamidomethylpropane A terpolymer (Patent Document 4) composed of sulfonic acid and substituted acrylamide has been proposed. Further, it is disclosed that a polymer having a high sulfonic acid ratio is effective (Patent Document 5).

しかし、ポリエチレングリコールは、ケイ酸濃度が低い場合には、スケールの付着防止効果が認められるが、共存する他種イオンの影響を受け易いため効果が安定しない。ポリビニルホルムアミドは、カチオン性を帯びるため、組成比率の高いものは配管等の水系を構成する金属に吸着され易い。アクリルアミド系ポリマーは、水中のケイ酸濃度が低い場合には効果が認められるものの、ケイ酸濃度が高い場合、例えばシリカとして100mg/L以上の場合にはスケールの付着防止効果が乏しい。アクリル酸とアクリルアミドメチルプロパンスルホン酸と置換アクリルアミドの三元共重合体はスケールの付着防止効果が良いものの、高温部、例えば目安として40℃以上の水系で生成するシリカ系スケールに対しては有効であるが、低温部、例えば30℃以下の水系で生成するシリカ系スケールに対しては効果が十分でない場合もある、等の問題がある。   However, polyethylene glycol has an effect of preventing the adhesion of scale when the silicic acid concentration is low, but the effect is not stable because it is easily affected by other coexisting ions. Since polyvinylformamide is cationic, those having a high composition ratio are easily adsorbed by a metal constituting an aqueous system such as a pipe. The acrylamide polymer is effective when the concentration of silicic acid in water is low, but when the concentration of silicic acid is high, for example, when silica is 100 mg / L or more, the effect of preventing adhesion of scale is poor. Although terpolymers of acrylic acid, acrylamide methylpropane sulfonic acid and substituted acrylamide have good anti-scale adhesion effects, they are effective for high-temperature parts, for example, silica-based scales produced in aqueous systems at 40 ° C or higher. However, there is a problem that the effect may not be sufficient for a silica-based scale generated in a low temperature part, for example, an aqueous system of 30 ° C. or less.

特許文献5は、シリカ系汚れ(又はシリカ系スケール)に対して、スルホン酸比率の高いポリマーが有効であることについて開示されているが、それでも汚れ付着防止効果が十分でない場合がある。   Patent Document 5 discloses that a polymer having a high sulfonic acid ratio is effective against silica-based soil (or silica-based scale), but there are cases where the effect of preventing soil adhesion is still insufficient.

特開平2−31894号公報。JP-A-2-31894. 特開平11−57783号公報。Japanese Patent Laid-Open No. 11-57783. 特開昭61−107998号公報。JP-A 61-107998. 特許第3055815号公報。Japanese Patent No. 3055815. 特開2006−88036号公報。JP 2006-88036 A.

そこで、本発明は、冷却水系やボイラ水系や膜処理装置等で発生するシリカ系汚れを防止すること主な目的とする。なお、本願では「シリカ系スケール」と「シリカ系汚れ」をあわせて「シリカ系汚れ」という。   Therefore, the main object of the present invention is to prevent silica-based dirt generated in a cooling water system, a boiler water system, a membrane processing apparatus, and the like. In the present application, “silica-based scale” and “silica-based soil” are collectively referred to as “silica-based soil”.

本願発明者らは、前記課題を解決すべく鋭意研究を重ねた結果、カルボキシル基と、イソプレンスルホン酸と、非置換又は置換アクリルアミドやエーテル基と、を併せ持つポリマーとすることでシリカ系汚れの付着を効果的に防止できることを見出し、この知見を基に以下の本発明を完成させた。   As a result of intensive studies to solve the above problems, the inventors of the present application have made it possible to attach silica-based soils by using a polymer having both a carboxyl group, isoprenesulfonic acid, and an unsubstituted or substituted acrylamide or ether group. The following invention was completed based on this finding.

まず、本発明は、カルボキシル基を有するモノマーと、イソプレンスルホン酸モノマーと、非置換又は置換アクリルアミドを有するモノマーと、を共重合して得られるポリマーを少なくとも含有するシリカ系汚れ防止剤を提供する。
上記において特に、前記カルボキシル基を有するモノマーが40〜90モル%、前記イソプレンスルホン酸モノマーが5〜30モル%、前記非置換又は置換アクリルアミドを有するモノマーが5〜30モル%であるシリカ系汚れ防止剤とすると、効率よくシリカ系汚れを防止できる。
First, the present invention provides a silica-based antifouling agent containing at least a polymer obtained by copolymerizing a monomer having a carboxyl group, an isoprenesulfonic acid monomer, and a monomer having an unsubstituted or substituted acrylamide.
In particular, silica-based soil prevention, in which the carboxyl group-containing monomer is 40 to 90 mol%, the isoprenesulfonic acid monomer is 5 to 30 mol%, and the unsubstituted or substituted acrylamide monomer is 5 to 30 mol%. When used as an agent, silica-based soil can be efficiently prevented.

続いて、本発明は、カルボキシル基を有するモノマーと、イソプレンスルホン酸モノマーと、エーテル基を有するモノマーと、を少なくとも含有するシリカ系汚れ防止剤を提供する。かかるモノマーを用いることで、シリカ系汚れを更に効率よく防止できる。
上記において特に、前記カルボキシル基を有するモノマーを40〜90モル%、前記イソプレンスルホン酸モノマーを5〜30モル%、前記エーテル基を有するモノマーを5〜30モル%であるシリカ系汚れ防止剤とすると、より効率よくシリカ系汚れを防止できる。
Subsequently, the present invention provides a silica-based antifouling agent containing at least a monomer having a carboxyl group, an isoprene sulfonic acid monomer, and a monomer having an ether group. By using such a monomer, silica-based soil can be more efficiently prevented.
In particular, the silica-based antifouling agent is 40 to 90 mol% of the monomer having a carboxyl group, 5 to 30 mol% of the isoprenesulfonic acid monomer, and 5 to 30 mol% of the monomer having an ether group. It is possible to prevent silica-based dirt more efficiently.

そして、本発明は、前記モノマーのほかにヒドロキシアルキルアクリレートモノマーも共重合させた四元以上のポリマーを用いたシリカ系汚れ防止剤を提供する。かかるモノマーを用いることで、シリカ系汚れを更に効率よく防止できる。なお、本発明において「アクリレート」とは、メタクリレート構造も包含する。   The present invention also provides a silica-based antifouling agent using a quaternary or higher polymer obtained by copolymerizing a hydroxyalkyl acrylate monomer in addition to the monomer. By using such a monomer, silica-based soil can be more efficiently prevented. In the present invention, “acrylate” includes a methacrylate structure.

また、本発明は、カルボキシル基を有するモノマーと、イソプレンスルホン酸モノマーと、非置換又は置換アクリルアミドを有するモノマーと、を共重合させて得られるポリマーを、水系に添加するシリカ系汚れ防止方法を提供する。かかるポリマーを添加することで、系中のシリカ系汚れを効率よく防止できる。   The present invention also provides a method for preventing silica-based soiling, in which a polymer obtained by copolymerizing a monomer having a carboxyl group, an isoprenesulfonic acid monomer, and a monomer having an unsubstituted or substituted acrylamide is added to an aqueous system. To do. By adding such a polymer, silica-based soil in the system can be efficiently prevented.

更に、本発明は、カルボキシル基を有するモノマーと、イソプレンスルホン酸モノマーと、エーテル基を有するモノマーと、を共重合させて得られるポリマーを、水系に添加するシリカ系汚れ防止方法を提供する。かかるポリマーを添加することで、系中のシリカ系汚れを効率よく防止できる。   Furthermore, the present invention provides a method for preventing silica-based soiling, in which a polymer obtained by copolymerizing a monomer having a carboxyl group, an isoprene sulfonic acid monomer, and a monomer having an ether group is added to an aqueous system. By adding such a polymer, silica-based soil in the system can be efficiently prevented.

そして、本発明は、前記モノマーのほかにヒドロキシアルキルアクリレートモノマーも共重合させた四元以上のポリマーを水系に添加するシリカ系汚れ防止方法を提供する。かかるポリマーを用いることで、更に効率よくシリカ系汚れを防止できる。   The present invention also provides a method for preventing silica-based soiling, wherein a quaternary or higher polymer copolymerized with a hydroxyalkyl acrylate monomer in addition to the monomer is added to an aqueous system. By using such a polymer, silica-based soil can be more efficiently prevented.

本発明によれば、冷却水系やボイラ水系や膜処理装置等で発生するシリカ系汚れを効率よく防止できる。   ADVANTAGE OF THE INVENTION According to this invention, the silica type stain | pollution | contamination which generate | occur | produces with a cooling water system, a boiler water system, a membrane processing apparatus etc. can be prevented efficiently.

以下、添付図面に基づいて、本発明に係る好適な実施形態について説明する。なお、添付図面に示された各実施形態は、本発明に係わる代表的な実施形態の一例を示したものであり、これにより本発明の範囲が狭く解釈されることはない。   Hereinafter, preferred embodiments according to the present invention will be described with reference to the accompanying drawings. Each embodiment shown in the accompanying drawings shows an example of a typical embodiment according to the present invention, and the scope of the present invention is not interpreted narrowly.

本発明に係るシリカ系汚れ防止剤の一つは、カルボキシル基を有するモノマーと、イソプレンスルホン酸モノマーと、非置換又は置換アクリルアミドを有するモノマーと、を共重合させたポリマーを含有するものである。また、本発明に係るシリカ系汚れ防止剤の一つは、カルボキシル基を有するモノマーと、イソプレンスルホン酸モノマーと、エーテル基を有するモノマーと、を共重合させたポリマーを含有するものである。まずは、用いられるモノマー等について以下に説明する。   One of the silica-based antifouling agents according to the present invention contains a polymer obtained by copolymerizing a monomer having a carboxyl group, an isoprenesulfonic acid monomer, and a monomer having an unsubstituted or substituted acrylamide. In addition, one of the silica-based antifouling agents according to the present invention contains a polymer obtained by copolymerizing a monomer having a carboxyl group, an isoprenesulfonic acid monomer, and a monomer having an ether group. First, the monomers used will be described below.

本発明では、モノマーとしてカルボキシル基を有するモノマーを用い、例えば、マレイン酸、アクリル酸、メタクリル酸(以下、アクリル酸とメタクリル酸とをあわせて「アクリル酸」という。)、イタコン酸及びこれらの金属塩等を用いることができる。   In the present invention, a monomer having a carboxyl group is used as the monomer. For example, maleic acid, acrylic acid, methacrylic acid (hereinafter, acrylic acid and methacrylic acid are collectively referred to as “acrylic acid”), itaconic acid, and these metals A salt or the like can be used.

本発明では、モノマーとしてイソプレンスルホン酸(=2−メチル−1,3−ブタジエン−1−スルホン酸)を用いる(式(1)参照)。また、本発明では、イソプレンスルホン酸の水溶性金属塩であってもよい。   In the present invention, isoprenesulfonic acid (= 2-methyl-1,3-butadiene-1-sulfonic acid) is used as a monomer (see formula (1)). In the present invention, a water-soluble metal salt of isoprene sulfonic acid may be used.

本発明では、モノマーとして非置換又は置換アクリルアミドを有するモノマーを用いる(式(2)参照)。モノマー構造については特に限定されず、例えば、式(2)に示される化合物として、アクリルアミド、N−ジメチルアクリルアミド、N−ジエチルアクリルアミド、N−イソプロピルアクリルアミド等やこれらの金属塩を用いることができる。 In the present invention, a monomer having unsubstituted or substituted acrylamide is used as the monomer (see formula (2)). The monomer structure is not particularly limited, and for example, acrylamide, N-dimethylacrylamide, N-diethylacrylamide, N-isopropylacrylamide, or the like or a metal salt thereof can be used as the compound represented by the formula (2) .

本発明のエーテル基を有するモノマーは、例えば、付加モル数2〜30の(ポリ)エチレンオキサイドのモノアクリレート(式(3)参照)、付加モル数2〜30の(ポリ)プロピレンオキサイドのモノアクリレート、付加モル数1〜30の(ポリ)エチレンオキサイドのモノビニルエーテル(式(4)参照)、付加モル数1〜30の(ポリ)プロピレンオキサイドのモノビニルエーテル等を用いることができる。なお、ここで「アクリレート」とは、メタクリレートも含むものとする。そして、本発明では、上記のエチレンオキサイドとプロピレンオキサイドはポリマー中に混在してもよく、その場合の付加モル数の合計は、2〜30モルであればよい。   Examples of the monomer having an ether group of the present invention include (poly) ethylene oxide monoacrylate having 2 to 30 addition moles (see formula (3)) and (poly) propylene oxide monoacrylate having 2 to 30 addition moles. Further, monovinyl ether of (poly) ethylene oxide having an addition mole number of 1 to 30 (see formula (4)), monovinyl ether of (poly) propylene oxide having an addition mole number of 1 to 30, and the like can be used. Here, “acrylate” includes methacrylate. And in this invention, said ethylene oxide and propylene oxide may be mixed in a polymer, and the sum total of the addition mole number in that case should just be 2-30 mol.

本発明では、カルボキシル基を有するモノマー/イソプレンスルホン酸を有するモノマー/非置換又は置換アクリルアミドを有するモノマーの三元共重合体や、カルボキシル基を有するモノマー/イソプレンスルホン酸を有するモノマー/エーテル基を有するモノマーの三元共重合体等について、更にヒドロキシアルキルアクリレートモノマーを共重合させた四元以上の共重合体とすることで本発明の効果を顕著に向上させることができる。とりわけ、2−ヒドロキシアルキルアクリレートモノマーを用いることが望ましく、そのなかでも、2−ヒドロキシエチルアクリレート(HEMA;式(5)参照)モノマーを用いることがより好適である。   In the present invention, a monomer having a carboxyl group / a monomer having an isoprene sulfonic acid / a monomer having an unsubstituted or substituted acrylamide or a monomer having a carboxyl group / a monomer having an isoprene sulfonic acid / an ether group. The effects of the present invention can be remarkably improved by using a quaternary copolymer obtained by copolymerizing a hydroxyalkyl acrylate monomer with respect to the terpolymer of the monomer. In particular, it is desirable to use a 2-hydroxyalkyl acrylate monomer, and among them, it is more preferable to use a 2-hydroxyethyl acrylate (HEMA; see formula (5)) monomer.

本発明では、必要に応じ、更にカチオン性単量体を共重合させてもよい。共重合可能なカチオン性単量体としては、例えば、アリルアミン、ジメチルモノエチルアクリレート、ジエチルアミノエチルアクリレートの四級アンモニウム塩又は三級アンモニウム塩、ジアリルジメチルアンモニウムクロリド等を用いることができる。   In the present invention, if necessary, a cationic monomer may be further copolymerized. As the copolymerizable cationic monomer, for example, allylamine, dimethyl monoethyl acrylate, quaternary ammonium salt or tertiary ammonium salt of diethylaminoethyl acrylate, diallyldimethylammonium chloride and the like can be used.

本発明において、シリカ系スケールを防止する作用機構については定かではないが、ポリマー中のカルボキシル基にアルミニウムやマグネシウムや亜鉛等の水酸化物が吸着され、置換アクリルアミドやエーテル基がシリカに吸着し、更にポリマー中のスルホン酸基が分散し、これらによって析出物を効率よく水中に分散することでスケール化を防止できるものと考えられる。   In the present invention, the mechanism of action to prevent silica-based scale is not clear, but hydroxides such as aluminum, magnesium and zinc are adsorbed on carboxyl groups in the polymer, and substituted acrylamide and ether groups are adsorbed on silica. Furthermore, it is considered that sulphonic acid groups in the polymer are dispersed, and thus the precipitates can be efficiently dispersed in water to prevent scaling.

即ち、本発明に係る汚れ防止剤に含まれるポリマーは、単に硬度成分の化合物が集合して結晶化(スケール化)するのを妨害するだけではなく、シリカ系スケールの成分となるシリカだけでなく、これに影響を与えるアルミニウムやマグネシウムや亜鉛等までをしっかりと吸着し、かつこれらを効率よく分散させることができるポリマーである。特に、水系プラントの低温部等の低温条件において、この傾向が顕著に発揮される。   That is, the polymer contained in the antifouling agent according to the present invention not only prevents the hardness component compounds from gathering and crystallizing (scaling), but also not only silica that is a component of the silica-based scale. It is a polymer that can firmly adsorb aluminum, magnesium, zinc, etc., which affect this, and efficiently disperse them. In particular, this tendency is remarkably exhibited in low temperature conditions such as a low temperature part of an aqueous plant.

本発明に係るシリカ系汚れ防止剤において、カルボキシル基を有するモノマーと、イソプレンスルホン酸と、非置換又は置換アクリルアミドを有するモノマーとの組成比については特に限定されないが、好適には40〜90/5〜30/5〜30(モル%)、更に好適には60〜80/10〜30/5〜15(モル%)であることが望ましい。   In the silica-based antifouling agent according to the present invention, the composition ratio of the monomer having a carboxyl group, the isoprenesulfonic acid, and the monomer having an unsubstituted or substituted acrylamide is not particularly limited, but is preferably 40 to 90/5. It is desirable that it is ˜30 / 5 to 30 (mol%), more preferably 60 to 80/10 to 30/5 to 15 (mol%).

また、本発明に係るシリカ系汚れ防止剤において、カルボキシル基を有するモノマーと、イソプレンスルホン酸と、エーテル基を有するモノマーとの組成比については特に限定されないが、好適には40〜90/5〜30/5〜30(モル%)、更に好適には60〜80/10〜30/5〜15(モル%)であることが望ましい。   Further, in the silica-based antifouling agent according to the present invention, the composition ratio of the monomer having a carboxyl group, the isoprenesulfonic acid, and the monomer having an ether group is not particularly limited, but is preferably 40 to 90/5. 30/5 to 30 (mol%), more preferably 60 to 80/10 to 30/5 to 15 (mol%).

更に、本発明では、カルボキシル基を有するモノマーと、イソプレンスルホン酸と、非置換又は置換アクリルアミドを有するモノマーと、エーテル基を有するモノマーと、を共重合させた四元共重合体としてもよい。そして、前記四元共重合体モノマー組成比については、特に限定されないが、好適には、20〜85/5〜30/5〜30/5〜20(モル%)、更に好適には40〜80/10〜30/5〜15/5〜15(モル%)であることが望ましい。   Furthermore, in this invention, it is good also as a quaternary copolymer which copolymerized the monomer which has a carboxyl group, the isoprenesulfonic acid, the monomer which has an unsubstituted or substituted acrylamide, and the monomer which has an ether group. And although it does not specifically limit about the said quaternary copolymer monomer composition ratio, Preferably it is 20-85 / 5-5-30 / 5-5 / 5-20 (mol%), More preferably, it is 40-80. It is desirable that it is / 10-30 / 5-5-15 / 5-15 (mol%).

本発明に係るシリカ系汚れ防止剤として用いられるポリマーの分子量については、特に限定されないが、好適には、重量平均分子量(M)が500〜500000、更に好適には5000〜100000であることが望ましい。重量平均分子量が500未満の場合は、十分な汚れ防止効果を発揮できない。重量平均分子量が100000より大きい場合は、ポリマーの粘性が高くなり取り扱いが難しい。この重量平均分子量は、ゲルパーミエーションクロマトグラフィー(GPC、溶媒:リン酸バッファー、スタンダード:アクリル酸)により測定するものである。 The molecular weight of the polymer used as the silica-based antifouling agent according to the present invention is not particularly limited, but preferably the weight average molecular weight (M w ) is 500 to 500,000, more preferably 5000 to 100,000. desirable. When the weight average molecular weight is less than 500, a sufficient antifouling effect cannot be exhibited. When the weight average molecular weight is greater than 100,000, the viscosity of the polymer becomes high and handling is difficult. This weight average molecular weight is measured by gel permeation chromatography (GPC, solvent: phosphate buffer, standard: acrylic acid).

本発明に係るシリカ系汚れ防止剤として用いられるポリマーの製造方法については、特に限定されず、従来公知の重合方法を適宜採用できる。例えば、溶液重合や塊状重合等により製造できる。重合条件等については特に限定されず、使用するモノマーの物性等を考慮して適宜決定できるが、例えば、水性重合の場合は単量体水溶液又は水分散液を調製し、必要に応じてpHを調整し、不活性ガスにより雰囲気を置換した後、50〜100℃に加熱し、水溶性重合開始剤を添加することで重合させることができる。   The method for producing the polymer used as the silica-based antifouling agent according to the present invention is not particularly limited, and conventionally known polymerization methods can be appropriately employed. For example, it can be produced by solution polymerization or bulk polymerization. The polymerization conditions and the like are not particularly limited and can be appropriately determined in consideration of the physical properties of the monomers used.For example, in the case of aqueous polymerization, an aqueous monomer solution or aqueous dispersion is prepared, and the pH is adjusted as necessary. After adjusting and substituting atmosphere with an inert gas, it can superpose | polymerize by heating to 50-100 degreeC and adding a water-soluble polymerization initiator.

前記水溶性重合開始剤としては、2,2´−アゾビス−(2−アミノジプロパン)二塩酸塩、アゾビス−N,N´−ジメチレンイソブチルアミジン二塩酸塩、4,4´−アゾビス−(4−シアノ吉草酸)−2−ナトリウム等の水溶性アゾ化合物や、過硫酸アンモニウム、過硫酸ナトリウム、過硫酸カリウム等の過硫酸塩や、過酸化水素、過ヨウ素酸ナトリウム等の水溶性過酸化物等を用いることができる。   Examples of the water-soluble polymerization initiator include 2,2′-azobis- (2-aminodipropane) dihydrochloride, azobis-N, N′-dimethyleneisobutylamidine dihydrochloride, 4,4′-azobis- ( Water-soluble azo compounds such as 4-cyanovaleric acid) -2-sodium, persulfates such as ammonium persulfate, sodium persulfate and potassium persulfate, and water-soluble peroxides such as hydrogen peroxide and sodium periodate Etc. can be used.

前記水性重合の重合反応は、例えば、3〜6時間で反応を終了させて、放冷することで重合体水溶液又は水分散液を得ることができる。そして、重合は水性媒体中に限らず、一般的な有機溶媒中での溶液重合、懸濁重合、乳化重合等によっても行なうことができる。   The aqueous polymerization polymerization reaction can be completed, for example, in 3 to 6 hours and allowed to cool to obtain an aqueous polymer solution or aqueous dispersion. The polymerization can be performed not only in an aqueous medium but also by solution polymerization, suspension polymerization, emulsion polymerization or the like in a general organic solvent.

本発明のシリカ系汚れ防止剤の使用方法等は、特に限定されず、スケール汚れの生成、付着を防止したい場所やその直前の場所等に添加することができる。そして、本発明の汚れ防止剤は、冷却水系や、ボイラ水系等の運転条件や水質条件にかかわりなく使用できる。例えば、本発明の汚れ防止剤を、各種水系の循環水や補給水に添加することができる。   The method of using the silica-based antifouling agent of the present invention is not particularly limited, and it can be added to a place where it is desired to prevent the formation and adhesion of scale fouling, or a place immediately before that. The antifouling agent of the present invention can be used regardless of operating conditions and water quality conditions such as a cooling water system and a boiler water system. For example, the antifouling agent of the present invention can be added to various water-based circulating water and makeup water.

そして、本発明の汚れ防止剤は、低温水や高温水のいずれにも用いることができるし、特に濃縮倍数の多い(6倍以上)カルシウムやマグネシウム等の含有量が高いシリカ系汚れ等にも有効に用いることができる。   The antifouling agent of the present invention can be used for both low-temperature water and high-temperature water, and particularly for silica-based soils having a high concentration such as calcium or magnesium having a high concentration factor (6 times or more). It can be used effectively.

また、通常、水質悪化のために工業用水の除濁に用いる凝集剤にはポリ塩化アルミニウム(PAC)等のアルミニウム化合物が用いられるため、この用水は前記凝集剤由来のアルミニウム濃度が高くなる傾向がある。このようなアルミニウム濃度が高い用水を用いた水系では、アルミニウムを含有したシリカ系の汚れが付着することを本願発明者らは見出した。また、用水向けの膜処理装置において、膜の目詰まりを防止するための前処理として前記凝集剤による除濁を行うと前記膜にアルミニウムを含有したシリカ系の汚れが付着することも見出した。これらのような状況等で発生するシリカ系汚れに対しても、本発明の汚れ防止剤は有効に用いることができる。   Moreover, since an aluminum compound such as polyaluminum chloride (PAC) is usually used as a flocculant used for turbidization of industrial water due to deterioration of water quality, this water tends to have a high aluminum concentration derived from the flocculant. is there. The inventors of the present application have found that silica-based soil containing aluminum adheres in an aqueous system using such water having a high aluminum concentration. Further, it has also been found that in a membrane treatment apparatus for irrigation water, silica-based dirt containing aluminum adheres to the membrane when the turbidity is removed with the flocculant as a pretreatment for preventing clogging of the membrane. The antifouling agent of the present invention can also be used effectively against silica-based dirt that occurs in such situations.

本発明の汚れ防止剤の添加量については特に限定されず、添加する水の水質等に応じて適宜選択することができるが、好適には適用する水での重合体濃度が1〜200mg/Lとなるように添加することが望ましく、更に好適には重合体濃度が1〜30mg/Lとなるように添加することが望ましい。   The addition amount of the antifouling agent of the present invention is not particularly limited and can be appropriately selected according to the quality of the water to be added, but the polymer concentration in the applied water is preferably 1 to 200 mg / L. It is desirable to add such that the polymer concentration is 1 to 30 mg / L.

本発明のスケール系汚れ防止剤は、必要に応じて、他のスケール防止剤等と併用することができる。併用できるスケール防止剤としては、例えば、ニトリロトリメチルホスホン酸、ヒドロキシエチリデンジホスホン酸、エチレンジアミンテトラメチレンホスホン酸、ホスホノブタントリカルボン酸、トリポリリン酸、ヘキサメタリン酸、アクリル酸、マレイン酸、アクリル酸スルホン酸のコポリマー、及びこれらの水溶性金属塩等を用いることができる。   The scale-based antifouling agent of the present invention can be used in combination with other scale inhibitors as required. Examples of scale inhibitors that can be used in combination include nitrilotrimethylphosphonic acid, hydroxyethylidene diphosphonic acid, ethylenediaminetetramethylenephosphonic acid, phosphonobutanetricarboxylic acid, tripolyphosphoric acid, hexametaphosphoric acid, acrylic acid, maleic acid, and acrylic acid sulfonic acid copolymer. , And water-soluble metal salts thereof can be used.

更には、本発明の汚れ防止剤は、必要に応じて、有機ホスホン酸、塩化亜鉛等の防食剤や、ヒドラジン、S−クロロ−2−メチル−4−イソチアゾリン−3−オン(Cl−MIT)、次亜塩素酸−スルファミン酸系等の殺菌剤や抗菌剤等と混合して使用することもできるし、別々にこれらの薬品を添加することもできる。   Furthermore, the antifouling agent of the present invention may contain an anticorrosive agent such as organic phosphonic acid or zinc chloride, hydrazine, S-chloro-2-methyl-4-isothiazolin-3-one (Cl-MIT), if necessary. These can be used in combination with a hypochlorous acid-sulfamic acid-based disinfectant or antibacterial agent, or these chemicals can be added separately.

以下に実施例を挙げて本発明を更に詳細に説明する。本発明はここに示す実施例により制限されない。本実施例では、高温部と低温部の検証をそれぞれ行い、そのシリカ系汚れ防止効果について検証した。   Hereinafter, the present invention will be described in more detail with reference to examples. The invention is not limited by the examples shown here. In this example, the high temperature part and the low temperature part were respectively verified, and the silica-based antifouling effect was verified.

<高温部での評価>
まず、使用した模擬冷却水系について説明する。図1は、本発明に係る高温部でのシリカ系汚れ防止方法の好適な実施形態の概念及び構成を説明するための図である。図1に示す模擬冷却水系では、循環水ピット1(保有水量100L)から循環水が循環ポンプ2により送り出され、加熱部3を経由して循環水ピット1へと循環される(矢印R参照)。その際、流量調節弁5によって循環水の循環量を調節した。この加熱部3に評価チューブ4(SUS304ステンレス鋼製、外径19mm)を設けた。
<Evaluation at high temperature part>
First, the simulated cooling water system used will be described. FIG. 1 is a diagram for explaining the concept and configuration of a preferred embodiment of a silica-based antifouling method in a high temperature part according to the present invention. In the simulated cooling water system shown in FIG. 1, the circulating water is sent out from the circulating water pit 1 (retained water amount 100 L) by the circulating pump 2 and circulated to the circulating water pit 1 via the heating unit 3 (see arrow R). . At that time, the amount of circulating water was adjusted by the flow rate control valve 5. The heating unit 3 was provided with an evaluation tube 4 (made of SUS304 stainless steel, outer diameter 19 mm).

循環水系の稼動については、予め合成水を作成し、補給水タンク6(保有水量300L)にこの合成水を貯水し、滞留時間が24時間となるように補給水ポンプ7で注入し、オーバーブローした。この間、循環水水温が30℃を維持するようにし、30℃以上になるとチラー8が稼動することで循環水を冷却するようにした。評価チューブ4の表面温度は、電力量一定で90℃に設定し、評価チューブ4での循環水の通過流速は0.5m/sを維持するようにした。   For the operation of the circulating water system, synthetic water is prepared in advance, this synthetic water is stored in the make-up water tank 6 (retained water amount 300 L), and is injected by the make-up water pump 7 so that the residence time is 24 hours. did. During this period, the circulating water temperature was maintained at 30 ° C., and when it reached 30 ° C. or higher, the circulating water was cooled by operating the chiller 8. The surface temperature of the evaluation tube 4 was set to 90 ° C. with a constant electric energy, and the flow rate of circulating water in the evaluation tube 4 was maintained at 0.5 m / s.

使用した循環水の水質条件は、pHは9.0、シリカ濃度は150mg/L as SiO、カルシウム濃度は300mg/L as CaCO、マグネシウム濃度は150mg/L as MgCO、である。また、水質の濁度については必要に応じコントロールし、濁度10度相当となるように1日1回バッチ処理した。 The water quality conditions of the circulating water used were pH 9.0, silica concentration 150 mg / L as SiO 2 , calcium concentration 300 mg / L as CaCO 3 , and magnesium concentration 150 mg / L as MgCO 3 . Further, the turbidity of the water quality was controlled as necessary, and batch treatment was performed once a day so that the turbidity was equivalent to 10 degrees.

評価ポリマー(シリカ系汚れ防止剤として使用)とカルシウム系汚れ防止剤を循環水ピット1に供給した。評価ポリマーは、固形分濃度として15mg/L as solidとなるように設定した。カルシウム系スケール防止剤は、ヒドロキシジエチリデンホスホン酸ナトリウムを6mg/L as POとなるように添加した。 An evaluation polymer (used as a silica-based antifouling agent) and a calcium-based antifouling agent were supplied to the circulating water pit 1. The evaluation polymer was set to have a solid content concentration of 15 mg / L as solid. As the calcium-based scale inhibitor, sodium hydroxydiethylidenephosphonate was added to 6 mg / L as PO 4 .

30日間運転後、評価チューブ4に付着したスケールの量を測定して以下に示す計算式(1)により加熱部の汚れ付着速度を算出することで、高温部の汚れ防止効果を評価した。   After the operation for 30 days, the amount of scale adhered to the evaluation tube 4 was measured, and the stain adhesion rate of the heating portion was calculated by the following calculation formula (1) to evaluate the stain prevention effect of the high temperature portion.

<非加熱部での評価>
まず、使用した模擬冷却水系について説明する。図2は、本発明に係る低温部でのシリカ系汚れ防止方法の好適な実施形態の概念及び構成を説明するための図である。図2に示す模擬冷却水系では、循環水ピット21から循環水が循環ポンプ22により送り出され、熱交換器23により伝熱されて冷却塔24に導かれる(矢印R参照)。なお、この模擬冷却水系は、伝熱面積0.25mの熱交換器23を有する保有水量100Lの模擬冷却水系である。熱交換器23は、SUS304ステンレス鋼製、外径19mmのチューブを用いた。
そして、非伝熱評価チューブ25(SUS304ステンレス鋼製、外径19mm)を系内に設けた。この非伝熱評価チューブ25に付着したスケール量を測定することで汚れ防止効果を評価した。
<Evaluation at non-heated part>
First, the simulated cooling water system used will be described. FIG. 2 is a diagram for explaining the concept and configuration of a preferred embodiment of the silica-based antifouling method in the low temperature part according to the present invention. In the simulated cooling water system shown in FIG. 2, the circulating water is sent out from the circulating water pit 21 by the circulation pump 22, transferred by the heat exchanger 23, and guided to the cooling tower 24 (see arrow R). This simulated cooling water system is a simulated cooling water system with a retained water amount of 100 L having a heat exchanger 23 with a heat transfer area of 0.25 m 2 . As the heat exchanger 23, a tube made of SUS304 stainless steel and having an outer diameter of 19 mm was used.
A non-heat transfer evaluation tube 25 (SUS304 stainless steel, outer diameter 19 mm) was provided in the system. The antifouling effect was evaluated by measuring the amount of scale attached to the non-heat transfer evaluation tube 25.

循環水ピット21に対して、補給水槽26から補給水ポンプ27により補給水を適宜供給する。補給水は実際の工業用水(川崎市工業用水)を用いて運転した。この工業用水のシリカ濃度は25mg/L as SiO、アルミニウム濃度は0.5mg/L as Alである。
運転は、ブロー配管30からブロー水(循環水の系外排出)の量をコントロールすることで、濃縮倍率を7倍に維持して30日間行った。濃縮倍率の制御は、水位センサー28と導電率計29とを用いての循環水の濃縮倍率を計測し、ブロー配管30によって濃縮不純物を適宜ブロー調整することで行った。
この間、循環水の熱交換器23の入口温度は30℃、出口温度は40℃となるように維持した。また、循環水の非伝熱評価チューブ25の通過流速は0.5m/sに維持した。
Make-up water is appropriately supplied from the make-up water tank 26 to the circulating water pit 21 by the make-up water pump 27. The makeup water was operated using actual industrial water (Kawasaki City Industrial Water). This industrial water has a silica concentration of 25 mg / L as SiO 2 and an aluminum concentration of 0.5 mg / L as Al.
The operation was performed for 30 days while controlling the amount of blow water (circulated water out of the system) from the blow pipe 30 to maintain the concentration factor at 7 times. The concentration ratio was controlled by measuring the concentration ratio of the circulating water using the water level sensor 28 and the conductivity meter 29 and appropriately adjusting the concentration impurities by the blow pipe 30.
During this time, the inlet temperature of the circulating water heat exchanger 23 was maintained at 30 ° C. and the outlet temperature at 40 ° C. Moreover, the passage flow rate of the non-heat transfer evaluation tube 25 of circulating water was maintained at 0.5 m / s.

評価ポリマー(シリカ系汚れ防止剤として使用)とカルシウム系汚れ防止剤を評価ポリマー槽31に投入し、これらを薬注ポンプ32によって循環水ピット21に供給した。評価ポリマーは、固形分濃度として15mg/L as solidとなるように設定した。カルシウム系スケール防止剤は、ヒドロキシジエチリデンホスホン酸ナトリウムを6mg/L as POとなるように添加した。 An evaluation polymer (used as a silica-based antifouling agent) and a calcium-based antifouling agent were charged into an evaluation polymer tank 31 and supplied to the circulating water pit 21 by a chemical injection pump 32. The evaluation polymer was set to have a solid content concentration of 15 mg / L as solid. As the calcium-based scale inhibitor, sodium hydroxydiethylidenephosphonate was added to 6 mg / L as PO 4 .

スライムコントロール処理のため、次亜塩素酸ナトリウムを次亜塩素酸ナトリウム槽33に投入し、次亜塩素酸ナトリウム溶液を薬注ポンプ34によって循環水ピット1に供給した。スライムコントロール剤は、次亜塩素酸ナトリウム0.5〜1.0mg/L as Clとなるように設定した。 For slime control treatment, sodium hypochlorite was put into the sodium hypochlorite tank 33 and the sodium hypochlorite solution was supplied to the circulating water pit 1 by the chemical injection pump 34. The slime control agent was set to be sodium hypochlorite 0.5 to 1.0 mg / L as Cl 2 .

30日間運転後、非伝熱評価チューブ5に付着したスケールの量を測定して前記の計算式(1)に基づいて非加熱部の汚れ付着速度を算出して、低温部の汚れ防止効果を評価した。   After operating for 30 days, the amount of scale attached to the non-heat transfer evaluation tube 5 is measured, and the dirt adhesion rate of the non-heated part is calculated based on the above formula (1), and the effect of preventing dirt at the low temperature part is obtained. evaluated.

これらの検証において、実施例1〜6、比較例1〜4に示すポリマーを評価ポリマーとして用いた。各実験結果について表1、表2に示す。   In these verifications, the polymers shown in Examples 1 to 6 and Comparative Examples 1 to 4 were used as evaluation polymers. Tables 1 and 2 show the results of each experiment.

<考察>
表1、表2の結果より、実施例1と比較例2とを対比すると、アクリル酸/スルホン酸/非置換又は置換アクリルアミドを含有する三元共重合体のうち、スルホン酸基がイソプレンスルホン酸であるポリマーが高い汚れ付着防止効果をあげていることが示された。また、実施例6より、アクリル酸/イソプレンスルホン酸/エーテル基を含有するポリマーが高い汚れ付着防止効果をあげていることも示された。
実施例2,3,4と比較例1を対比すると、非置換又は置換アクリルアミドを有するポリマーが高い汚れ付着防止効果をあげていることが示された。
比較例2,3より、スルホン酸基が2−アクリルアミド−2−メチルプロパンスルホン酸(AMPS)の場合、2−ヒドロキシエチルメタクリレート(HEMA)の有無による効果はみられないが、実施例1,5によれば、2−ヒドロキシエチルメタクリレートを共重合させることで汚れ付着防止効果がより上昇していることが示された。
<Discussion>
From the results of Tables 1 and 2, when Example 1 and Comparative Example 2 are compared, among the terpolymers containing acrylic acid / sulfonic acid / unsubstituted or substituted acrylamide, the sulfonic acid group is isoprenesulfonic acid. It has been shown that the polymer is a high antifouling effect. Further, Example 6 also showed that the polymer containing acrylic acid / isoprenesulfonic acid / ether group had a high antifouling effect.
When Examples 2, 3, and 4 were compared with Comparative Example 1, it was shown that the polymer having unsubstituted or substituted acrylamide had a high antifouling effect.
From Comparative Examples 2 and 3, when the sulfonic acid group is 2-acrylamido-2-methylpropanesulfonic acid (AMPS), the effect of the presence or absence of 2-hydroxyethyl methacrylate (HEMA) is not observed. According to the above, it was shown that the antifouling effect was further increased by copolymerizing 2-hydroxyethyl methacrylate.

また、比較例1〜4は、加熱部での汚れ付着防止効果はある程度は認められるが、非加熱部での汚れ付着防止効果については小さい。一方、実施例1〜6では加熱部であっても非加熱部であっても汚れ付着防止効果が高いことが示された。   In Comparative Examples 1 to 4, the effect of preventing the adhesion of dirt at the heating part is recognized to some extent, but the effect of preventing the adhesion of dirt at the non-heating part is small. On the other hand, in Examples 1 to 6, it was shown that the effect of preventing the adhesion of dirt was high whether it was a heating part or a non-heating part.

以上より、本実施例によれば、本発明に係るポリマーはシリカ系汚れ防止剤及びシリカ系汚れ防止方法として優れた汚れ防止効果を有することが示された。   As mentioned above, according to the present Example, it was shown that the polymer which concerns on this invention has the antifouling effect outstanding as a silica type | system | group antifouling agent and a silica type antifouling method.

本発明は、シリカ系汚れを防止する技術、とりわけ冷却水系やボイラ水系や膜処理装置等で発生するシリカ系汚れの防止技術として、地熱発電所等をはじめ幅広い工業分野で利用できる。   INDUSTRIAL APPLICABILITY The present invention can be used in a wide range of industrial fields including geothermal power plants as a technique for preventing silica-based dirt, particularly as a technique for preventing silica-based dirt generated in cooling water systems, boiler water systems, membrane treatment devices, and the like.

本発明に係る高温部でのシリカ系汚れ防止方法の好適な実施形態の概念及び構成を説明するための図である。It is a figure for demonstrating the concept and structure of suitable embodiment of the silica type dirt prevention method in the high temperature part which concerns on this invention. 本発明に係る低温部でのシリカ系汚れ防止方法の好適な実施形態の概念及び構成を説明するための図である。It is a figure for demonstrating the concept and structure of suitable embodiment of the silica type pollution prevention method in the low temperature part which concerns on this invention.

符号の説明Explanation of symbols

1,21 循環水ピット
2,22 循環ポンプ
3 加熱部
4 評価チューブ
25 非伝熱評価チューブ
1,21 Circulating water pits 2,22 Circulating pump 3 Heating part 4 Evaluation tube 25 Non-heat transfer evaluation tube

Claims (4)

カルボキシル基を有するモノマーと、イソプレンスルホン酸モノマーと、下記式(2)で表される非置換又は置換アクリルアミドを有するモノマーと、を共重合して得られるポリマーを少なくとも含有するシリカ系汚れ防止剤。
A silica-based antifouling agent containing at least a polymer obtained by copolymerizing a monomer having a carboxyl group, an isoprenesulfonic acid monomer, and a monomer having an unsubstituted or substituted acrylamide represented by the following formula (2) .
前記ポリマーは、更にヒドロキシアルキルアクリレートモノマーを共重合させた四元以上のポリマーであることを特徴とする請求項1に記載のシリカ系汚れ防止剤。 The silica-based antifouling agent according to claim 1, wherein the polymer is a quaternary or higher polymer obtained by copolymerizing a hydroxyalkyl acrylate monomer. カルボキシル基を有するモノマーと、イソプレンスルホン酸モノマーと、下記式(2)で表される非置換又は置換アクリルアミドを有するモノマーと、を共重合して得られるポリマーを、水系に添加するシリカ系汚れ防止方法。
Silica-based soil prevention by adding a polymer obtained by copolymerizing a monomer having a carboxyl group, an isoprenesulfonic acid monomer, and a monomer having an unsubstituted or substituted acrylamide represented by the following formula (2) to an aqueous system Method.
前記ポリマーは、更にヒドロキシアルキルアクリレートモノマーを共重合させた四元以上のポリマーであることを特徴とする請求項3に記載のシリカ系汚れ防止方法。
4. The silica-based soil prevention method according to claim 3, wherein the polymer is a quaternary or higher polymer obtained by copolymerizing a hydroxyalkyl acrylate monomer.
JP2007081337A 2007-03-27 2007-03-27 Silica-based antifouling agent and silica-based antifouling method Expired - Fee Related JP5085962B2 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2007081337A JP5085962B2 (en) 2007-03-27 2007-03-27 Silica-based antifouling agent and silica-based antifouling method
PCT/JP2008/055444 WO2008117780A1 (en) 2007-03-27 2008-03-24 Agent for prevention of deposition of silica-containing stain, and method for prevention of deposition of silica-containing stain

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2007081337A JP5085962B2 (en) 2007-03-27 2007-03-27 Silica-based antifouling agent and silica-based antifouling method

Publications (2)

Publication Number Publication Date
JP2008239764A JP2008239764A (en) 2008-10-09
JP5085962B2 true JP5085962B2 (en) 2012-11-28

Family

ID=39788515

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007081337A Expired - Fee Related JP5085962B2 (en) 2007-03-27 2007-03-27 Silica-based antifouling agent and silica-based antifouling method

Country Status (2)

Country Link
JP (1) JP5085962B2 (en)
WO (1) WO2008117780A1 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
MX2015002069A (en) * 2012-08-31 2015-05-11 Procter & Gamble Laundry detergents and cleaning compositions comprising carboxyl group-containing polymers.
JP5657620B2 (en) * 2012-09-04 2015-01-21 株式会社東芝 Processing apparatus and processing method
WO2017034871A1 (en) 2015-08-21 2017-03-02 G&P Holding, Inc. Silver and copper itaconates and poly itaconates

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2590790B2 (en) * 1988-04-15 1997-03-12 日本合成ゴム株式会社 Method for producing conjugated diene sulfonated polymer
JPH03265690A (en) * 1990-03-16 1991-11-26 Japan Synthetic Rubber Co Ltd Dispersant and solid fuel slurry composition
JP4019331B2 (en) * 1995-08-21 2007-12-12 Jsr株式会社 Water treatment agent
JP2000007734A (en) * 1998-06-23 2000-01-11 Jsr Corp Water-soluble copolymer (salt) and scale preventive
JP4654644B2 (en) * 2004-09-24 2011-03-23 栗田工業株式会社 Silica-based soil adhesion inhibitor and adhesion prevention method

Also Published As

Publication number Publication date
WO2008117780A1 (en) 2008-10-02
JP2008239764A (en) 2008-10-09

Similar Documents

Publication Publication Date Title
JP4043551B2 (en) Scale inhibitor and scale prevention method
JP6146075B2 (en) Scale prevention method and scale inhibitor
JP5884730B2 (en) Reverse osmosis membrane scale inhibitor and scale prevention method
US5716529A (en) Water-treating agent and method for treating water
WO2012132892A1 (en) Scale preventing agent for reverse osmosis membrane and scale preventing method
MXPA98004099A (en) Agent to inhibit the incrustation and method to use the mi
JP2014036912A (en) Method for preventing silica scale in water system and scale inhibitor, and water treatment method and water treatment agent for preventing silica scale and corrosion of metals
JPS6148590B2 (en)
JP5085962B2 (en) Silica-based antifouling agent and silica-based antifouling method
JP2011045861A (en) Water treatment agent and water treatment method
US6001264A (en) Water-treating agent and method for treating water
WO2022054313A1 (en) Antiscaling agent and antiscaling method
JPH0663590A (en) Scale remover and scale removing method using the same
JP4361812B2 (en) Treatment method for open circulating cooling water system
JP4654644B2 (en) Silica-based soil adhesion inhibitor and adhesion prevention method
JP5147271B2 (en) Silica-based antifouling agent and silica-based antifouling method
JP2003080294A (en) Scaling inhibitor and method for preventing scaling
JP4641027B2 (en) Metal pitting corrosion inhibitor and suppression method
JP2008036562A (en) Silica-stain adhesion inhibitor and adhesion inhibiting method
JP4019331B2 (en) Water treatment agent
JP2006334495A (en) Antiadhesive agent for silica-based stain, copolymer for antiadhesive agent and method for preventing adhesion of silica-based stain
JPH1190488A (en) Scale inhibitor
JP2008088475A (en) Corrosion preventive and corrosion prevention method
JP2002273478A (en) Scale prevention method
JP3375798B2 (en) Aqueous iron dispersant

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20100310

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120626

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120817

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20120904

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20120906

R150 Certificate of patent or registration of utility model

Ref document number: 5085962

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150914

Year of fee payment: 3

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313117

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees