JP3050684B2 - Trace ion analyzer - Google Patents

Trace ion analyzer

Info

Publication number
JP3050684B2
JP3050684B2 JP4056881A JP5688192A JP3050684B2 JP 3050684 B2 JP3050684 B2 JP 3050684B2 JP 4056881 A JP4056881 A JP 4056881A JP 5688192 A JP5688192 A JP 5688192A JP 3050684 B2 JP3050684 B2 JP 3050684B2
Authority
JP
Japan
Prior art keywords
sample
electrolyte
supply line
ion analyzer
separation column
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP4056881A
Other languages
Japanese (ja)
Other versions
JPH05223802A (en
Inventor
昇 矢島
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Horiba Ltd
Original Assignee
Horiba Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Horiba Ltd filed Critical Horiba Ltd
Priority to JP4056881A priority Critical patent/JP3050684B2/en
Publication of JPH05223802A publication Critical patent/JPH05223802A/en
Application granted granted Critical
Publication of JP3050684B2 publication Critical patent/JP3050684B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】本発明は、例えば半導体の製造において使
用する純水中に含まれているケイ酸イオンなどの微量イ
オンを定量分析する装置に関する。
[0001] The present invention relates to an apparatus for quantitatively analyzing trace ions such as silicate ions contained in pure water used in the production of semiconductors.

【0002】[0002]

【従来の技術】例えば半導体の製造において使用する純
水には、製造収率の向上や製品の信頼性の向上の観点か
ら、全二酸化ケイ素の濃度が低いことが要求されてい
る。しかしながら、水中の全二酸化ケイ素を直接的に定
量する方法や手段がないところから、従来より、ケイ酸
イオンを定量し、これに基づいて、全二酸化ケイ素を求
めることが行われており、このような従来の手法とし
て、電解質溶離液中に注入したサンプル液を分離カラム
で分離した後、反応試薬と混合させたものを検出器で定
量する方法がある。
2. Description of the Related Art Pure water used in the production of semiconductors, for example, is required to have a low concentration of total silicon dioxide from the viewpoint of improving the production yield and the reliability of products. However, since there is no method or means for directly quantifying total silicon dioxide in water, conventionally, silicate ions have been quantified and, based on this, total silicon dioxide has been determined. As a conventional method, there is a method in which a sample liquid injected into an electrolyte eluate is separated by a separation column, and then a mixture with a reaction reagent is quantified by a detector.

【0003】図3は、前記定量方法を実施するための微
量イオン分析装置を示すもので、この図において、1は
試料注入部で、例えば6個のポート1a〜1fを備えた6方
切換え弁よりなる。この試料注入部1には、サンプル液
供給ライン2と電解質溶離液供給ライン3と分離カラム
4とが接続されている。
FIG. 3 shows a trace ion analyzer for carrying out the above-mentioned quantification method. In this figure, reference numeral 1 denotes a sample injection unit, for example, a 6-way switching valve having six ports 1a to 1f. Consisting of A sample liquid supply line 2, an electrolyte eluent supply line 3, and a separation column 4 are connected to the sample injection section 1.

【0004】すなわち、サンプル液供給ライン2は、ポ
ート1aに接続されると共に、その上流側はポンプ(図
外)を介してサンプル液供給源(図外)に接続されてい
る。そして、電解質溶離液供給ライン3は、ポート1dに
接続されると共に、ポンプ5と脱気器6を備え、さら
に、その上流側は、炭酸ガストラップ7を付設した電解
質溶離液タンク8に接続されている。また、分離カラム
4は、流路9を介してポート1cに接続され、内部には例
えば陰イオン交換樹脂を備えている。なお、10はポート
1b, 1e間を接続するサンプルループ、11はポート1fに接
続されると共に、廃液タンク12を備えたサンプル液排出
ラインである。
That is, the sample liquid supply line 2 is connected to a port 1a, and the upstream side thereof is connected to a sample liquid supply source (not shown) via a pump (not shown). The electrolyte eluent supply line 3 is connected to the port 1d, includes a pump 5 and a deaerator 6, and is connected on the upstream side to an electrolyte eluent tank 8 provided with a carbon dioxide gas trap 7. ing. Further, the separation column 4 is connected to the port 1c via the flow path 9 and has, for example, an anion exchange resin therein. Note that 10 is the port
A sample loop 11 connects between 1b and 1e. A sample liquid discharge line 11 is connected to the port 1f and includes a waste liquid tank 12.

【0005】13は前記分離カラム4の出口側に設けられ
る混合ジョイントで、この混合ジョイント13には、反応
試薬供給ライン14と反応器15とが接続されている。そし
て、反応試薬供給ライン14は、ポンプ16と脱気器17とを
備えると共に、その上流側は、反応試薬タンク18に接続
されている。また、反応器15は、冷却コイル19を介して
例えば吸光光度計などの検出器20に接続されている。な
お、21は脱気器6,17と接続されたポンプ、22は背圧コ
イル23を介して検出器20に接続された廃液タンク、24は
レコーダ、25はデータ処理装置である。また、前記分離
カラム4と冷却コイル19、混合ジョイント13と反応器15
は、適宜の恒温槽にそれぞれ収容されている。
[0005] Reference numeral 13 denotes a mixing joint provided on the outlet side of the separation column 4, and a reaction reagent supply line 14 and a reactor 15 are connected to the mixing joint 13. The reaction reagent supply line 14 includes a pump 16 and a deaerator 17, and the upstream side thereof is connected to a reaction reagent tank 18. Further, the reactor 15 is connected to a detector 20 such as an absorptiometer via a cooling coil 19. Reference numeral 21 denotes a pump connected to the deaerators 6 and 17, 22 denotes a waste liquid tank connected to the detector 20 via a back pressure coil 23, 24 denotes a recorder, and 25 denotes a data processing device. Further, the separation column 4 and the cooling coil 19, the mixing joint 13 and the reactor 15
Are stored in appropriate thermostats, respectively.

【0006】このように構成された微量イオン分析装置
においては、分離カラム4にサンプル液と電解質溶離液
とを供給することにより、定量すべき目的成分であるケ
イ酸イオンを他の成分から分離し、その後、混合ジョイ
ント13において、前記分離されたケイ酸イオンを含む液
体と発色反応試薬とを混合し、この混合液を反応器15に
おいて反応させるようにしているので、選択性が高く、
かつ、感度の高い測定を行うことができる。
[0006] In the trace ion analyzer configured as described above, by supplying the sample solution and the electrolyte eluent to the separation column 4, silicate ions, which are target components to be quantified, are separated from other components. Thereafter, in the mixing joint 13, the liquid containing the separated silicate ions and the coloring reaction reagent are mixed, and the mixed liquid is allowed to react in the reactor 15, so that the selectivity is high,
And highly sensitive measurement can be performed.

【0007】[0007]

【発明が解決しようとする課題】しかしながら、上記微
量イオン分析装置に、サンプル液としての超純水を多量
(例えば 200μl)に注入して、ケイ酸イオンを定量し
た場合、図4(A)のクロマトグラムに示すように、ブ
ランク値が大きく、ピークのテーリングが長時間にわた
ると共に、図5において仮想線Aで示す検量線のよう
に、目的成分の低濃度域においてピークが異常に高くな
るなどの現象が発生するため、感度面での向上が望めな
いといった問題点があった。
However, when a large amount (for example, 200 μl) of ultrapure water as a sample solution is injected into the above-mentioned trace ion analyzer and silicate ions are quantified, FIG. As shown in the chromatogram, the blank value is large, the tailing of the peak takes a long time, and the peak becomes abnormally high in the low concentration region of the target component as shown by the calibration curve indicated by the imaginary line A in FIG. Since a phenomenon occurs, there is a problem that improvement in sensitivity cannot be expected.

【0008】ここで、前記異常ピークの発生要因につい
て考察する。多量のサンプル液を電解質溶離液中に注入
すると、電解質溶離液の一部にサンプル液のゾーンが形
成される。そして、このサンプル液ゾーンが分離カラム
4に到達すると、サンプル液中の各イオンが分離カラム
4のイオン交換樹脂との相互作用に基づいて時系列的に
電解質溶離液中に分離されてくる。
Here, the cause of the occurrence of the abnormal peak will be considered. When a large amount of the sample solution is injected into the electrolyte eluent, a zone of the sample solution is formed in a part of the electrolyte eluate. When the sample liquid zone reaches the separation column 4, each ion in the sample liquid is separated into the electrolyte eluent in a time series based on the interaction with the ion exchange resin of the separation column 4.

【0009】しかしながら、サンプル液として極微量の
イオンしか含まない純水試料を多量に(例えば 200μl
以上)注入した場合、電解質溶離液の一部に殆どイオン
を含まない純水のゾーンが形成される。この純水ゾーン
が分離カラム4に到達した場合に、純水ゾーンの電気伝
導率が極めて低く、また、ケイ酸イオン濃度も低いため
に、分離カラム4中に平衡吸着していたケイ酸イオンの
一部が流出してしまい、純水試料に含まれていたケイ酸
イオン濃度よりはるかに高いピークが生ずるものと推定
される。
However, a large amount of pure water sample containing only a very small amount of ions (for example, 200 μl)
Above) When injected, a zone of pure water containing almost no ions is formed in a part of the electrolyte eluent. When the pure water zone reaches the separation column 4, the electric conductivity of the pure water zone is extremely low, and the silicate ion concentration is also low. It is presumed that a part of the effluent flows out and a peak much higher than the silicate ion concentration contained in the pure water sample occurs.

【0010】これに対して、例えば特開平3− 15754号
公報に示されるように、分離カラムの上流側に濃縮カラ
ムを設け、サンプル液の分離処理に先立って濃縮処理を
施し実質的に少量(例えば 200μl以下)の試料を注入
することにより、高感度化することが提案されている
が、この従来技術によれば、濃縮カラムを設ける分だけ
構成が複雑で高価になるといった欠点があると共に、こ
のようにしても感度を十分に高めることが困難であっ
た。
On the other hand, as shown in, for example, JP-A-3-15754, a concentration column is provided on the upstream side of the separation column, and the concentration treatment is carried out prior to the separation treatment of the sample liquid to substantially reduce the amount of the sample liquid. It has been proposed to increase the sensitivity by injecting a sample of, for example, 200 μl or less). However, according to this conventional technique, there is a drawback that the configuration becomes complicated and expensive due to the provision of the concentration column. Even in this case, it has been difficult to sufficiently increase the sensitivity.

【0011】本発明は、上述の事柄に留意してなされた
もので、その目的とするところは、簡単な工夫により、
サンプル液として多量の純水試料を注入しても正確かつ
高感度に測定することができる微量イオン分析装置を提
供することにある。
The present invention has been made in consideration of the above-mentioned matters, and the object thereof is to provide a simple device.
An object of the present invention is to provide a trace ion analyzer capable of performing accurate and highly sensitive measurement even when a large amount of pure water sample is injected as a sample liquid.

【0012】[0012]

【課題を解決するための手段】上記目的を達成するた
め、本発明においては、サンプル液を電解質溶離液に注
入するための試料注入部の出口側において、前記電解質
溶離液中に注入されたサンプル液と、試料注入部をバイ
パスした電解質溶離液とを連続的に混合するように構成
している。
In order to achieve the above object, the present invention relates to a method for injecting a sample solution into an electrolyte eluent at the outlet side of a sample injecting section for injecting the sample solution into the electrolyte eluent. The liquid is continuously mixed with the electrolyte eluent bypassing the sample injection section.

【0013】[0013]

【作用】上記構成によれば、サンプル液として極微量の
イオンしか含まない純水試料を多量に注入した場合であ
っても、試料注入部の出口側で純水試料が電解質溶離液
と連続的に混合されることから、分離カラム内において
電気伝導率の極めて低いゾーンが形成されることがな
い。従って、分離カラム内のイオン交換樹脂に平衡吸着
していたイオンが純水試料中に溶出してくることはな
い。その結果、目的成分の低濃度域における異常ピーク
の発生が抑制され、ブランク値が低減されるので、正確
かつ高感度な測定を行うことができる。
According to the above construction, even when a large amount of pure water sample containing only a trace amount of ions is injected as a sample liquid, the pure water sample is continuously connected to the electrolyte eluent at the outlet of the sample injection section. , No zone with extremely low electrical conductivity is formed in the separation column. Therefore, ions that have been equilibrium-adsorbed to the ion exchange resin in the separation column do not elute into the pure water sample. As a result, the occurrence of abnormal peaks in the low concentration range of the target component is suppressed, and the blank value is reduced, so that accurate and highly sensitive measurement can be performed.

【0014】[0014]

【実施例】以下、本発明の実施例を、図面を参照しなが
ら説明する。以下の説明において、図3に示した符号と
同一のものは同一物である。
Embodiments of the present invention will be described below with reference to the drawings. In the following description, the same components as those shown in FIG. 3 are the same.

【0015】図1は、本発明に係る微量イオン分析装置
の一例を示し、この微量イオン分析装置が図3に示した
従来のものと大きく異なる点は、試料注入部1をバイパ
スするように、電解質溶離液供給ライン3と、試料注入
部1の下流側の流路9とをバイパスライン26によって接
続したことである。
FIG. 1 shows an example of a trace ion analyzer according to the present invention. This trace ion analyzer is largely different from the conventional one shown in FIG. That is, the electrolyte eluent supply line 3 and the flow path 9 on the downstream side of the sample injection section 1 are connected by a bypass line 26.

【0016】次に、このように構成した微量イオン分析
装置において、例えば超純水中のケイ酸イオンを定量す
る場合について説明する。この場合、電解質溶離液とし
てKOH溶離液を用い、また、反応試薬としてモリブデ
ン酸アンモニウムを含む硫酸酸性の発色液を用いる。そ
して、これらの電解質溶離液および反応試薬をそれぞれ
脱気器6,17で脱気した後、ポンプ5,16によって電解
質溶離液供給ライン3および反応試薬供給ライン14にそ
れぞれ一定流量流しておく。
Next, a description will be given of a case where silicate ions in, for example, ultrapure water are quantified in the trace ion analyzer configured as described above. In this case, a KOH eluent is used as an electrolyte eluent, and a sulfuric acid coloring solution containing ammonium molybdate is used as a reaction reagent. After the electrolyte eluent and the reaction reagent are degassed by the deaerators 6 and 17, respectively, the pumps 5 and 16 are respectively supplied to the electrolyte eluent supply line 3 and the reaction reagent supply line 14 at constant flow rates.

【0017】一方、試料注入部1としての切換え弁を切
換え動作することにより、サンプル液供給ライン2によ
って供給される純水は、電解質溶離液供給ライン3によ
って供給される電解質溶離液中に注入される。このと
き、試料注入部1の出口側には、電解質溶離液供給ライ
ン3を流れる電解質溶離液が、バイパスライン26を経て
連続的に流れている。
On the other hand, by switching the switching valve as the sample injection section 1, pure water supplied by the sample liquid supply line 2 is injected into the electrolyte eluent supplied by the electrolyte eluent supply line 3. You. At this time, the electrolyte eluent flowing through the electrolyte eluent supply line 3 flows continuously through the bypass line 26 on the outlet side of the sample injection unit 1.

【0018】従って、試料注入部1の出口側において
は、前記電解質溶離液中に注入された純水と、試料注入
部1をバイパスした電解質溶離液とが連続的に混合され
る。この混合された液体は分離カラム4に導入されてケ
イ酸イオンが他のイオンから分離される。そして、ケイ
酸イオンを含む液体は混合ジョイント13に至り、ここで
反応試薬と混合され、さらに、両者は反応器15において
反応する。次いで、この反応液は冷却コイル19で冷却さ
れた後、検出器としての吸光光度計20に導入され、吸光
度が測定され、そのピーク値からケイ酸イオン濃度が得
られる。
Therefore, on the outlet side of the sample injection part 1, the pure water injected into the electrolyte eluent and the electrolyte eluate bypassing the sample injection part 1 are continuously mixed. The mixed liquid is introduced into the separation column 4 to separate silicate ions from other ions. Then, the liquid containing silicate ions reaches the mixing joint 13 where it is mixed with the reaction reagent, and both react in the reactor 15. Next, this reaction solution is cooled by a cooling coil 19, and then introduced into an absorption photometer 20 as a detector, where the absorbance is measured, and the silicate ion concentration is obtained from the peak value.

【0019】図4(B)は、上記構成の微量イオン分析
装置を用いて定量したときのクロマトグラムを示してお
り、このクロマトグラムを同図(A)に示した従来のも
のと比較すると、ブランク値が大幅に低減されていると
共に、ピークのテーリングも大幅に短くなっていること
が判る。また、図5における実線Bは、このときの検量
線を示すものであるが、これを同図において仮想線Aで
示した従来のものと比較すると、目的成分の低濃度域に
おいてピークが異常に高くなるといったことがなくなっ
ていることが判る。
FIG. 4 (B) shows a chromatogram obtained by quantification using the trace ion analyzer having the above-mentioned structure. When this chromatogram is compared with the conventional one shown in FIG. It can be seen that the blank value has been significantly reduced and the tailing of the peak has been significantly shortened. The solid line B in FIG. 5 shows the calibration curve at this time. Compared with the conventional curve shown by the virtual line A in FIG. 5, the peak is abnormal in the low concentration region of the target component. It can be seen that it is no longer high.

【0020】これは、電気伝導率の極めて低い純水試料
ゾーンが形成されることがないために、目的成分の低濃
度域における異常ピークの発生が抑制されたものと考え
られる。従って、本発明によれば、サンプル液を多量に
注入しても高感度に測定することができ、発明者の実験
によれば、従来のほぼ10倍(2ml)ものサンプル液を
流しても高感度に測定することができることが判った。
また、ケイ酸イオンの検出下限も 0.1ppbにまで拡張
されるようになった。
This is considered to be due to the fact that a pure water sample zone having an extremely low electric conductivity was not formed, so that the occurrence of an abnormal peak in a low concentration region of the target component was suppressed. Therefore, according to the present invention, measurement can be performed with high sensitivity even when a large amount of sample liquid is injected. It was found that the sensitivity could be measured.
In addition, the lower limit of detection of silicate ions has been extended to 0.1 ppb.

【0021】図2は、本発明の他の実施例を示すもの
で、この実施例においては、バイパスライン26の代わり
に、電解質溶離液供給ライン3を、脱気器6の上流側に
おいて分岐して、電解質溶離液供給ライン3と並列的に
第2の電解質溶離液供給ライン27を設け、これにその上
流側から順次脱気器28、ポンプ29、混合ジョイント30を
設けると共に、試料注入部1のポート1dを混合ジョイン
ト30の入口側に接続している。このように構成した場合
においても、前記実施例と同様の効果が得られることは
云うまでもない。
FIG. 2 shows another embodiment of the present invention. In this embodiment, the electrolyte eluent supply line 3 is branched on the upstream side of the deaerator 6 instead of the bypass line 26. A second electrolyte eluent supply line 27 is provided in parallel with the electrolyte eluent supply line 3, and a deaerator 28, a pump 29, and a mixing joint 30 are sequentially provided from the upstream side thereof, and a sample injection unit 1 is provided. Port 1d is connected to the inlet side of the mixing joint 30. It goes without saying that even in the case of such a configuration, the same effect as that of the above embodiment can be obtained.

【0022】そして、本発明は、純水中に含まれるケイ
酸イオンの定量分析以外にも広く適用できることは云う
までもない。
It goes without saying that the present invention can be widely applied to other than quantitative analysis of silicate ions contained in pure water.

【0023】[0023]

【発明の効果】以上説明したように、本発明によれば、
サンプル液を多量に注入しても高感度に測定することが
でき、極めて微小の微量イオンを検出しやすくなった。
また、濃縮カラムを設ける必要がなく、構成が簡単であ
るといった利点もある。
As described above, according to the present invention,
Even when a large amount of the sample solution was injected, the measurement could be performed with high sensitivity, and it was easy to detect extremely minute trace ions.
There is also an advantage that there is no need to provide a concentration column and the configuration is simple.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明に係る微量イオン分析装置の一構成例を
概略的に示す図である。
FIG. 1 is a diagram schematically showing a configuration example of a trace ion analyzer according to the present invention.

【図2】本発明に係る微量イオン分析装置の他の構成例
を概略的に示す図である。
FIG. 2 is a diagram schematically showing another configuration example of the trace ion analyzer according to the present invention.

【図3】従来の微量イオン分析装置の構成を概略的に示
す図である。
FIG. 3 is a diagram schematically showing a configuration of a conventional trace ion analyzer.

【図4】(A)は従来装置によって純水中のケイ酸イオ
ンを定量したときに得られるクロマトグラムを示す図で
あり、(B)は本発明装置によって純水中のケイ酸イオ
ンを定量したときに得られるクロマトグラムを示す図で
ある。
FIG. 4A is a diagram showing a chromatogram obtained when silicate ions in pure water are quantified by a conventional apparatus, and FIG. 4B is a figure showing quantification of silicate ions in pure water by the apparatus of the present invention. FIG. 5 is a diagram showing a chromatogram obtained when the above-mentioned process is performed.

【図5】純水中のケイ酸イオンを定量したときに得られ
る検量線を示す図である。
FIG. 5 is a diagram showing a calibration curve obtained when silicate ions in pure water are quantified.

【符号の説明】[Explanation of symbols]

1…試料注入部、3…電解質溶離液供給ライン、4…分
離カラム、13…混合ジョイント、14…反応試薬供給ライ
ン、15…反応器、20…検出器。
DESCRIPTION OF SYMBOLS 1 ... sample injection part, 3 ... electrolyte eluent supply line, 4 ... separation column, 13 ... mixing joint, 14 ... reaction reagent supply line, 15 ... reactor, 20 ... detector.

Claims (1)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】 試料注入部に対して電解質溶離液供給ラ
インと分離カラムとを接続して、電解質溶離液中にサン
プル液を注入するように構成すると共に、前記分離カラ
ムの出口側に設けられる混合ジョイントに反応試薬供給
ラインと反応器とを接続し、さらに、この反応器の下流
側に検出器を接続した微量イオン分析装置において、前
記試料注入部の出口側において、前記電解質溶離液中に
注入されたサンプル液と、試料注入部をバイパスした電
解質溶離液とを連続的に混合するように構成したことを
特徴とする微量イオン分析装置。
An electrolyte eluent supply line and a separation column are connected to a sample injection section to inject a sample solution into the electrolyte eluate, and provided at an outlet side of the separation column. A reaction reagent supply line and a reactor are connected to the mixing joint, and further, in a trace ion analyzer in which a detector is connected to the downstream side of the reactor, the electrolyte eluate is provided at the outlet side of the sample injection section. A trace ion analyzer characterized in that the injected sample liquid and the electrolyte eluent bypassing the sample injection section are continuously mixed.
JP4056881A 1992-02-08 1992-02-08 Trace ion analyzer Expired - Fee Related JP3050684B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP4056881A JP3050684B2 (en) 1992-02-08 1992-02-08 Trace ion analyzer

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP4056881A JP3050684B2 (en) 1992-02-08 1992-02-08 Trace ion analyzer

Publications (2)

Publication Number Publication Date
JPH05223802A JPH05223802A (en) 1993-09-03
JP3050684B2 true JP3050684B2 (en) 2000-06-12

Family

ID=13039763

Family Applications (1)

Application Number Title Priority Date Filing Date
JP4056881A Expired - Fee Related JP3050684B2 (en) 1992-02-08 1992-02-08 Trace ion analyzer

Country Status (1)

Country Link
JP (1) JP3050684B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007255717A (en) * 2007-06-25 2007-10-04 Toshiba Corp Chemical analysis device

Also Published As

Publication number Publication date
JPH05223802A (en) 1993-09-03

Similar Documents

Publication Publication Date Title
EP1924853B1 (en) Ion chromatography system including sample pretreatment and using a single pump
JPS6355458A (en) Method and instrument for gas chromatographic analysis
JP3050684B2 (en) Trace ion analyzer
JP3046675B2 (en) Trace component analyzer
JP3956508B2 (en) Inorganic anion analysis method
JPH0231156A (en) System for analysis of metal component
JP2613237B2 (en) Liquid chromatography and apparatus therefor
JPH0429057A (en) Simultaneous analysis of selenic acid ion and selenious acid ion
JPH08201368A (en) Liquid chromatography
JPH0650952A (en) Nitrous acid ion analyzer
Roy et al. Application of sparging to the automated ion selective electrode determination of Kjeldahl nitrogen
JP2844876B2 (en) Ion chromatography
JPH03242549A (en) Metallic component analyzer
KR0124974B1 (en) Ion chromatography
JP2964521B2 (en) Analysis system and analysis method
JPS63208758A (en) Ion chromatograph device
JPH09113499A (en) Method and appartus for measurement of trace in liquid to be measured
JPS6324154A (en) Method and instrument for gradient analysis of ion chromatograph
JPS63135855A (en) Anion analyzer
JPS6224129A (en) Concentration analysis method and apparatus
JPH01116444A (en) Anion analyzer
JPH08145971A (en) Metallic component analyzer
JPH01267456A (en) Method and apparatus for analyzing silicate ion
JPH1096719A (en) Analyzing device for metal component
JPS61194355A (en) Method and apparatus for measuring minute amount of anion

Legal Events

Date Code Title Description
R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees