JPH04278198A - Control method of contamination of copper alloy member - Google Patents

Control method of contamination of copper alloy member

Info

Publication number
JPH04278198A
JPH04278198A JP3063665A JP6366591A JPH04278198A JP H04278198 A JPH04278198 A JP H04278198A JP 3063665 A JP3063665 A JP 3063665A JP 6366591 A JP6366591 A JP 6366591A JP H04278198 A JPH04278198 A JP H04278198A
Authority
JP
Japan
Prior art keywords
potential
copper alloy
alloy member
iron
cleaning
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP3063665A
Other languages
Japanese (ja)
Other versions
JPH07117355B2 (en
Inventor
Tsunehiko Sugiura
杉浦 恒彦
Yasuhiko Chikamori
近森 泰彦
Takashi Kosaka
隆 小坂
Masanobu Minami
正信 南
Minoru Hachitani
蜂谷 実
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NAKABOO TEC KK
Chubu Electric Power Co Inc
Original Assignee
NAKABOO TEC KK
Chubu Electric Power Co Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NAKABOO TEC KK, Chubu Electric Power Co Inc filed Critical NAKABOO TEC KK
Priority to JP3063665A priority Critical patent/JPH07117355B2/en
Publication of JPH04278198A publication Critical patent/JPH04278198A/en
Publication of JPH07117355B2 publication Critical patent/JPH07117355B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Investigating Or Analyzing Materials By The Use Of Electric Means (AREA)
  • Prevention Of Electric Corrosion (AREA)

Abstract

PURPOSE:To maintain a facility, such as a condenser or the like, in the optimum operating condition by a method wherein the degree of contamination due to slime and the like formed on the surface of copper-alloy members in said facilities is known at real times with respect to every units of said facilities to control the contamination. CONSTITUTION:An electrode 1 for conducting electricity, a tube plate 2 and a zinc reference electrode 4 for detecting the potential of copper-alloy members 3 are provided in a water chamber 5. A DC power supplying device 6 is provided with a current measuring circuit A and a potential measuring circuit E to regulate a conducted current so as to maintain the optimum potential referred by the reference electrode 4. In order to control the contamination of the copper-alloy members 3, the conduction of electricity is stopped temporarily at first and, thereafter, a natural potential is measured by the potential measuring circuit E. Subsequently, said natural potential is compared with a predetermined reference value by a measuring device 7 and when the natural potential has become more noble than the reference value, a contamination washing means of copper-alloy members is operated.

Description

【発明の詳細な説明】[Detailed description of the invention]

【0001】0001

【産業上の利用分野】本発明は銅合金部材の汚れの管理
方法に関し、より詳しくは、海水等を冷却水として使用
する復水器、熱交換器等の設備における銅合金製の冷却
用管、管板等(以下、銅合金部材と称する)の表面に形
成するスライム等の汚れ具合を部分的にかつリアルタイ
ムに把握し、汚れを管理することができる方法に関する
[Industrial Application Field] The present invention relates to a method for controlling contamination of copper alloy members, and more specifically, to cooling pipes made of copper alloy in equipment such as condensers and heat exchangers that use seawater as cooling water. The present invention relates to a method for managing dirt by partially and in real time grasping the degree of dirt such as slime formed on the surface of a tube plate or the like (hereinafter referred to as a copper alloy member).

【0002】0002

【従来の技術】海水を冷却水として使用する復水器、熱
交換器等の設備における銅合金部材の内面は、冷却水の
流れによってインレットアタックおよびデポジットアタ
ックといった腐食を生じやすい。そこでこのような腐食
の抑制手段として、外部電源方式等による電気防食法と
、冷却水中に鉄イオンを供給して銅合金部材の表面に鉄
皮膜を形成させる方法との併用が近年広く実施されてい
る。
2. Description of the Related Art The inner surfaces of copper alloy members in equipment such as condensers and heat exchangers that use seawater as cooling water are susceptible to corrosion such as inlet attack and deposit attack due to the flow of cooling water. Therefore, as a means of suppressing such corrosion, a combination of cathodic protection methods using external power sources, etc., and a method of supplying iron ions into cooling water to form an iron film on the surface of copper alloy members has been widely implemented in recent years. There is.

【0003】しかし、係る設備にあっては、冷却水とし
て海水等を使用するので、冷却水中の微生物(通常、プ
ランクトン)や海底面から浮遊するマンガンイオン等が
銅合金部材の内面に付着し(一般に総称としてスライム
と呼ばれる)、鉄皮膜の防食効果の低下や設備の熱貫流
効率の低下を招く等の問題が生じる。
However, since such equipment uses seawater as cooling water, microorganisms (usually plankton) in the cooling water and manganese ions floating from the seabed adhere to the inner surface of the copper alloy member ( (generally referred to as slime), problems such as a decrease in the anticorrosion effect of the iron coating and a decrease in the heat transmission efficiency of equipment occur.

【0004】そこでこのようなスライム等による部材の
汚れを軟質ボール洗浄、硬質ボール洗浄、ジェット洗浄
、ブラシ洗浄等の洗浄方法によって適宜除去する必要が
ある。しかしブラシ洗浄またはジェット洗浄を行なうに
は設備を長期(数日)に亘って休止する必要があり、ま
た軟質ボール洗浄および硬質ボール洗浄は運転中でも可
能であるが洗浄評価については設備を一時休止する必要
がある。さらに上記汚れの発生状況は水温、季節等の様
々な要因の影響を受けやすく、規則性がない。
[0004] Therefore, it is necessary to appropriately remove such stains on the members due to slime and the like by a cleaning method such as soft ball cleaning, hard ball cleaning, jet cleaning, brush cleaning, or the like. However, in order to perform brush cleaning or jet cleaning, it is necessary to stop the equipment for a long period of time (several days), and although soft ball cleaning and hard ball cleaning can be done during operation, the equipment must be temporarily stopped for cleaning evaluation. There is a need. Furthermore, the occurrence of the above-mentioned stains is easily influenced by various factors such as water temperature and season, and there is no regularity.

【0005】そのため、洗浄に要する設備の休止期間を
できるだけ少なくし、係る銅合金部材の汚れを効果的に
洗浄すべく、汚れの状態を適格にかつ設備を休止せずに
把握しておく必要がある。
[0005] Therefore, in order to minimize the downtime of the equipment required for cleaning and to effectively clean the dirt on the copper alloy parts, it is necessary to understand the state of the dirt properly and without stopping the equipment. be.

【0006】ところが、汚れの状態を目視により把握す
るには設備を休止せねばならず、定量的な判断もできな
い。また、係る付着物を採集して分析し、その結果を得
るには相当の日時と手間がかかり、しかも採集の際に設
備を休止しなければならないので、付着物量から汚れの
状態を直接把握することも困難である。
However, in order to visually check the state of contamination, the equipment must be shut down, and quantitative judgment cannot be made. In addition, it takes a considerable amount of time and effort to collect and analyze such deposits and obtain the results, and the equipment must be stopped during collection, so it is difficult to directly determine the state of dirt from the amount of deposits. It is also difficult.

【0007】このような汚れの把握方法として真空度偏
差値を利用する方法が従来から一般的に使用されている
。係る方法は、銅合金部材に汚れが付着すると熱貫流効
率の低下を生じ、発電プラント等の設備の蒸気側の真空
度に影響することを利用して、真空度偏差値から汚れの
状態を把握する方法であり、真空度偏差値が汚れの程度
と密接な関係があることは経験的に見出されている。 係る真空度偏差値は(実測真空度)−(予想真空度)の
値であり、予想真空度は設備の容量、ポンプ数、冷却水
温等に基づいて設備ごとに演算で求める値である。
[0007] Conventionally, a method using a vacuum degree deviation value has been generally used as a method for determining such contamination. This method utilizes the fact that when dirt adheres to copper alloy members, it causes a decrease in heat transfer efficiency, which affects the degree of vacuum on the steam side of equipment such as power plants, and determines the state of dirt from the degree of vacuum deviation value. It has been empirically found that the degree of vacuum deviation value is closely related to the degree of contamination. The degree of vacuum deviation value is the value of (actual degree of vacuum) - (estimated degree of vacuum), and the expected degree of vacuum is a value calculated for each facility based on the capacity of the facility, the number of pumps, the cooling water temperature, etc.

【0008】ところで、復水器、熱交換器等の設備は通
常複数の熱交換ユニット(コンデンサー;各ユニットは
一般に複数の冷却用管と2つの水室を具備する)を具備
しており、ユニット毎に汚れの状態は異なることが分か
っている。しかしながら、上記真空度偏差値を利用する
方法の場合、上記設備の蒸気側は通常設備全体で一つと
なっていることから、設備全体で平均的にしか汚れの状
態を把握することができない。そのため従来は、設備の
一部ユニットに汚れが集中した場合には検知し辛く、本
来なら一ユニットのみを早期に軟質ボール洗浄等すれば
足りる場合であっても、結果的に全ユニットをブラシ洗
浄せざるを得なくなることがあった。
By the way, equipment such as condensers and heat exchangers usually includes a plurality of heat exchange units (condensers; each unit generally includes a plurality of cooling pipes and two water chambers), and the unit It is known that the state of dirt differs depending on the situation. However, in the case of the method using the vacuum degree deviation value, since the steam side of the equipment is usually one in the entire equipment, it is possible to grasp the state of contamination only on average for the entire equipment. Therefore, in the past, it was difficult to detect when dirt was concentrated in one unit of the equipment, and even if it would have been sufficient to clean only one unit with a soft ball at an early stage, all units ended up being cleaned with a brush. There were times when I had no choice but to do it.

【0009】[0009]

【発明が解決しようとする課題】本発明は上記従来技術
の問題に鑑みて成されたものであり、海水等を冷却水と
して使用する復水器、熱交換器等の設備における銅合金
部材の表面に形成するスライム等の汚れ具合を該設備の
ユニット毎にかつリアルタイムに把握し、その汚れを管
理することによって、該設備を効率的に適正稼働状態に
維持することが可能な方法を提供することを目的とする
ものである。
OBJECTS OF THE INVENTION The present invention has been made in view of the above-mentioned problems of the prior art, and is directed to the use of copper alloy members in equipment such as condensers and heat exchangers that use seawater as cooling water. To provide a method capable of efficiently maintaining equipment in a proper operating condition by grasping the degree of dirt such as slime formed on the surface in real time for each unit of the equipment and managing the dirt. The purpose is to

【0010】0010

【課題を解決するための手段および作用】本発明者らは
上記課題を解決すべく鋭意研究した結果、銅合金部材の
自然電位が該銅合金部材の汚れの程度と非常に密接な関
係があることを見出し、本発明に到達した。
[Means and effects for solving the problem] As a result of intensive research to solve the above problems, the present inventors found that the natural potential of a copper alloy member has a very close relationship with the degree of contamination of the copper alloy member. They discovered this and arrived at the present invention.

【0011】すなわち、本発明の銅合金部材の汚れの管
理方法は、冷却水を必要とする設備に使用される銅合金
部材を電気防食法と該部材の表面に鉄皮膜を形成させる
ことによる防食法とを併用して防食する際における該銅
合金部材の汚れの管理において、該冷却水中に設けた電
極から該冷却水を通じて該銅合金部材に通電する電流回
路と、該銅合金部材の電位を測定する電位測定回路とを
有する通電装置を用いて、該通電を一時的に遮断した後
に陰極(銅合金部材)電位が減衰して安定するところの
自然電位を求める工程と、該自然電位を予め定められた
基準値と比較する工程と、該自然電位が該基準値より貴
になると該銅合金部材の汚れを洗浄する工程とからなる
ことを特徴とする方法である。
That is, the method of controlling stains on copper alloy members of the present invention is to prevent corrosion of copper alloy members used in equipment that requires cooling water by applying the cathodic protection method and forming an iron coating on the surface of the member. In controlling the contamination of the copper alloy member when corrosion prevention is performed in combination with the method, a current circuit that conducts electricity from an electrode provided in the cooling water to the copper alloy member through the cooling water, and a potential of the copper alloy member are controlled. A step of determining the natural potential at which the potential of the cathode (copper alloy member) attenuates and becomes stable after temporarily interrupting the current supply using an energizing device having a potential measuring circuit to be measured; This method is characterized by comprising a step of comparing it with a predetermined reference value, and a step of cleaning the copper alloy member to remove dirt when the natural potential becomes nobler than the reference value.

【0012】本発明の対象となる銅合金部材は、表面が
海水、淡水等の冷却水と接しており、電気防食法と鉄皮
膜による防食法とを併用して防食されているものである
。上記の電気防食法および鉄皮膜による防食法はいずれ
も特に制限されない。例えば、鉄皮膜による防食法とし
ては硫酸第1鉄溶液の導入あるいは鉄電極を用いた鉄電
解法等によって鉄皮膜形成用の鉄イオンを供給する方法
がある。
The surface of the copper alloy member to which the present invention is directed is in contact with cooling water such as seawater or fresh water, and is protected against corrosion by a combination of cathodic protection and corrosion protection using an iron coating. Neither the above-mentioned cathodic protection method nor the corrosion protection method using an iron coating is particularly limited. For example, as a corrosion prevention method using an iron coating, there is a method of supplying iron ions for forming an iron coating by introducing a ferrous sulfate solution or by iron electrolysis using an iron electrode.

【0013】本発明において汚れの程度の指標として求
める自然電位は、通電していない時の銅合金部材(陰極
)の電位(復極安定電位)であり、すなわち通電を遮断
した後に減衰して安定したところの陰極電位である。 通常、陰極電位が真の自然電位になるには通電遮断後約
5分間を要する。
In the present invention, the natural potential determined as an index of the degree of contamination is the potential of the copper alloy member (cathode) when no current is applied (depolarized stable potential), that is, the potential attenuates and becomes stable after the current is cut off. This is the cathode potential. Usually, it takes about 5 minutes after the current supply is cut off for the cathode potential to reach the true natural potential.

【0014】本発明にあっては上記自然電位を実際に測
定してもよいが、電気防食の効果および測定作業上の観
点から、通電遮断時間をできるだけ短縮して自然電位を
得ることが好ましく、下記式(1)             En=E60+(E60−E
50)                    (1
)[式(1)中、Enは自然電位、E50は通電を遮断
してから50秒後の陰極電位、E60は通電を遮断して
から60秒後の陰極電位をそれぞれ示す]に基づいて求
めることが最も好ましい。下記式(1)に基づいて求め
た自然電位は実測した値と略一致するので、この方法に
よって約1分で自然電位を求めることが可能である。
In the present invention, the above-mentioned natural potential may be actually measured, but from the viewpoint of the effectiveness of cathodic protection and the measurement work, it is preferable to obtain the natural potential by shortening the current cut-off time as much as possible. The following formula (1) En=E60+(E60-E
50) (1
) [In formula (1), En is the natural potential, E50 is the cathode potential 50 seconds after the energization is cut off, and E60 is the cathode potential 60 seconds after the energization is cut off]. is most preferable. Since the natural potential determined based on the following formula (1) substantially matches the actually measured value, it is possible to determine the natural potential in about 1 minute by this method.

【0015】また、本発明において用いる通電装置は、
冷却水中に設けた電極から冷却水を通じて銅合金部材に
通電する電流回路と、銅合金部材の電位を測定する電位
測定回路とを有するものであればよく、外部電源方式に
よる電気防食装置を兼ねたものであると装置が煩雑とな
らないので好ましい。また、かかる通電装置を電気防食
装置と別に設けてもよい。なお、対象とする設備が複数
のユニットからなるものである場合は、上記通電装置を
ユニット毎に設けて各ユニットにおける自然電位を求め
ることが好ましい。
[0015] Furthermore, the energizing device used in the present invention is
It is sufficient that it has a current circuit that passes current through the cooling water to the copper alloy member from an electrode provided in the cooling water, and a potential measurement circuit that measures the potential of the copper alloy member, and it also serves as a cathodic protection device using an external power source. This is preferable because the device does not become complicated. Further, such an energizing device may be provided separately from the cathodic protection device. In addition, when the target equipment consists of a plurality of units, it is preferable to provide the above-mentioned energizing device for each unit and obtain the natural potential in each unit.

【0016】本発明にあっては、上記自然電位を予め定
められた基準値と比較し、自然電位が基準値より貴の場
合は銅合金部材の汚れを洗浄する。上記基準値は操業条
件や環境条件等によって変化するので一律に定めること
は困難であり、設備毎あるいはそのユニット毎に設定す
る必要がある。上記基準値の設定にあたっては、前記鉄
皮膜の防食効果の低下および/または前記設備の熱貫流
効率の低下が許容範囲を超えないように経験的に定める
ことが好ましい。具体的には例えば、銅合金部材への付
着物量を一定期間測定してそのデータから設定しても良
く、また上記従来の真空度偏差値を参考にして設定して
もよい。そして、設備をより厳しく管理する場合は基準
値をより卑の値に設定するようにすればよい。また、上
記基準値を自然電位のバラツキ等を見越してある程度の
幅をもって設定し、その範囲に入ったら洗浄の準備をし
、その範囲より貴となったら直ちに洗浄するようにして
もよい。
In the present invention, the natural potential is compared with a predetermined reference value, and if the natural potential is nobler than the reference value, the copper alloy member is cleaned of dirt. The above standard values vary depending on operating conditions, environmental conditions, etc., so it is difficult to set them uniformly, and it is necessary to set them for each piece of equipment or each unit. In setting the above reference value, it is preferable to determine it empirically so that the decrease in the anticorrosion effect of the iron coating and/or the decrease in the heat transfer efficiency of the equipment does not exceed an allowable range. Specifically, for example, the amount of deposits on the copper alloy member may be measured for a certain period of time and the value may be set based on the data, or the value may be set with reference to the conventional degree of vacuum deviation value. If the equipment is to be managed more strictly, the standard value may be set to a lower value. Alternatively, the reference value may be set within a certain range in anticipation of variations in the natural potential, and when the range falls within that range, preparations for cleaning may be made, and when it becomes higher than that range, the cleaning may be performed immediately.

【0017】また、前記の汚れを洗浄する方法は特に制
限されず、汚れの程度等に応じて選択されるが、設備の
休止期間が短くてすむ(数時間)ことから軟質ボール洗
浄または硬質ボール洗浄が好ましく、良好な鉄皮膜を除
去する危険性が少ない軟質ボール洗浄が最も好ましい。
[0017] The method for cleaning the dirt is not particularly limited and is selected depending on the degree of dirt, etc., but soft ball cleaning or hard ball cleaning is preferred since the downtime of the equipment is short (several hours). Cleaning is preferred, with soft ball cleaning being most preferred as there is less risk of removing a good iron coating.

【0018】以上説明した本発明の銅合金部材の汚れの
管理方法は、それだけでも充分に汚れの管理が可能であ
るが、もちろんより慎重を期すために従来の真空度偏差
値を利用する方法等と併せて行なってもよい。
The above-described method of controlling stains on copper alloy members of the present invention can sufficiently control stains by itself, but of course, in order to be more careful, conventional methods such as using the deviation value of the degree of vacuum may be used. It may be done in conjunction with.

【0019】また、本発明の銅合金部材の汚れの管理方
法を、本出願人らによる鉄皮膜抵抗の計測方法(特開昭
59−147247号公報)と併せて用いるとなお好ま
しい。この鉄皮膜抵抗の計測方法は、銅合金部材表面に
形成される鉄皮膜の抵抗値測定に際し、重畳されて計測
される鉄皮膜抵抗値(Rf)、分極抵抗値(Rd)およ
び測定上のIR降下分を含んだ第3成分抵抗値(Rx)
から鉄皮膜抵抗値(Rf)のみを分離して計測すること
を可能とし、係る鉄皮膜抵抗値(Rf)に基づいて鉄皮
膜の状態を把握できるようにする方法である。
Furthermore, it is even more preferable to use the method for controlling contamination of copper alloy members of the present invention in conjunction with the method for measuring iron film resistance (Japanese Patent Application Laid-open No. 147247/1983) proposed by the present applicant. This iron film resistance measurement method involves measuring the iron film resistance (Rf), polarization resistance (Rd), and measured IR Third component resistance value (Rx) including drop
This method makes it possible to separate and measure only the iron film resistance value (Rf) from the iron film resistance value (Rf), and to grasp the state of the iron film based on the iron film resistance value (Rf).

【0020】すなわち、上記鉄皮膜抵抗の計測方法は、
冷却水を必要とする設備に使用される銅合金部材を電気
防食法と該部材の表面に鉄皮膜を形成させることによる
防食法とを併用して防食する際における該防食用鉄皮膜
の管理において、電流測定回路と電位測定回路とを有す
る通電装置を用いて、通電時の陰極電位と通電電流値I
とを測定する工程と、通電を一時的に遮断し、減衰して
いく陰極電位を、該陰極電位が安定するところの自然電
位になるまで若しくは該自然電位の予測が可能になるま
で測定する工程と、該通電遮断後の陰極電位と該自然電
位との差である電位変化値Vを通電を遮断してからの時
間ごとに求める工程と、該電位変化値の対数logVの
時間に対する減衰曲線(イ)を得る工程と、該減衰曲線
(イ)が指数的な減少傾向から直線的な減少傾向に移行
した後の、該対数logVの時間に対する回帰直線(ロ
)を求める工程と、該減衰曲線(イ)と該回帰直線(ロ
)との差である鉄皮膜抵抗成分電位Vf を通電を遮断
してからの時間ごとに求める工程と、該鉄皮膜抵抗成分
電位Vf の対数logVfの時間に対する回帰直線(
ハ)を求める工程と、該回帰直線(ハ)から通電を遮断
した瞬間の鉄皮膜抵抗成分電位Vf(t=0)を求める
工程と、得られた鉄皮膜抵抗成分電位Vf (t=0)
 および通電電流値Iを用いて下記式 Rf ={Vf(t=0)/I}×{S/K}[式中、
Rf は鉄皮膜抵抗値、Sは通電対象面積、Kは通電電
流配分比率をそれぞれ示す]から鉄皮膜抵抗値Rf を
求める工程とからなることを特徴とする方法である。そ
して、上記鉄皮膜抵抗値Rf は鉄皮膜の状態と密接な
関係があることを利用して鉄皮膜抵抗値Rf から鉄皮
膜の状態を把握し、通電電流量の調節等によって鉄皮膜
の管理を可能とする方法である。
That is, the method for measuring the iron film resistance is as follows:
In the management of anti-corrosion iron coatings when copper alloy members used in equipment requiring cooling water are protected from corrosion using a combination of cathodic protection method and anti-corrosion method by forming an iron coating on the surface of the member. , using a current-carrying device having a current measurement circuit and a potential measurement circuit, the cathode potential and the current value I during energization are determined.
and a step of temporarily interrupting the current flow and measuring the decaying cathode potential until the cathode potential reaches a stable natural potential or until the natural potential can be predicted. , a step of obtaining a potential change value V, which is the difference between the cathode potential after the energization is cut off and the natural potential, for each time after the energization is cut off, and a decay curve of the logarithm logV of the potential change value with respect to time ( (b) obtaining the regression line (b) of the logarithm logV over time after the attenuation curve (a) shifts from an exponential decreasing trend to a linear decreasing trend, and the attenuation curve The process of determining the iron film resistance component potential Vf, which is the difference between (a) and the regression line (b), for each time after the current supply is cut off, and the regression of the logarithm logVf of the iron film resistance component potential Vf with respect to time. Straight line (
(c), and the step of determining the iron film resistance component potential Vf (t=0) at the moment when the current is cut off from the regression line (c), and the obtained iron film resistance component potential Vf (t=0).
The following formula Rf = {Vf (t=0)/I} x {S/K} [in the formula,
This method is characterized by the step of determining the iron film resistance value Rf from the iron film resistance value, S the area to be energized, and K the energization current distribution ratio. Then, using the fact that the iron film resistance value Rf is closely related to the state of the iron film, the state of the iron film can be grasped from the iron film resistance value Rf, and the iron film can be managed by adjusting the amount of current flowing. This is a method that makes it possible.

【0021】なお、上記鉄皮膜抵抗の計測方法にあって
はその過程で自然電位を求めているが、その自然電位が
汚れの程度と密接な関係があることは全く見出されてお
らず、単に鉄皮膜抵抗値Rf を求めるために必要な値
であった。
[0021] In the above method for measuring iron film resistance, the natural potential is determined in the process, but it has not been found that the natural potential has any close relationship with the degree of contamination. It was simply a value necessary to determine the iron film resistance value Rf.

【0022】このような鉄皮膜抵抗の計測方法と本発明
の銅合金部材の汚れの管理方法とを併せて行なうことに
よって、自然電位から汚れの管理が、さらに鉄皮膜抵抗
値Rf から鉄皮膜の状態の把握が同一の装置でしかも
同時に可能となり、設備をより効率的に適正稼働状態に
維持することが可能となる。
By combining such a method for measuring iron film resistance with the method for controlling contamination of copper alloy members of the present invention, contamination can be managed from the natural potential and furthermore, the iron film resistance can be determined from the iron film resistance value Rf. It becomes possible to grasp the status using the same device at the same time, and it becomes possible to maintain the equipment in a proper operating state more efficiently.

【0023】以下、本発明の銅合金部材の汚れの管理方
法と上記鉄皮膜抵抗の計測方法とを併せて行なう場合を
例にとって図面を参照してより詳細に説明する。
[0023] Hereinafter, an example in which the method for controlling contamination of a copper alloy member of the present invention and the method for measuring iron film resistance described above are carried out together will be described in more detail with reference to the drawings.

【0024】図1は電気防食法として外部電源方式によ
る防食法を実施する復水器において本発明の管理方法を
実施するための通電装置の一例を示すブロック図である
FIG. 1 is a block diagram showing an example of an energizing device for implementing the management method of the present invention in a condenser that implements a corrosion protection method using an external power source as a cathodic protection method.

【0025】図1において、水室5内には通電用の電極
1、並びに管板面2および冷却管3(銅合金部材)の電
位を検出するための亜鉛基準電極4が設置されている。 そして、直流電源装置6は電流測定回路(同図中のA)
および電位測定回路(同図中のE)を有するものであり
、基準電極4によって照合させた適正電位を維持するよ
うに通電電流の調整を行なうようになっている。また、
図1中の7は後述する計測装置である。さらに、図示は
しないが、上記復水器には鉄電解装置、硫酸第一鉄の導
入装置、あるいは鉄電極を設ける等して鉄イオンを冷却
水中に供給するようになっている。
In FIG. 1, a water chamber 5 is provided with an electrode 1 for conducting current, and a zinc reference electrode 4 for detecting the potential of the tube plate surface 2 and the cooling tube 3 (copper alloy member). The DC power supply device 6 is a current measuring circuit (A in the figure).
and a potential measuring circuit (E in the figure), which adjusts the applied current so as to maintain the appropriate potential compared with the reference electrode 4. Also,
7 in FIG. 1 is a measuring device to be described later. Further, although not shown, the condenser is equipped with an iron electrolysis device, a device for introducing ferrous sulfate, or an iron electrode to supply iron ions into the cooling water.

【0026】本発明の銅合金部材の汚れの管理方法を実
施するにあたっては、通電を一時的に遮断した後に上記
電位測定回路によって上記自然電位が測定される。また
、自然電位を上記式(1)に基づいて求める場合は、通
電を遮断してから50秒後と60秒後の陰極電位を上記
電位測定回路によって測定し、それらのデータから計測
装置7によって自然電位が求められる。そして計測装置
7によって上記自然電位を予め定められた基準値と比較
し、自然電位が基準値より貴になった場合に銅合金部材
の汚れを洗浄する手段(図示せず)を作動させる。洗浄
手段を作動させる手段は特に制限されず、係る場合に信
号を発するようにしておき、手動的に洗浄手段を作動さ
せても、あるいは自動的に作動させてもよい。
[0026] In carrying out the method for controlling contamination of a copper alloy member of the present invention, the natural potential is measured by the potential measuring circuit after the current supply is temporarily cut off. In addition, when determining the natural potential based on the above formula (1), the cathode potential 50 seconds and 60 seconds after the current supply is cut off is measured by the above potential measuring circuit, and from these data, the measuring device 7 The natural potential is required. Then, the measuring device 7 compares the natural potential with a predetermined reference value, and when the natural potential becomes nobler than the reference value, means (not shown) for cleaning the copper alloy member from dirt is activated. The means for activating the cleaning means is not particularly limited, and a signal may be emitted in such a case, and the cleaning means may be activated manually or automatically.

【0027】また、上記鉄皮膜抵抗の計測方法を併せて
行なう場合は、上記電流測定回路および電位測定回路に
よって通電時の陰極電位、通電電流値Iおよび通電遮断
後の陰極電位を測定し、それらのデータから計測装置7
によって鉄皮膜抵抗値Rf が求められる。
[0027] When the above-mentioned method for measuring iron film resistance is also carried out, the cathode potential during energization, the energization current value I, and the cathode potential after energization is interrupted are measured by the above-mentioned current measuring circuit and potential measuring circuit, and these are measured. Measuring device 7 from the data of
The iron film resistance value Rf is determined by:

【0028】図2は上記計測装置7の一例のブロック図
である。
FIG. 2 is a block diagram of an example of the measuring device 7. As shown in FIG.

【0029】図2において、8は演算および計測装置全
体の制御を行う中央処理部(CPU)、9は計測処理手
順、測定された陰極電位等の各種パラメータ、並びに予
め定められた基準値等を記憶する記憶部、10は複数点
入力される電位、電流のアナログ信号の切換器、11は
電位、電流のアナログ信号をデジタル信号に変換するア
ナログ→デジタル信号変換器、12は測定結果、操作指
令等を表示できる文字盤、13は計測装置に対し各種パ
ラメータ等をインプットするためのキーボード部、14
は測定を行う時等に用いるチャンネルセレクトスイッチ
部、15は測定結果あるいは設定パラメータの内容等を
用紙に印刷可能なプリンター部、16は計測装置に電力
を供給する電源部である。
In FIG. 2, 8 is a central processing unit (CPU) that performs calculations and controls the entire measuring device, and 9 is a central processing unit (CPU) that performs calculations and controls the entire measuring device. 10 is a switch for potential and current analog signals input at multiple points; 11 is an analog-to-digital signal converter that converts potential and current analog signals into digital signals; 12 is measurement results and operation commands; 13 is a keyboard section for inputting various parameters etc. to the measuring device; 14 is a keyboard section for inputting various parameters etc. to the measuring device;
Reference numeral 15 indicates a channel select switch unit used when performing measurements, 15 a printer unit capable of printing measurement results or setting parameter contents, etc. on paper, and 16 a power supply unit that supplies power to the measuring device.

【0030】図3は自然電位Enおよび鉄皮膜抵抗値R
f から汚れおよび鉄皮膜の状態を同時に把握するため
の概念図である。
FIG. 3 shows the natural potential En and the iron film resistance value R.
It is a conceptual diagram for simultaneously grasping the state of dirt and iron coating from f.

【0031】スライム等による汚れが大きくなると自然
電位Enが貴になるという密接な関係がある。また、鉄
皮膜が厚く、耐食性が高くなると鉄皮膜抵抗値Rf が
大きくなるという密接な関係がある。従って、自然電位
および鉄皮膜抵抗値についてある基準値を予め定めると
、それらの値に基づいて図3に示すように鉄皮膜および
汚れの具合が把握される4つの区域(破線で区分されて
いる)に分けられる。
There is a close relationship in that the natural potential En becomes nobler as the dirt due to slime etc. increases. Furthermore, there is a close relationship in that the thicker the iron coating and the higher the corrosion resistance, the greater the iron coating resistance value Rf. Therefore, by predetermining certain reference values for the natural potential and the iron film resistance value, based on these values, the condition of the iron film and dirt can be determined as shown in Figure 3 in four areas (divided by broken lines). ).

【0032】従って、設備またはユニット毎に図3のよ
うな自然電位と鉄皮膜抵抗値との関係図を作成し、それ
らの目標基準値を予め定めておけば、実測した自然電位
および鉄皮膜抵抗値を同図中にプロットすることによっ
て対象とする設備の銅合金部材の汚れおよび鉄皮膜の状
態を同時にかつ容易に把握することが可能である。
Therefore, if a relationship diagram between the natural potential and the iron film resistance value as shown in FIG. By plotting the values in the same figure, it is possible to simultaneously and easily grasp the contamination of the copper alloy members of the target equipment and the condition of the iron coating.

【0033】そして、鉄皮膜抵抗値が基準値以下であれ
ば鉄イオンを供給する等して鉄皮膜の強化を図り、また
自然電位が基準値より貴であればボール洗浄等によって
汚れを除去する指示を与えることが可能である。
[0033] If the iron film resistance value is below the standard value, the iron film is strengthened by supplying iron ions, etc., and if the natural potential is nobler than the standard value, dirt is removed by ball cleaning etc. It is possible to give instructions.

【0034】図4に本発明の銅合金部材の汚れの管理方
法を上記鉄皮膜抵抗の計測方法および真空度偏差値を利
用する方法と共に行なう際のフローの一例を示す。
FIG. 4 shows an example of a flow when the method for controlling contamination of a copper alloy member according to the present invention is carried out together with the method for measuring iron film resistance and the method using the vacuum degree deviation value.

【0035】図4において、En は自然電位(mV)
、Rf は鉄皮膜抵抗値(Ω・m2)、Rd は分極抵
抗(Ω・m2)、ΔHは真空度偏差値、tは入口水室温
度(℃)、グレードA洗浄はブラシ洗浄、グレードB洗
浄は硬質ボール洗浄、通常洗浄は軟質ボール洗浄をそれ
ぞれ示す。
In FIG. 4, En is the natural potential (mV)
, Rf is iron film resistance (Ω・m2), Rd is polarization resistance (Ω・m2), ΔH is vacuum degree deviation value, t is inlet water chamber temperature (℃), Grade A cleaning is brush cleaning, Grade B cleaning indicates hard ball cleaning, and normal cleaning indicates soft ball cleaning.

【0036】図4のフローに示すように、自然電位En
 、鉄皮膜抵抗値Rf 、真空度偏差値ΔH等の測定、
記憶、演算、指令等が自動的に行なわれる。自然電位E
n および鉄皮膜抵抗値Rf は対象設備の各ユニット
毎に測定され、それらの値を各々の基準値に基づく図3
のような概念図にプロットして該プロットの時間的推移
を観察することによって汚れ具合および鉄皮膜の状況が
把握される。そして、上記概念図におけるプロットの位
置、すなわち汚れ具合および鉄皮膜の状況に応じてスラ
イム等の汚れ具合に基づく管内洗浄の要・不要、鉄イオ
ン供給装置の運転あるいは停止が各ユニット毎に判断さ
れ、設備の運転を停止することなくリアルタイムに適格
な指示を行なうことができる。また、設備全体の汚れ具
合を念の為に真空度偏差値ΔHによっても管理しており
、真空度偏差値ΔHが基準値を超えた場合は設備全体を
完全に休止してブラシ洗浄することとしてある。なお、
図4に示した各基準値は実設備における一例を示したも
のであって、各設備または各ユニット毎に経験的に定め
られるものである。
As shown in the flowchart of FIG. 4, the natural potential En
, measurement of iron film resistance value Rf, vacuum degree deviation value ΔH, etc.
Memory, calculations, commands, etc. are performed automatically. natural potential E
n and the iron film resistance value Rf are measured for each unit of the target equipment, and their values are shown in Figure 3 based on each standard value.
By plotting on a conceptual diagram like this and observing the time course of the plot, the degree of contamination and the condition of the iron coating can be grasped. Then, depending on the position of the plot in the above conceptual diagram, that is, the degree of contamination and the condition of the iron coating, it is determined for each unit whether cleaning the inside of the pipe is necessary or unnecessary, and whether the iron ion supply device should be operated or stopped based on the degree of contamination such as slime. , it is possible to give appropriate instructions in real time without stopping equipment operation. In addition, the degree of contamination of the entire equipment is also managed by the vacuum degree deviation value ΔH, and if the vacuum degree deviation value ΔH exceeds the standard value, the entire equipment is completely shut down and brush cleaning is performed. be. In addition,
Each reference value shown in FIG. 4 shows an example in actual equipment, and is determined empirically for each equipment or each unit.

【0037】[0037]

【実施例】以下、実施例に基づいて本発明をより詳細に
説明するが、これによって本発明の管理方法が限定され
るものではない。
EXAMPLES The present invention will be explained in more detail below based on Examples, but the management method of the present invention is not limited thereby.

【0038】実施例 外部電源方式による電気防食装置と鉄電解法による鉄イ
オン供給装置を設けた火力発電所の復水器の1ユニット
について本発明の管理方法を適用した。なお、本実施例
においてはそのユニットだけの真空度偏差値ΔHを測定
するため、他のユニットは閉鎖して行なった。対象とす
る復水器は海水を冷却水として用いており、アルミニウ
ム黄銅冷却管とネーバル黄銅管板とを具備するものであ
る。
EXAMPLE The management method of the present invention was applied to one unit of a condenser in a thermal power plant equipped with a cathodic protection device using an external power source and an iron ion supply device using iron electrolysis. In this example, since the vacuum degree deviation value ΔH of only that unit was measured, the other units were closed. The target condenser uses seawater as cooling water and is equipped with aluminum brass cooling pipes and naval brass tube plates.

【0039】(基準値の設定)先ず、対象となる復水器
における自然電位Enおよび鉄皮膜抵抗値Rf の各々
の基準値を求めるための事前調査を行なった。
(Setting of reference values) First, a preliminary investigation was conducted to determine reference values for each of the natural potential En and the iron film resistance value Rf in the target condenser.

【0040】電気防食および鉄イオン供給を6ヶ月行な
って生物やマンガンスケール等のスライム付着物が蓄積
した復水器の管内をジェット洗浄した。その後、電気防
食および鉄イオン供給を再開し、約3ヶ月間に亘って管
内付着物を定期的に採集して付着物量を測定した。また
、採集と同時に前述の計測装置を用いて自然電位En、
鉄皮膜抵抗値Rf および真空度偏差値ΔHを測定した
The inside of the condenser pipe, in which slime deposits such as living organisms and manganese scale had accumulated after 6 months of electrolytic protection and iron ion supply, was jet-cleaned. Thereafter, electrolytic protection and iron ion supply were restarted, and deposits inside the pipe were periodically collected over a period of approximately 3 months to measure the amount of deposits. In addition, at the same time as the collection, the natural potential En,
The iron film resistance value Rf and the degree of vacuum deviation value ΔH were measured.

【0041】なお、自然電位En は飽和甘汞電極(S
CE)基準で前記式(1)に基づいて求めたが、表1か
ら明らかなように、その値は実測した自然電位(通電遮
断後5分後の陰極電位)と充分に一致するものであった
[0041] Note that the natural potential En is saturated at the saturated electrode (S
CE) standard based on the above formula (1), and as is clear from Table 1, the value is in good agreement with the actually measured natural potential (cathode potential 5 minutes after energization is interrupted). Ta.

【0042】[0042]

【表1】 。[Table 1] .

【0043】図5に付着物量と自然電位En および鉄
皮膜抵抗値Rf との関係を示したグラフ、図6に付着
物量と真空度偏差値ΔHとの関係を示したグラフ、図7
に真空度偏差値ΔHと自然電位En および鉄皮膜抵抗
値Rf との関係を示したグラフをそれぞれ示す。
FIG. 5 is a graph showing the relationship between the amount of deposits and the natural potential En and the iron film resistance value Rf, FIG. 6 is a graph showing the relationship between the amount of deposits and the degree of vacuum deviation value ΔH, and FIG.
Graphs showing the relationship between the degree of vacuum deviation value ΔH, the natural potential En, and the iron film resistance value Rf are shown in FIG.

【0044】図5から明らかなように、自然電位En 
は付着物量と密接な関係があり、管内付着物量(生物や
マンガンスケール等のスライム量)の増加に伴って自然
電位En は貴化し、他方鉄皮膜抵抗値Rf は低下し
ている。
As is clear from FIG. 5, the natural potential En
is closely related to the amount of deposits, and as the amount of deposits inside the pipe (the amount of slime such as living things and manganese scale) increases, the natural potential En becomes nobler, while the iron film resistance value Rf decreases.

【0045】また、真空度偏差値ΔHは従来から実際の
操業において設備全体の汚れの具合を把握するための指
標として広く使用されており、図6に示すように付着物
量と密接な関係がある(但し、複数のユニットを具備す
る通常の設備にあっては付着物量は全ユニットで均一で
はないので、各ユニット毎に汚れの具合を把握すること
はできない)。
In addition, the degree of vacuum deviation value ΔH has been widely used as an index to grasp the degree of contamination of the entire equipment in actual operation, and as shown in FIG. 6, it has a close relationship with the amount of deposits. (However, in normal equipment equipped with multiple units, the amount of deposits is not uniform across all units, so it is not possible to determine the level of contamination for each unit.)

【0046】そこで、本実施例においては真空度偏差値
ΔHを参考にして自然電位En および鉄皮膜抵抗値R
f の基準値を定める。すなわち、従来、真空度偏差値
ΔHが2〜3mmHgになるとボール洗浄を行なうこと
が好ましかった場合、例えば真空度偏差値ΔH=3mm
Hgを基準とする。そして、その値に対応する付着物量
は図6から4.5mg/cm2である。従って、付着物
量を4.5mg/cm2以下に管理するためには図5か
ら自然電位En の基準値を−150mV(SCE)に
定めればよいことが分かる。また、鉄皮膜抵抗値Rf 
はそれに対応する0.65Ω・m2とすればよい。
Therefore, in this embodiment, the natural potential En and the iron film resistance value R are determined with reference to the degree of vacuum deviation value ΔH.
Define the standard value of f. That is, in the case where conventionally it was preferable to perform ball cleaning when the vacuum degree deviation value ΔH was 2 to 3 mmHg, for example, if the vacuum degree deviation value ΔH = 3 mmHg,
Based on Hg. The amount of deposits corresponding to this value is 4.5 mg/cm 2 from FIG. 6 . Therefore, in order to control the amount of deposits to 4.5 mg/cm2 or less, it can be seen from FIG. 5 that the reference value of the natural potential En should be set to -150 mV (SCE). In addition, the iron film resistance value Rf
may be set to 0.65Ω·m2 corresponding to that value.

【0047】また、図7に示す真空度偏差値ΔHと自然
電位En および鉄皮膜抵抗値Rf との関係に基づい
て、真空度偏差値ΔHから直接各基準値を定めてもよい
Further, each reference value may be determined directly from the vacuum degree deviation value ΔH based on the relationship between the vacuum degree deviation value ΔH, the natural potential En, and the iron film resistance value Rf shown in FIG.

【0048】このように各基準値を設定すると、図5か
ら明らかなように、自然電位En が−150mVより
貴になる程汚れが顕著(付着物量が4.5mg/cm2
超)で熱貫流効率の低下を招き、また鉄皮膜抵抗値Rf
 が0.65Ω・m2以下になると鉄皮膜の防食効果が
スライム付着による汚れの蓄積で低下していることが把
握できるので、ボール洗浄等で管内を洗浄する警報の告
知基準となる。
When each reference value is set in this manner, as is clear from FIG.
super), leading to a decrease in heat transfer efficiency, and the iron film resistance value Rf
If it becomes 0.65Ω・m2 or less, it can be seen that the anticorrosion effect of the iron coating is reduced due to the accumulation of dirt due to slime adhesion, and this becomes the standard for issuing an alarm to clean the inside of the pipe by cleaning the ball or the like.

【0049】従って、上記の各基準値に基づいて、自然
電位Enおよび鉄皮膜抵抗値Rf から汚れおよび鉄皮
膜の状態を同時に把握することができる概念図が得られ
る(図8)。そして、自然電位および鉄皮膜抵抗値の実
測値を同図中にプロットすることによって対象とする部
材の汚れおよび鉄皮膜の状態を同時にかつ容易に把握す
ることができ、適切な対応をリアルタイムにとることが
できる。
Therefore, based on each of the above reference values, a conceptual diagram is obtained in which the state of the dirt and the iron coating can be determined simultaneously from the natural potential En and the iron coating resistance value Rf (FIG. 8). By plotting the actual measured values of natural potential and iron film resistance in the same figure, it is possible to simultaneously and easily grasp the contamination of the target member and the condition of the iron film, and take appropriate measures in real time. be able to.

【0050】なお、管理をより厳しくする場合は、例え
ば真空度偏差値ΔH=2mmHgを基準としてその値に
対応する自然電位En =−200mVおよび鉄皮膜抵
抗値Rf =0.7Ω・m2を基準値とすればよい。
[0050] If the control is to be more strict, for example, the vacuum degree deviation value ΔH = 2 mmHg is used as the reference value, and the corresponding natural potential En = -200 mV and iron film resistance value Rf = 0.7 Ω·m2 are set as the reference values. And it is sufficient.

【0051】(復水器の運転管理)次に、上記の基準値
を用いて実際に復水器の運転管理を行なった。
(Condenser Operation Management) Next, the condenser operation management was actually performed using the above reference values.

【0052】復水器の管内をジェット洗浄して内面を清
浄にした状態から電気防食および鉄イオン供給を開始し
、前述の計測装置を用いて自然電位En 、鉄皮膜抵抗
値Rfおよび真空度偏差値ΔHを約4ヶ月間測定した。
After jet cleaning the inside of the condenser pipe to clean the inner surface, electrolytic protection and iron ion supply are started, and the natural potential En, iron film resistance value Rf, and vacuum degree deviation are measured using the above-mentioned measuring device. The value ΔH was measured for about 4 months.

【0053】自然電位En および鉄皮膜抵抗値Rf 
の実測値を図8にプロットして得たグラフを図9に示す
。図9中、黒丸(・)は実測値を示し、矢線(→)は測
定および復水器稼働開始後の時間の経過を示す。なお、
測定開始は晩春であり、スライムの生成しやすい夏期を
経て初秋までの記録である。
Natural potential En and iron film resistance value Rf
A graph obtained by plotting the actual measured values in FIG. 8 is shown in FIG. In FIG. 9, the black circles (·) indicate actual measured values, and the arrows (→) indicate the passage of time after measurement and the start of condenser operation. In addition,
Measurements began in late spring and were recorded from summer, when slime tends to form, to early fall.

【0054】図9における測定値を経時的に見ると、測
定値は帯状となって移行しており、大きく4ブロックに
分けられる。すなわち、測定開始直後(晩春)は管内面
は清浄で、自然電位En は約−400mVでかつ鉄皮
膜抵抗値Rf が0.65Ω・m2以下であることから
、電気防食による防食効果が有効に働いていることが把
握できる。この間鉄イオンの供給も同時に行なっている
ので時間の経過と共に鉄皮膜抵抗値Rf は増大してい
る。また、鉄皮膜の形成に伴って徐々に自然電位Enが
貴化しているが、この時期は電気防食による防食効果が
支配的である。
Looking at the measured values in FIG. 9 over time, the measured values shift in a band-like manner and can be roughly divided into four blocks. In other words, immediately after the measurement started (late spring), the inner surface of the tube was clean, the natural potential En was approximately -400 mV, and the iron film resistance value Rf was 0.65 Ω・m2 or less, so the corrosion protection effect of cathodic protection was effective. It is possible to understand that During this time, since iron ions are being supplied at the same time, the iron film resistance value Rf increases with the passage of time. Furthermore, as the iron coating is formed, the natural potential En gradually becomes nobler, but at this stage, the corrosion protection effect due to electrolytic protection is dominant.

【0055】初夏になると鉄皮膜抵抗値Rf は急速に
増大し、自然電位En も貴化が進んでいることから、
形成された鉄皮膜が固まり、さらにスライムの付着が始
まったことが把握できる。この時期は電気防食による防
食から鉄皮膜による防食に次第に移行していることが分
かる。
In early summer, the iron film resistance value Rf increases rapidly, and the natural potential En also becomes more noble.
It can be seen that the formed iron film has hardened and that slime has started to adhere. It can be seen that during this period there was a gradual transition from corrosion protection by cathodic protection to corrosion protection by iron coating.

【0056】夏期になると自然電位En の貴化が著し
く、鉄皮膜抵抗値Rf はピーク値から急速に低下して
いることから、スライムの生成が盛んで、汚れが顕著に
なっていることが把握できる。この期間の終りには鉄皮
膜抵抗値Rf は0.65Ω・m2以下となり、かつ自
然電位En も−150mVより貴化したので、図4の
フローに従ってボール洗浄(軟質)を実施した。なお、
上記期間の終りには真空度偏差値ΔHも3mmHgを超
えていた。
In the summer, the natural potential En becomes more noble, and the iron film resistance value Rf rapidly decreases from its peak value, which indicates that slime production is active and dirt becomes noticeable. can. At the end of this period, the iron film resistance value Rf became 0.65 Ω·m2 or less, and the natural potential En also became nobler than -150 mV, so ball cleaning (soft) was carried out according to the flow shown in FIG. In addition,
At the end of the above period, the vacuum degree deviation value ΔH also exceeded 3 mmHg.

【0057】ボール洗浄を行なった結果、晩夏には自然
電位En および鉄皮膜抵抗値Rf が初夏の時期と略
同様まで回復し(図中斜線部)、汚れおよび鉄皮膜が良
好な状態に回復したことが把握できる。
As a result of ball cleaning, in late summer the natural potential En and the iron film resistance value Rf recovered to almost the same levels as in early summer (shaded area in the figure), and the dirt and iron film were restored to good condition. I can understand that.

【0058】以下に、上記測定期間における真空度偏差
値ΔHと冷却管内の鉄皮膜および汚れ具合とを表2に示
す。
Table 2 below shows the degree of vacuum deviation value ΔH and the degree of iron coating and dirt inside the cooling pipe during the above measurement period.

【0059】[0059]

【表2】 。[Table 2] .

【0060】表2から明らかなように、本発明の汚れの
管理方法と前記鉄皮膜抵抗の計測方法とを併せて行なっ
て自然電位Enおよび鉄皮膜抵抗値Rf から汚れおよ
び鉄皮膜の状態を把握した結果は、従来から行なわれて
いる真空度偏差値ΔH並びに冷却管内の鉄皮膜および汚
れ具合とよく対応しており、特に汚れ具合が適格に把握
されていることが分かる。
As is clear from Table 2, by combining the stain management method of the present invention and the iron coating resistance measurement method described above, it is possible to grasp the condition of the stain and iron coating from the natural potential En and the iron coating resistance value Rf. The results correspond well to the conventional vacuum degree deviation value ΔH and the iron coating and contamination within the cooling pipe, and it can be seen that the degree of contamination is particularly well understood.

【0061】さらに、本発明の汚れの管理方法に従って
洗浄を行なったところ、汚れおよび鉄皮膜が良好な状態
に回復したことから、本発明の方法が有効であることが
分かる。
Furthermore, when cleaning was carried out in accordance with the stain management method of the present invention, the stain and iron coating were restored to a good condition, which shows that the method of the present invention is effective.

【0062】[0062]

【発明の効果】以上説明した如く、本発明の管理方法に
よって、海水等を冷却水として使用する復水器、熱交換
器等の設備における冷却管、管板等の銅合金部材の表面
に形成するスライム等の汚れ具合をリアルタイムに把握
することが可能となる。そして、その汚れを管理するこ
とによって鉄皮膜の防食効果の低下および設備の熱貫流
効率の低下をユニット毎に防止でき、設備を効率的に適
正稼働状態に維持することが可能となる。
[Effects of the Invention] As explained above, the management method of the present invention prevents formation of formation on the surface of copper alloy members such as cooling pipes and tube sheets in equipment such as condensers and heat exchangers that use seawater as cooling water. It becomes possible to grasp the degree of dirt on slime, etc., in real time. By managing the dirt, it is possible to prevent a decrease in the anticorrosion effect of the iron coating and a decrease in the heat transfer efficiency of the equipment for each unit, and it is possible to efficiently maintain the equipment in a proper operating state.

【0063】また、本発明に係る自然電位は複数のユニ
ットからなる復水器、熱交換器等の設備においてユニッ
ト毎に測定できるので、本発明によればユニット毎にそ
の汚れの状態を把握することが可能となり、設備をユニ
ット毎に非常に効率的に管理することができる。
Furthermore, since the self-potential according to the present invention can be measured for each unit in equipment such as a condenser or heat exchanger that consists of a plurality of units, according to the present invention, the state of contamination can be ascertained for each unit. This makes it possible to manage equipment on a unit-by-unit basis very efficiently.

【0064】さらに、本発明の汚れの管理方法は鉄皮膜
抵抗の計測方法と併せて行なうことができ、そうするこ
とによって汚れの管理と鉄皮膜の状態とを同一の装置で
しかも同時に把握することが可能となり、設備をより効
率的に適正稼働状態に維持することが可能である。
Furthermore, the dirt management method of the present invention can be carried out in conjunction with the method for measuring iron film resistance, thereby making it possible to simultaneously monitor dirt management and the state of the iron film using the same device. This makes it possible to maintain equipment in proper operating conditions more efficiently.

【0065】従って、本発明によれば設備のトラブルは
未然に防止でき、万一異常が生じた場合にも直ちに処理
ができるので、設備を常に安全かつ効率的に操業するこ
とが可能となる。
Therefore, according to the present invention, troubles in the equipment can be prevented, and even if an abnormality occurs, it can be immediately dealt with, so that the equipment can be operated safely and efficiently at all times.

【図面の簡単な説明】[Brief explanation of the drawing]

【図1】本発明の管理方法を実施するための通電装置の
一例のブロック図である。
FIG. 1 is a block diagram of an example of an energizing device for implementing the management method of the present invention.

【図2】計測装置7の一例のブロック図である。FIG. 2 is a block diagram of an example of a measuring device 7. FIG.

【図3】自然電位および鉄皮膜抵抗値から汚れおよび鉄
皮膜の状態を同時に把握するための概念図である。
FIG. 3 is a conceptual diagram for simultaneously understanding the state of dirt and iron coating from the natural potential and iron coating resistance value.

【図4】本発明の銅合金部材の汚れの管理方法を上記鉄
皮膜抵抗の計測方法および真空度偏差値を利用する方法
と共に行なう際のフローの一例である。
FIG. 4 is an example of a flow when the method of controlling dirt on a copper alloy member of the present invention is carried out together with the method of measuring iron film resistance and the method of using a vacuum degree deviation value.

【図5】付着物量と自然電位En および鉄皮膜抵抗値
Rf との関係を示したグラフである。
FIG. 5 is a graph showing the relationship between the amount of deposits, the natural potential En, and the iron film resistance value Rf.

【図6】付着物量と真空度偏差値ΔHとの関係を示した
グラフである。
FIG. 6 is a graph showing the relationship between the amount of deposits and the degree of vacuum deviation value ΔH.

【図7】真空度偏差値ΔHと自然電位En および鉄皮
膜抵抗値Rf との関係を示したグラフである。
FIG. 7 is a graph showing the relationship between the degree of vacuum deviation value ΔH, the natural potential En, and the iron film resistance value Rf.

【図8】自然電位および鉄皮膜抵抗値から汚れおよび鉄
皮膜の状態を同時に把握するための概念図である。
FIG. 8 is a conceptual diagram for simultaneously understanding the state of dirt and iron coating from the natural potential and iron coating resistance value.

【図9】自然電位および鉄皮膜抵抗値の実測値を図8に
プロットしたグラフである。
FIG. 9 is a graph in which actual measured values of natural potential and iron film resistance are plotted in FIG.

【符号の説明】[Explanation of symbols]

1  通電用電極 2  管板面 3  冷却管 4  基準電極 5  水室 6  直流電源装置 7  計測装置 A  電流測定回路 E  電位測定回路 1 Electrifying electrode 2 Tube plate surface 3 Cooling pipe 4 Reference electrode 5 Water room 6 DC power supply device 7 Measuring device A Current measurement circuit E Potential measurement circuit

Claims (5)

【特許請求の範囲】[Claims] 【請求項1】  冷却水を必要とする設備に使用される
銅合金部材を電気防食法と該部材の表面に鉄皮膜を形成
させることによる防食法とを併用して防食する際におけ
る該銅合金部材の汚れの管理において、該冷却水中に設
けた電極から該冷却水を通じて該銅合金部材に通電する
電流回路と、該銅合金部材の電位を測定する電位測定回
路とを有する通電装置を用いて、該通電を一時的に遮断
した後に陰極(銅合金部材)電位が減衰して安定すると
ころの自然電位を求める工程と、該自然電位を予め定め
られた基準値と比較する工程と、該自然電位が該基準値
より貴になると該銅合金部材の汚れを洗浄する工程とか
らなることを特徴とする、銅合金部材の汚れの管理方法
[Claim 1] A method for preventing corrosion of copper alloy members used in equipment requiring cooling water by using a combination of cathodic protection method and corrosion prevention method by forming an iron coating on the surface of the member. In managing contamination of the member, an energizing device is used that has a current circuit that supplies current to the copper alloy member from an electrode provided in the cooling water through the cooling water, and a potential measurement circuit that measures the potential of the copper alloy member. , a step of determining the natural potential at which the cathode (copper alloy member) potential attenuates and stabilizes after the current supply is temporarily cut off; a step of comparing the natural potential with a predetermined reference value; A method for managing dirt on a copper alloy member, comprising the step of cleaning dirt on the copper alloy member when the potential becomes nobler than the reference value.
【請求項2】  前記自然電位を、下記式(1)   
         En=E60+(E60−E50)
                    (1)[式
(1)中、Enは自然電位(mV)、E50は通電を遮
断してから50秒後の陰極電位(mV)、E60は通電
を遮断してから60秒後の陰極電位(mV)をそれぞれ
示す]に基づいて求めることを特徴とする、請求項1に
記載の銅合金部材の汚れの管理方法。
[Claim 2] The natural potential is expressed by the following formula (1):
En=E60+(E60-E50)
(1) [In formula (1), En is the natural potential (mV), E50 is the cathode potential (mV) 50 seconds after the current is cut off, and E60 is the cathode potential 60 seconds after the current is cut off. The method for controlling stains on a copper alloy member according to claim 1, characterized in that the method is determined based on the following: (mV) respectively.
【請求項3】  前記の汚れを洗浄する工程を、軟質ボ
ール洗浄、硬質ボール洗浄およびジェット洗浄よりなる
群から選ばれる少なくとも一種の洗浄方法によって行な
うことを特徴とする、請求項1または2に記載の銅合金
部材の汚れの管理方法。
3. The step of cleaning the dirt is performed by at least one cleaning method selected from the group consisting of soft ball cleaning, hard ball cleaning, and jet cleaning. How to control dirt on copper alloy parts.
【請求項4】  前記基準値を、前記鉄皮膜の防食効果
の低下および/または前記設備の熱貫流効率の低下が許
容範囲を超えないように経験的に定めることを特徴とす
る、請求項1〜3のうちのいずれかに記載の銅合金部材
の汚れの管理方法。
4. The reference value is determined empirically so that a decrease in the anticorrosion effect of the iron coating and/or a decrease in heat transmission efficiency of the equipment does not exceed a permissible range. 3. The method for controlling stains on a copper alloy member according to any one of 3 to 3.
【請求項5】  前記通電装置が外部電源方式による電
気防食装置であることを特徴とする、請求項1〜4のう
ちのいずれかに記載の銅合金部材の汚れの管理方法。
5. The method for managing stains on a copper alloy member according to claim 1, wherein the energizing device is a cathodic protection device using an external power source.
JP3063665A 1991-03-06 1991-03-06 How to control dirt on copper alloy parts Expired - Fee Related JPH07117355B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP3063665A JPH07117355B2 (en) 1991-03-06 1991-03-06 How to control dirt on copper alloy parts

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP3063665A JPH07117355B2 (en) 1991-03-06 1991-03-06 How to control dirt on copper alloy parts

Publications (2)

Publication Number Publication Date
JPH04278198A true JPH04278198A (en) 1992-10-02
JPH07117355B2 JPH07117355B2 (en) 1995-12-18

Family

ID=13235868

Family Applications (1)

Application Number Title Priority Date Filing Date
JP3063665A Expired - Fee Related JPH07117355B2 (en) 1991-03-06 1991-03-06 How to control dirt on copper alloy parts

Country Status (1)

Country Link
JP (1) JPH07117355B2 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007101137A (en) * 2005-10-07 2007-04-19 Chugoku Electric Power Co Inc:The Iron ion implantation method and iron ion implantation quantity control device
JP2009063239A (en) * 2007-09-06 2009-03-26 Chubu Electric Power Co Inc Method of taking countermeasure against scale in heat exchanger
JP2014091843A (en) * 2012-11-01 2014-05-19 Kurita Engineering Co Ltd Corrosion prevention method for heat exchanger narrow pipe made of copper alloy
JP2017156025A (en) * 2016-03-02 2017-09-07 東京電力ホールディングス株式会社 Heat exchange system

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007101137A (en) * 2005-10-07 2007-04-19 Chugoku Electric Power Co Inc:The Iron ion implantation method and iron ion implantation quantity control device
JP2009063239A (en) * 2007-09-06 2009-03-26 Chubu Electric Power Co Inc Method of taking countermeasure against scale in heat exchanger
JP2014091843A (en) * 2012-11-01 2014-05-19 Kurita Engineering Co Ltd Corrosion prevention method for heat exchanger narrow pipe made of copper alloy
JP2017156025A (en) * 2016-03-02 2017-09-07 東京電力ホールディングス株式会社 Heat exchange system

Also Published As

Publication number Publication date
JPH07117355B2 (en) 1995-12-18

Similar Documents

Publication Publication Date Title
AU2001272969B9 (en) Dynamic optimization of chemical additives in a water treatment system
US5024783A (en) Boiler and boiler water treatment system
CA2365009C (en) Feedback controlled airfoil stripping system with integrated water management and acid recycling system
US5360549A (en) Feed back control deposit inhibitor dosage optimization system
BR112015032305A2 (en) METHOD OF SUPPRESSING CORROSION FROM A CORROSIBLE METALLIC SURFACE
EP2382452A1 (en) Control system for monitoring localized corrosion in an industrial water system
JP2002540289A (en) Performance-based control system
US5023011A (en) Cooling water treatment system
CN107675150B (en) A kind of chemical cleaning prefilming method of circulation
JP2007090267A (en) Apparatus and method for removing scale component
JPS62129698A (en) Anticorrosion and antidirt control device for condenser
Cristiani et al. Effect of chlorination on the corrosion of Cu/Ni 70/30 condenser tubing
US20150284275A1 (en) Method and device for treating fouling in water systems
CN102165383A (en) Proactive control system for industrial water systems
JPH04278198A (en) Control method of contamination of copper alloy member
KR20200054975A (en) Cooling water monitoring and control system
JP3583568B2 (en) Water quality control method for circulating cooling water
JPH03288586A (en) Method for monitoring contamination of water system
JPH06212459A (en) Method for suppressing corrosion and living organism in cooling water system containing copper and copper alloy
US20150284276A1 (en) Method and device for treating fouling in water systems
JP4403250B2 (en) Water treatment method and water treatment system for circulating cooling water system
KR101928816B1 (en) Cooling Water Control System And Control Method Of Cooling Water
US5285162A (en) Galvanic current measuring method and apparatus for monitoring build-up of biological deposits on surfaces of dissimilar metal electrodes immersed in water
JP3925269B2 (en) Water treatment method for cooling water system
JP2001047059A (en) Slime control method and slime control agent

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees