JPH0580010A - Method for measuring concentration of carbon dioxide gas within gas - Google Patents

Method for measuring concentration of carbon dioxide gas within gas

Info

Publication number
JPH0580010A
JPH0580010A JP24387191A JP24387191A JPH0580010A JP H0580010 A JPH0580010 A JP H0580010A JP 24387191 A JP24387191 A JP 24387191A JP 24387191 A JP24387191 A JP 24387191A JP H0580010 A JPH0580010 A JP H0580010A
Authority
JP
Japan
Prior art keywords
gas
carbon dioxide
concentration
separation device
channel
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP24387191A
Other languages
Japanese (ja)
Inventor
Kotaro Kawamoto
公太郎 河本
Toyoaki Aoki
豊明 青木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kubota Corp
Original Assignee
Kubota Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kubota Corp filed Critical Kubota Corp
Priority to JP24387191A priority Critical patent/JPH0580010A/en
Publication of JPH0580010A publication Critical patent/JPH0580010A/en
Pending legal-status Critical Current

Links

Landscapes

  • Investigating Or Analyzing Non-Biological Materials By The Use Of Chemical Means (AREA)
  • Investigating Or Analyzing Materials By The Use Of Electric Means (AREA)

Abstract

PURPOSE:To enable concentration of carbon dioxide gas within a gas to be measured continuously, accurately, and with a high measurement sensitivity. CONSTITUTION:A channel of a gas-separation device 1 is isolated by a gas- transmission film 1A, a gas 3 mixed with carbon dioxide gas which is sandwiched by an acid solution 4 is allowed to flow to one channel 1B of the gas-separation device 1, and then an alkali solution 5 is circulated at the other channel 1C for reaction with carbon dioxide gas within the gas 3 which is transmitted through the gas-transmission film 1A of the gas-separation device 1. Conductivity of the alkali solution 5 which reacted with carbon dioxide gas at a downstream of the other channel 1C is measured, thus enabling the carbon dioxide concentration within the specimen gas 3 to be measured.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、気体、例えば空気中の
炭酸ガスの濃度を連続的に測定する炭酸ガス濃度測定方
法に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a carbon dioxide concentration measuring method for continuously measuring the concentration of carbon dioxide in a gas such as air.

【0002】[0002]

【従来の技術】従来より気体中のCO2 濃度計として種
々のものが存在していた。例えば、吸収液の選択的吸収
を原理とするCO2 濃度計は、アルカリ溶液にCO2
吸収させて吸収減量を測定することによってCO2 濃度
を計測する。
2. Description of the Related Art Conventionally, there have been various CO 2 concentration meters in gas. For example, a CO 2 concentration meter based on the principle of selective absorption of an absorbing solution measures the CO 2 concentration by absorbing CO 2 in an alkaline solution and measuring the absorption loss.

【0003】また、赤外線の選択的吸収を利用するCO
2 濃度計は、図4に示す構造であって、濃度に合わせた
所定の長さのセル11にサンプルガス12を連続的に流し、
このセル11を通過する赤外線のうち、CO2 量にともな
って吸収量の変化する赤外線(特定波長)の強度を電気
量に変化してCO2 濃度を計測する。
CO which utilizes selective absorption of infrared rays
The 2 densitometer has the structure shown in FIG. 4, in which the sample gas 12 is continuously flown into the cell 11 having a predetermined length according to the concentration,
Of the infrared passing through the cell 11, the intensity of the infrared ray (specific wavelengths) of varying absorption with the amount of CO 2 changes in the quantity of electricity to measure the CO 2 concentration.

【0004】ガスの熱伝導率を利用するCO2 濃度計
は、図5に示ような構造であって、CO2 ガスが他のガ
スと比較して熱伝導率が小であることに着目してCO2
濃度を計測する濃度計で、測定室13と比較室14に張った
細熱線15をホイーストン・ブリッジに組入れて、ガス組
成が空気からN2 +O2 +CO2 +(H2 O)に変化す
る組成変化の一定の組立てで設計し、CO2 の増加とと
もに生成ガス(サンプル)の熱伝導率が低下するので、
この関係を熱線の温度上昇、つまり電気抵抗の増大とし
て検出する。
A CO 2 concentration meter utilizing the thermal conductivity of gas has a structure as shown in FIG. 5, and attention has been paid to the fact that CO 2 gas has a lower thermal conductivity than other gases. CO 2
This is a densitometer that measures the concentration. By incorporating the thin heating wire 15 stretched between the measurement chamber 13 and the comparison chamber 14 into the Wheatstone bridge, the gas composition changes from air to N 2 + O 2 + CO 2 + (H 2 O). Designed with a constant compositional change, the thermal conductivity of the produced gas (sample) decreases with the increase of CO 2 .
This relationship is detected as an increase in the temperature of the heating wire, that is, an increase in electrical resistance.

【0005】さらに、密度比較式のCO2 濃度計は、C
2 の密度が大きいことに着目した濃度計で、図6に示
すように向かい合う2個の受動羽根車17,18 が、リンク
仕掛19けで連結されていて、両室20,21 のガスの流体継
手作用で反対向きの回転トルクを伝達されるので、サン
プルガス22の性状変化〔密度+(粘性)〕によって異な
った位置で平衡するように設計して、空気を基準とした
サンプル密度の変化(つまりCO2 の増減)が検出でき
る。
Further, the density comparison type CO 2 concentration meter is C
In the densitometer focusing on the large density of O 2 , two passive impellers 17 and 18 facing each other are connected by a link mechanism 19 as shown in FIG. Since the rotational torque in the opposite direction is transmitted by the fluid coupling action, it is designed to equilibrate at different positions depending on the property change [density + (viscosity)] of the sample gas 22, and the change in sample density based on air (In other words, increase / decrease in CO 2 ) can be detected.

【0006】[0006]

【発明が解決しようとする課題】しかしながら、前記従
来の濃度計のうち吸収液の選択的吸収を原理とするCO
2 濃度計は、連続測定ができないという問題点があっ
た。また、赤外線の選択的吸収を利用するCO2 濃度計
は、サンプル中の水分の干渉を受けるとという問題点が
あった。さらに、ガスの熱伝導率を利用するCO2 濃度
計、及び密度比較式のCO2 濃度計は、ガス成分の選択
性がなく、共存ガスの影響を受けるという問題点があっ
た。
[Problems to be Solved by the Invention]
Among the conventional densitometers, CO based on the principle of selective absorption of absorbing liquid
2The densitometer has the problem that continuous measurement is not possible.
It was In addition, CO that utilizes selective absorption of infrared rays2Densitometer
Has the problem of being affected by the interference of water in the sample.
there were. Furthermore, CO that utilizes the thermal conductivity of gas2concentration
CO and density comparison type CO2Concentration meter, selection of gas components
There is a problem that it is not stable and is affected by the coexisting gas.
It was

【0007】本発明は、このような従来の問題点を解決
するためになされたもので、気体中の炭酸ガス濃度を連
続的に精度よく、しかも高い測定感度で測定する炭酸ガ
ス濃度測定方法を提供することを目的としている。
The present invention has been made in order to solve such a conventional problem, and provides a carbon dioxide concentration measuring method for continuously and accurately measuring the concentration of carbon dioxide in a gas with high measurement sensitivity. It is intended to be provided.

【0008】[0008]

【課題を解決するための手段】本発明の気体中の炭酸ガ
ス濃度測定方法は、ガス分離装置の流路をガス透過膜に
よって隔て、このガス分離装置の一方の流路に炭酸ガス
の混じった気体を流し、他方の流路にアルカリ溶液を流
通させてガス分離装置のガス透過膜を透過した気体中の
炭酸ガスと反応させ、他方の流路の下流に炭酸ガスと反
応したアルカリ溶液の導電率を測定することによって気
体中の炭酸ガス濃度を測定する。
In the method for measuring the concentration of carbon dioxide gas in a gas according to the present invention, the flow path of a gas separation device is separated by a gas permeable membrane, and carbon dioxide gas is mixed in one flow path of this gas separation device. A gas is flown, an alkali solution is circulated in the other channel to react with carbon dioxide in the gas that has permeated the gas permeable membrane of the gas separation device, and the conductivity of the alkali solution reacted with carbon dioxide in the downstream of the other channel. The carbon dioxide concentration in the gas is measured by measuring the rate.

【0009】また、本発明の気体中の炭酸ガス濃度測定
方法は、炭酸ガスの混じった気体を酸性溶液によってサ
ンドイッチにしてガス分離装置の一方の流路に流すこと
によって気体中の炭酸ガス濃度を測定する。
Further, the method for measuring the concentration of carbon dioxide in a gas according to the present invention is to measure the concentration of carbon dioxide in a gas by sandwiching a gas mixed with carbon dioxide with an acidic solution and flowing it into one flow path of a gas separation device. taking measurement.

【0010】[0010]

【作用】上記構成において、ガス分離装置の一方の流路
に炭酸ガスを含んだ気体を流し、気体中に含まれる炭酸
ガスがガス透過膜を透過して他方の流路を流れるアルカ
リ溶液と反応し、アルカリ溶液の導電率を変化させる。
導電率の変化量は、炭酸ガスがアルカリ溶液と反応して
発生する炭酸イオンの量によって決定される。そこで、
アルカリ溶液の導電率の変化を導電率計で測定すること
によって気体中の炭酸ガス濃度を測定することができ
る。
In the above structure, a gas containing carbon dioxide gas is caused to flow through one flow path of the gas separation device, and the carbon dioxide gas contained in the gas reacts with the alkali solution flowing through the gas permeable membrane and the other flow path. Then, the conductivity of the alkaline solution is changed.
The amount of change in conductivity is determined by the amount of carbonate ions generated when carbon dioxide gas reacts with the alkaline solution. Therefore,
The carbon dioxide concentration in the gas can be measured by measuring the change in conductivity of the alkaline solution with a conductivity meter.

【0011】また、ガス分離装置の一方の流路に酸性溶
液によってサンドイッチされた気体を流すことによっ
て、ガス分離装置のガス透過膜を透過する炭酸ガスの透
過率がよくなり、測定精度が向上する。
Further, by flowing the gas sandwiched by the acidic solution through one flow path of the gas separation device, the permeability of carbon dioxide gas that permeates the gas permeable membrane of the gas separation device is improved, and the measurement accuracy is improved. ..

【0012】[0012]

【実施例】以下に本発明の一実施例について、図面を参
照しながら説明する。図1は本発明の第1実施例におけ
る気体中の炭酸ガス濃度を連続的に測定する場合の概略
図である。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS An embodiment of the present invention will be described below with reference to the drawings. FIG. 1 is a schematic view of the case where the carbon dioxide concentration in the gas is continuously measured in the first embodiment of the present invention.

【0013】図1において1は、ガス分離装置であっ
て、ガス透過膜チューブ1Aによって隔てられた一対の流
路のうち一方の流路1Bの上流側から、エアポンプ2Aと、
第1送液ポンプ2Bによって気体3(例えば、空気)と酸
性溶液4がサンドイッチ状態で送り込まれ、他方の流路
1Cの上流側から第2送液ポンプ2Cによってアルカリ溶液
5が送り込まれる。一方の流路1Bの気体3と酸性溶液4
は下流側から排出され、他方の流路1Cのアルカリ溶液5
は導電率計6に流入して導電率が計測された後、排液と
して排出される。
In FIG. 1, reference numeral 1 denotes a gas separator, which is an air pump 2A from an upstream side of one flow path 1B of a pair of flow paths separated by a gas permeable membrane tube 1A.
The gas 3 (for example, air) and the acid solution 4 are sent in a sandwich state by the first liquid feed pump 2B, and the other flow path
The alkaline solution 5 is fed from the upstream side of 1C by the second liquid feeding pump 2C. Gas 3 and acidic solution 4 in one channel 1B
Is discharged from the downstream side, and the alkaline solution 5 in the other channel 1C
Flows into the conductivity meter 6, the conductivity is measured, and then discharged as drainage.

【0014】ガス分離装置1は、長尺状の筒であって、
中央長手方向に炭酸ガスを透過するテフロン製のガス透
過膜チューブ1Aが配設され、一方の流路1B側から他方の
流路1C側に炭酸ガスが透過するようになっている。テフ
ロンは、気液分離を行なう上で効率のよい材質である
が、ガス透過膜チューブ1Aの材料は、テフロンに限定さ
れずポリエチレン、ポリスチレンなどであってもよい。
The gas separation device 1 is a long cylinder,
A gas permeable membrane tube 1A made of Teflon that permeates carbon dioxide in the central longitudinal direction is arranged so that carbon dioxide permeates from one flow passage 1B side to the other flow passage 1C side. Teflon is a material that is efficient in performing gas-liquid separation, but the material of the gas permeable membrane tube 1A is not limited to Teflon and may be polyethylene, polystyrene, or the like.

【0015】つぎに、気体3中の炭酸ガス濃度の測定方
法を説明する。エアポンプ2Aを駆動して気体3を送ると
共に、第1送液ポンプ2Bを駆動して酸性溶液4を通水
し、両者を混合してガス分離装置1の一方の流路1Bに送
り込む。酸性溶液4は、硫酸(H2SO4 )、過塩素酸
(HCIO4 )、硝酸(HNO3 )、塩酸(HCI)等
を使用する。
Next, a method for measuring the carbon dioxide concentration in the gas 3 will be described. The air pump 2A is driven to send the gas 3 and the first liquid sending pump 2B is driven to pass the acidic solution 4, and the both are mixed and sent to one flow passage 1B of the gas separation device 1. As the acidic solution 4, sulfuric acid (H 2 SO 4 ), perchloric acid (HCIO 4 ), nitric acid (HNO 3 ), hydrochloric acid (HCI) and the like are used.

【0016】一方の流路1Bに送り込まれた気体は、図2
に示すように気体が酸性溶液によってサンドイッチされ
た状態で一方の流路1Bの上流側から下流側に流れてい
く。一方の流路1Bを流れる気体3中には炭酸ガス(CO
2 )が含まれているが、この炭酸ガスは、ガス分離装置
1の一方の流路1Bの上流側から下流側に流れていくうち
に、炭酸ガスだけガス透過膜チューブ1Aを透過して他方
の流路1C内に流れこむ。
The gas sent into one of the flow paths 1B is as shown in FIG.
As shown in, the gas is sandwiched by the acidic solution and flows from the upstream side to the downstream side of the one channel 1B. In the gas 3 flowing through one of the flow paths 1B, carbon dioxide gas (CO
2 ) is included, this carbon dioxide gas permeates only the carbon dioxide gas through the gas permeable membrane tube 1A while flowing from the upstream side to the downstream side of one flow path 1B of the gas separation device 1 and the other side. Flows into the flow channel 1C of.

【0017】他方の流路1Cは、第2送液ポンプ2Cが駆動
してアルカリ溶液5が流れている。このアルカリ溶液5
は、水酸化ナトリュウム(NaOH)、炭酸ナトリウム
(Na2 CO3 )、酢酸ナトリュウム(CH3 CO2
a)等をもちい、このアルカリ溶液5の濃度を色々変え
ることによって、気体3中の広い範囲の炭酸濃度を測定
することを可能としている。
In the other flow path 1C, the second liquid feed pump 2C is driven to flow the alkaline solution 5. This alkaline solution 5
Is sodium hydroxide (NaOH), sodium carbonate (Na 2 CO 3 ), sodium acetate (CH 3 CO 2 N
By using a) or the like and varying the concentration of the alkaline solution 5, it is possible to measure a wide range of carbonic acid concentration in the gas 3.

【0018】前記のようにガス透過膜チューブ1Aを透過
した炭酸ガスは、他方の流路1C内の前記アルカリ溶液5
と反応して炭酸塩を生成する。例えば、炭酸ガスが水酸
化ナトリウムと反応する場合は以下のような反応式にな
る。
The carbon dioxide gas that has permeated the gas permeable membrane tube 1A as described above is treated with the alkaline solution 5 in the other channel 1C.
Reacts with to form carbonate. For example, when carbon dioxide gas reacts with sodium hydroxide, the reaction formula is as follows.

【0019】 2NaOH+CO2 →Na2 CO3 +H2O 水酸化ナトリウム溶液に炭酸ガスが反応することによっ
て溶液の導電率が変化する。導電率の変化量は炭酸ガス
の量に対応して水酸化ナトリウム(NaOH)が減少
し、炭酸ナトリュウム(Na2 CO3 )が生成する量に
よって変化する。よって、他方の流路1Cの下流に設置さ
れた導電率計6によってアルカリ溶液5の導電率の変化
量(2〔OH- 〕−〔CO3 2-〕)を導電率計6で測定
することによって気体3中の炭酸濃度を測定することが
できる。
2NaOH + CO 2 → Na 2 CO 3 + H 2 O The carbon dioxide gas reacts with the sodium hydroxide solution to change the conductivity of the solution. The amount of change in conductivity changes depending on the amount of sodium hydroxide (NaOH) reduced and sodium carbonate (Na 2 CO 3 ) generated corresponding to the amount of carbon dioxide gas. Therefore, the conductivity meter 6 installed downstream of the other flow path 1C should measure the amount of change in conductivity of the alkaline solution 5 (2 [OH ] − [CO 3 2− ]) with the conductivity meter 6. The carbon dioxide concentration in the gas 3 can be measured by.

【0020】図3は、本発明の第2実施例における気体
中の炭酸ガス濃度を連続的に測定する場合の概略図であ
る。この第2実施例が第1実施例と相違する点は、酸性
溶液4を送液する機構が設けられておらず、気体3がそ
のまま一方の流路1Bの上流側から下流側に流れるように
構成されていることである。気体3中に含まれる炭酸ガ
スは、透過膜チューブ1Aを透過して、他方の流路1C内の
アルカリ溶液5と反応して炭酸塩を生成し、この炭酸塩
の炭酸イオンを計測することによって気体中の炭酸ガス
濃度を測定するのは前記第1実施例と同様である。
FIG. 3 is a schematic diagram for continuously measuring the carbon dioxide concentration in the gas in the second embodiment of the present invention. The second embodiment is different from the first embodiment in that a mechanism for feeding the acidic solution 4 is not provided, and the gas 3 flows as it is from the upstream side to the downstream side of the one flow path 1B. It is configured. Carbon dioxide contained in the gas 3 permeates the permeable membrane tube 1A, reacts with the alkaline solution 5 in the other channel 1C to generate a carbonate, and the carbonate ion of this carbonate is measured. The measurement of the carbon dioxide concentration in the gas is the same as in the first embodiment.

【0021】上記実施例では一方の流路1Bの上流側か
ら、気体3と酸性溶液4が送り込まれ、他方の流路1Cの
上流側からアルカリ溶液5が送り込まれているが、気体
3と酸性溶液4の混合液とアルカリ溶液5を流す流路を
逆にてもよい。
In the above embodiment, the gas 3 and the acidic solution 4 are sent from the upstream side of the one flow path 1B, and the alkaline solution 5 is sent from the upstream side of the other flow path 1C. The flow paths for flowing the mixed solution of the solution 4 and the alkaline solution 5 may be reversed.

【0022】また、上記実施例のいずれも、ガス分離装
置1を流れる気液の流れる方向は、上流側から下流側に
同一方向に流れるように構成しているが、気液の流れを
相対向するように、例えば、一方の流路1Bは上流から下
流側に、他方の流路1Cは下流側から上流側に流れるよう
にしてもよい。このように、気液の流れる方向を逆方向
にすることによって、ガス透過膜を透過した炭酸ガスが
アルカリ溶液5と良好に反応して測定精度が向上する。
In each of the above embodiments, the gas-liquid flowing through the gas separation device 1 is configured to flow in the same direction from the upstream side to the downstream side, but the gas-liquid flows are opposed to each other. Thus, for example, one flow channel 1B may flow from upstream to the downstream side, and the other flow channel 1C may flow from the downstream side to the upstream side. In this way, by making the gas-liquid flow direction reverse, the carbon dioxide gas that has permeated the gas permeable membrane reacts well with the alkaline solution 5 to improve the measurement accuracy.

【0023】[0023]

【発明の効果】以上のように本発明によれば、気体中の
炭酸ガスをアルカリ溶液と反応させて測定するため、炭
酸ガスの測定精度及び測定感度が向上する。さらに、一
方の流路を流れるアルカリ溶液の濃度を変えることによ
り気体中の広い範囲の炭酸ガス濃度の測定が可能とな
る。
As described above, according to the present invention, carbon dioxide gas in a gas is reacted with an alkaline solution for measurement, so that the measurement accuracy and measurement sensitivity of carbon dioxide gas are improved. Furthermore, by changing the concentration of the alkaline solution flowing through one of the flow paths, it is possible to measure the carbon dioxide concentration in a wide range in the gas.

【0024】また、炭酸ガスの混じった気体を酸性溶液
によってサンドイッチにしてガス分離装置の一方の流路
に流すことにより、ガス透過膜を透過する炭酸ガスの透
過率がよくなり、測定精度が向上する。
Further, the gas mixed with carbon dioxide gas is sandwiched with the acidic solution and allowed to flow through one flow path of the gas separation device, so that the permeability of carbon dioxide gas passing through the gas permeable membrane is improved and the measurement accuracy is improved. To do.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の第1実施例における気体中の炭酸ガス
濃度測定方法の概略図である。
FIG. 1 is a schematic diagram of a method for measuring a carbon dioxide concentration in a gas according to a first embodiment of the present invention.

【図2】第1実施例のガス分離装置の流路の部分拡大図
である。
FIG. 2 is a partially enlarged view of a flow path of the gas separation device according to the first embodiment.

【図3】本発明の第2実施例における気体中の炭酸ガス
濃度測定方法の概略図である。
FIG. 3 is a schematic diagram of a method for measuring a carbon dioxide concentration in a gas according to a second embodiment of the present invention.

【図4】従来例の赤外線の選択的吸収を利用するCO2
濃度計の概略図である。
FIG. 4 CO 2 utilizing selective absorption of infrared rays in a conventional example
It is the schematic of a densitometer.

【図5】従来例のガスの熱伝導率を利用するCO2 濃度
計の概略図である。
FIG. 5 is a schematic diagram of a CO 2 concentration meter that utilizes the thermal conductivity of gas in a conventional example.

【図6】従来例の密度比較式のCO2 濃度計の概略図で
ある。
FIG. 6 is a schematic diagram of a density comparison type CO 2 concentration meter of a conventional example.

【符号の説明】[Explanation of symbols]

1 ガス分離装置 1A ガス透過膜チューブ 1B 一方の流路 1C 他方の流路 3 気体 4 酸性溶液 5 アルカリ溶液 6 導電率計 1 Gas Separator 1A Gas Permeable Membrane Tube 1B One Channel 1C The Other Channel 3 Gas 4 Acidic Solution 5 Alkaline Solution 6 Conductivity Meter

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】 ガス分離装置の流路をガス透過膜によっ
て隔て、このガス分離装置の一方の流路に炭酸ガスの混
じった気体を流し、他方の流路にアルカリ溶液を流通さ
せてガス分離装置のガス透過膜を透過した気体中の炭酸
ガスと反応させ、他方の流路の下流に炭酸ガスと反応し
たアルカリ溶液の導電率を測定することによって気体中
の炭酸ガス濃度を測定することを特徴とする気体中の炭
酸ガス濃度測定方法。
1. A gas separation device, wherein a flow path of a gas separation device is separated by a gas permeable membrane, a gas mixed with carbon dioxide gas is caused to flow through one flow path of the gas separation device, and an alkaline solution is caused to flow through the other flow path. It is possible to measure the carbon dioxide concentration in the gas by reacting with the carbon dioxide in the gas that has permeated the gas permeable membrane of the device and measuring the conductivity of the alkaline solution that has reacted with the carbon dioxide downstream of the other channel. Characteristic method for measuring carbon dioxide concentration in gas.
【請求項2】 炭酸ガスの混じった気体を酸性溶液によ
ってサンドイッチにしてガス分離装置の一方の流路に流
す請求項1記載の気体中の炭酸ガス濃度測定方法。
2. The method for measuring a carbon dioxide concentration in a gas according to claim 1, wherein the gas mixed with carbon dioxide is sandwiched with an acidic solution and allowed to flow through one flow path of the gas separation device.
JP24387191A 1991-09-25 1991-09-25 Method for measuring concentration of carbon dioxide gas within gas Pending JPH0580010A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP24387191A JPH0580010A (en) 1991-09-25 1991-09-25 Method for measuring concentration of carbon dioxide gas within gas

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP24387191A JPH0580010A (en) 1991-09-25 1991-09-25 Method for measuring concentration of carbon dioxide gas within gas

Publications (1)

Publication Number Publication Date
JPH0580010A true JPH0580010A (en) 1993-03-30

Family

ID=17110221

Family Applications (1)

Application Number Title Priority Date Filing Date
JP24387191A Pending JPH0580010A (en) 1991-09-25 1991-09-25 Method for measuring concentration of carbon dioxide gas within gas

Country Status (1)

Country Link
JP (1) JPH0580010A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7091800B2 (en) 2001-06-21 2006-08-15 Murata Manufacturing Co., Ltd. Noise filter
US7361845B2 (en) 2002-01-31 2008-04-22 Nec Electronics Corporation Wiring line for high frequency
CN113631093A (en) * 2019-02-21 2021-11-09 森索库瑞股份有限公司 Sensor with a sensor element
WO2023053513A1 (en) * 2021-09-30 2023-04-06 株式会社島津製作所 Gas-liquid separator, total organic carbon meter, and analysis system

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5234912A (en) * 1975-08-13 1977-03-17 Fidia Spa Extraction of ganglioside and application of same to new medicines

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5234912A (en) * 1975-08-13 1977-03-17 Fidia Spa Extraction of ganglioside and application of same to new medicines

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7091800B2 (en) 2001-06-21 2006-08-15 Murata Manufacturing Co., Ltd. Noise filter
US7361845B2 (en) 2002-01-31 2008-04-22 Nec Electronics Corporation Wiring line for high frequency
CN113631093A (en) * 2019-02-21 2021-11-09 森索库瑞股份有限公司 Sensor with a sensor element
WO2023053513A1 (en) * 2021-09-30 2023-04-06 株式会社島津製作所 Gas-liquid separator, total organic carbon meter, and analysis system

Similar Documents

Publication Publication Date Title
Qi et al. Microporous hollow fibers for gas absorption: I. Mass transfer in the liquid
Reiszner et al. Collection and determination of sulfur dioxide incorporating permeation and West-Gaeke procedure
Saltzman Preparation and Analysis of Calibrated Low Concentrations of Sixteen Toxic Gases. Ammonia, arsine, bromine, carbon dioxide, carbon monoxide, chlorine, chlorine dioxide, ethylene oxide, hydrogen chloride, hydrogen cyanide, hydrogen fluoride, monoethanolamine, nitric oxide, nitrogen dioxide, phosgene, and stibine
US3674435A (en) Low concentration constituent of gaseous mixture selective converter and detector
US8709820B2 (en) Concentration measuring apparatus for hydrogen sulfide in gas flow, and method for determining sulfide ion
Thomas et al. Automatic Apparatus for Determination of Small Concentrations of Sulfur Dioxide in Air. New Countercurrent Absorber for Rapid Recording of Low and High Concentrations
JPH0580010A (en) Method for measuring concentration of carbon dioxide gas within gas
US3420636A (en) Carbon monoxide analyzer
US3865708A (en) Apparatus for measuring ionic concentration
Toda Trends in atmospheric trace gas measurement instruments with membrane-based gas diffusion scrubbers
US3895915A (en) Gas analyzing
JPH0580009A (en) Carbonic acid concentration measuring method
CN208852714U (en) A kind of low concentration calibrating gas continues generating device
Symanski et al. Conductometric sensor for parts per billion sulfur dioxide determination
US3752652A (en) Method and apparatus for measurement of minute quantities of oxygen
Cape et al. The reaction of nitrogen dioxide at low concentrations with natural waters
US2879140A (en) Fluid blending
Ferber et al. Dosimeter for oxides of nitrogen
US4483824A (en) Method and apparatus for long-term monitoring of pollutants and moisture in a fluid stream
JPH0518918A (en) Water quality meter
CN114354843A (en) Method for conveniently measuring gas-liquid total mass transfer coefficient of microreactor based on chemical system
RU199840U1 (en) Diffusion hydrogen detector
Elsworth Chapter IX The Measurement of Oxygen Absorption and Carbon Dioxide Evolution in Stirred Deep Cultures
Khan et al. Recent advances in SO2, NOx, and O3 personal monitoring
Liu et al. Gas-permeation continuous flow coulometric analysis: determination of sulphur dioxide