JPS6224129A - Concentration analysis method and apparatus - Google Patents

Concentration analysis method and apparatus

Info

Publication number
JPS6224129A
JPS6224129A JP60162126A JP16212685A JPS6224129A JP S6224129 A JPS6224129 A JP S6224129A JP 60162126 A JP60162126 A JP 60162126A JP 16212685 A JP16212685 A JP 16212685A JP S6224129 A JPS6224129 A JP S6224129A
Authority
JP
Japan
Prior art keywords
concentration
analysis
section
adsorbent
component
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP60162126A
Other languages
Japanese (ja)
Other versions
JPH0459578B2 (en
Inventor
Chiaki Maekoya
前小屋 千秋
Etsuko Kimura
木村 悦子
Hitoshi Iwasaki
仁 岩崎
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP60162126A priority Critical patent/JPS6224129A/en
Publication of JPS6224129A publication Critical patent/JPS6224129A/en
Publication of JPH0459578B2 publication Critical patent/JPH0459578B2/ja
Granted legal-status Critical Current

Links

Abstract

PURPOSE:To achieve a simplified analyzing operation and an automated analysis, by concentrating a component to be analyzed in a sample cell to measure the component therein directly. CONSTITUTION:The title device is provided with a light source 1, an absorption cell 2, a photometry section 3, a liquid feed pump 4, a passage switching valve 5 and the like. An elution liquid (b) is run to an adsorption cell 2 filled with an ion exchange resin with a liquid feed pump 4 through the passage switching valve 5 to wash away impurities in the ion exchange resin. Thereafter, the absorbance of the absorption cell 2 is measured by the light source 1 and the photometry section 3. Then, a fixed amount of a sample liquid (a) which is converted into a chemical matter that facilitates the absorption of the compo nent to be analyzed by the resin and is allowed to be absorbed at a fixed wave length is run to the absorption cell 2. Thereafter, the absorbance is measured as obtained when the component being analyzed has been adsorbed on the ion exchange resin. Then, the concentration of the analysis component is deter mined from the difference between the absorbances before and after the concen tration thereof. This realizes a simplified and automated analysis.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 この発明は、濃縮分析法及びその装置に係り、特に分析
の自動化及び高感度化に好適な濃縮分′折法及びその装
置に関する。
DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to a concentration analysis method and an apparatus thereof, and more particularly to a concentration fractionation method and an apparatus thereof suitable for automation and high sensitivity of analysis.

〔従来の技術〕[Conventional technology]

吸光光度法による試料液中の微量成分の分析法において
、試料液中の分析成分の濃度が低い場合イオン交換樹脂
に分析成分を濃縮し、そのイオン交換樹脂の吸光度の変
化から試料液の分析成分の濃度を求めるというイオン交
換体比色法がある(化学増刊78、トレースアナリシス
、P95.1978、化学同位)。この方法はイオン交
換樹脂で分析成分を濃縮した後で溶出させて溶出液中の
分析成分を定量するという一般的な手法に比較して、樹
脂から分析成分を溶出させないので濃縮率を低下させな
いという利点がある。
In the method of analyzing trace components in a sample solution using spectrophotometry, if the concentration of the analytical component in the sample solution is low, the analytical component is concentrated in an ion exchange resin, and the analytical component in the sample solution is determined from the change in absorbance of the ion exchange resin. There is an ion exchanger colorimetric method that determines the concentration of . Compared to the general method of concentrating the analytical components with an ion exchange resin and then eluting them to quantify the analytical components in the eluate, this method does not reduce the concentration rate because the analytical components are not eluted from the resin. There are advantages.

たとえば、このイオン交換体比色法を微量成分分析に応
用したものとしては、Analytical Che−
mistory(56(1984)P、2342−23
45) 、に、Yoshimura M。
For example, an application of this ion exchanger colorimetric method to trace component analysis is the Analytical Che-
mistory (56 (1984) P, 2342-23
45), Yoshimura M.

Motomura及びT、TarutantによるMt
crodetermina−tton  of  5i
licic  Ac1d  in  Water  b
y  Get−phaseColorimetry w
ith Molybdenem Blueと題する文献
において超純水中のケイ酸の定量について論じられてい
る。この方法は試料液Loom j!に塩酸、モリブデ
ン酸アンモニウム溶液、シュウ酸溶液および1−アミノ
−2−ナフトール−4−スルホン酸溶液を順次添加して
ケイモリブデン酸く青色)を生成させ、この溶液に5e
phadex (G−25)ゲル0.2gを添加してケ
イモリブデン酸を5ephadexゲルに吸着させた後
、このゲルを濾別して吸着剤の吸光度を測定して試料液
中のケイ酸の濃度を求めるものである。この方法により
、μgelないしはそれ以下のケイ酸の濃度を求めるこ
とができる。
Mt by Motomura and T, Tarutant
crodetermina-tton of 5i
licic Ac1d in Water b
y Get-phaseColorimetry w
The quantification of silicic acid in ultrapure water is discussed in the document entitled ith Molybdenem Blue. This method uses sample solution Loom j! Hydrochloric acid, an ammonium molybdate solution, an oxalic acid solution and a 1-amino-2-naphthol-4-sulfonic acid solution are sequentially added to the solution to produce silicomolybdate (blue), and 5e is added to this solution.
After adding 0.2 g of phadex (G-25) gel and adsorbing silicic molybdic acid to 5ephadex gel, the gel is filtered and the absorbance of the adsorbent is measured to determine the concentration of silicic acid in the sample solution. It is. By this method, the concentration of silicic acid of μgel or less can be determined.

イオン交換体比色法による微量分析は、上記のとおり一
定量の試料液と一定量のイオン交換樹脂と混合して分析
目的成分をイオン交換樹脂(吸着剤)に吸着した後、こ
のイオン交換樹脂を吸収セルに移して吸光度を測定する
もので、いわゆるバッチ法が一般的である。
Microanalysis using the ion exchange colorimetric method involves mixing a certain amount of sample solution with a certain amount of ion exchange resin as described above, adsorbing the target component to the ion exchange resin (adsorbent), and then using the ion exchange resin. The so-called batch method is common, in which the absorbance is measured by transferring the sample to an absorption cell.

〔発明が解決しようとする問題点〕[Problem that the invention seeks to solve]

ところが、この方法はイオン交換樹脂の吸光度を測定す
るもので、吸収セルへの樹脂の充填操作が煩雑であるこ
と及び充填方法の違いにより樹脂自身のみかけの吸光度
が変化するため、誤差を生ずる欠点がある。そこで、イ
オン交換体比色法において、樹脂の吸収セルへの充填が
容易で樹脂自身のみかけの吸光度の変化が少ない分析装
置の開発が望まれる。
However, this method measures the absorbance of the ion-exchange resin, and has the drawback that filling the absorption cell with the resin is complicated and that the apparent absorbance of the resin itself changes due to differences in the filling method, resulting in errors. There is. Therefore, in the ion exchanger colorimetric method, it is desired to develop an analytical device that allows easy filling of resin into an absorption cell and that causes little change in the apparent absorbance of the resin itself.

〔問題点を解決するための手段〕[Means for solving problems]

そこで、この発明は、上記欠点を解決するため、イオン
交換体比色法において、イオン交換樹脂をあらかじめ流
通形の吸収セルに充填し、この吸収セルに一定量の試料
水を流し、吸収セル中で試料水中の目的成分を濃縮し、
次いでそのままの状態、即ち同一容器内で樹脂の吸光度
を測定して目的成分の濃度を求める簡略化した ゛濃縮
分析法及びその方法に使用する濃縮分析装置を提供する
ものである。
Therefore, in order to solve the above-mentioned drawbacks, this invention uses an ion-exchange colorimetric method in which an ion-exchange resin is filled in advance into a flow-through type absorption cell, and a certain amount of sample water is poured into the absorption cell. Concentrate the target component in the sample water with
The present invention provides a simplified concentration analysis method in which the concentration of the target component is determined by measuring the absorbance of the resin in the same state, that is, in the same container, and a concentration analysis device used in the method.

この発明では、例えば分光光度計の流通形の吸収セルの
中にあらかじめ目的成分を吸着する吸着剤を充填して吸
収セルのみかけの吸光度を測定し、次に前もって吸着剤
に吸着され、かつ吸着した目的成分が一定の波長の光を
吸収するように調節した試料液の一定量を上記吸収セル
に流してみかけの吸光度を測定し、濃縮前と濃縮後のみ
かけの吸光度の差から試料液中の分析目的成分の濃度を
求めることができる。さらに前記目的成分が吸着してい
る吸着剤に溶離液を流して吸着剤に吸着している目的成
分を溶出して吸着剤を再生することにより別の試料液を
分析することができる。これらの試料液や溶離液の吸収
セルへの送液はポンプを使用することにより濃縮操作が
自動化できるとともに、吸光度の測定も容易になる。濃
縮分析装置の検出部としては吸光光度計の他、光音響測
定装置、反射スペクトル測定装置が用いられる。吸収セ
ルに充填する吸着剤としてはイオン交換樹脂、キレート
樹脂、デキストランの橋かけ重合体及びポリアクリルア
ミドのようなゲル濾過剤(商品名セファデックスゲル)
、化学修飾したガラスビーズ、多孔質ポリマーなど液体
クロマトブラフの充填剤として使用されているものが使
用できるが、分析成分の分析波長の吸収又は反射ができ
るだけ小さい吸着剤を選択する必要がある。
In this invention, for example, a flow-through absorption cell of a spectrophotometer is filled with an adsorbent that adsorbs a target component in advance, and the apparent absorbance of the absorption cell is measured. A certain amount of the sample solution adjusted so that the target component absorbs light of a certain wavelength is poured into the absorption cell and the apparent absorbance is measured. The concentration of the target component can be determined. Further, another sample liquid can be analyzed by flowing an eluent through the adsorbent on which the target component is adsorbed to elute the target component adsorbed on the adsorbent and regenerating the adsorbent. By using a pump to feed these sample solutions and eluents to the absorption cell, the concentration operation can be automated and the absorbance can be easily measured. In addition to an absorption photometer, a photoacoustic measurement device and a reflection spectrum measurement device are used as the detection section of the concentration analysis device. Adsorbents filled in the absorption cell include ion exchange resins, chelate resins, cross-linked polymers of dextran, and gel filtration agents such as polyacrylamide (trade name: Sephadex gel).
, chemically modified glass beads, porous polymers, and other materials used as packing materials for liquid chromatographs can be used, but it is necessary to select an adsorbent that absorbs or reflects as little as possible the analytical wavelength of the analytical component.

〔実施例〕〔Example〕

以下、本発明の実施例を図面により説明する。 Embodiments of the present invention will be described below with reference to the drawings.

実施例 1 第1図において、1は光源、2は吸収セル、3は測光部
、4は送液ポンプ、51よ流路切換バルブ、aは試料液
、bは溶離液、Cは排出液である。イオン交換樹脂が充
填されている吸収セル2に溶離液すを流路切換バルブ5
を介して送液ポンプ4で流してイオン交換樹脂中の不純
物を洗い流した後、光源1及び測定部3により吸収セル
2の吸光度を測定する。次に分析目的成分が樹脂に吸着
されやすく、一定波長に吸収されやすい化学種に変換し
た試料液aの一定量を前記吸収セルに流した後、分析目
的成分をイオン交換樹脂に吸着したときの吸光度を測定
する。
Example 1 In Fig. 1, 1 is a light source, 2 is an absorption cell, 3 is a photometer, 4 is a liquid pump, 51 is a flow path switching valve, a is a sample liquid, b is an eluent, and C is a drain liquid. be. A flow path switching valve 5 directs the eluent to the absorption cell 2 filled with ion exchange resin.
After the impurities in the ion exchange resin are washed away by the liquid feeding pump 4 through the ion exchange resin, the absorbance of the absorption cell 2 is measured using the light source 1 and the measuring section 3. Next, after flowing a certain amount of the sample solution a, in which the target component of analysis has been converted into a chemical species that is easily absorbed by the resin and is easily absorbed at a certain wavelength, into the absorption cell, Measure the absorbance.

分析成分の濃縮前と濃縮後の吸光度の差から分析成分の
濃度を求めることができる。実際には分析成分の濃縮後
の透過光の強度(I)と濃縮前の吸光度(1゜)の対数
の差(吸光度) log I/I。
The concentration of the analytical component can be determined from the difference in the absorbance of the analytical component before and after concentration. In reality, it is the logarithm difference (absorbance) between the intensity of transmitted light after concentration (I) of the analytical component and the absorbance (1°) before concentration (log I/I).

から目的成分の濃度を求めることができる。この実施例
によれば、分析成分の濃縮と吸光度測定用吸収セルが同
じものが使用できるので、分析の簡略化が可能である。
The concentration of the target component can be determined from According to this embodiment, the same absorption cell can be used for concentrating analytical components and measuring absorbance, so that analysis can be simplified.

実施例 2 第2図において、6は試料セル、7はマイクロホン、8
は断続器、9はロックインアンプである。試料セル6の
内部にマイクロホン7を接続し、試料セル6に吸着剤を
入れて、実施例1と同様に試料セル6に溶離液すを流し
て吸着剤中の不純物を流した後、分析成分が吸着剤に吸
着されやすく、一定の波長の光を吸収されやすいように
調整された試料液aの一定量を流す。
Example 2 In FIG. 2, 6 is a sample cell, 7 is a microphone, and 8 is a sample cell.
is an interrupter, and 9 is a lock-in amplifier. A microphone 7 is connected inside the sample cell 6, an adsorbent is placed in the sample cell 6, and the eluent is poured into the sample cell 6 in the same manner as in Example 1 to wash away impurities in the adsorbent. A certain amount of sample liquid a is flowed, which is adjusted so that it is easily adsorbed by the adsorbent and light of a certain wavelength is easily absorbed.

次に光源1から一定の波長の光を断続器8によって断続
的に試料セルに照射する。そのときの断続器8と同期さ
れた光音響強度をマイクロホン7 (例えば圧電素子)
で検出してロックインアンプ9で増巾することにより分
析目的成分の濃度を求める。この実施例によれば、分析
成分の濃縮と光音響強度の測定用試料セルが同じものを
使用できかつ、高感度で測定できるので分析の簡略化が
可能である。
Next, the sample cell is intermittently irradiated with light of a certain wavelength from the light source 1 by the interrupter 8. The photoacoustic intensity synchronized with the interrupter 8 at that time is measured by the microphone 7 (for example, a piezoelectric element).
The concentration of the component to be analyzed is determined by detecting it with the lock-in amplifier 9 and amplifying it with the lock-in amplifier 9. According to this embodiment, the same sample cell can be used for concentration of analytical components and measurement of photoacoustic intensity, and measurement can be performed with high sensitivity, so analysis can be simplified.

実施例 3 第1図における光源1からの光が、吸収セル2に照射し
た光が直接測光部3に入らないように、吸収セル2を中
心にして光源1と測光部3の角度を約906にすること
により反射スペクトルの強さを測定することができる。
Example 3 The angle between the light source 1 and the photometer 3 is set at about 906° with respect to the absorption cell 2 so that the light from the light source 1 in FIG. 1 does not directly enter the photometer 3. By doing this, the intensity of the reflection spectrum can be measured.

この実施例によれば、吸着剤による光の吸収の影響を少
なくできるとともに、分析の簡略化が可能である。
According to this embodiment, the influence of light absorption by the adsorbent can be reduced, and analysis can be simplified.

実施例 4 この実施例では本発明の効果を示す実験例を第3図によ
り説明する。液体クロマトグラフ用吸光光度計(応用分
光型UVILOG−7型)の吸収セルに液体クロマトグ
ラフ用充填剤(日立3011−N)を2〜3μ!充填し
た。この吸収セルに試料液を流した時の通水液量と吸光
度の関係を第3図に示す。試料液は純水50 reβに
塩酸(旧)1fflNとモリブデン酸アンモニウム(1
0χ)2mA!を“ 加えてふり混ぜ5分間放置後、シ
ュウ酸(10χ)1.5mAを添加して1分間ふり混ぜ
てからアスコルビン酸(10χ)2mj!を添加して調
整した。このことに純水中に不純物として含まれている
ケイ酸イオンが発色する。吸着前の試料液の吸光度が0
.004であったものが通水液量の増加とともに吸光度
も増加して、本発明が濃縮分析計として有効であること
が分かる。
Example 4 In this example, an experimental example showing the effects of the present invention will be explained with reference to FIG. Add 2 to 3μ of liquid chromatograph packing material (Hitachi 3011-N) to the absorption cell of a liquid chromatograph spectrophotometer (applied spectroscopy type UVILOG-7 model)! Filled. FIG. 3 shows the relationship between the amount of water flowing through the absorption cell and the absorbance. The sample solution was 50 reβ of pure water, 1 fflN of hydrochloric acid (old) and ammonium molybdate (1
0χ)2mA! was added, shaken and left for 5 minutes, then added 1.5mA of oxalic acid (10χ), shaken for 1 minute, and then added 2mj of ascorbic acid (10χ). Silicate ions contained as impurities develop color.The absorbance of the sample solution before adsorption is 0.
.. 004, the absorbance increased as the amount of water flowing increased, indicating that the present invention is effective as a concentration analyzer.

実施例 5 この発明の別の実施例を図4に示す。第4図において、
1は光源、3は側光部、4は送液ポンプ、10は分離カ
ラム、11は試料注入口、aは試料水、Cは排出液、b
は溶離液である。第4図は容離液すを送液ポンプ4で試
料注入口11及び分離カラム10を介して排出液Cとな
る液体クロマトグラフである。このとき分離カラム10
の下端に光源1と受光部3が1806に位置し、光源1
からの光が分離カラム10の内径より狭いスポットで照
射して透過光を受光部3で受光する。
Example 5 Another example of this invention is shown in FIG. In Figure 4,
1 is a light source, 3 is a side light unit, 4 is a liquid pump, 10 is a separation column, 11 is a sample injection port, a is sample water, C is a drain liquid, b
is the eluent. FIG. 4 is a liquid chromatograph in which a liquid is discharged through a sample injection port 11 and a separation column 10 by a liquid feeding pump 4, and becomes a discharged liquid C. At this time, separation column 10
Light source 1 and light receiving section 3 are located at 1806 at the lower end of the
The light from the separation column 10 is irradiated with a spot narrower than the inner diameter of the separation column 10, and the transmitted light is received by the light receiving section 3.

試料注入口11から試料水aを添加すると、試料水aが
容離液すで送られて分離カラム10で各成分は分離され
て移動するが、光源lからの光が照射されている分離カ
ラム10の位置を分析成分が通過したときの透過光の強
さの変化を測定することが可能である。通常の液体クロ
マトグラフでは分離カラムと検出器は細管で接続されて
いるが、この発明ではこの細管を使用しなくてもよいの
で、分析成分の細管での拡散を無視できる。従って鋭い
ピークが得られるので、分析、  感度を向上させるこ
とができる。
When the sample water a is added from the sample injection port 11, the sample water a is sent with a separating liquid and each component is separated and moved in the separation column 10, but the separation column is irradiated with light from the light source l. It is possible to measure the change in the intensity of transmitted light when the analytical component passes through the 10 positions. In a normal liquid chromatograph, the separation column and the detector are connected by a capillary, but in this invention, this capillary is not necessary, so the diffusion of analytical components in the capillary can be ignored. Therefore, sharp peaks can be obtained, improving analysis and sensitivity.

実施例 に の実施例では、実施例4で使用した吸収セル2の一例を
図5の断面図により説明する。第5図において、12は
セルボディー、13はパツキン、14はガラス板、15
はフィルタ、16は配管接続用ネジ、17はガラス板固
定用ネジ、18は吸着剤である。
EXAMPLE In Example 2, an example of the absorption cell 2 used in Example 4 will be explained with reference to the cross-sectional view of FIG. In FIG. 5, 12 is a cell body, 13 is a packing, 14 is a glass plate, and 15
16 is a filter, 16 is a pipe connection screw, 17 is a glass plate fixing screw, and 18 is an adsorbent.

セルボディー12の両端にパツキン13a及び13bで
はさんだガラス板14を置き、これをガラス板固定用ネ
ジ18で締めつけて固定する。次にフィルタ15bを配
管接続用ネジ16bで固定し、配管固定用ネジ16aの
方向から懸濁状にした吸着剤の一定量を流し込んだ後、
フィルタ15aを配管接続用ネジ16aで固定する。こ
の状態でセル内に容離液すを流して吸着剤をコンデショ
ニングした後、着色物を含む試料液aを流すと、着色物
は吸着剤に吸着され、試料液aは排出液Cとなる。この
吸収セルのガラス板の一方向から光を連続的に照射する
と吸着物の量に対応して透過光は減少するので、透過光
Iと入射光■。の割合の対数(log Io/I)から
着色物の量を求める。このセルを効果的に使用するため
には、着色物が吸着剤の一方向だけに偏在して吸着しな
いように、吸着剤をセルの内容積いっばいに入れないで
空間を残しておくこと、着色物が偏在して吸着しても、
その影響を少なくするために、入射光がセルの内面いっ
ばいに通過するようにする必要がある。また、セル全体
を内径1〜5鶴の小型にして吸着剤全体に光を照射する
ことにより、着色物の全部が分析に寄与するので濃′縮
率をそこなうことがなくなる。
A glass plate 14 sandwiched between gaskets 13a and 13b is placed on both ends of the cell body 12, and is fixed by tightening the glass plate fixing screws 18. Next, the filter 15b is fixed with the pipe connection screw 16b, and a certain amount of the suspended adsorbent is poured from the direction of the pipe fixation screw 16a.
The filter 15a is fixed with a pipe connection screw 16a. In this state, after conditioning the adsorbent by flowing liquid syneresis into the cell, when sample liquid a containing colored substances is poured, the colored substances are adsorbed by the adsorbent, and sample liquid a becomes drained liquid C. . When the glass plate of this absorption cell is continuously irradiated with light from one direction, the transmitted light decreases in proportion to the amount of adsorbed material, so the transmitted light I and the incident light II. The amount of colored matter is determined from the logarithm of the ratio (log Io/I). In order to use this cell effectively, it is necessary to leave a space without filling the inner volume of the cell with the adsorbent so that the colored material is unevenly distributed in one direction of the adsorbent and not adsorbed. Even if colored substances are unevenly distributed and adsorbed,
In order to reduce this effect, it is necessary to allow the incident light to pass through the entire inner surface of the cell. Furthermore, by making the entire cell small with an inner diameter of 1 to 5 mm and irradiating the entire adsorbent with light, all of the colored matter contributes to the analysis, so that the concentration rate is not impaired.

以上述べたように、この実施例によれば、セル内での着
色物の偏在を防ぐことができるので分析精度が向上し、
着色物全体が分析に使われるので、分析感度を向上させ
ることができる。
As described above, according to this embodiment, it is possible to prevent uneven distribution of colored substances within the cell, thereby improving analysis accuracy.
Since the entire colored substance is used for analysis, analytical sensitivity can be improved.

〔発明の目的〕[Purpose of the invention]

本発明によれば、試料セルのなかで分析目的成分を濃縮
し、その試料セル中の目的成分を直接測定できるので分
析操作の簡略化を図ることができ、また、分析の自動化
を図ることができる。
According to the present invention, the target component for analysis can be concentrated in the sample cell and the target component in the sample cell can be directly measured, so that the analysis operation can be simplified and the analysis can be automated. can.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図及び第4図は目的成分の検出法として吸光度及び
反射光を測定したときの構成図、第2図は目的成分の検
出法として光音響信号を測定したときの構成図、第3図
は通水液量と吸光度の関係、第5図は吸収セルの断面図
をそれぞれ示す。 1・・・光源、2・・・吸収セル、3・・・測光部、4
・・・送液ポンプ、5・・・流路切換バルブ、6・・・
試料セル、7・・・マイクロホン、8・・・断続器、9
・・・ロックインアンプ、a・・・試料水、b・・・溶
離液、C・・・排出液、10・・・分離カラム、11・
・・試料注入口、12・・・セルボディー、13a、 
13b・・・パツキン、14・・・ガラス板、15a、
 15b−フィルタ、16a、16b −配管接続用ネ
ジ、17・・・ガラス板固定用ネジ、1日・・・吸着剤 代理人 弁理士 平 木 祐 輔 通水液3!(ml)
Figures 1 and 4 are block diagrams when absorbance and reflected light are measured as a detection method for the target component, Figure 2 is a block diagram when a photoacoustic signal is measured as a detection method for the target component, and Figure 3 5 shows the relationship between the amount of water flowing and the absorbance, and FIG. 5 shows a cross-sectional view of the absorption cell. 1... Light source, 2... Absorption cell, 3... Photometry section, 4
...Liquid pump, 5...Flow path switching valve, 6...
Sample cell, 7... Microphone, 8... Intermittent, 9
...Lock-in amplifier, a... Sample water, b... Eluent, C... Effluent, 10... Separation column, 11.
...Sample injection port, 12...Cell body, 13a,
13b...Putskin, 14...Glass plate, 15a,
15b - Filter, 16a, 16b - Piping connection screw, 17...Screw for fixing glass plate, 1st...Adsorbent agent Patent attorney Yu Hiraki Suketsu water liquid 3! (ml)

Claims (6)

【特許請求の範囲】[Claims] (1)試料液中の分析目的成分を濃縮して検出する濃縮
分析装置において、試料液及び溶離液の供給手段、分析
目的成分の濃縮手段を設け、分析目的成分の濃縮部と検
出部とを同一の容器で構成したことを特徴とする濃縮分
析装置。
(1) In a concentration analyzer that concentrates and detects a target component of analysis in a sample solution, a means for supplying the sample solution and eluent and a means for concentrating the target component of analysis are provided, and a concentration section and a detection section for the component of analysis target are provided. A concentration analysis device characterized by being configured with identical containers.
(2)濃縮分析計の検出部は吸光光度計であり、濃縮部
及び検出部は流通形の吸収セルに吸着剤が充填されたも
のであることを特徴とする特許請求の範囲第1項記載の
濃縮分析装置。
(2) The detection section of the concentration analyzer is an absorption photometer, and the concentration section and the detection section are a flow-through type absorption cell filled with an adsorbent, as set forth in claim 1. concentration analyzer.
(3)濃縮分析計の検出部は光音響測定装置であり、濃
縮部及び検出部は流通形の光音響セルに吸着剤が充填さ
れたものであることを特徴とする特許請求の範囲第1項
記載の濃縮分析装置
(3) The detection section of the concentration analyzer is a photoacoustic measuring device, and the concentration section and the detection section are a flow-through type photoacoustic cell filled with an adsorbent. Concentration analyzer described in section
(4)濃縮分析計の検出部は吸着剤からの反射スペクト
ル測定装置であることを特徴とする特許請求の範囲第1
項記載の濃縮分析装置。
(4) Claim 1, characterized in that the detection section of the concentration analyzer is a reflection spectrum measuring device from an adsorbent.
Concentration analysis device described in Section 1.
(5)吸着剤が、イオン交換樹脂、キレート樹脂、デキ
ストランの橋かけ重合体及びポリアクリルアミドゲルの
ようなゲル濾過剤、化学修飾したガラスビーズあるいは
多孔質ポリマーであることを特徴とする特許請求の範囲
第2項乃至第4項記載の濃縮分析装置。
(5) A patent claim characterized in that the adsorbent is an ion exchange resin, a chelate resin, a cross-linked polymer of dextran, a gel filtration agent such as polyacrylamide gel, a chemically modified glass bead, or a porous polymer. A concentration analysis device according to items 2 to 4.
(6)試料液中の分析成分を濃縮して分析する方法にお
いて、試料液中の目的成分を着色した溶液を、濃縮部と
検出部とを構成する同一の容器に通水して着色物を濃縮
し、その量に対応する信号を検出することを特徴とする
濃縮分析法。
(6) In a method of concentrating and analyzing analytical components in a sample solution, a colored solution of the target component in the sample solution is passed through the same container that constitutes the concentration section and the detection section to remove the colored substances. An enrichment analysis method characterized by enriching and detecting a signal corresponding to the amount.
JP60162126A 1985-07-24 1985-07-24 Concentration analysis method and apparatus Granted JPS6224129A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP60162126A JPS6224129A (en) 1985-07-24 1985-07-24 Concentration analysis method and apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP60162126A JPS6224129A (en) 1985-07-24 1985-07-24 Concentration analysis method and apparatus

Publications (2)

Publication Number Publication Date
JPS6224129A true JPS6224129A (en) 1987-02-02
JPH0459578B2 JPH0459578B2 (en) 1992-09-22

Family

ID=15748533

Family Applications (1)

Application Number Title Priority Date Filing Date
JP60162126A Granted JPS6224129A (en) 1985-07-24 1985-07-24 Concentration analysis method and apparatus

Country Status (1)

Country Link
JP (1) JPS6224129A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5563929A (en) * 1994-02-18 1996-10-08 The Electric Power Research Institute On-line monitor for particulate analyte in a moving liquid

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102046542B (en) 2008-06-06 2013-07-24 旭硝子株式会社 Apparatus and method for producing plate glass

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5764145A (en) * 1980-10-07 1982-04-19 Toyo Soda Mfg Co Ltd Flow type optoacoustic detector
JPS57120843A (en) * 1981-01-20 1982-07-28 Japan Synthetic Rubber Co Ltd Tube for liquid chromatograph
JPS57127848A (en) * 1981-01-30 1982-08-09 Shimadzu Corp Liquid chromatograph

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5764145A (en) * 1980-10-07 1982-04-19 Toyo Soda Mfg Co Ltd Flow type optoacoustic detector
JPS57120843A (en) * 1981-01-20 1982-07-28 Japan Synthetic Rubber Co Ltd Tube for liquid chromatograph
JPS57127848A (en) * 1981-01-30 1982-08-09 Shimadzu Corp Liquid chromatograph

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5563929A (en) * 1994-02-18 1996-10-08 The Electric Power Research Institute On-line monitor for particulate analyte in a moving liquid

Also Published As

Publication number Publication date
JPH0459578B2 (en) 1992-09-22

Similar Documents

Publication Publication Date Title
Hamilton Ion exchange chromatography of amino acids. A single column, high resolving, fully automatic procedure.
US5149661A (en) Fluid analysis with particulate reagent suspension
US4699718A (en) Ion chromatography method and apparatus
CA2120327A1 (en) Protein chromatography system
Miró et al. Determination of ultratraces of nitrite by solid-phase preconcentration using a novel flow-through spectrophotometric optrode
Bohrer et al. On-line separation and spectrophotometric determination of low levels of aluminum in high-salt content samples: application to analysis of hemodialysis fluids
Manera et al. Multi-syringe flow injection solid-phase extraction system for on-line simultaneous spectrophotometric determination of nitro-substituted phenol isomers
Miró et al. Flow-through sorptive preconcentration with direct optosensing at solid surfaces for trace-ion analysis
Song et al. Amberlite XAD resin solid-phase extraction coupled on-line to a flow injection approach for the rapid enrichment and determination of phenols in water and waste waters
Miró et al. A novel flow-through disk-based solid-phase extraction diffuse reflectance optrode. Application to preconcentration and determination of trace levels of nitrite
JPH07318545A (en) Gas chromatograph with automatic pretreatment function
JPS6224129A (en) Concentration analysis method and apparatus
JP3422219B2 (en) Selenium analysis method and selenium analyzer
Zenki Determination of alkaline earth metals by ion-exchange chromatography with spectrophotometric detection
JP3538957B2 (en) Method and apparatus for analyzing three-state nitrogen in water
Nondek et al. On-line preconcentration and high-performance liquid chromatographic determination of o-toluenesulphonamide in saccharin
JP3806343B2 (en) Boron automatic analyzer and method
Miró et al. A critical examination of sorbent extraction pre-concentration with spectrophotometric sensing in flowing systems
Takeuchi et al. Indirect photometric detection of monovalent cations via postsuppressor ion replacement in microcolumn ion chromatography
Gennaro et al. Determination of creatinine in human serum. Statistical intercalibration of methods
JPH1010107A (en) Sample analysis method by liquid chromatography
JP2581568Y2 (en) Device for detecting light from a sample
JPH08233824A (en) Continuous measuring method for saccharified hemoglobin by chromatography without column regeneration
US5109714A (en) Method and means for dynamic measurement of rates of adsorption from solutions
JP2964521B2 (en) Analysis system and analysis method