JP7089434B2 - Residual chlorine detection device and residual chlorine detection method - Google Patents

Residual chlorine detection device and residual chlorine detection method Download PDF

Info

Publication number
JP7089434B2
JP7089434B2 JP2018146403A JP2018146403A JP7089434B2 JP 7089434 B2 JP7089434 B2 JP 7089434B2 JP 2018146403 A JP2018146403 A JP 2018146403A JP 2018146403 A JP2018146403 A JP 2018146403A JP 7089434 B2 JP7089434 B2 JP 7089434B2
Authority
JP
Japan
Prior art keywords
voltage
residual chlorine
tap water
electrodes
water
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2018146403A
Other languages
Japanese (ja)
Other versions
JP2020020727A (en
Inventor
智夫 五明
慎司 岡崎
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Aichi Tokei Denki Co Ltd
Original Assignee
Aichi Tokei Denki Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Aichi Tokei Denki Co Ltd filed Critical Aichi Tokei Denki Co Ltd
Priority to JP2018146403A priority Critical patent/JP7089434B2/en
Publication of JP2020020727A publication Critical patent/JP2020020727A/en
Application granted granted Critical
Publication of JP7089434B2 publication Critical patent/JP7089434B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Water Treatment By Electricity Or Magnetism (AREA)
  • Treatment Of Water By Oxidation Or Reduction (AREA)

Description

本開示は、水道水の遊離残留塩素を検出する残留塩素検出装置及び残留塩素検出方法に関する。 The present disclosure relates to a residual chlorine detection device for detecting free residual chlorine in tap water and a method for detecting residual chlorine.

従来、この種の残留塩素検出方法として、イオン化傾向が異なる1対の電極を水道水に浸漬してそれら電極間に生じる電圧に基づいて遊離残留塩素を検出する方法が知られている(例えば、特許文献1参照)。 Conventionally, as this kind of residual chlorine detection method, a method of immersing a pair of electrodes having different ionization tendencies in tap water and detecting free residual chlorine based on the voltage generated between the electrodes is known (for example,). See Patent Document 1).

特開2016-114376号公報(段落[0008])Japanese Unexamined Patent Publication No. 2016-114376 (paragraph [0008])

ところで、上述した従来の残留塩素検出方法では、水道水の遊離残留塩素以外の含有物の影響を受け難くして検出精度を高くする技術が開発されている。しかしながら、その効果は十分ではないので、従来より高い精度で遊離残留塩素を検出することが可能な技術の開発が求められている。 By the way, in the above-mentioned conventional residual chlorine detection method, a technique has been developed in which the detection accuracy is improved by making it less susceptible to the influence of inclusions other than free residual chlorine in tap water. However, the effect is not sufficient, and there is a need to develop a technique capable of detecting free residual chlorine with higher accuracy than before.

上記課題を解決するためになされた請求項1の発明は、水道水の遊離残留塩素を検出する残留塩素検出装置であって、水道管から排出される水道水から前記遊離残留塩素の除去処理を行う除去処理部と、イオン化傾向が異なる1対の電極と、前記除去処理が済んだ処理済み水道水に前記1対の電極が浸漬された状態でそれら電極間に生じる第1電圧と、前記除去処理が行われていない未処理水道水に前記1対の電極が浸漬された状態でそれら電極間に生じる第2電圧とを検出する計測部と、前記第2電圧から水道水の前記遊離残留塩素以外の含有物による電圧成分を、前記第1電圧に基づいて差し引いて差分電圧を求める差分演算部と、を備える残留塩素検出装置である。 The invention of claim 1 made to solve the above problem is a residual chlorine detecting device for detecting free residual chlorine in tap water, and removes the free residual chlorine from tap water discharged from a water pipe. A removal processing unit to be performed, a pair of electrodes having different ionization tendencies, a first voltage generated between the pair of electrodes in a state of being immersed in the treated tap water having been removed, and the removal. A measuring unit that detects the second voltage generated between the pair of electrodes when the pair of electrodes is immersed in untreated untreated tap water, and the free residual chlorine in tap water from the second voltage. It is a residual chlorine detection device including a difference calculation unit for obtaining a difference voltage by subtracting a voltage component due to an inclusion other than the above first voltage based on the first voltage.

請求項2の発明は、前記除去処理部は、前記水道管から排出される水道水が予め定められた基準時間以上、貯留される貯留部を有し、前記基準時間以上の貯留によって前記除去処理が行われ、前記1対の電極が前記貯留部に固定された状態で前記第1電圧及び前記第2電圧が検出される請求項1に記載の残留塩素検出装置である。 According to the invention of claim 2, the removal processing unit has a storage unit in which tap water discharged from the water pipe is stored for a predetermined reference time or longer, and the removal treatment is performed by storing the tap water for the reference time or longer. The residual chlorine detection device according to claim 1, wherein the first voltage and the second voltage are detected in a state where the pair of electrodes is fixed to the storage portion.

請求項3の発明は、前記差分演算部は、前記第2電圧と、その第2電圧の検出の直前に検出される第1電圧とから前記差分電圧を求める請求項2に記載の残留塩素検出装置である。 The invention according to claim 3 is the residual chlorine detection according to claim 2, wherein the difference calculation unit obtains the difference voltage from the second voltage and the first voltage detected immediately before the detection of the second voltage. It is a device.

請求項4の発明は、前記貯留部から水道水を排水しかつ排水用バルブにて開閉される排水口と、前記貯留部へと水道水を給水しかつ給水用バルブにて開閉される給水口と、前記処理済み水道水から前記未処理水道水に入れ替えるときを含めて前記貯留部が常に略満水状態に維持されるように、前記排水用バルブ及び前記給水用バルブを制御する弁制御部とを備える請求項2又は3に記載の残留塩素検出装置である。 The invention of claim 4 is a drain port that drains tap water from the storage section and is opened and closed by a drain valve, and a water supply port that supplies tap water to the storage section and is opened and closed by a water supply valve. And a valve control unit that controls the drainage valve and the water supply valve so that the storage unit is always maintained in a substantially full state including when the treated tap water is replaced with the untreated tap water. The residual chlorine detection device according to claim 2 or 3.

請求項5の発明は、前記給水用バルブが全開状態での前記給水口からの給水量が、前記排水用バルブが全開状態での前記排水口からの排水量より大きくなっていると共に、前記弁制御部は、前記貯留部内を前記処理済み水道水から前記未処理水道水に入れ替えるときに、前記排水用バルブ及び前記給水用バルブを共に全開にする請求項4に記載の残留塩素検出装置である。 In the invention of claim 5, the amount of water supplied from the water supply port when the water supply valve is fully open is larger than the amount of drainage from the drain port when the drainage valve is fully open, and the valve control is performed. The unit is the residual chlorine detection device according to claim 4, wherein both the drain valve and the water supply valve are fully opened when the inside of the storage portion is replaced with the untreated tap water.

請求項6の発明は、前記貯留部内の水道水を撹拌する撹拌機を有する請求項2乃至5の何れか1の請求項に記載の残留塩素検出装置である。 The invention of claim 6 is the residual chlorine detection device according to claim 1, further comprising a stirrer for stirring tap water in the reservoir.

請求項7の発明は、前記貯留部の上面が開口している請求項2乃至6の何れか1の請求項に記載の残留塩素検出装置である。 The invention of claim 7 is the residual chlorine detection device according to claim 1, wherein the upper surface of the storage portion is open.

請求項8の発明は、水道水の遊離残留塩素を検出する残留塩素検出方法であって、水道管から排出される水道水から前記遊離残留塩素の除去処理を行った処理済み水道水にイオン化傾向が異なる1対の電極を浸漬してそれら電極間に生じる第1電圧を検出すると共に、前記除去処理が行われていない未処理水道水に前記1対の電極を浸漬してそれら電極間に生じる第2電圧を検出し、前記第2電圧から、水道水の前記遊離残留塩素以外の含有物による電圧成分を前記第1電圧に基づいて差し引いて差分電圧を求め、その差分電圧を利用して前記遊離残留塩素を検出する残留塩素検出方法である。 The invention of claim 8 is a method for detecting free residual chlorine in tap water, which tends to ionize the treated tap water from which the free residual chlorine has been removed from the tap water discharged from the water pipe. Immerse a pair of different electrodes to detect the first voltage generated between the electrodes, and immerse the pair of electrodes in untreated tap water that has not been removed and generate between the electrodes. The second voltage is detected, and the voltage component due to the inclusions other than the free residual chlorine in tap water is subtracted from the second voltage based on the first voltage to obtain the differential voltage, and the differential voltage is used to obtain the differential voltage. This is a residual chlorine detection method for detecting free residual chlorine.

請求項9の発明は、前記水道管から排出される水道水を予め定められた基準時間以上、貯留部に貯留することで前記除去処理を行い、前記1対の電極を前記貯留部に固定して前記第1電圧と前記第2電圧とを検出する請求項8に記載の残留塩素検出方法である。 In the invention of claim 9, the removal treatment is performed by storing tap water discharged from the water pipe in a storage unit for a predetermined reference time or longer, and the pair of electrodes is fixed to the storage unit. The residual chlorine detection method according to claim 8, wherein the first voltage and the second voltage are detected.

請求項10の発明は、前記第2電圧と、その第2電圧の検出の直前に検出される第1電圧とから前記差分電圧を求める請求項9に記載の残留塩素検出方法である。 The invention of claim 10 is the residual chlorine detection method according to claim 9, wherein the differential voltage is obtained from the second voltage and the first voltage detected immediately before the detection of the second voltage.

請求項11の発明は、前記処理済み水道水から前記未処理水道水に入れ替えるときを含めて前記貯留部を常に略満水状態に維持する請求項9又は10に記載の残留塩素検出方法である。 The invention according to claim 11 is the residual chlorine detection method according to claim 9 or 10, wherein the storage portion is always maintained in a substantially full state including when the treated tap water is replaced with the untreated tap water.

請求項1及び8の発明では、遊離残留塩素の除去処理済みの水道水に1対の電極を浸漬して第1電圧を検出する。そして、未処理水道水に1対の電極を浸漬して検出される第2電圧から遊離残留塩素以外の含有物による電圧成分を第1電圧に基づいて差し引き、差分電圧を求めるので、その差分電圧を利用して遊離残留塩素を従来より高い精度で検出することができる。 In the inventions of claims 1 and 8, a pair of electrodes is immersed in tap water which has been treated to remove free residual chlorine, and the first voltage is detected. Then, the voltage component due to the inclusions other than free residual chlorine is subtracted from the second voltage detected by immersing the pair of electrodes in untreated tap water based on the first voltage, and the differential voltage is obtained. Therefore, the differential voltage is obtained. It is possible to detect free residual chlorine with higher accuracy than before.

請求項2及び9の発明では、処理済み水道水及び未処理水道水が貯留される貯留部に1対の電極が固定されるので、第1電圧及び第2電圧の検出条件の均一化が容易になり、このことによっても遊離残留塩素を高い精度で検出することができる。 In the inventions of claims 2 and 9, since the pair of electrodes is fixed to the storage portion where the treated tap water and the untreated tap water are stored, it is easy to make the detection conditions of the first voltage and the second voltage uniform. This also makes it possible to detect free residual chlorine with high accuracy.

上記差分電圧は、第2電圧とその直後に検出される第1電圧とから求めてもよいし、請求項3及び10の発明のように、第2電圧とその直前に検出される第1電圧とから求めてもよい。前者の場合には、第1電圧及び第2電圧の検出の間に、遊離残留塩素を除去するための除去時間を要し、後者の場合は、水道水の入れ替え時間を要する。通常は、除去時間に比べて入れ替え時間を短くすることができるので、請求項3及び10の発明によれば、第1電圧と第2電圧の検出条件の均一化が容易になる。 The difference voltage may be obtained from the second voltage and the first voltage detected immediately after that, or as in the inventions of claims 3 and 10, the second voltage and the first voltage detected immediately before the second voltage. You may ask from. In the former case, it takes a removal time to remove the free residual chlorine between the detection of the first voltage and the second voltage, and in the latter case, it takes a time to replace the tap water. Usually, since the replacement time can be shortened as compared with the removal time, according to the inventions of claims 3 and 10, it becomes easy to make the detection conditions of the first voltage and the second voltage uniform.

電極は、空気に触れているか水に触れているかで表面状態が相違し、それが電圧検出の外乱因子になり得る。これに対し、請求項4及び11の発明では、処理済み水道水から未処理水道水に入れ替えるときを含めて貯留部が常に略満水状態に維持されので、第1電圧と第2電圧の外乱を抑えた検出が可能になる。 Electrodes have different surface conditions depending on whether they are in contact with air or water, which can be a disturbing factor for voltage detection. On the other hand, in the inventions of claims 4 and 11, since the storage portion is always maintained in a substantially full state including the time when the treated tap water is replaced with the untreated tap water, the disturbance of the first voltage and the second voltage is caused. Suppressed detection is possible.

請求項5の構成によれば、排水用バルブ及び給水用バルブを共に全開するだけで貯留部を満水状態に維持して処理済み水道水から未処理水道水に入れ替えることができる。 According to the configuration of claim 5, the reservoir can be maintained in a full state and the treated tap water can be replaced with untreated tap water simply by fully opening both the drain valve and the water supply valve.

請求項6の構成によれば、攪拌機によって貯留部内の水道水を撹拌することで、残留塩素検出装置の除去の促進を図ることができる。なお、電圧の検出時には、攪拌機を止めて水道水内の流れを止めることが好ましい。 According to the configuration of claim 6, the removal of the residual chlorine detection device can be promoted by stirring the tap water in the storage unit with a stirrer. When the voltage is detected, it is preferable to stop the stirrer to stop the flow in the tap water.

請求項7の構成では、貯留部の上面が開口しているので、貯留している水道水が空気に触れて遊離残留塩素の除去が促進される。 In the configuration of claim 7, since the upper surface of the storage portion is open, the stored tap water comes into contact with air to promote the removal of free residual chlorine.

第1実施形態の残留塩素検出装置の概念図Conceptual diagram of the residual chlorine detection device of the first embodiment 制御プログラムのフローチャートControl program flowchart 制御プログラムのフローチャートControl program flowchart 第2実施形態の残留塩素検出装置の概念図Conceptual diagram of the residual chlorine detection device of the second embodiment 第3実施形態の残留塩素検出装置の概念図Conceptual diagram of the residual chlorine detection device of the third embodiment

[第1実施形態]
以下、図1~図3に示された残留塩素検出装置10及び残留塩素検出方法の実施形態について説明する。図1には、本実施形態の残留塩素検出装置10が概念的に示されている。この残留塩素検出装置10には、上面が開放した槽構造の貯留部11が備えられている。貯留部11の上方には、水道管12の排出口が配置されている。その水道管12は水道管網の幹管である上水道管13から分岐されていて、水道管12の排出口が貯留部11にとっての給水口12Aになっている。また、給水口12Aは、給水用バルブ12Vによって開閉される。給水用バルブ12Vは、例えばソレノイドを駆動源として備え、全開状態と全閉状態とに切り替えられる。
[First Embodiment]
Hereinafter, embodiments of the residual chlorine detection device 10 and the residual chlorine detection method shown in FIGS. 1 to 3 will be described. FIG. 1 conceptually shows the residual chlorine detection device 10 of the present embodiment. The residual chlorine detection device 10 is provided with a storage portion 11 having a tank structure with an open upper surface. An outlet of the water pipe 12 is arranged above the storage unit 11. The water pipe 12 is branched from the water pipe 13 which is the main pipe of the water pipe network, and the discharge port of the water pipe 12 is the water supply port 12A for the storage unit 11. Further, the water supply port 12A is opened and closed by the water supply valve 12V. The water supply valve 12V is provided with, for example, a solenoid as a drive source, and can be switched between a fully open state and a fully closed state.

貯留部11の下部には排水口11Aが備えられ、排水用バルブ11Vにて開閉されるようになっている。排水用バルブ11Vもソレノイドを駆動源として備え、全開状態と全閉状態とに切り替えられる。また、貯留部11の満水状態で排水用バルブ11Vが開いたときの排水口11Aからの排水量より、給水用バルブ12Vが開いたときの給水口12Aからの給水量の方が僅かに多い設定になっている。なお、給水用バルブ12V及び排水用バルブ11Vの一方又は両方を、流量制御可能な流量制御弁としてもよい。 A drainage port 11A is provided in the lower part of the storage unit 11 and is opened and closed by a drainage valve 11V. The drain valve 11V also has a solenoid as a drive source and can be switched between a fully open state and a fully closed state. In addition, the amount of water supplied from the water supply port 12A when the water supply valve 12V is opened is slightly larger than the amount of drainage from the drain port 11A when the drain valve 11V is opened when the storage unit 11 is full. It has become. One or both of the water supply valve 12V and the drainage valve 11V may be used as a flow rate control valve capable of controlling the flow rate.

貯留部11の下方には、ドレインパン14が備えられている。そして、貯留部11からオーバーフローする水道水と排水口11Aから排出される水道水とがドレインパン14に受け入れられる。なお、ドレインパン14に受け入れられた水道水は、例えばドレインパン14の排出口14Aから下水等に排出される。 A drain pan 14 is provided below the reservoir 11. Then, the tap water overflowing from the storage unit 11 and the tap water discharged from the drain port 11A are received by the drain pan 14. The tap water received in the drain pan 14 is discharged to sewage or the like from, for example, the discharge port 14A of the drain pan 14.

貯留部11には、撹拌機15が備えられている。撹拌機15は、例えば、モータを駆動源として備え、満水状態の貯留部11内の水道水に水没する回転翼15Aを有する。また、駆動源は、図示しないブラケットにより貯留部11の上方に配置されている。そして、例えば水道水を泡立てない程度の低速で回転翼15Aが回転して水道水を撹拌する。 The storage unit 11 is provided with a stirrer 15. The stirrer 15 is provided with, for example, a motor as a drive source, and has a rotary blade 15A submerged in tap water in a filled storage unit 11. Further, the drive source is arranged above the storage unit 11 by a bracket (not shown). Then, for example, the rotary blade 15A rotates at a low speed such that tap water does not foam, and the tap water is agitated.

貯留部11には、1対の電極16A,16Bが固定され、貯留部11内の水道水に浸漬される。それら電極16A,16Bは、互いにイオン化傾向が異なる金属であって、一方の電極16Aは、遊離残留塩素と反応し易い金属(例えば、白金、イリジウム、金又はパラジウム)で構成される一方、他方の電極16Bは、遊離残留塩素と反応し難い金属(例えば、SUS316、SUS316L、SUS430、タングステン、タンタル、チタン、モリブデン又はジルコニウム)で構成されている。 A pair of electrodes 16A and 16B are fixed to the storage unit 11 and immersed in tap water in the storage unit 11. The electrodes 16A and 16B are metals having different ionization tendencies, and one electrode 16A is composed of a metal (for example, platinum, iridium, gold or palladium) that easily reacts with free residual chlorine, while the other. The electrode 16B is made of a metal that does not easily react with free residual chlorine (for example, SUS316, SUS316L, SUS430, tungsten, tantalum, titanium, molybdenum or zirconium).

1対の電極16A,16Bは、計測部17に接続されていて、電極16A,16Bの間に発生する電圧が計測部17によって検出される。 The pair of electrodes 16A and 16B are connected to the measuring unit 17, and the voltage generated between the electrodes 16A and 16B is detected by the measuring unit 17.

なお、計測部17は、電極16A,16Bの間に接続された抵抗素子を備えて、その抵抗素子の両端子間の電圧を検出する構成になっているが、電極16A,16Bの間の通電によって水道水の遊離残留塩素以外の含有物が消失しないようにするために、電極16A,16Bの間にスイッチを備えて、電圧検出時以外は電極16A,16Bの間が断絶されるようにしてもよい。 The measuring unit 17 is provided with a resistance element connected between the electrodes 16A and 16B, and is configured to detect the voltage between both terminals of the resistance element. A switch is provided between the electrodes 16A and 16B so that the inclusions other than the free residual chlorine in the tap water do not disappear, and the electrodes 16A and 16B are disconnected except when the voltage is detected. May be good.

計測部17による電圧検出のタイミング及び、前述の撹拌機15、給水用バルブ12V、排水用バルブ11Vの動作のタイミングは制御部20にて制御される。その制御部20は、マイコンと記憶部とを有し、記憶部には図2及び図3に示した制御プログラムPG1が記憶されている。そして、残留塩素検出装置10が起動されると、制御プログラムPG1がマイコンにて実行され、以下のように各部位が制御される。 The timing of voltage detection by the measuring unit 17 and the timing of operation of the above-mentioned agitator 15, the water supply valve 12V, and the drainage valve 11V are controlled by the control unit 20. The control unit 20 has a microcomputer and a storage unit, and the storage unit stores the control program PG1 shown in FIGS. 2 and 3. Then, when the residual chlorine detection device 10 is started, the control program PG1 is executed by the microcomputer, and each part is controlled as follows.

即ち、図2に示すように、残留塩素検出装置10の起動に伴って制御プログラムPG1が実行されて、その貯留処理(S11)が実行される。貯留処理(S11)が実行されると、排水用バルブ11Vが閉じられ、給水用バルブ12Vが開かれた状態が、予め定められた第1給水時間に亘って維持され、その後、両バルブ11V,12Vが閉じた状態にされる。これにより、貯留部11が満水状態にされる。 That is, as shown in FIG. 2, the control program PG1 is executed with the activation of the residual chlorine detection device 10, and the storage process (S11) thereof is executed. When the storage process (S11) is executed, the drainage valve 11V is closed and the water supply valve 12V is opened for a predetermined first water supply time, and then both valves 11V, 12V is closed. As a result, the storage unit 11 is filled with water.

なお、上記したように給水時間に基づいて貯留部11を満水にする以外の構成として、貯留部11の上端部に1対の検知端子を設け、それら検知端子間が水道水にて短絡されたか否かによって貯留部11が満水になったか否かを検出し、給水用バルブ12Vを閉じるようにしてもよい。 As described above, as a configuration other than filling the storage unit 11 with water based on the water supply time, a pair of detection terminals are provided at the upper end of the storage unit 11, and the detection terminals are short-circuited with tap water. Depending on whether or not the reservoir 11 is full, it may be detected and the water supply valve 12V may be closed.

次いで、メインタイマーによる時間計測がスタートされ(S12)、撹拌機15が起動される(S13)。そして、メインタイマーが所定の第1チェック時間(例えば、例えば、スタートから22時間)を計測するまで撹拌機15が連続運転される(S14のNOのループ)。これにより、貯留部11に貯留された水道水の遊離残留塩素の除去処理が完了し、貯留部11が処理済み水道水で満たされ、その処理済み水道水に1対の電極16A,16Bが浸漬された状態になる。 Next, the time measurement by the main timer is started (S12), and the stirrer 15 is started (S13). Then, the stirrer 15 is continuously operated until the main timer measures a predetermined first check time (for example, 22 hours from the start) (NO loop in S14). As a result, the treatment for removing free residual chlorine in the tap water stored in the storage unit 11 is completed, the storage unit 11 is filled with the treated tap water, and the pair of electrodes 16A and 16B are immersed in the treated tap water. It will be in the state of being done.

なお、撹拌機15を設けずに、貯留部11内の水道水を放置してもよいが、撹拌機15で撹拌した方が遊離残留塩素の除去処理が促進される。また、貯留部11の上面は閉じていてもよいが、本実施形態の貯留部11のように上面が開口していれば、貯留している水道水が空気に触れて遊離残留塩素の除去処理が促進される。さらに、遊離残留塩素の除去処理の促進のために、遊離残留塩素と結合し易くかつ、それ以外の水道水の含有物と結合し難い物質を水道水に添加してもよい。そのような物質としては、例えば、遊離残留塩素と結合して腐食し易い金属(鉄、鉄合金等)が挙げられる。また、そのような腐食し易い金属で撹拌機15の回転翼15Aを構成してもよい。ここで、金属イオンの溶解度は、非金属物質のイオンの溶解度に比べて非常に小さいので金属の酸化生成物による前記電圧計測への影響は小さいと推測される。また、遊離残留塩素の除去処理の促進が必要ではないときには回転翼15Aに対するカソード防食を行い、必要であるときにのみカソード防食を解除する構成としてもよい。 The tap water in the storage unit 11 may be left without the stirrer 15, but stirring with the stirrer 15 promotes the removal treatment of free residual chlorine. Further, the upper surface of the storage unit 11 may be closed, but if the upper surface is open as in the storage unit 11 of the present embodiment, the stored tap water comes into contact with air to remove free residual chlorine. Is promoted. Further, in order to promote the removal treatment of free residual chlorine, a substance that is easily combined with free residual chlorine and is difficult to be combined with other contents of tap water may be added to tap water. Examples of such substances include metals (iron, iron alloys, etc.) that easily corrode by combining with free residual chlorine. Further, the rotary blade 15A of the stirrer 15 may be configured with such a metal that is easily corroded. Here, since the solubility of the metal ion is much smaller than the solubility of the ion of the non-metal substance, it is presumed that the influence of the metal oxidation product on the voltage measurement is small. Further, when it is not necessary to promote the removal treatment of free residual chlorine, the cathodic protection may be performed on the rotary blade 15A, and the cathode protection may be canceled only when necessary.

メインタイマーが第1チェック時間を計測し(S14でYES)、撹拌機15が停止されたら(S15)、メインタイマーが所定の第2チェック時間(例えば、第1チェック時間から15分)を計測するまで放置される(S16のNOのループ)。これにより、貯留部11内の処理済み水道水内が静水化される。 The main timer measures the first check time (YES in S14), and when the stirrer 15 is stopped (S15), the main timer measures a predetermined second check time (for example, 15 minutes from the first check time). It is left until (NO loop of S16). As a result, the treated tap water in the storage unit 11 is hydrostatic.

メインタイマーが第2チェック時間を計測したら(S16でYES)、処理済み水道水に浸漬されている1対の電極16A,16Bの間の電圧が第1電圧E1として検出される(S17)。この電圧検出は、例えば、所定間隔(例えば、1秒)で複数回(例えば、10回)行われて、その平均が第1電圧E1として記憶される。 When the main timer measures the second check time (YES in S16), the voltage between the pair of electrodes 16A and 16B immersed in the treated tap water is detected as the first voltage E1 (S17). This voltage detection is performed a plurality of times (for example, 10 times) at predetermined intervals (for example, 1 second), and the average thereof is stored as the first voltage E1.

第1電圧E1の検出後、水入替処理(S18)が行われる。水入替処理(S18)では、給水用バルブ12Vと排水用バルブ11Vとが共に開かれた状態が、第2給水時間に亘って維持され、その後、両バルブ11V,12Vが閉じられる。これにより、貯留部11内の水道水が、遊離残留塩素の除去処理が行われていない未処理水道水に入れ替えられ、その未処理水道水に1対の電極16A,16Bが浸漬された状態になる。 After the detection of the first voltage E1, the water replacement process (S18) is performed. In the water replacement process (S18), the state in which the water supply valve 12V and the drainage valve 11V are both opened is maintained for the second water supply time, and then both valves 11V and 12V are closed. As a result, the tap water in the storage unit 11 is replaced with untreated tap water that has not been treated to remove free residual chlorine, and a pair of electrodes 16A and 16B are immersed in the untreated tap water. Become.

ここで、第2給水時間は、例えば約30分程度であり、実験的に求められる。具体的には、例えば、貯留部11内の水道水を着色し、給水用バルブ12Vと排水用バルブ11Vとを共に開いて、貯留部11内の水道水が無色透明になるまでの時間が第2給水時間として実験的に求められる。 Here, the second water supply time is, for example, about 30 minutes, and is obtained experimentally. Specifically, for example, the tap water in the storage unit 11 is colored, the water supply valve 12V and the drainage valve 11V are opened together, and the time until the tap water in the storage unit 11 becomes colorless and transparent is the first. 2 It is experimentally calculated as the water supply time.

また、上述したように給水用バルブ12Vを通過する給水量の方が、排水用バルブ11Vを通過する排水量より多いので、貯留部11から水道水がオーバーフローした状態で水道水の入れ替えが行われる。これにより、貯留部11は、常に満水状態に維持され、電極16A,16Bの浸漬状態が一定に維持される。 Further, as described above, the amount of water supplied through the water supply valve 12V is larger than the amount of drainage passing through the drainage valve 11V, so that the tap water is replaced in a state where the tap water overflows from the storage unit 11. As a result, the storage unit 11 is always maintained in a full water state, and the immersion state of the electrodes 16A and 16B is kept constant.

次いで、メインタイマーが第3チェック時間(例えば、水入替処理(S18)後から15分)を計測するまで待機して貯留部11内の未処理水道水の静水化を待ってから(S19のNOのループ)、未処理水道水に浸漬している1対の電極16A,16Bの間の電圧が第2電圧E2として検出される(S20)。 Next, wait until the main timer measures the third check time (for example, 15 minutes after the water replacement process (S18)) and wait for the untreated tap water in the storage unit 11 to become still water (NO in S19). The voltage between the pair of electrodes 16A and 16B immersed in untreated tap water is detected as the second voltage E2 (S20).

次いで、第2電圧E2から第1電圧E1を差し引いた値の絶対値が差分電圧ΔEとして演算される(S21)。そして、その差分電圧ΔEが、予め設定された基準差分電圧L1以上であるか否かによって、水道水の遊離残留塩素が、法律で規定される基準濃度以上(例えば、0.1[ppm]以上)になっているか否かが判定され(S22)、基準濃度以上でなかった場合には、例えば遠隔地の検出本体部に異常の報知を行う(S23)。そして、メインタイマーが停止されかつリセットされて(S24)、上記したステップS12に戻り、上記動作が繰り返される。 Next, the absolute value of the value obtained by subtracting the first voltage E1 from the second voltage E2 is calculated as the difference voltage ΔE (S21). Then, depending on whether or not the differential voltage ΔE is equal to or higher than the preset reference differential voltage L1, the free residual chlorine in tap water is equal to or higher than the reference concentration specified by law (for example, 0.1 [ppm] or higher). ) Is determined (S22), and if the concentration is not equal to or higher than the reference concentration, for example, an abnormality is notified to the detection main body at a remote location (S23). Then, the main timer is stopped and reset (S24), the process returns to step S12 described above, and the above operation is repeated.

なお、本実施形態では、ステップS21を実行している制御部20のマイコンが、特許請求の範囲に記載された「差分演算部」に相当する。また、本実施形態では、遊離残留塩素が基準濃度以上であるか否かを検出していたが、差分電圧ΔEと予め設定されたデータテーブルとから遊離残留塩素の濃度を検出してもよいし、差分電圧ΔEの値そのものを、遊離残留塩素の濃度の代用値である検出結果として出力又は記憶する構成としてもよい。さらには、第1電圧E1と第2電圧E2とを検出本体部に送信し、検出本体部で差分電圧ΔEを求めてもよい、その場合、検出本体部が「差分演算部」に相当し、残留塩素検出装置10と検出本体部とから特許請求の範囲に記載された「残留塩素検出装置」が構成されることになる。 In the present embodiment, the microcomputer of the control unit 20 executing step S21 corresponds to the "difference calculation unit" described in the claims. Further, in the present embodiment, it is detected whether or not the free residual chlorine is equal to or higher than the reference concentration, but the concentration of the free residual chlorine may be detected from the differential voltage ΔE and the preset data table. The value of the differential voltage ΔE itself may be output or stored as a detection result which is a substitute value for the concentration of free residual chlorine. Further, the first voltage E1 and the second voltage E2 may be transmitted to the detection main body unit, and the difference voltage ΔE may be obtained by the detection main body unit. In that case, the detection main body unit corresponds to the “difference calculation unit”. The "residual chlorine detection device" described in the claims is configured from the residual chlorine detection device 10 and the detection main body.

本実施形態の残留塩素検出装置10及び残留塩素検出方法に関する説明は以上である。次にそれらの作用効果について説明する。上記したように本実施形態の残留塩素検出装置10及び残留塩素検出方法では、遊離残留塩素の除去処理を行った処理済み水道水に1対の電極16A,16Bを浸漬して第1電圧E1を検出する。そして、未処理水道水に1対の電極16A,16Bを浸漬して検出される第2電圧E2から遊離残留塩素以外の含有物による電圧成分を第1電圧E1に基づいて差し引き、差分電圧ΔEを求めるので、その差分電圧ΔEを利用して遊離残留塩素を従来より高い精度で検出することができる。 This concludes the description of the residual chlorine detection device 10 and the residual chlorine detection method of the present embodiment. Next, their action and effect will be described. As described above, in the residual chlorine detection device 10 and the residual chlorine detection method of the present embodiment, a pair of electrodes 16A and 16B are immersed in treated tap water that has been treated to remove free residual chlorine to obtain a first voltage E1. To detect. Then, the voltage component due to the inclusions other than free residual chlorine is subtracted from the second voltage E2 detected by immersing the pair of electrodes 16A and 16B in untreated tap water based on the first voltage E1, and the differential voltage ΔE is obtained. Since it is obtained, free residual chlorine can be detected with higher accuracy than before by using the differential voltage ΔE.

ここで、1対の電極16A,16Bは貯留部11に固定されているので、第1電圧E1と第2電圧E2の検出条件の均一化が容易になる。また、1対の電極16A,16Bは空気に触れているか水に触れているかによって表面状態が相違し、それが電圧検出の外乱因子になり得るが、本実施形態では、処理済み水道水と未処理水道水との入れ替え時も含めて貯留部11が常に略満水状態に維持されるので、外乱を抑えた電圧検出が可能になる。また、水道水の流動も電圧検出の外乱因子になり得るが、本実施形態では水道水を静水化した状態で電圧を検出するので、このことによっても外乱を抑えた電圧検出が可能になる。 Here, since the pair of electrodes 16A and 16B are fixed to the storage unit 11, it is easy to make the detection conditions of the first voltage E1 and the second voltage E2 uniform. Further, the surface states of the pair of electrodes 16A and 16B differ depending on whether they are in contact with air or water, which can be a disturbing factor for voltage detection, but in the present embodiment, they are not treated with tap water. Since the storage unit 11 is always maintained in a substantially full state even when it is replaced with treated tap water, voltage detection with suppressed disturbance becomes possible. Further, the flow of tap water can also be a disturbance factor for voltage detection, but in the present embodiment, since the voltage is detected in a state where the tap water is hydrostatic, this also enables voltage detection with suppressed disturbance.

なお、本実施形態では、第2電圧E2とその直前に検出された第1電圧E1とから差分電圧ΔEを求めていたが、第2電圧E2とその直後に検出された第1電圧E1とから差分電圧ΔEを求めてもよい。その場合には、第1電圧E1及び第2電圧E2の検出の間に遊離残留塩素を除去するための長い処理時間を要することになるが、本実施形態のように、第2電圧E2とその直前に検出された第1電圧E1とから差分電圧ΔEを求めた場合には、短時間で第1電圧E1と第2電圧E2の両方を検出することができ、検出条件の均一化が容易になる。 In the present embodiment, the difference voltage ΔE is obtained from the second voltage E2 and the first voltage E1 detected immediately before the second voltage E2, but from the second voltage E2 and the first voltage E1 detected immediately after that. The differential voltage ΔE may be obtained. In that case, a long processing time for removing free residual chlorine is required between the detection of the first voltage E1 and the second voltage E2, but as in the present embodiment, the second voltage E2 and its own are required. When the differential voltage ΔE is obtained from the first voltage E1 detected immediately before, both the first voltage E1 and the second voltage E2 can be detected in a short time, and the detection conditions can be easily made uniform. Become.

[第2実施形態]
本実施形態の残留塩素検出装置10Vは、図4に示されており、主として貯留部30の構造が第1実施形態と異なる。即ち、本実施形態の残留塩素検出装置10Vは、上水道管13から分岐した分岐路31の上流部と下流部とに給水用バルブ12Vと排水用バルブ11Vとを設けて、それらの間部分を貯留部30としたものである。また、電極16A,16Bは、貯留部30を貫通した状態に固定されている。なお、本実施形態の残留塩素検出装置10Vには、撹拌機15,ドレインパン14は設けられていない。その他の構成に関しては第1実施形態と同じである。本実施形態の構成によっても第1実施形態と同様に作用効果を奏する。
[Second Embodiment]
The residual chlorine detection device 10V of the present embodiment is shown in FIG. 4, and the structure of the storage portion 30 is mainly different from that of the first embodiment. That is, the residual chlorine detection device 10V of the present embodiment is provided with a water supply valve 12V and a drainage valve 11V at the upstream and downstream portions of the branch path 31 branched from the water supply pipe 13, and stores the intermediate portion between them. It is the part 30. Further, the electrodes 16A and 16B are fixed so as to penetrate the storage portion 30. The residual chlorine detection device 10V of the present embodiment is not provided with the stirrer 15 and the drain pan 14. Other configurations are the same as those in the first embodiment. The configuration of the present embodiment also exerts an action and effect in the same manner as the first embodiment.

[第3実施形態]
本実施形態の残留塩素検出装置10Wは、図5に示されており、第2実施形態の変形例であって、貯留部30を貫通する1対の電極16A,16Bとは別に、上水道管13を貫通する1対の電極16C,16Dを備える。そして、第1電圧E1を貯留部30に固定の電極16A,16Bで検出し、第2電圧E2を上水道管13に固定の電極16C,16Dで検出する。また、貯留部30に固定の電極16A,16Bと、上水道管13に固定の電極16C,16Dとを同じ水道水に浸漬して電圧を検出したときの差に基づいて、補正係数を実験的に求めておき、制御部20は、その補正係数で第1電圧E1を補正したものを第2電圧E2から差し引いて差分電圧ΔEを演算するようになっている。その他の構成は、第2実施形態と同様であり、本実施形態の構成によっても第1及び第2の実施形態と同様に作用効果を奏する。
[Third Embodiment]
The residual chlorine detection device 10W of the present embodiment is shown in FIG. 5, and is a modification of the second embodiment, in which the water supply pipe 13 is separated from the pair of electrodes 16A and 16B penetrating the storage portion 30. It is provided with a pair of electrodes 16C and 16D penetrating the above. Then, the first voltage E1 is detected by the electrodes 16A and 16B fixed to the storage unit 30, and the second voltage E2 is detected by the electrodes 16C and 16D fixed to the water supply pipe 13. Further, the correction coefficient is experimentally determined based on the difference when the electrodes 16A and 16B fixed to the storage unit 30 and the electrodes 16C and 16D fixed to the water supply pipe 13 are immersed in the same tap water and the voltage is detected. The control unit 20 calculates the difference voltage ΔE by subtracting the correction coefficient of the first voltage E1 from the second voltage E2. Other configurations are the same as those of the second embodiment, and the configurations of the present embodiment also have the same effects as those of the first and second embodiments.

[他の実施形態]
(1)前記第1実施形態の残留塩素検出装置10において、ステップS20にて第2電圧E2を検出した後、メインタイマーが24時間を計測するまで待って停止及びリセットし(S24)、上記したステップS12に戻る構成にして、第1電圧E1及び第2電圧E2が、それぞれ毎日、同じ時刻に検出されるようにしてもよい。また、貯留部11及び電極16A,16Bを複数設けておき、第1電圧E1及び第2電圧E2が、それぞれ毎日、所定の間隔を空けて複数回に亘って検出されるようにしてもよい。
[Other embodiments]
(1) In the residual chlorine detection device 10 of the first embodiment, after detecting the second voltage E2 in step S20, the main timer waits until the main timer measures 24 hours, then stops and resets (S24), and the above is performed. The configuration may return to step S12 so that the first voltage E1 and the second voltage E2 are detected at the same time every day. Further, a plurality of storage portions 11 and electrodes 16A and 16B may be provided so that the first voltage E1 and the second voltage E2 can be detected a plurality of times at predetermined intervals each day.

(2)第2及び第3の実施形態では、図4及び図5に示されているように、分岐路31のうち貯留部30になっている部分の断面がそれ以外の部分の断面より大きくなっているが、貯留部30全体を均一径のパイプ構造とし、貯留部30が分岐路31の両端部と同じパイプ構造になっていてもよい。 (2) In the second and third embodiments, as shown in FIGS. 4 and 5, the cross section of the portion of the branch path 31 that is the storage portion 30 is larger than the cross section of the other portion. However, the entire storage unit 30 may have a pipe structure having a uniform diameter, and the storage unit 30 may have the same pipe structure as both ends of the branch path 31.

10,10V,10W 残留塩素検出装置
11,30 貯留部
11A 排水口
11V 排水用バルブ
12 水道管
12A 給水口
12V 給水用バルブ
13 上水道管
15 撹拌機
16A~16D 電極
17 計測部
20 制御部(差分演算部、弁制御部)
E1 第1電圧
E2 第2電圧
ΔE 差分電圧
10,10V, 10W Residual chlorine detector 11,30 Storage unit 11A Drainage port 11V Drainage valve 12 Water pipe 12A Water supply port 12V Water supply valve 13 Water supply pipe 15 Stirrer 16A-16D Electrode 17 Measuring unit 20 Control unit (difference calculation) Department, valve control unit)
E1 1st voltage E2 2nd voltage ΔE Difference voltage

Claims (11)

水道水の遊離残留塩素を検出する残留塩素検出装置であって、
水道管から排出される水道水から前記遊離残留塩素の除去処理を行う除去処理部と、
イオン化傾向が異なる1対の電極と、
前記除去処理が済んだ処理済み水道水に前記1対の電極が浸漬された状態でそれら電極間に生じる第1電圧と、前記除去処理が行われていない未処理水道水に前記1対の電極が浸漬された状態でそれら電極間に生じる第2電圧とを検出する計測部と、
前記第2電圧から水道水の前記遊離残留塩素以外の含有物による電圧成分を、前記第1電圧に基づいて差し引いて差分電圧を求める差分演算部と、
を備える残留塩素検出装置。
A residual chlorine detector that detects free residual chlorine in tap water.
A removal treatment unit that removes the free residual chlorine from tap water discharged from a water pipe,
A pair of electrodes with different ionization tendencies and
The first voltage generated between the electrodes when the pair of electrodes is immersed in the treated tap water that has been removed, and the pair of electrodes in the untreated tap water that has not been removed. A measuring unit that detects the second voltage generated between the electrodes while the water is immersed in the water,
A difference calculation unit for obtaining a differential voltage by subtracting a voltage component of tap water containing a substance other than the free residual chlorine from the second voltage based on the first voltage.
Residual chlorine detector equipped with.
前記除去処理部は、前記水道管から排出される水道水が予め定められた基準時間以上、貯留される貯留部を有し、前記基準時間以上の貯留によって前記除去処理が行われ、
前記1対の電極が前記貯留部に固定された状態で前記第1電圧及び前記第2電圧が検出される請求項1に記載の残留塩素検出装置。
The removal processing unit has a storage unit in which tap water discharged from the water pipe is stored for a predetermined reference time or longer, and the removal treatment is performed by storing the tap water for the reference time or longer.
The residual chlorine detection device according to claim 1, wherein the first voltage and the second voltage are detected in a state where the pair of electrodes is fixed to the storage portion.
前記差分演算部は、前記第2電圧と、その第2電圧の検出の直前に検出される第1電圧とから前記差分電圧を求める請求項2に記載の残留塩素検出装置。 The residual chlorine detection device according to claim 2, wherein the difference calculation unit obtains the difference voltage from the second voltage and the first voltage detected immediately before the detection of the second voltage. 前記貯留部から水道水を排水しかつ排水用バルブにて開閉される排水口と、
前記貯留部へと水道水を給水しかつ給水用バルブにて開閉される給水口と、
前記処理済み水道水から前記未処理水道水に入れ替えるときを含めて前記貯留部が常に略満水状態に維持されるように、前記排水用バルブ及び前記給水用バルブを制御する弁制御部とを備える請求項2又は3に記載の残留塩素検出装置。
A drainage port that drains tap water from the reservoir and is opened and closed by a drainage valve,
A water supply port that supplies tap water to the storage unit and is opened and closed by a water supply valve,
The drain valve and the valve control unit for controlling the water supply valve are provided so that the storage unit is always maintained in a substantially full state including when the treated tap water is replaced with the untreated tap water. The residual chlorine detection device according to claim 2 or 3.
前記給水用バルブが全開状態での前記給水口からの給水量が、前記排水用バルブが全開状態での前記排水口からの排水量より大きくなっていると共に、
前記弁制御部は、前記貯留部内を前記処理済み水道水から前記未処理水道水に入れ替えるときに、前記排水用バルブ及び前記給水用バルブを共に全開にする請求項4に記載の残留塩素検出装置。
The amount of water supplied from the water supply port when the water supply valve is fully open is larger than the amount of drainage from the drainage port when the drainage valve is fully open.
The residual chlorine detection device according to claim 4, wherein the valve control unit fully opens both the drainage valve and the water supply valve when the inside of the storage unit is replaced with the untreated tap water. ..
前記貯留部内の水道水を撹拌する撹拌機を有する請求項2乃至5の何れか1の請求項に記載の残留塩素検出装置。 The residual chlorine detection device according to claim 1, further comprising a stirrer for stirring tap water in the reservoir. 前記貯留部の上面が開口している請求項2乃至6の何れか1の請求項に記載の残留塩素検出装置。 The residual chlorine detection device according to claim 1, wherein the upper surface of the storage portion is open. 水道水の遊離残留塩素を検出する残留塩素検出方法であって、
水道管から排出される水道水から前記遊離残留塩素の除去処理を行った処理済み水道水にイオン化傾向が異なる1対の電極を浸漬してそれら電極間に生じる第1電圧を検出すると共に、前記除去処理が行われていない未処理水道水に前記1対の電極を浸漬してそれら電極間に生じる第2電圧を検出し、
前記第2電圧から、水道水の前記遊離残留塩素以外の含有物による電圧成分を前記第1電圧に基づいて差し引いて差分電圧を求め、その差分電圧を利用して前記遊離残留塩素を検出する残留塩素検出方法。
It is a residual chlorine detection method that detects free residual chlorine in tap water.
A pair of electrodes having different ionization tendencies are immersed in the treated tap water which has been treated to remove the free residual chlorine from the tap water discharged from the water pipe, and the first voltage generated between the electrodes is detected and described above. The pair of electrodes is immersed in untreated tap water that has not been removed, and the second voltage generated between the electrodes is detected.
The voltage component due to the inclusions other than the free residual chlorine in tap water is subtracted from the second voltage based on the first voltage to obtain the differential voltage, and the differential voltage is used to detect the free residual chlorine. Chlorine detection method.
前記水道管から排出される水道水を予め定められた基準時間以上、貯留部に貯留することで前記除去処理を行い、
前記1対の電極を前記貯留部に固定して前記第1電圧と前記第2電圧とを検出する請求項8に記載の残留塩素検出方法。
The removal treatment is performed by storing the tap water discharged from the water pipe in the storage unit for a predetermined reference time or longer.
The method for detecting residual chlorine according to claim 8, wherein the pair of electrodes is fixed to the storage portion to detect the first voltage and the second voltage.
前記第2電圧と、その第2電圧の検出の直前に検出される第1電圧とから前記差分電圧を求める請求項9に記載の残留塩素検出方法。 The residual chlorine detection method according to claim 9, wherein the differential voltage is obtained from the second voltage and the first voltage detected immediately before the detection of the second voltage. 前記処理済み水道水から前記未処理水道水に入れ替えるときを含めて前記貯留部を常に略満水状態に維持する請求項9又は10に記載の残留塩素検出方法。 The residual chlorine detection method according to claim 9 or 10, wherein the storage portion is always maintained in a substantially full state including when the treated tap water is replaced with the untreated tap water.
JP2018146403A 2018-08-03 2018-08-03 Residual chlorine detection device and residual chlorine detection method Active JP7089434B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2018146403A JP7089434B2 (en) 2018-08-03 2018-08-03 Residual chlorine detection device and residual chlorine detection method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2018146403A JP7089434B2 (en) 2018-08-03 2018-08-03 Residual chlorine detection device and residual chlorine detection method

Publications (2)

Publication Number Publication Date
JP2020020727A JP2020020727A (en) 2020-02-06
JP7089434B2 true JP7089434B2 (en) 2022-06-22

Family

ID=69589787

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2018146403A Active JP7089434B2 (en) 2018-08-03 2018-08-03 Residual chlorine detection device and residual chlorine detection method

Country Status (1)

Country Link
JP (1) JP7089434B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102555505B1 (en) * 2023-03-15 2023-07-13 주식회사 에이치코비 Water quality multi-item measurement system equipped with electrochemical residual chlorine sensor of rotating electrode method using pH electrode

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004154758A (en) 2002-09-10 2004-06-03 Takayasu Okubo Water purifier
JP2016114376A (en) 2014-12-11 2016-06-23 国立大学法人横浜国立大学 Solid-state residual chlorine sensor and water meter having the same

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2644127B2 (en) * 1991-12-12 1997-08-25 株式会社クボタ Water quality meter

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004154758A (en) 2002-09-10 2004-06-03 Takayasu Okubo Water purifier
JP2016114376A (en) 2014-12-11 2016-06-23 国立大学法人横浜国立大学 Solid-state residual chlorine sensor and water meter having the same

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
山本耕司,貯水槽における残留塩素の挙動,生活衛生,1983年,27-4,212-215

Also Published As

Publication number Publication date
JP2020020727A (en) 2020-02-06

Similar Documents

Publication Publication Date Title
JP7089434B2 (en) Residual chlorine detection device and residual chlorine detection method
WO2002090266A1 (en) Water treating device
EP0133920A1 (en) Automatically controlled system for sanitizing water bodies
JP6488825B2 (en) Residual chlorine measuring device
JP2885063B2 (en) Method and apparatus for detecting salt water level and salt water concentration in salt water tank of water softener
JP2004223419A (en) Control device for concentration of chlorine
JP7284624B2 (en) Residual chlorine removal method, controller for residual chlorine removal system, and residual chlorine removal system
JP2004033800A (en) Control method of concentration of residual chlorine, producing method of ultra-pure water and control method of concentration of injected chlorine
JP3530452B2 (en) Water treatment equipment
JP3612902B2 (en) Electrolyzed water generator
EP0972860B1 (en) Electrolytic recovery of metal from solution
JP2009189933A (en) Reduction treatment apparatus and method
US5348663A (en) Control of bromination of drinking water
JP3646541B2 (en) Hypochlorous acid concentration control method in electrolyzed water supply device
JP7178834B2 (en) Method and apparatus for treating water containing hydrogen peroxide
US20230036931A1 (en) Method for disinfection and function control of a chlorine sensor
KR102459386B1 (en) Ballast water treatment apparatus for smart ship
JP3347802B2 (en) Solution concentration control device
JPH05322830A (en) Method for melting silver chloride for cod measuring instrument
EP3643684A1 (en) System and procedure for the disinfection and preservation of water in circuits with water accumulation by means of applying combined electroporation and oxidation
JP2019097514A (en) Food product washing device and method
US20220194826A1 (en) Method of dosing biocide into a fluid system
JP2004242864A (en) Washing machine
JP5458551B2 (en) Concentration control method for aqueous treatment agent and aqueous sterilization method using the control method
US5618644A (en) Method of monitoring washing water for a developing process of a photosensitive material

Legal Events

Date Code Title Description
RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20190315

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20210614

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20220513

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20220607

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20220610

R150 Certificate of patent or registration of utility model

Ref document number: 7089434

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150