JP2644127B2 - Water quality meter - Google Patents

Water quality meter

Info

Publication number
JP2644127B2
JP2644127B2 JP32788391A JP32788391A JP2644127B2 JP 2644127 B2 JP2644127 B2 JP 2644127B2 JP 32788391 A JP32788391 A JP 32788391A JP 32788391 A JP32788391 A JP 32788391A JP 2644127 B2 JP2644127 B2 JP 2644127B2
Authority
JP
Japan
Prior art keywords
flow path
sample water
conductivity
residual chlorine
solvent
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP32788391A
Other languages
Japanese (ja)
Other versions
JPH05164717A (en
Inventor
公太郎 河本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kubota Corp
Original Assignee
Kubota Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kubota Corp filed Critical Kubota Corp
Priority to JP32788391A priority Critical patent/JP2644127B2/en
Publication of JPH05164717A publication Critical patent/JPH05164717A/en
Application granted granted Critical
Publication of JP2644127B2 publication Critical patent/JP2644127B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【産業上の利用分野】本発明は、試料水、例えば水道水
中の残留塩素や炭酸の濃度を測定する水質計に関するも
のである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a water quality meter for measuring the concentration of residual chlorine or carbonic acid in a sample water, for example, tap water.

【0002】[0002]

【従来の技術】図2は、特願平2−144120号の水
質計測定方法に用いられている試料水中の残留塩素を測
定する水質計の回路図である。図において、1は分離部
であって、この分離部1はガス透過膜2で隔てられた一
方の流路3には試料水4と酸性溶液5の混合水が流通
し、他方の流路6には導電率が一定の溶媒7が流通して
いる。さらに、他方の流路6の下流側には導電率検出部
8が設けられている。
2. Description of the Related Art FIG. 2 is a circuit diagram of a water quality meter for measuring residual chlorine in sample water used in a water quality meter measurement method disclosed in Japanese Patent Application No. 2-144120. In the figure, reference numeral 1 denotes a separation unit. In the separation unit 1, a mixed water of a sample water 4 and an acidic solution 5 flows through one flow path 3 separated by a gas permeable membrane 2, and the other flow path 6 , A solvent 7 having a constant conductivity flows. Further, a conductivity detector 8 is provided downstream of the other flow path 6.

【0003】試料水4中の残留塩素はイオン状態、もし
くは他の物質との化合物として存在している。これらの
次亜塩素イオン、もしくは次亜塩素酸化合物は酸性溶液
5と反応してガス状となる。そこで、ガス状の塩素をガ
ス透過膜2を透過させて他方の流路6を流れる溶媒7に
吸収させることによって溶媒7の導電率が変化する。そ
の値を導電率検出部8で検出することによって残留塩素
を測定することができる。
[0003] The residual chlorine in the sample water 4 exists in an ionic state or as a compound with another substance. These hypochlorite ions or hypochlorite compounds react with the acidic solution 5 and become gaseous. Therefore, the conductivity of the solvent 7 changes by allowing gaseous chlorine to pass through the gas permeable membrane 2 and be absorbed by the solvent 7 flowing through the other flow path 6. The residual chlorine can be measured by detecting the value with the conductivity detector 8.

【0004】上記実施例は残留塩素を測定する水質計で
あるが、炭酸濃度の測定方法についても既に公知である
(ANALYTICAL CHEMISTRY VO
L,50,NO,11,SEPTEMBER 197
8)。
The above embodiment is a water quality meter for measuring residual chlorine, but a method for measuring carbon dioxide concentration is already known (ANALYTICAL CHEMISTRY VO).
L, 50, NO, 11, SEPTEMBER 197
8).

【0005】しかしながら、試料水4、例えば、上水道
中には残留塩素の他に炭酸が共存しているので、その場
合、酸性溶液5が添加されると塩素ガス(Cl2 )と炭
酸ガス(CO2 )になりガス透過膜2を透過する。透過
したガスは分離部1の他方の流路6を流通する導電率が
一定の溶媒7に溶解してイオン化し、溶媒7の導電率を
変化させる。導電率検出部8にはイオンの選択性がない
ため測定しようとする試料水4中に残留塩素及び炭酸が
共存する場合も両者の値を峻別して測定することは不可
能である。
However, since carbon dioxide coexists in the sample water 4, for example, the water supply, in addition to the residual chlorine, when the acidic solution 5 is added, chlorine gas (Cl 2 ) and carbon dioxide gas (CO 2 ) are added. 2 ) and passes through the gas permeable membrane 2. The permeated gas is dissolved in a solvent 7 having a constant conductivity flowing through the other flow path 6 of the separation unit 1 and ionized to change the conductivity of the solvent 7. Since the conductivity detector 8 has no ion selectivity, even when residual chlorine and carbonic acid coexist in the sample water 4 to be measured, it is impossible to measure both values sharply.

【0006】そこで、考えられるのは図3に示すよう
に、分離部を第1分離部11と第2分離部12とから構成
し、第2分離部12の一方の試料水流路13に残留塩素を吸
収するフィルター部14を設け、試料水15を通過させると
フィルター部14で残留塩素が吸着される。この残留塩素
が吸着された試料水15に酸性溶液を添加すると、炭酸ガ
スのみが気液分離してガス透過膜16を透過し、第2分離
部12の他方の流路17を流れる溶媒18に吸収され、その溶
媒18の導電率を変化させる。そして、第1分離部11の導
電率検出部19の値から第2分離部12の導電率検出部20の
値を引けば残留塩素の濃度が計測でき、第2分離部12側
の導電率検出部20の値から炭酸の濃度が検出できる。従
って、試料水15中に残留塩素及び炭酸が共存していたも
両者を連続測定できる。
Therefore, as shown in FIG. 3, it is conceivable that the separation section is composed of a first separation section 11 and a second separation section 12, and the residual chlorine is supplied to one of the sample water flow paths 13 of the second separation section 12. Is provided, and when the sample water 15 is passed, residual chlorine is adsorbed by the filter unit 14. When an acidic solution is added to the sample water 15 to which the residual chlorine has been adsorbed, only the carbon dioxide gas is gas-liquid separated and permeates the gas permeable membrane 16, and flows into the solvent 18 flowing through the other channel 17 of the second separation unit 12. It is absorbed and changes the conductivity of the solvent 18. Then, by subtracting the value of the conductivity detection unit 20 of the second separation unit 12 from the value of the conductivity detection unit 19 of the first separation unit 11, the concentration of residual chlorine can be measured, and the conductivity detection on the second separation unit 12 side is performed. From the value of the part 20, the concentration of carbonic acid can be detected. Therefore, even if residual chlorine and carbonic acid coexist in the sample water 15, both can be continuously measured.

【0007】[0007]

【発明が解決しようとする課題】しかしながら、分離部
を第1分離部11と第2分離部12とから構成した水質計
は、分離部、導電率検出部、ポンプが2つ必要となって
配管も長くなり水質計の大きさが大きくなる。しかも、
部品点数が多くなってその分、製作コストも高くなると
いう問題点を有していた。
However, the water quality meter in which the separation unit is composed of the first separation unit 11 and the second separation unit 12 requires two separation units, a conductivity detection unit, and two pumps. And the size of the water quality meter increases. Moreover,
There is a problem that the number of parts increases and the manufacturing cost increases accordingly.

【0008】本発明は、このような従来の問題点を解決
するためになされたもので、測定対象である試料水中に
残留塩素及び炭酸が共存していても残留塩素及び炭酸を
測定できるとともに、大きさも小型化でき、部品点数も
少なく製作コストも安価な水質計を提供することを目的
としている。
The present invention has been made to solve such a conventional problem, and can measure residual chlorine and carbonic acid even if residual chlorine and carbonic acid coexist in sample water to be measured. An object of the present invention is to provide a water quality meter which can be reduced in size, has a small number of parts, and is inexpensive to manufacture.

【0009】[0009]

【課題を解決するための手段】本発明の水質計は、分離
部の流路をガス透過膜によって隔て、この分離部の一方
の流路に試料水を流し、他方の流路に導電率が一定の溶
媒を流通させ、一方の流路を流通する試料水に酸性溶液
を混合し、酸性溶液との反応によって発生したガスをガ
ス透過膜を通して他方の流路を流通する溶媒中に吸収さ
せて溶媒の導電率を導電率検出部で検出する水質計にお
いて、分離部の一方の流路の上流側に試料水流路を設
け、この試料水流路から分岐したバイパス流路に残留塩
素を吸収するフィルター部を並設し、試料水流路とバイ
パス流路の流れを切り換える切換コックを設けている。
According to the water quality meter of the present invention, the flow path of the separation section is separated by a gas permeable membrane, the sample water flows through one flow path of the separation section, and the conductivity of the sample flow flows through the other flow path. A certain solvent is allowed to flow, the acidic solution is mixed with the sample water flowing through one flow path, and the gas generated by the reaction with the acidic solution is absorbed into the solvent flowing through the other flow path through the gas permeable membrane. In a water quality meter in which the conductivity of a solvent is detected by a conductivity detection unit, a sample water flow path is provided upstream of one flow path of a separation unit, and a filter that absorbs residual chlorine in a bypass flow path branched from the sample water flow path. And a switching cock for switching the flow between the sample water flow path and the bypass flow path.

【0010】[0010]

【作用】本発明は上記構成により、バイパス流路の流れ
を開閉する切換コックを操作して試料水の流れを試料水
流路側だけに流れるようにし、試料水と酸性溶液を混合
して試料水中の残留塩素や炭酸を塩素ガスや炭酸ガスと
し、これらのガスを分離部のガス透過膜を透過させて他
方の流路を流れる溶媒に吸収させる。この溶媒の導電率
を導電率検出部で検出し、残留塩素と炭酸の両者の導電
率を測定する。
According to the present invention, the switching cock for opening and closing the flow of the bypass flow path is operated so that the flow of the sample water flows only to the side of the sample water flow path. The residual chlorine or carbonic acid is changed to chlorine gas or carbon dioxide gas, and these gases are allowed to permeate through the gas permeable membrane of the separation part and absorbed by the solvent flowing through the other flow path. The conductivity of the solvent is detected by a conductivity detector, and the conductivity of both residual chlorine and carbonic acid is measured.

【0011】他方、バイパス流路の流れを開閉する切換
コックを操作して試料水の流れを残留塩素を吸収するフ
ィルター部だけに流れるようにし、フィルター部に試料
水を通過させるとフィルター部で残留塩素が吸着され、
この残留塩素が吸着され炭酸の残った試料水に酸性溶液
を添加すると、炭酸ガスが気液分離してガス透過膜を透
過し、分離部の他方の流路を流れる溶媒に吸収され、こ
の溶媒の導電率を測定する。そして、残留塩素と炭酸の
両者の導電率の値から炭酸の導電率の値を引けば残留塩
素の濃度が計測できる。
On the other hand, the switching cock for opening and closing the flow of the bypass flow passage is operated so that the flow of the sample water flows only to the filter section for absorbing the residual chlorine. Chlorine is adsorbed,
When the acidic solution is added to the sample water in which the residual chlorine is adsorbed and the carbonic acid remains, the carbon dioxide gas is separated into gas and liquid, passes through the gas permeable membrane, and is absorbed by the solvent flowing through the other flow path of the separation unit. Is measured. Then, by subtracting the value of the conductivity of carbonic acid from the value of the conductivity of both residual chlorine and carbonic acid, the concentration of residual chlorine can be measured.

【0012】残留塩素は浄水場などで人為的に濃度コン
トロールされるが、炭酸は原水や温度によって左右され
る以外ほとんど変化しない。そこで、一定時間ごとに炭
酸の導電率の測定を行い、温度補正をかけながらそのデ
ータを残留塩素測定のための定数として装置に覚えさせ
ておけば、常時はフィルター部に試料水を通過させずに
残留塩素の測定を行なうことができる。
[0012] The concentration of residual chlorine is artificially controlled in a water purification plant or the like, but carbonic acid hardly changes except that it depends on raw water and temperature. Therefore, if the conductivity of carbonic acid is measured at regular intervals and the data is stored in the device as a constant for residual chlorine measurement while performing temperature correction, the sample water will not always pass through the filter. Measurement of residual chlorine.

【0013】[0013]

【実施例】以下に本発明の一実施例について、図1を参
照しながら説明する。本実施例の水質計は、ガスを分離
する分離部30と、塩酸、硫酸、硝酸等が入った酸性溶液
タンク31と、純水などの溶媒32が入った溶媒タンク33
と、活性炭等が充填されたフィルター部34と、導電率を
検出する導電率検出部35とからなり、これらを相互に結
ぶ流路と、液を送るポンプを備えている。
An embodiment of the present invention will be described below with reference to FIG. The water quality meter of the present embodiment includes a separation unit 30 for separating gas, an acidic solution tank 31 containing hydrochloric acid, sulfuric acid, nitric acid, and the like, and a solvent tank 33 containing a solvent 32 such as pure water.
, A filter unit 34 filled with activated carbon or the like, and a conductivity detection unit 35 for detecting conductivity, which is provided with a flow path connecting these components and a pump for sending a liquid.

【0014】分離部30は、長尺状の筒の中央長手方向に
炭酸ガスや塩素ガスなどが透過するテフロン製のガス透
過膜36が配設され、一方の流路37側から他方の流路38側
に炭酸ガスや塩素ガスなどが透過するよう構成されてい
る。なお、ガス透過膜36に使われているテフロンは、気
液分離を行なう上で効率のよい材質であるが、このガス
透過膜36の材料は、テフロンに限定されずポリエチレ
ン、ポリスチレンなどであってもよい。
The separating section 30 is provided with a gas permeable membrane 36 made of Teflon, through which carbon dioxide gas, chlorine gas and the like permeates, in the longitudinal direction of the center of the elongated tube. It is configured such that carbon dioxide gas, chlorine gas, etc., permeates to the 38 side. The Teflon used for the gas permeable membrane 36 is a material that is efficient in performing gas-liquid separation, but the material of the gas permeable membrane 36 is not limited to Teflon, and may be polyethylene, polystyrene, or the like. Is also good.

【0015】分離部30の一方の流路37の上流側には試料
水39を流通させる試料水流路40が接続し、この試料水流
路40の途中に第1送液ポンプ41が設けられている。さら
に、試料水流路40にはバイパス流路42が分岐して接続
し、このバイパス流路42に残留塩素を吸収する活性炭が
充填されたフィルター部34が設けている。但し、フィル
ター部34の充填剤は活性炭に限定されず残留塩素を吸収
する物質であれば他の物質であってもよい。
A sample water flow path 40 through which the sample water 39 flows is connected to the upstream side of one flow path 37 of the separation section 30, and a first liquid feed pump 41 is provided in the middle of the sample water flow path 40. . Further, a bypass channel 42 is branched and connected to the sample water channel 40, and the bypass channel 42 is provided with a filter section 34 filled with activated carbon for absorbing residual chlorine. However, the filler of the filter section 34 is not limited to activated carbon, and may be another substance as long as it absorbs residual chlorine.

【0016】バイパス流路42の下流と試料水流路40との
合流点には三方切換コック43が設けられ、試料水流路40
側か、バイパス流路42側のいずれかを選択して試料水39
を流すよう構成されている。
A three-way switching cock 43 is provided at the junction of the downstream of the bypass flow path 42 and the sample water flow path 40, and the sample water flow path 40
Side or the bypass channel 42 side to select the sample water 39
Is configured to flow.

【0017】試料水流路40のさらに下流部には酸性溶液
タンク31と連通する酸性溶液流路44が接続し、この酸性
溶液流路44に第2送液ポンプ45が設けられている。酸性
溶液タンク31には塩酸、硫酸、硝酸などの強酸が貯留さ
れている。
An acid solution flow path 44 communicating with the acid solution tank 31 is connected further downstream of the sample water flow path 40, and a second liquid feed pump 45 is provided in the acid solution flow path 44. The acidic solution tank 31 stores strong acids such as hydrochloric acid, sulfuric acid, and nitric acid.

【0018】なお、分離部30の一方の流路37の下流側に
は排水流路46が設けられ、分離部30一方の流路37を通っ
た試料水39が排水される。分離部30の他方の流路38の上
流側には第3送液ポンプ47が設けられた溶媒流路48が接
続し、分離部30と溶媒タンク33とが連通している。溶媒
タンク33には導電率が一定の溶媒32、例えば純水が入れ
られている。分離部30の他方の流路38の下流側には、溶
媒32の導電率を測定する導電率検出部35が設けられてい
る。
A drain channel 46 is provided downstream of the one channel 37 of the separation unit 30, and the sample water 39 passing through the one channel 37 of the separation unit 30 is drained. A solvent flow path 48 provided with a third liquid feed pump 47 is connected to the upstream side of the other flow path 38 of the separation unit 30, and the separation unit 30 and the solvent tank 33 communicate with each other. The solvent tank 33 contains a solvent 32 having a constant conductivity, for example, pure water. On the downstream side of the other flow path 38 of the separation unit 30, a conductivity detection unit 35 for measuring the conductivity of the solvent 32 is provided.

【0019】つぎに、残留塩素及び炭酸の濃度の測定方
法を説明する。まず、試料水流路40側だけに試料水39が
流れるように三方切換コック43を操作した後、第1送液
ポンプ41を駆動して分離部30の一方の流路37に試料水
(例えば、水道水)39を送り込む。さらに、第2送液ポ
ンプ45を駆動して酸性溶液49を試料水流路40に送り込ん
で試料水39と酸性溶液49を混合する。一方の流路37を流
れる試料水39中には残留塩素や炭酸が含まれているが、
この残留塩素や炭酸は酸性溶液49と反応して塩素ガスや
炭酸ガスとなる。塩素ガスや炭酸ガスは、分離部30の一
方の流路37の上流側から下流側に流れていくうちに、ガ
ス透過膜36を透過して他方の流路38内に流れこむ。他方
の流路38には、溶媒32が流れているが、この溶媒32が塩
素ガスや炭酸ガスを吸収する。他方の流路38の下流に設
けられた導電率検出部35で溶媒32の導電率の変化量を測
定することによって試料水39中の残留塩素や炭酸の量を
測定することができる。
Next, a method for measuring the concentrations of residual chlorine and carbonic acid will be described. First, after operating the three-way switching cock 43 so that the sample water 39 flows only to the sample water flow path 40 side, the first liquid feed pump 41 is driven and the sample water (for example, Tap water) 39 is sent. Further, the second solution pump 45 is driven to feed the acidic solution 49 into the sample water flow path 40 to mix the sample water 39 and the acidic solution 49. Sample water 39 flowing through one channel 37 contains residual chlorine and carbonic acid,
This residual chlorine or carbonic acid reacts with the acidic solution 49 to form chlorine gas or carbon dioxide gas. The chlorine gas and the carbon dioxide gas pass through the gas permeable membrane 36 and flow into the other flow path 38 while flowing from the upstream side to the downstream side of one flow path 37 of the separation unit 30. A solvent 32 flows through the other flow path 38, and the solvent 32 absorbs chlorine gas and carbon dioxide gas. The amount of residual chlorine or carbonic acid in the sample water 39 can be measured by measuring the amount of change in the conductivity of the solvent 32 with the conductivity detection unit 35 provided downstream of the other flow path 38.

【0020】次に、炭酸の濃度を測定する方法を説明す
る。バイパス流路42側だけに試料水39が流れるように三
方切換コック43を操作してフィルター部34に試料水39を
送り込む。フィルター部34に送り込まれた試料水39のう
ち残留塩素は活性炭によって吸収される。試料水39は、
再び試料水流路40にもどり酸性溶液49と混合して分離部
30の一方の流路37に送り込こまれる。試料水39中の炭酸
は炭酸ガスとなって分離部30のガス透過膜36を透過して
他方の流路38に入り溶媒32に溶解する。溶媒32の導電率
の変化を導電率検出部35によって検出して炭酸の量を測
定することができる。
Next, a method for measuring the concentration of carbonic acid will be described. The three-way switching cock 43 is operated to send the sample water 39 to the filter unit 34 so that the sample water 39 flows only to the bypass flow path 42 side. The residual chlorine in the sample water 39 sent to the filter unit 34 is absorbed by the activated carbon. Sample water 39
Return to sample water flow path 40 again and mix with acidic solution 49 to separate
It is fed into one flow path 37 of 30. Carbonic acid in the sample water 39 becomes carbon dioxide gas, passes through the gas permeable membrane 36 of the separation unit 30, enters the other flow channel 38, and is dissolved in the solvent 32. The change in the conductivity of the solvent 32 can be detected by the conductivity detection unit 35 to measure the amount of carbonic acid.

【0021】前者では残留塩素と炭酸の導電率が測定さ
れているので、この測定結果から後者の炭酸の導電率を
差し引いて残留塩素の濃度を出す。その残留塩素の濃度
は以下のような式で求める。 残留塩素濃度={(フィルター部を通さない試料水の導
電率検出部の値)−(フィルター部を通した試料水の導
電率検出部の値)}×換算計数 炭酸の濃度は以下のような式で求める。 炭酸濃度=(フィルター部を通した試料水の導電率検出
部の値)×換算計数 なお、前記のよう炭酸の濃度の測定は、残留塩素が浄水
場などで人為的に濃度コントロールされるのに対して、
炭酸は原水や温度によって左右される以外ほとんど変化
しないので、ある間隔でフィルター部34を通過させて測
定を行えばよいことになる。そのデータに温度補正をか
けながら残留塩素測定のための定数として装置に覚えさ
せておけば、常時は試料水流路40のみを通過する試料水
39の導電率の測定を行なばよいために、分離部30及び導
電率検出部35は一つでよいことになり、装置が小型化で
きるとともに、部品点数の減少によりコストダウンにも
つながる。
In the former, the electric conductivity of residual chlorine and carbonic acid is measured, and the electric conductivity of carbonic acid in the latter is subtracted from the measurement result to obtain the concentration of residual chlorine. The concentration of the residual chlorine is determined by the following equation. Residual chlorine concentration = {(value of conductivity detector of sample water that does not pass through filter)-(value of conductivity detector of sample water that passes through filter)} x conversion coefficient The concentration of carbonic acid is as follows Calculate by formula. Carbon dioxide concentration = (the value of the conductivity detector of the sample water passed through the filter unit) x conversion count As described above, the measurement of the carbon dioxide concentration is based on the fact that the residual chlorine is artificially controlled in a water purification plant and the like. for,
Carbonic acid hardly changes except depending on the raw water and temperature, so that the measurement may be performed by passing the carbon dioxide through the filter unit 34 at certain intervals. If the data is stored in the instrument as a constant for residual chlorine measurement while temperature correction is applied to the data, the sample water that normally only passes through the sample water flow path 40
Since it is sufficient to measure the conductivity of 39, only one separating unit 30 and one conductivity detecting unit 35 are required, which can reduce the size of the device and reduce the number of parts, leading to cost reduction.

【0022】[0022]

【発明の効果】以上のように、本発明によれば、バイパ
ス流路の流れを開閉する切換コックを操作することによ
って残留塩素と炭酸が共存する試料水の導電率の値と残
留塩素を除いた試料水の導電率の値を測定し、前者の導
電率から後者の導電率を差し引くことによって、分離部
や導電率検出部が1つでも残留塩素や炭酸の量をそれぞ
れ測定することができるとともに、装置を小型化するこ
とが可能で、しかも部品点数の低減でコストダウンをは
かることができる。
As described above, according to the present invention, by operating the switching cock for opening and closing the flow in the bypass flow path, the value of the conductivity of the sample water in which residual chlorine and carbonic acid coexist and the residual chlorine are removed. By measuring the conductivity value of the sampled water and subtracting the latter conductivity from the former conductivity, the amount of residual chlorine and carbonic acid can be measured even with one separation unit or conductivity detection unit. At the same time, the size of the apparatus can be reduced, and the cost can be reduced by reducing the number of parts.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の一実施例における水質計の回路図であ
る。
FIG. 1 is a circuit diagram of a water quality meter according to an embodiment of the present invention.

【図2】従来例の水質計の回路図である。FIG. 2 is a circuit diagram of a conventional water quality meter.

【図3】従来例を改良した水質計の回路図である。FIG. 3 is a circuit diagram of a water quality meter improved from the conventional example.

【符号の説明】[Explanation of symbols]

30 分離部 32 溶媒 34 フィルター部 35 導電率検出部 36 ガス透過膜 37 一方の流路 38 他方の流路 39 試料水 40 試料水流路 42 バイパス流路 43 切換コック 49 酸性溶液 30 Separator 32 Solvent 34 Filter 35 Conductivity detector 36 Gas permeable membrane 37 One flow path 38 The other flow path 39 Sample water 40 Sample water flow path 42 Bypass flow path 43 Switching cock 49 Acid solution

Claims (1)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】 分離部の流路をガス透過膜によって隔
て、この分離部の一方の流路に試料水を流し、他方の流
路に導電率が一定の溶媒を流通させ、一方の流路を流通
する試料水に酸性溶液を混合し、酸性溶液との反応によ
って発生したガスをガス透過膜を通して他方の流路を流
通する溶媒中に吸収させて溶媒の導電率を導電率検出部
で検出する水質計において、分離部の一方の流路の上流
側に試料水流路を設け、この試料水流路から分岐したバ
イパス流路に残留塩素を吸収するフィルター部を並設
し、試料水流路とバイパス流路の流れを切り換える切換
コックを設けたことを特徴とする水質計。
1. A flow path of a separation section is separated by a gas permeable membrane, a sample water flows through one flow path of the separation section, and a solvent having a constant conductivity flows through the other flow path. The acidic solution is mixed with the sample water flowing through and the gas generated by the reaction with the acidic solution is absorbed into the solvent flowing through the other channel through the gas permeable membrane, and the conductivity of the solvent is detected by the conductivity detecting unit. In the water quality meter, a sample water flow path is provided on the upstream side of one flow path of the separation section, and a filter section for absorbing residual chlorine is provided side by side in a bypass flow path branched from the sample water flow path, and the sample water flow path and the bypass are provided. A water quality meter comprising a switching cock for switching a flow in a flow path.
JP32788391A 1991-12-12 1991-12-12 Water quality meter Expired - Lifetime JP2644127B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP32788391A JP2644127B2 (en) 1991-12-12 1991-12-12 Water quality meter

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP32788391A JP2644127B2 (en) 1991-12-12 1991-12-12 Water quality meter

Publications (2)

Publication Number Publication Date
JPH05164717A JPH05164717A (en) 1993-06-29
JP2644127B2 true JP2644127B2 (en) 1997-08-25

Family

ID=18204046

Family Applications (1)

Application Number Title Priority Date Filing Date
JP32788391A Expired - Lifetime JP2644127B2 (en) 1991-12-12 1991-12-12 Water quality meter

Country Status (1)

Country Link
JP (1) JP2644127B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7089434B2 (en) * 2018-08-03 2022-06-22 愛知時計電機株式会社 Residual chlorine detection device and residual chlorine detection method

Also Published As

Publication number Publication date
JPH05164717A (en) 1993-06-29

Similar Documents

Publication Publication Date Title
EP0897538B1 (en) Method and apparatus for the measurement of dissolved carbon in deionized water
EP0871877A1 (en) Method and apparatus for the measurement of dissolved carbon
US5668014A (en) Device and method for estimating three nitrogen-including ionic substances in water
US20060024839A1 (en) Inorganic carbon removal
Saha et al. Selective CO2 separation from CO2/C2H6 mixtures by immobilized diethanolamine/PEG membranes
JP2644127B2 (en) Water quality meter
CN102057270B (en) Method and device for measuring purity of ultrapure water
JP2644128B2 (en) Water quality meter
US20070238188A1 (en) Peroxide monitor
JP2953904B2 (en) Analyzer for silica component in water
JP3166140B2 (en) Free cyanometer
EP0466303B1 (en) Method and system for continuously monitoring and controlling a process stream for dechlorination residual
JP3538957B2 (en) Method and apparatus for analyzing three-state nitrogen in water
JPH0580009A (en) Carbonic acid concentration measuring method
JPH06174671A (en) Water quality measuring instrument
Oleksy-Frenzel et al. On-line multicomponent determination of organic compounds in water following gel permeation chromatographic separation
JPH0712720A (en) Underwater densitometer
KR100518267B1 (en) Method and apparatus for improving the detection sensitivity of the analyser used for the measurement of organic materials dissolved in water
Miller et al. A versatile electrochemical monitor for air-quality measurements
JPH1010050A (en) Gasifying separator of three-form nitrometer
JPH0231156A (en) System for analysis of metal component
JPH0961361A (en) Continuous ammonia concentration measuring device
JP2001141709A (en) Ion chromatograph
JPH0518870A (en) Water quality indicator
JP3050684B2 (en) Trace ion analyzer