JPH0580009A - Carbonic acid concentration measuring method - Google Patents

Carbonic acid concentration measuring method

Info

Publication number
JPH0580009A
JPH0580009A JP24006091A JP24006091A JPH0580009A JP H0580009 A JPH0580009 A JP H0580009A JP 24006091 A JP24006091 A JP 24006091A JP 24006091 A JP24006091 A JP 24006091A JP H0580009 A JPH0580009 A JP H0580009A
Authority
JP
Japan
Prior art keywords
gas
carbon dioxide
carbonic acid
separation device
channel
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP24006091A
Other languages
Japanese (ja)
Inventor
Kotaro Kawamoto
公太郎 河本
Toyoaki Aoki
豊明 青木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kubota Corp
Original Assignee
Kubota Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kubota Corp filed Critical Kubota Corp
Priority to JP24006091A priority Critical patent/JPH0580009A/en
Publication of JPH0580009A publication Critical patent/JPH0580009A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To enable a carbonic acid concentration within a specimen water to be measured with an improved accuracy and high measurement sensitivity. CONSTITUTION:A channel of a gas-separation device 1 is isolated by a gas transmission film 1A, an acid solution is added to one channel 1B of this gas- separation device 1 for circulation of a specimen water 3 where carbonic acid within it is separated as carbon dioxide gas, and then an alkali solution 5 is circulated at the other channel 1C for reaction with the carbon dioxide gas which is transmitted through the gas transmission film 1A of the gas-separation device 1. Conductivity of the alkali solution 5 which reacted with carbon dioxide gas at a downstream of the other channel 1C is measured, thus enabling the carbonic acid concentration within the specimen water 3 to be measured.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、検水中の炭酸の濃度を
測定する炭酸濃度測定方法に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a carbonic acid concentration measuring method for measuring the concentration of carbonic acid in test water.

【0002】[0002]

【従来の技術】従来、検水中に酸を加えて炭酸ガス(C
2 )を発生させ、この炭酸ガスを測定することによっ
て検水中の成分を測定する方法として、例えば、特公平
3−3906の液中の炭酸塩濃度及び亜硫酸塩濃度の連
続測定方法がある。
2. Description of the Related Art Conventionally, carbon dioxide (C
As a method for measuring the components in the test water by generating O 2 ) and measuring the carbon dioxide gas, for example, there is a continuous measurement method of the carbonate concentration and the sulfite concentration in the liquid of JP-B-3-3906.

【0003】この測定方法は、検水に硫酸を添加し、検
水中に含まれる炭酸イオンを炭酸ガスとして発生させ、
発生した炭酸ガスを空気をキャリアガスとしてCO2
に送り込みCO2 計の指示値から検水中の炭酸塩濃度等
を測定する方法である。
In this measuring method, sulfuric acid is added to test water to generate carbonate ions contained in the test water as carbon dioxide gas,
The generated carbon dioxide gas is a method for measuring the carbonate concentration of the test solutions from the indicated value of the CO 2 meter fed to the CO 2 meter air as a carrier gas.

【0004】また、ANALYTICAL CHEMI
STRY,VOL.50,NO.11,SEPTEMB
ER 1978には、検水に過塩素酸や硫酸を添加し、
シリコンを材質とした内管を持つ二重管構造のガス分離
装置で気液分離し、内管中を流れる純水に炭酸ガスを溶
解させ、その純水の導電率変化を測定することにより検
水中の炭酸濃度を測定する方法が開示されている。
In addition, ANALYTICAL CHEMI
STRY, VOL. 50, NO. 11, SEPTEMB
For ER 1978, add perchloric acid or sulfuric acid to the test water,
Gas-liquid separation is performed with a double tube structure gas separator with an inner tube made of silicon, carbon dioxide gas is dissolved in pure water flowing through the inner tube, and the change in conductivity of the pure water is measured for detection. A method of measuring carbon dioxide concentration in water is disclosed.

【0005】[0005]

【発明が解決しようとする課題】しかしながら、従来の
測定装置のうち、前者の特公平3−3906の液中の炭
酸塩濃度及び亜硫酸塩濃度の連続測定方法は、硫酸を添
加して発生する炭酸ガス量を検知するCO2 計に限界が
あり測定感度が低いという問題点がある。しかも、キャ
リアガスとして使用する空気にも炭酸ガスが含まれてお
り、この含まれた炭酸ガスも測定することになり、空気
中に含まれる炭酸ガスの影響を受けることになる。
However, among the conventional measuring devices, the former method for continuously measuring the concentration of carbonate and the concentration of sulfite in the liquid of Japanese Examined Patent Publication No. 3906 is the carbon dioxide generated by adding sulfuric acid. There is a problem that the CO 2 meter for detecting the gas amount is limited and the measurement sensitivity is low. Moreover, the carbon dioxide gas is also contained in the air used as the carrier gas, and the carbon dioxide gas contained in the air is also measured, so that it is affected by the carbon dioxide gas contained in the air.

【0006】また、後者のANALYTICAL CH
EMISTRYに掲載された純水に炭酸ガスを溶解させ
検水中の炭酸濃度を測定する方法は、気液分離された炭
酸ガスが純水に溶解する量には限界があってこの方法も
測定感度が低いという問題点がある。
In addition, the latter ANALYTICAL CH
The method for measuring carbon dioxide concentration in test water by dissolving carbon dioxide in pure water published in EMISTRY has a limit to the amount of gas-liquid separated carbon dioxide dissolved in pure water, and this method also has a measurement sensitivity. There is a problem that it is low.

【0007】本発明は上記のような問題点を解決するた
めになされたもので、検水中の炭酸濃度を連続的に精度
よく、しかも高い測定感度で測定する炭酸濃度測定方法
を提供することを目的としている。
The present invention has been made to solve the above-mentioned problems, and it is an object of the present invention to provide a method for measuring a carbonic acid concentration in a test water, which continuously and accurately measures the carbonic acid concentration with high measurement sensitivity. Has a purpose.

【0008】[0008]

【課題を解決するための手段】本発明の炭酸濃度測定方
法は、ガス分離装置の流路をガス透過膜によって隔て、
このガス分離装置の一方の流路に酸性溶液を添加して検
水中の炭酸を炭酸ガスとして分離した検水を流通させ、
他方の流路にアルカリ溶液を流通させてガス分離装置の
ガス透過膜を透過した炭酸ガスと反応させ、他方の流路
の下流に炭酸ガスと反応したアルカリ溶液の導電率を測
定することによって検水中の炭酸濃度を測定する。
The method for measuring carbon dioxide concentration according to the present invention comprises:
An acidic solution is added to one of the flow paths of this gas separation device to circulate the test water separated as carbon dioxide in the test water,
The alkali solution was circulated in the other channel to react with the carbon dioxide gas that permeated the gas permeable membrane of the gas separation device, and the conductivity of the alkali solution that reacted with the carbon dioxide gas was measured downstream of the other channel. Measure the carbonic acid concentration in the water.

【0009】[0009]

【作用】上記構成において、検水に酸性溶液を添加する
と検水中の炭酸は、炭酸ガスの状態になる。この炭酸ガ
スがガス透過膜を透過して他方の流路を流れるアルカリ
溶液と反応し、アルカリ溶液の導電率が変化する。導電
率の変化量は、炭酸ガスがアルカリ溶液と反応して発生
する炭酸イオンの量によって決定される。よってアルカ
リ溶液の導電率の変化を導電率計で測定することによっ
て検水中の炭酸濃度を測定することができる。
In the above structure, when an acidic solution is added to the test water, carbon dioxide in the test water becomes carbon dioxide gas. The carbon dioxide gas permeates the gas permeable membrane and reacts with the alkaline solution flowing through the other channel, and the conductivity of the alkaline solution changes. The amount of change in conductivity is determined by the amount of carbonate ions generated when carbon dioxide gas reacts with the alkaline solution. Therefore, the carbonic acid concentration in the test water can be measured by measuring the change in conductivity of the alkaline solution with a conductivity meter.

【0010】[0010]

【実施例】以下に本発明の一実施例について、図面を参
照しながら説明する。図1は本発明の一実施例における
検水中の炭酸濃度を連続的に測定する場合の概略図であ
る。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS An embodiment of the present invention will be described below with reference to the drawings. FIG. 1 is a schematic diagram in the case of continuously measuring the carbonic acid concentration in test water in one embodiment of the present invention.

【0011】図1において1は、ガス分離装置であっ
て、ガス透過膜チューブ1Aによって隔てられた一対の流
路のうち一方の流路1Bの上流側から、第1送液ポンプ2A
と、第2送液ポンプ2Bによって検水3と酸性溶液4の混
合液が送り込まれ、他方の流路1Cの上流側から第3送液
ポンプ2Cによってアルカリ溶液5が送り込まれる。一方
の流路1Bの検水3と酸性溶液4は排液として下流側から
排出され、他方の流路1Cのアルカリ溶液5は導電率計6
に流入して導電率が計測された後、排液として排出され
る。
In FIG. 1, reference numeral 1 denotes a gas separation device, which is a first liquid feed pump 2A from an upstream side of one flow path 1B of a pair of flow paths separated by a gas permeable membrane tube 1A.
Then, the mixed liquid of the test water 3 and the acidic solution 4 is fed by the second liquid feeding pump 2B, and the alkaline solution 5 is fed by the third liquid feeding pump 2C from the upstream side of the other flow path 1C. The sample water 3 and the acidic solution 4 in the one channel 1B are discharged from the downstream side as drainage, and the alkaline solution 5 in the other channel 1C is a conductivity meter 6
And then the conductivity is measured, and then discharged as drainage.

【0012】ガス分離装置1は、長尺状の筒であって、
中央長手方向に炭酸ガスを透過するテフロン製のガス透
過膜チューブ1Aが配設され、一方の流路1B側から他方の
流路1C側に炭酸ガスが透過するようになっている。テフ
ロンは、気液分離を行なう上で効率のよい材質である
が、ガス透過膜チューブ1Aの材料は、テフロンに限定さ
れずポリエチレン、ポリスチレンなどであってもよい。
The gas separation device 1 is a long cylinder,
A gas permeable membrane tube 1A made of Teflon that permeates carbon dioxide in the central longitudinal direction is arranged so that carbon dioxide permeates from one flow passage 1B side to the other flow passage 1C side. Teflon is a material that is efficient in performing gas-liquid separation, but the material of the gas permeable membrane tube 1A is not limited to Teflon and may be polyethylene, polystyrene, or the like.

【0013】つぎに、検水3中の炭酸濃度の測定方法を
説明する。第1送液ポンプ2Aを駆動して検水3を通水す
ると共に、第2送液ポンプ2Bを駆動して酸性溶液4を通
水し、両液を混合してガス分離装置1の一方の流路1Bに
送り込む。検水3に添加する酸性溶液4は、硫酸(H2
SO4 )、過塩素酸(HCIO4 )、硝酸(HN
3 )、塩酸(HCI)等を使用する。
Next, a method for measuring the carbonic acid concentration in the test water 3 will be described. While driving the first liquid feed pump 2A to pass the sample water 3, the second liquid feed pump 2B is driven to pass the acidic solution 4, and the two liquids are mixed to mix Send to flow path 1B. The acidic solution 4 added to the test water 3 is sulfuric acid (H 2
SO 4 ), perchloric acid (HCIO 4 ), nitric acid (HN
O 3 ), hydrochloric acid (HCI), etc. are used.

【0014】検水3中には炭酸(H2CO3)が溶融して
いるが、この炭酸に前記のような酸性溶液4を混合する
と炭酸ガス(CO2 )が発生する。このようにして発生
した炭酸ガスは、ガス分離装置1の一方の流路1Bの上流
側から下流側に流れているうちに、炭酸ガスだけガス透
過膜チューブ1Aを透過して他方の流路1C内に流れこむ。
Carbonic acid (H 2 CO 3 ) is melted in the test water 3, but carbon dioxide gas (CO 2 ) is generated when this acidic solution 4 is mixed with this carbonic acid. The carbon dioxide gas generated in this manner permeates only the carbon dioxide gas through the gas permeable membrane tube 1A while flowing from the upstream side to the downstream side of one flow passage 1B of the gas separation device 1 and the other flow passage 1C. It flows in.

【0015】他方の流路1Cは、第3送液ポンプ2Cが駆動
してアルカリ溶液5が流れている。このアルカリ溶液5
は、水酸化ナトリュウム(NaOH)、炭酸ナトリウム
(Na2 CO3 )、酢酸ナトリュウム(CH3 CO2
a)等をもちい、このアルカリ溶液5の濃度を色々変え
ることによって、検水3中の広い範囲の炭酸濃度を測定
することを可能としている。
In the other flow path 1C, the third liquid feed pump 2C is driven to flow the alkaline solution 5. This alkaline solution 5
Is sodium hydroxide (NaOH), sodium carbonate (Na 2 CO 3 ), sodium acetate (CH 3 CO 2 N
By using a) or the like and varying the concentration of the alkaline solution 5, it is possible to measure the carbonic acid concentration in a wide range in the test water 3.

【0016】前記のようにガス透過膜チューブ1Aを透過
した炭酸ガスは、他方の流路1C内の前記アルカリ溶液5
と反応して炭酸塩を生成する。例えば、炭酸ガスが水酸
化ナトリウムと反応する場合は以下のような反応式にな
る。
The carbon dioxide gas that has permeated the gas permeable membrane tube 1A as described above is treated with the alkaline solution 5 in the other channel 1C.
Reacts with to form carbonate. For example, when carbon dioxide gas reacts with sodium hydroxide, the reaction formula is as follows.

【0017】 2NaOH+CO2 →Na2 CO3 +H2O 水酸化ナトリウム溶液に炭酸ガスが反応することによっ
て溶液の導電率が変化する。導電率の変化量は炭酸ガス
の量に対応して水酸化ナトリウム(NaOH)が減少
し、炭酸ナトリュウム(Na2 CO3 )が生成する量に
よって変化する。よって、他方の流路1Cの下流に設置さ
れた導電率計6によってアルカリ溶液5の導電率の変化
量(2〔OH- 〕−〔CO3 2-〕)を導電率計6で測定
することによって検水3中の炭酸濃度を測定することが
できる。
2NaOH + CO 2 → Na 2 CO 3 + H 2 O Carbon dioxide reacts with the sodium hydroxide solution to change the conductivity of the solution. The amount of change in conductivity changes depending on the amount of sodium hydroxide (NaOH) reduced and sodium carbonate (Na 2 CO 3 ) generated corresponding to the amount of carbon dioxide gas. Therefore, the conductivity meter 6 installed downstream of the other flow path 1C should measure the amount of change in conductivity of the alkaline solution 5 (2 [OH ] − [CO 3 2− ]) with the conductivity meter 6. Thus, the carbonic acid concentration in the test water 3 can be measured.

【0018】図2は、酸性溶液4に1Nの硫酸(H2
4 )を用い、アルカリ溶液5に1mM(単位、ミリモ
ーラー)と2mMの水酸化ナトリュウム(NaOH)を
用いた実施例で炭酸イオン濃度と導電率減少量(μS/
cm, 単位、マイクロジーメンス/センチメートル)の関
係をグラフにしたもので、炭酸イオン濃度が増すと導電
率が下がることを示している。
In FIG. 2, 1N sulfuric acid (H 2 S) was added to the acidic solution 4.
O 4 ), and the alkaline solution 5 was 1 mM (unit: millimolar) and 2 mM sodium hydroxide (NaOH), and the carbonate ion concentration and the conductivity decrease (μS /
(cm, unit, microsiemens / centimeter) is a graph showing that the conductivity decreases as the carbonate ion concentration increases.

【0019】図3(イ)は、ガス分離装置1の他の実施
例を示したものでガス分離装置1内に複数本のガス透過
膜チューブ1Aが配設されている。ガス透過膜チューブ1A
内にアルカリ溶液5を流し、チューブ1Aの外側の流路に
検水3と酸性溶液4が流れるように構成されている。こ
のようにガス透過膜チューブ1Aを複数本配設することに
よって、ガス透過膜チューブ1Aの表面積が広くなりその
分炭酸ガスの透過量が大きくなり、炭酸濃度の計測の感
度が高くなる。
FIG. 3A shows another embodiment of the gas separation device 1, in which a plurality of gas permeable membrane tubes 1A are arranged in the gas separation device 1. Gas permeable membrane tube 1A
The alkaline solution 5 is made to flow inside, and the test water 3 and the acidic solution 4 are made to flow to the flow path outside the tube 1A. By arranging a plurality of gas permeable membrane tubes 1A in this way, the surface area of the gas permeable membrane tubes 1A is increased, the amount of permeation of carbon dioxide gas is correspondingly increased, and the sensitivity of carbon dioxide concentration measurement is increased.

【0020】図3(ロ)は、ガス分離装置1のその他の
実施例を示したもので、断面コ字状に形成された長尺状
の2つの部材の間にガス透過膜11を挟みこんで製作され
たもので、片側の流路に検水3と酸性溶液4が、もう片
側の流路にアルカリ溶液5が流れるようになっている。
FIG. 3B shows another embodiment of the gas separation device 1, in which the gas permeable membrane 11 is sandwiched between two elongated members having a U-shaped cross section. The sample water 3 and the acidic solution 4 flow through the flow path on one side, and the alkaline solution 5 flows through the flow path on the other side.

【0021】上記実施例では一方の流路1Bの上流側か
ら、検水3と酸性溶液4の混合液が送り込まれ、他方の
流路1Cの上流側からアルカリ溶液5が送り込まれている
が、検水3と酸性溶液4の混合液とアルカリ溶液5を流
す流路を逆にてもよい。即ち、一方の流路1Bの上流側か
ら、アルカリ溶液5を送り込み、他方の流路1Cの上流側
から検水3と酸性溶液4の混合液を送り込んでもよい。
In the above embodiment, the mixed solution of the test water 3 and the acidic solution 4 is fed from the upstream side of the one flow path 1B, and the alkaline solution 5 is fed from the upstream side of the other flow path 1C. The flow paths for flowing the mixed solution of the test water 3 and the acidic solution 4 and the alkaline solution 5 may be reversed. That is, the alkaline solution 5 may be fed from the upstream side of the one flow passage 1B, and the mixed liquid of the test water 3 and the acidic solution 4 may be fed from the upstream side of the other flow passage 1C.

【0022】また、上記実施例のいずれも、ガス分離装
置1を流れる液体の流れる方向は、上流側から下流側に
同一方向に流すように構成しているが、溶液の流れを相
対向するように、例えば、一方の流路1Bは上流から下流
側に、他方の流路1Cは下流側から上流側に流れるように
してもよい。このように、液体の流れる方向を逆方向に
することによって、ガス透過膜を透過した炭酸ガスがア
ルカリ溶液5と良好に反応して測定精度が向上する。
In each of the above embodiments, the liquids flowing through the gas separation device 1 are arranged so that the liquid flows in the same direction from the upstream side to the downstream side. Further, for example, one flow passage 1B may flow from upstream to the downstream side, and the other flow passage 1C may flow from the downstream side to the upstream side. In this way, by making the flow direction of the liquid reverse, the carbon dioxide gas that has permeated the gas permeable membrane reacts favorably with the alkaline solution 5 to improve the measurement accuracy.

【0023】[0023]

【発明の効果】以上のように本発明によれば、検水中か
ら分離した炭酸ガスをアルカリ溶液と反応させて測定す
るため、測定感度が向上する。しかも、検水中の炭酸を
炭酸ガスとして気液分離するために検水中の共存物質の
影響を受けない。さらに、一方の流路を流れるアルカリ
溶液の濃度を変えることにより検水中の広い範囲の炭酸
濃度の測定が可能となる。
As described above, according to the present invention, since the carbon dioxide gas separated from the test water is reacted with the alkaline solution for measurement, the measurement sensitivity is improved. Moreover, since carbon dioxide in the test water is separated into gas and liquid as carbon dioxide gas, it is not affected by coexisting substances in the test water. Furthermore, by changing the concentration of the alkaline solution flowing through one of the flow paths, it is possible to measure the carbon dioxide concentration in a wide range in the test water.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の一実施例における炭酸濃度測定方法の
概略図である。
FIG. 1 is a schematic diagram of a carbonic acid concentration measuring method according to an embodiment of the present invention.

【図2】炭酸イオン濃度と導電率減少量の関係をグラフ
にした図である。
FIG. 2 is a graph showing the relationship between the carbonate ion concentration and the amount of decrease in conductivity.

【図3】(イ)は本発明の炭酸濃度測定方法に用いる他
のガス分離装置の斜視図、(ロ)はその他のガス分離装
置の斜視図である。
FIG. 3A is a perspective view of another gas separation device used in the carbon dioxide concentration measuring method of the present invention, and FIG. 3B is a perspective view of the other gas separation device.

【符号の説明】[Explanation of symbols]

1 ガス分離装置 1A ガス透過膜チューブ 1B 一方の流路 1C 他方の流路 3 検水 4 酸性溶液 5 アルカリ溶液 6 導電率計 1 Gas Separator 1A Gas Permeable Membrane Tube 1B One Channel 1C The Other Channel 3 Water Test 4 Acidic Solution 5 Alkaline Solution 6 Conductivity Meter

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】 ガス分離装置の流路をガス透過膜によっ
て隔て、このガス分離装置の一方の流路に酸性溶液を添
加して検水中の炭酸を炭酸ガスとして分離した検水を流
通させ、他方の流路にアルカリ溶液を流通させてガス分
離装置のガス透過膜を透過した炭酸ガスと反応させ、他
方の流路の下流に炭酸ガスと反応したアルカリ溶液の導
電率を測定することによって検水中の炭酸濃度を測定す
ることを特徴とする炭酸濃度測定方法。
1. A flow path of a gas separation device is separated by a gas permeable membrane, an acidic solution is added to one flow path of the gas separation device, and the test water separated from carbon dioxide in the test water as carbon dioxide gas is circulated. The alkali solution was circulated in the other channel to react with the carbon dioxide gas that permeated the gas permeable membrane of the gas separation device, and the conductivity of the alkali solution that reacted with the carbon dioxide gas was measured downstream of the other channel. A method for measuring carbon dioxide concentration, which comprises measuring the carbon dioxide concentration in water.
JP24006091A 1991-09-20 1991-09-20 Carbonic acid concentration measuring method Pending JPH0580009A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP24006091A JPH0580009A (en) 1991-09-20 1991-09-20 Carbonic acid concentration measuring method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP24006091A JPH0580009A (en) 1991-09-20 1991-09-20 Carbonic acid concentration measuring method

Publications (1)

Publication Number Publication Date
JPH0580009A true JPH0580009A (en) 1993-03-30

Family

ID=17053890

Family Applications (1)

Application Number Title Priority Date Filing Date
JP24006091A Pending JPH0580009A (en) 1991-09-20 1991-09-20 Carbonic acid concentration measuring method

Country Status (1)

Country Link
JP (1) JPH0580009A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002048776A (en) * 2000-08-07 2002-02-15 Japan Organo Co Ltd Performance evaluation method and device of anion- exchange resin and condensate demineralizer
US6597254B2 (en) 2001-04-26 2003-07-22 Murata Manufacturing Co., Ltd. Nonreciprocal circuit device
JP2013527476A (en) * 2010-06-01 2013-06-27 ダイオネックス コーポレイション High pressure degassing assembly for chromatographic systems and methods
JP2013134222A (en) * 2011-12-27 2013-07-08 Asahi Breweries Ltd Measuring apparatus
CN110487850A (en) * 2019-09-10 2019-11-22 华能国际电力股份有限公司 A kind of degassing conductivity measurement system and method

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5234912A (en) * 1975-08-13 1977-03-17 Fidia Spa Extraction of ganglioside and application of same to new medicines
JPH0291569A (en) * 1988-09-29 1990-03-30 Japan Organo Co Ltd Instrument for measuring carbon content

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5234912A (en) * 1975-08-13 1977-03-17 Fidia Spa Extraction of ganglioside and application of same to new medicines
JPH0291569A (en) * 1988-09-29 1990-03-30 Japan Organo Co Ltd Instrument for measuring carbon content

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002048776A (en) * 2000-08-07 2002-02-15 Japan Organo Co Ltd Performance evaluation method and device of anion- exchange resin and condensate demineralizer
US6597254B2 (en) 2001-04-26 2003-07-22 Murata Manufacturing Co., Ltd. Nonreciprocal circuit device
JP2013527476A (en) * 2010-06-01 2013-06-27 ダイオネックス コーポレイション High pressure degassing assembly for chromatographic systems and methods
JP2013134222A (en) * 2011-12-27 2013-07-08 Asahi Breweries Ltd Measuring apparatus
CN110487850A (en) * 2019-09-10 2019-11-22 华能国际电力股份有限公司 A kind of degassing conductivity measurement system and method
CN110487850B (en) * 2019-09-10 2023-10-10 华能国际电力股份有限公司 Degassing conductivity measurement system and method

Similar Documents

Publication Publication Date Title
US5902751A (en) Method and apparatus for the measurement of dissolved carbon
US4209299A (en) Method and apparatus for determination of volatile electrolytes
EP0326995A2 (en) Method and apparatus for quantitative determination of trihalomethanes
Timmer et al. Miniaturized measurement system for ammonia in air
US20060024839A1 (en) Inorganic carbon removal
US20110217787A1 (en) Concentration measuring apparatus for hydrogen sulfide in gas flow, and method for determining sulfide ion
JPH0580009A (en) Carbonic acid concentration measuring method
Martin et al. Membrane-dialzer injection loop for enhancing the selectivity of anion-responsive liquid-membrane electrodes in flow systems: Part 1. A sensing system for NOx and nitrite
US6472223B1 (en) Method and system for continuously monitoring and controlling a process stream
Canham et al. Optimization of parameters for gas-diffusion flow-injection systems
US5889195A (en) Measuring arrangement for determining the concentration of gases from liquid media
JPH0580010A (en) Method for measuring concentration of carbon dioxide gas within gas
US6090267A (en) Methods and apparatus for quantitative analysis of a sample
McKeown et al. Comparative studies of dissolved oxygen analysis methods
JPH11118782A (en) Ammoniacal nitrogen measuring apparatus
Papaefstathiou et al. Simultaneous determination of chemical oxygen demand/inorganic carbon by flow injection-pervaporation
JPH03152445A (en) Method and apparatus for chemical emission quantification of ammonia
JPH0518870A (en) Water quality indicator
JPH0518918A (en) Water quality meter
JP3118250B2 (en) Ozone separation method and apparatus and measuring apparatus using them
JP2644128B2 (en) Water quality meter
JPH1010050A (en) Gasifying separator of three-form nitrometer
CN114354843B (en) Method for conveniently measuring gas-liquid total mass transfer coefficient of microreactor based on chemical system
JP2764986B2 (en) Nitrite determination device
JP2644127B2 (en) Water quality meter