JPH03152445A - Method and apparatus for chemical emission quantification of ammonia - Google Patents

Method and apparatus for chemical emission quantification of ammonia

Info

Publication number
JPH03152445A
JPH03152445A JP29206889A JP29206889A JPH03152445A JP H03152445 A JPH03152445 A JP H03152445A JP 29206889 A JP29206889 A JP 29206889A JP 29206889 A JP29206889 A JP 29206889A JP H03152445 A JPH03152445 A JP H03152445A
Authority
JP
Japan
Prior art keywords
gas
ammonia
liquid
ammonium ions
cell
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP29206889A
Other languages
Japanese (ja)
Other versions
JP2812745B2 (en
Inventor
Yasuaki Maeda
泰昭 前田
Teijiro Kitao
北尾 悌次郎
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Shokubai Co Ltd
Original Assignee
Nippon Shokubai Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Shokubai Co Ltd filed Critical Nippon Shokubai Co Ltd
Priority to JP29206889A priority Critical patent/JP2812745B2/en
Publication of JPH03152445A publication Critical patent/JPH03152445A/en
Application granted granted Critical
Publication of JP2812745B2 publication Critical patent/JP2812745B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Abstract

PURPOSE:To enable intermittent quantification of ammonia or ammonium ions in a successive manner or at a short-time interval by bringing the ammonia or the ammonium ions into contact with hypohalogenous acid ions or a halogen gas. CONSTITUTION:When vapor-phase ammonia is quantified, a sample gas I is introduced in a prescribed quantity into a reaction cell C through a flowmeter J, while a sodium hypochrolite water solution G and a hydrochloric acid water solution H are mixed in a mixer E and then introduced into the reaction cell C at a certain speed. In the case when ammonium ions in a liquid phase are quantified, a sample solution G and a sodium hydroxide water solution H are mixed E and then introduced into the cell C, while a chlorine gas I is introduced into the cell C through the flowmeter J. A liquid introduced from the lower part N of the reaction cell is not disturbed since the bottom of the cell is shaped in a funnel, and it is supplied sequentially to a vapor- liquid interface and reacts thereon with the gas, causing emission of light. The liquid and the gas are discharged from a discharge port at a prescribed speed, and therefore a distance between the surface of the liquid and a photomultiplier tube D is maintained to be fixed. A generated chemical emission is sensed by the tube D, amplified L and recorded M.

Description

【発明の詳細な説明】 [産業上の利用分野] 本発明はアンモニア又はアンモニウムイオンの化学反応
に基づく発光現象を利用した定量法に関するものであり
、アンモニア又はアンモニウムイオンを連続的に或は短
時間々隔で断続的に測定する場合に特に有用である。
[Detailed Description of the Invention] [Industrial Application Field] The present invention relates to a quantitative method that utilizes a luminescence phenomenon based on a chemical reaction of ammonia or ammonium ions. This is particularly useful when measuring intermittently at intervals.

[従来の技術] 窒素酸化物による大気汚染が問題になる中で、排煙中の
窒素酸化物を取り除くいわゆる排煙脱窒に対する関心が
急速に高まりつつある。
[Prior Art] As air pollution caused by nitrogen oxides becomes a problem, interest in so-called flue gas denitrification, which removes nitrogen oxides from flue gas, is rapidly increasing.

脱窒法として接触還元による脱窒を行なう場合には、還
元ガスとして主にアンモニアが利用されているが、未反
応のアンモニアが排出されると悪臭が発生するという問
題の他、排ガス中の803と反応して煙導内に亜硫酸ア
ンモニウム等が堆積して保守管理上の問題を生じ、更に
酸性雨の原因ともなるので、出来るだけ未反応のアンモ
ニア量を少なくする必要がある。従って、未反応のアン
モニアが生じていないかどうかを常にモニターすること
が望ましい。
When performing denitrification by catalytic reduction as a denitrification method, ammonia is mainly used as the reducing gas, but in addition to the problem of bad odor when unreacted ammonia is discharged, 803 and 803 in the exhaust gas are also used. It is necessary to reduce the amount of unreacted ammonia as much as possible because ammonium sulfite and the like react and accumulate in the smoke pipe, causing problems in maintenance and management, and also causing acid rain. Therefore, it is desirable to constantly monitor whether unreacted ammonia is generated.

現在微量のアンモニアを定量する方法として、アンモニ
アガスを溶媒に溶解しアンモニウムイオンとしてインド
フェノール法で定量する方法が一般に利用されているが
、反応時間が1時間と長く、例えば排気中のアンモニア
量を連続的に測定してフィードバック制御に適用しアン
モニア供給量をコントロールすることができない。一方
連続分析法としては、試料ガスと吸収液を接触させて電
導塵の変化を調べる溶液電導率法や赤外線ガス分析法等
があるが、他の共存ガスによる影響を受けやすいという
欠点を有している。
Currently, the commonly used method for quantifying trace amounts of ammonia is to dissolve ammonia gas in a solvent and quantify it as ammonium ions using the indophenol method. It is not possible to control the ammonia supply amount by continuously measuring and applying feedback control. On the other hand, continuous analysis methods include the solution conductivity method and infrared gas analysis method, which examine changes in conductive dust by bringing the sample gas and absorption liquid into contact, but these methods have the disadvantage of being easily influenced by other coexisting gases. ing.

[発明が解決しようとする課題] 本発明は上記の様な事情に鑑みてなされたものであフて
、アンモニアまたはアンモニウムイオンを連続的に或は
短時間々隔で断続的に定量する方法を提供しようとする
ものである。
[Problems to be Solved by the Invention] The present invention has been made in view of the above circumstances, and provides a method for quantifying ammonia or ammonium ions continuously or intermittently at short intervals. This is what we are trying to provide.

[課題を解決するための手段] 本発明の定量法はアンモニア又はアンモニウムイオンを
次亜ハロゲン酸イオン又はハロゲンガスと接触させ、ア
ンモニア又はアンモニウムイオンと次亜ハロゲン酸イオ
ン又はハロゲンガスの反応によフて生じる化学発光の強
度を測定することに要旨がある。また本発明の測定には
液相と気相の界面に生じた化学反応に基づく発光(化学
発光)を測定する装置であって、反応セルの底面がロー
ト状であり、該反応セルの下部に液体導入口、側部に気
液排出口及び該排出口より高い位置であって、前記気液
排出口に対面して気体導入口を有し、液体が導入された
際の液面に対峙して光電子増倍管が設けられた反応セル
を有する装置を用いて実施することができる。
[Means for Solving the Problems] The quantitative method of the present invention brings ammonia or ammonium ions into contact with hypohalite ions or halogen gas, and generates a reaction between ammonia or ammonium ions and hypohalite ions or halogen gas. The key point is to measure the intensity of the chemiluminescence generated. In addition, the measurement of the present invention is an apparatus for measuring light emission (chemiluminescence) based on a chemical reaction occurring at the interface between a liquid phase and a gas phase, and the bottom of the reaction cell is funnel-shaped. A liquid inlet, a gas-liquid outlet on the side, and a gas inlet located higher than the outlet and facing the gas-liquid outlet, facing the liquid surface when the liquid is introduced. The method can be carried out using an apparatus having a reaction cell equipped with a photomultiplier tube.

[作用及び実施例] 本発明者らはアンモニアを連続的に測定する方法を種々
検討した結果、ガス状のアンモニアまたは液相に溶解し
たアンモニウムイオンがハロゲンまたは次亜ハロゲンイ
オンと反応して化学発光を生じることを見いだした。こ
れらは従来知られていない全く新しい化学発光で、発光
機構の詳細については分からないが、550nmと75
0r+mに極大発光を示した。化学発光はガス状のアン
モニアトハロケンガス又は液相中のアンモニウムイオン
と次亜ハロゲンイオンの反応でも生じるが、微弱な化学
発光を測定しゃすくするには、反応の場を気液界面に特
定できるガス状のアンモニアと次亜ハロゲン酸イオン、
アンモニウムイオンとハロゲンガスの組み合わせが適し
ていた。該化学発光を利用してアンモニア及びアンモニ
ウムイオンを定量する条件を下記の方法により検討した
。以下次亜塩素酸イオンまたは塩素イオンを用いる場合
について代表的に説明する。
[Operations and Examples] As a result of examining various methods for continuously measuring ammonia, the present inventors found that ammonium ions dissolved in gaseous ammonia or liquid phase react with halogen or hypohalogen ions to produce chemiluminescence. It was found that this occurs. These are completely new types of chemiluminescence that were previously unknown, and although the details of the luminescence mechanism are unknown, the 550nm and 75nm
Maximum light emission was shown at 0r+m. Chemiluminescence also occurs through the reaction of ammonium ions and hypohalogen ions in gaseous ammonia to halogen gases or liquid phases, but in order to easily measure weak chemiluminescence, the site of the reaction can be identified at the gas-liquid interface. gaseous ammonia and hypohalite ions,
The combination of ammonium ions and halogen gas was suitable. Conditions for quantifying ammonia and ammonium ions using the chemiluminescence were investigated by the following method. The case where hypochlorite ion or chlorine ion is used will be described below as a representative example.

第1図は実験に用いた定量装置の概略図を示す、気相の
アンモニアを定量する場合には、試料気体Iは流量計J
を通って反応セルCに一定量で導入され、次亜塩素酸ナ
トリウム水溶液Gと塩酸水溶液Hは混合器Eで混合され
た後一定速度で反応セルCに導入される。液相中のアン
モニウムイオンを定量する場合には、試料溶液Gと水酸
化ナトリウム水溶液Hは混合器Eで混合された後反応セ
ルに導入され、塩素ガスIは流量計Jを通って反応セル
Cに導入される。いずれの場合にも、反応セル内の気−
液界面において化学反応が起こり発光を生じる。気液界
面で生じる微弱な光を正確に測定するには、 (1)絶えず新しい液表面が供給される、(2)液表面
積を一定に保つ、 (3)液表面と光電子増倍管の距離を一定にする、 ことが必要である。第2図に気液接触型反応セルの模式
断面図の一例を示した0反応セル下部Nから一定速度で
導入された液体は底面がロート状であるので、乱れるこ
となく順次気液界面に供給され、気体と反応して発光を
生じる。液体と気体は排出口より一定速度で排出される
ので、液表面と光電子増倍管の距離は一定に保たれる。
Figure 1 shows a schematic diagram of the quantitative device used in the experiment. When quantifying ammonia in the gas phase, the sample gas I is
Sodium hypochlorite aqueous solution G and hydrochloric acid aqueous solution H are mixed in mixer E and then introduced into reaction cell C at a constant rate. When quantifying ammonium ions in the liquid phase, the sample solution G and the sodium hydroxide aqueous solution H are mixed in the mixer E and then introduced into the reaction cell, and the chlorine gas I passes through the flowmeter J and enters the reaction cell C. will be introduced in In either case, the air inside the reaction cell
A chemical reaction occurs at the liquid interface, producing light emission. In order to accurately measure the weak light generated at the gas-liquid interface, (1) new liquid surface is constantly supplied, (2) the liquid surface area is kept constant, and (3) the distance between the liquid surface and the photomultiplier tube is required. It is necessary to keep it constant. Figure 2 shows an example of a schematic cross-sectional view of a gas-liquid contact type reaction cell.The liquid introduced at a constant rate from the bottom N of the reaction cell is sequentially supplied to the gas-liquid interface without disturbance because the bottom surface is funnel-shaped. and reacts with gas to produce luminescence. Since the liquid and gas are discharged from the discharge port at a constant speed, the distance between the liquid surface and the photomultiplier tube is kept constant.

生じた化学発光は石英ガラス製フィルターを通して、光
電子増倍管に受光され、増幅器して増幅され、記録計M
に記録される。
The generated chemiluminescence passes through a quartz glass filter, is received by a photomultiplier tube, is amplified, and is sent to a recorder M.
recorded in

尚、上記方法においては、条件設定を行うことを目的と
して溶液の混合器が組み込まれているが、実際に測定す
る場合には前もって混合した試薬を用いてもよい。また
ポンプの位置等も変更可能である。実験に用いた塩素ガ
スは製鉄化学社製ボンベ詰めを、アンモニアガスは製鉄
化学社製ボンベ詰めを活性炭、シリカゲル及びモレキュ
ラーシーブ5Aを充填したガラス管を通して浄化した空
気で希釈して用いた。
Note that in the above method, a solution mixer is incorporated for the purpose of setting conditions, but in the case of actual measurement, reagents that have been mixed in advance may be used. The position of the pump can also be changed. The chlorine gas used in the experiment was packed in a cylinder manufactured by Tetsutsu Kagaku Co., and the ammonia gas was diluted with air purified through a glass tube filled with activated carbon, silica gel, and molecular sieve 5A.

◎気相のアンモニアの定量 気相のアンモニア定量の至適条件を求めるために、塩酸
濃度、次亜塩素酸ナトリウム水溶液濃度、気体流量、液
体流量の化学発光に対する影響を調べた。
◎Quantification of ammonia in the gas phase In order to find the optimal conditions for quantifying ammonia in the gas phase, we investigated the effects of hydrochloric acid concentration, sodium hypochlorite aqueous solution concentration, gas flow rate, and liquid flow rate on chemiluminescence.

(塩酸濃度の影響) 第3図は0.17N次亜塩素酸ナトリウム水溶液を用い
た時、これに混合する塩酸のpHと発光強度の関係を示
した。尚、混合割合は5:3とした。
(Effect of Hydrochloric Acid Concentration) Figure 3 shows the relationship between the pH of hydrochloric acid mixed with a 0.17N sodium hypochlorite aqueous solution and the luminescence intensity. Note that the mixing ratio was 5:3.

図に示されるように塩酸のpHが0.8の時最大の発光
強度を示した。この時の化学反応前の溶液のpHは8.
1〜8.2であった。使用する酸は塩酸に限定されるも
のではなく硫酸や硝酸、iaI液、でも同様の結果が得
られた。要はアンモニアの吸収を促進するものは何でも
よく、場合によっては酸を使用しなくとも十分な成果を
挙げることは可能である。
As shown in the figure, the maximum luminescence intensity was exhibited when the pH of hydrochloric acid was 0.8. At this time, the pH of the solution before the chemical reaction was 8.
It was 1 to 8.2. The acid used is not limited to hydrochloric acid; similar results were obtained with sulfuric acid, nitric acid, and iaI solution. In short, anything that promotes the absorption of ammonia may be used, and in some cases, it is possible to achieve sufficient results without using acids.

(次亜塩素酸ナトリウム水溶液濃度の影響)第4図に塩
酸水溶液のpHが0.8の時の次亜塩素酸ナトリウム水
溶液の濃度と発光強度の関係を示した0次亜塩素酸ナト
リウム水溶液の濃度が0.5Mまでは発光強度は強くな
ったがそれ以上ではあまり増加しなかった。溶液の安定
性を考慮すれば次亜塩素酸ナトリウム水溶液の濃度は0
.1〜0.5Nが適当である。尚、高濃度のアンモニウ
ムイオンを測定する時は次亜塩素酸ナトリウム水溶液の
濃度を高くする必要があった。
(Influence of concentration of sodium hypochlorite aqueous solution) Figure 4 shows the relationship between concentration of sodium hypochlorite aqueous solution and luminescence intensity when the pH of the hydrochloric acid aqueous solution is 0.8. The luminescence intensity became strong up to a concentration of 0.5M, but did not increase much above that. Considering the stability of the solution, the concentration of sodium hypochlorite aqueous solution is 0.
.. 1 to 0.5N is appropriate. Note that when measuring high concentrations of ammonium ions, it was necessary to increase the concentration of the sodium hypochlorite aqueous solution.

(気体流量、液体流量の影響) 気体流量も液体流量も夫々増加するにつれて発光強度は
増加した。気液界面の安定性、測定に要する時間等を考
慮して、気体流量は0.5〜11/win 、液体流量
は0.5〜8 m IL/ winとしたが、試料濃度
等により適宜変更は可能である。
(Influence of gas flow rate and liquid flow rate) As the gas flow rate and liquid flow rate increased, the emission intensity increased. Considering the stability of the gas-liquid interface, the time required for measurement, etc., the gas flow rate was set to 0.5 to 11/win, and the liquid flow rate was set to 0.5 to 8 mIL/win, but these may be changed as appropriate depending on the sample concentration, etc. is possible.

上記の結果により、0.51N次亜塩素酸ナトリウム水
溶液とpH0,8の塩酸水溶液を1=1で混合して用い
、気体流量117mIn、液体流量0.5mj2/a+
inでアンモニウムイオンを測定した時の発光シグナル
を第5図に、検量線を第6図に示した。図に示されるよ
うに0.1〜200 ppmのガス状アンモニアに対し
てほぼ1次の直線関係にあった。液体流量を1mj!/
win以上にすると検量線はほぼ2次の直線となったが
、これはアンモニアが液相に溶解する過程がアンモニア
濃度に対して1次の関係にあるためだと考えられる。尚
試料と試料の間には清浄空気を流した。
Based on the above results, using a 1=1 mixture of 0.51N sodium hypochlorite aqueous solution and pH 0.8 hydrochloric acid aqueous solution, the gas flow rate was 117 mIn, and the liquid flow rate was 0.5 mj2/a+.
Fig. 5 shows the luminescence signal when ammonium ions were measured in the in vitro test, and Fig. 6 shows the calibration curve. As shown in the figure, there was an approximately first-order linear relationship for gaseous ammonia in the range of 0.1 to 200 ppm. Liquid flow rate is 1mj! /
The calibration curve became a nearly quadratic straight line when the temperature was set to be higher than win, but this is thought to be because the process of dissolving ammonia in the liquid phase has a linear relationship with the ammonia concentration. Note that clean air was flowed between the samples.

◎液相のアンモニウムイオンの定量 液相のアンモニウムイオン定量の至適条件を求めるため
に、水酸化ナトリウム水溶液濃度と塩素ガス濃度が発光
強度に及ぼす影響について調べた。尚、気相のアンモニ
アの定量に準じて気体流量は0.5〜1 sb /ll
1in 、液体流量は0.5〜8mu/winとした。
◎Quantification of ammonium ions in the liquid phase In order to find the optimal conditions for quantifying ammonium ions in the liquid phase, we investigated the effects of the sodium hydroxide aqueous solution concentration and chlorine gas concentration on the luminescence intensity. In addition, according to the quantitative determination of ammonia in the gas phase, the gas flow rate is 0.5 to 1 sb/ll.
1 inch, and the liquid flow rate was 0.5 to 8 mu/win.

(水酸化ナトリウム水溶液濃度の影響)第7図に188
ppmの塩素ガスを使用した時の水酸化ナトリウム水溶
液濃度と発光強度の関係を示した。水酸化ナトリウム濃
度がIONまで発光強度は増加し、それ以上濃度を高く
しても一定であった。水酸化ナトリウム濃度が高くなる
と塩素ガスの溶解する速度が早くなるためであると考え
られる。しかし、NaOH濃度が高くなるとアンモニウ
ムイオンがアンモニアガスとして逃散し液面が安定しな
いため、18以上に上げるのは好ましくなかった。又水
酸化ナトリウムの代わりに水酸化カリウム等の使用も可
能であった。尚アルカリを用いないでも塩素ガスを吸収
して十分な成果を挙げる場合がある。
(Influence of sodium hydroxide aqueous solution concentration) 188 in Figure 7
The relationship between the concentration of sodium hydroxide aqueous solution and the luminescence intensity when using ppm chlorine gas is shown. The luminescence intensity increased until the sodium hydroxide concentration reached ION, and remained constant even if the concentration was increased further. This is thought to be because the rate at which chlorine gas dissolves becomes faster as the sodium hydroxide concentration increases. However, when the NaOH concentration becomes high, ammonium ions escape as ammonia gas and the liquid level becomes unstable, so it was not preferable to increase the NaOH concentration to 18 or more. It was also possible to use potassium hydroxide instead of sodium hydroxide. In some cases, sufficient results can be obtained by absorbing chlorine gas without using an alkali.

(塩素ガス濃度の影響) 第8図にIN  NaOHを使用した時の塩素ガス濃度
と発光強度の関係を示した。塩素ガス濃度が188pp
mまで発光強度が増加した。濃度を高くすると更に増加
すると考えられるが、今回使用したボンベの都合上測定
出来なかった。しかし、余分な塩素ガスの放出は人体に
悪影響を及ぼし、公害の原因にもなるので188ppm
で十分だと考えられる。
(Influence of chlorine gas concentration) Figure 8 shows the relationship between chlorine gas concentration and luminescence intensity when IN NaOH is used. Chlorine gas concentration is 188pp
The luminescence intensity increased up to m. It is thought that it would increase further if the concentration was increased, but it could not be measured due to the cylinder used this time. However, the release of excess chlorine gas has a negative effect on the human body and causes pollution, so 188 ppm
is considered to be sufficient.

以上の結果より、水酸化ナトリウム水溶液濃度IN、塩
素ガス濃度tsappm、気体流量1fL/lll1n
 、液体流量3mf/ff1inで液体中のアンモニウ
ムイオンの定量を行なった。その結果得られた発光シグ
ナルを第9図に、検量線を第10図に示した0図に示さ
れるように0.01〜500 ppmの液相アンモニウ
ムイオンに対してほぼ1次の直線関係にあった。尚試料
と試料の間には純水を流した。
From the above results, the sodium hydroxide aqueous solution concentration IN, the chlorine gas concentration tsappm, and the gas flow rate 1fL/lll1n
The ammonium ions in the liquid were determined at a liquid flow rate of 3 mf/ff1 inch. The resulting luminescent signal is shown in Figure 9, and the calibration curve is shown in Figure 10. there were. Note that pure water was flowed between the samples.

以上のように気相のアンモニア及び液相のアンモニウム
イオンの化学発光を利用した定量が可能であることがわ
かった0本法では条件を一定に保つことにより、優れた
再現性が得られており、測定の度に検量線を引く必要は
ない、また化学発光という特異な反応を利用しているの
で、炭化水素や一酸化炭素、二酸化窒素、アミン、硫化
水素等による干渉を受けることはなかった。
As described above, this method, which has been shown to be capable of quantifying ammonia in the gas phase and ammonium ions in the liquid phase using chemiluminescence, has excellent reproducibility by keeping the conditions constant. There is no need to draw a calibration curve each time a measurement is made, and because it uses a unique reaction called chemiluminescence, there is no interference from hydrocarbons, carbon monoxide, nitrogen dioxide, amines, hydrogen sulfide, etc. .

[発明の効果] 本発明は以上のように構成されており、アンモニア又は
アンモニウムイオンの化学発光を利用することにより、
連続的に或は単時間に微量のアンモニア又はアンモニウ
ムイオンを測定する新しい方法を提供することが可能と
なった。
[Effects of the Invention] The present invention is configured as described above, and by utilizing chemiluminescence of ammonia or ammonium ions,
It has become possible to provide a new method for measuring trace amounts of ammonia or ammonium ions either continuously or over a single period of time.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は測定装置全体の概略図、第2図は反応セル付近
の模式断面図、第3図〜第6図は夫々気相アンモニアの
定量における塩酸のpHと発光強度の関係を示す図(第
3図)、次亜塩素酸ナトリウム濃度と発光強度の関係を
示す図(第4図)、発光シグナル(第5図)、検量FA
 (第6図)であり、第7図〜第10図は液相アンモニ
アの定量における水酸化ナトリウム水溶液濃度と発光強
度の関係を示す図(第7図)、塩素ガス濃度と発光強度
の関係を示す図(第8図)、発光シグナル(第9図)、
検量線(第10図)である。 A・・・ポンプ     B・・・廃液だめC・・・反
応セル    D・・・光電子増倍管E・・・混合器 
    F・・・ぜん動ポンプG・・・次亜塩素酸ナト
リウム水溶液又は試料溶液H・・・塩酸水溶液又は水酸
化ナトリウム水溶液■・・・試料気体又は塩素ガス J・・・流量計     K・・・清浄空気L・・・増
幅機     M・・・記録計N・・・混合溶液   
 O・・・排液及び排気第1図
Figure 1 is a schematic diagram of the entire measuring device, Figure 2 is a schematic cross-sectional view of the vicinity of the reaction cell, and Figures 3 to 6 are diagrams showing the relationship between the pH of hydrochloric acid and the luminescence intensity in the determination of gaseous ammonia. Figure 3), Diagram showing the relationship between sodium hypochlorite concentration and luminescence intensity (Figure 4), Luminescence signal (Figure 5), Calibration FA
(Figure 6), and Figures 7 to 10 are diagrams showing the relationship between the concentration of sodium hydroxide aqueous solution and luminescence intensity in the determination of liquid ammonia (Figure 7), and the relationship between chlorine gas concentration and luminescence intensity. The diagram shown (Figure 8), the luminescence signal (Figure 9),
This is a calibration curve (Figure 10). A... Pump B... Waste liquid reservoir C... Reaction cell D... Photomultiplier tube E... Mixer
F... Peristaltic pump G... Sodium hypochlorite aqueous solution or sample solution H... Hydrochloric acid aqueous solution or sodium hydroxide aqueous solution ■... Sample gas or chlorine gas J... Flow meter K... Cleaning Air L...Amplifier M...Recorder N...Mixed solution
O... Drainage and exhaust Figure 1

Claims (2)

【特許請求の範囲】[Claims] (1)アンモニア又はアンモニウムイオンを次亜ハロゲ
ン酸イオン又はハロゲンガスと接触させ、アンモニア又
はアンモニウムイオンと次亜ハロゲン酸イオン又はハロ
ゲンガスの反応によって生じる化学発光の強度を測定す
ることを特徴とするアンモニアの化学的発光定量法。
(1) Ammonia characterized by contacting ammonia or ammonium ions with hypohalite ions or halogen gas and measuring the intensity of chemiluminescence produced by the reaction between ammonia or ammonium ions and hypohalite ions or halogen gas. chemiluminescence assay.
(2)液相と気相の界面に生じた化学反応に基づく発光
を測定する装置であって、反応セルの底面がロート状で
あり、該反応セルの下部に液体導入口、側部に気液排出
口及び該排出口より高い位置であって、前記気液排出口
に対面して気体導入口を有し、液体が導入された際の液
面に対峙して光電子増倍管が設けられた反応セルを有す
ることを特徴とするアンモニアの化学的発光定量装置。
(2) This is a device that measures luminescence based on a chemical reaction occurring at the interface between a liquid phase and a gas phase, and the bottom of the reaction cell is funnel-shaped. A liquid outlet, a gas inlet at a higher position than the outlet and facing the gas/liquid outlet, and a photomultiplier tube facing the liquid level when the liquid is introduced. 1. An ammonia chemiluminescence quantitative device characterized by having a reaction cell.
JP29206889A 1989-11-08 1989-11-08 Chemiluminescence determination of ammonia and its device Expired - Fee Related JP2812745B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP29206889A JP2812745B2 (en) 1989-11-08 1989-11-08 Chemiluminescence determination of ammonia and its device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP29206889A JP2812745B2 (en) 1989-11-08 1989-11-08 Chemiluminescence determination of ammonia and its device

Publications (2)

Publication Number Publication Date
JPH03152445A true JPH03152445A (en) 1991-06-28
JP2812745B2 JP2812745B2 (en) 1998-10-22

Family

ID=17777120

Family Applications (1)

Application Number Title Priority Date Filing Date
JP29206889A Expired - Fee Related JP2812745B2 (en) 1989-11-08 1989-11-08 Chemiluminescence determination of ammonia and its device

Country Status (1)

Country Link
JP (1) JP2812745B2 (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0579986A (en) * 1991-09-24 1993-03-30 Kansai Electric Power Co Inc:The Ammonium quantification using chemical luminescence
JPH0579987A (en) * 1991-09-24 1993-03-30 Kansai Electric Power Co Inc:The Halogen quantification using chemical luminescence
US6321587B1 (en) * 1999-10-15 2001-11-27 Radian International Llc Solid state fluorine sensor system and method
JP2008233005A (en) * 2007-03-23 2008-10-02 Okayama Prefecture Industrial Promotion Foundation Method and device for measuring urea concentration
DE112009002012B4 (en) * 2008-08-26 2012-04-26 Okayama Prefecture Industrial Promotion Foundation Method for measuring urea concentration and method therefor
CN112858425A (en) * 2021-01-18 2021-05-28 江西力沃德科技有限公司 Acidity analyzer
JPWO2022039125A1 (en) * 2020-08-19 2022-02-24

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0579986A (en) * 1991-09-24 1993-03-30 Kansai Electric Power Co Inc:The Ammonium quantification using chemical luminescence
JPH0579987A (en) * 1991-09-24 1993-03-30 Kansai Electric Power Co Inc:The Halogen quantification using chemical luminescence
US6321587B1 (en) * 1999-10-15 2001-11-27 Radian International Llc Solid state fluorine sensor system and method
JP2008233005A (en) * 2007-03-23 2008-10-02 Okayama Prefecture Industrial Promotion Foundation Method and device for measuring urea concentration
WO2008117699A1 (en) * 2007-03-23 2008-10-02 Okayama Prefecture Industrial Promotion Foundation Method of measuring urea concentration and apparatus for measuring urea concentration
DE112008000740B4 (en) * 2007-03-23 2011-03-17 Okayama Prefecture Industrial Promotion Foundation Method for measuring urea concentration and device for measuring urea concentration
DE112009002012B4 (en) * 2008-08-26 2012-04-26 Okayama Prefecture Industrial Promotion Foundation Method for measuring urea concentration and method therefor
JPWO2022039125A1 (en) * 2020-08-19 2022-02-24
WO2022039125A1 (en) * 2020-08-19 2022-02-24 株式会社日吉 Sensitizer for use in measurement of chemiluminescence of ammonium ion, ammonium ion analysis method, ammonium ion analysis device
CN112858425A (en) * 2021-01-18 2021-05-28 江西力沃德科技有限公司 Acidity analyzer

Also Published As

Publication number Publication date
JP2812745B2 (en) 1998-10-22

Similar Documents

Publication Publication Date Title
US5661036A (en) Process for the detection of sulfur
US7850901B2 (en) Conditioning system and method for use in the measurement of mercury in gaseous emissions
US4066402A (en) Analytical method and apparatus for determination of total nitrogen and/or carbon contents in aqueous systems
US6010664A (en) Oxidation detection for sulfite/sulfate systems
CN108037115B (en) Sulfur dioxide detection system and detection method
CN103411959A (en) Method for directly measuring total nitrogen content in solution
CN111982611B (en) Online detection device and detection method for ammonia in flue gas
US5131260A (en) Device and method for the continuous measurement of the ammonia concentration in gases in the ppm range
JPH03152445A (en) Method and apparatus for chemical emission quantification of ammonia
US6472223B1 (en) Method and system for continuously monitoring and controlling a process stream
Kass et al. Spectrophotometric determination of sulphur dioxide and hydrogen sulphide in gas phase by sequential injection analysis technique
CN205484057U (en) Sulfur dioxide analysis appearance
CN212808040U (en) On-line detection device for ammonia in flue gas by using continuous sample injection analysis technology
CN104535499B (en) Sulfur dioxide online monitoring method
CA2603310A1 (en) Conditioning system and method for use in the measurement of mercury in gaseous emissions
EP0466303B1 (en) Method and system for continuously monitoring and controlling a process stream for dechlorination residual
US5153139A (en) Method and apparatus for measuring the water soluble strong acids suspended in air
JP4188096B2 (en) measuring device
CN105136698A (en) Volatile compound determination method and apparatus thereof
CN113155761B (en) Method for measuring background ammonia content in cement raw material
JPH0579986A (en) Ammonium quantification using chemical luminescence
Rigo et al. Differential-pulse voltammetry of sulphur dioxide at the parts per 10 9 level in air
JP3549951B2 (en) Ultra-trace nitrogen component measurement device
Guo et al. Flow injection determination of gaseous sulfur dioxide with gas permeation denuder-based online sampling and preconcentration
WO2003048382A1 (en) Sensitive detection of urea and related compounds in water

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees