JP2011053017A - Method of managing concentration of additive - Google Patents

Method of managing concentration of additive Download PDF

Info

Publication number
JP2011053017A
JP2011053017A JP2009200426A JP2009200426A JP2011053017A JP 2011053017 A JP2011053017 A JP 2011053017A JP 2009200426 A JP2009200426 A JP 2009200426A JP 2009200426 A JP2009200426 A JP 2009200426A JP 2011053017 A JP2011053017 A JP 2011053017A
Authority
JP
Japan
Prior art keywords
intersection
amount
thiourea
concentration
additive
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP2009200426A
Other languages
Japanese (ja)
Inventor
Yohei Yamaguchi
洋平 山口
Hidekazu Aoki
英和 青木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Metal Mining Co Ltd
Original Assignee
Sumitomo Metal Mining Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Metal Mining Co Ltd filed Critical Sumitomo Metal Mining Co Ltd
Priority to JP2009200426A priority Critical patent/JP2011053017A/en
Publication of JP2011053017A publication Critical patent/JP2011053017A/en
Withdrawn legal-status Critical Current

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To provide a method of managing concentration of an additive which can quantitatively evaluate the amount of the additive within an electrolyte in electrolytic refining of copper and easily managing the amount of the additive at an operation field. <P>SOLUTION: The concentration of glue is evaluated by the shape of a polarization curve within a range (A part) of 30-140 mV (vs. SSE), while the concentration of thiourea is evaluated by the shape of a polarization curve within a range (B part) of 180-290 mV (vs. SSE). Concretely speaking, potential is used as an evaluation value indicating transition in the direction of an arrow at a curved part in the A part and current is used as an evaluation value indicating transition in the direction of an arrow at a curved part in the B part. <P>COPYRIGHT: (C)2011,JPO&INPIT

Description

本発明は、銅電解精製の電解液に含まれる添加剤の濃度管理方法に関する。   The present invention relates to a method for controlling the concentration of an additive contained in an electrolytic solution for copper electrolytic purification.

従来、電解精製の電解液組成を管理する方法として、主要成分である銅、ニッケルなどの金属成分濃度、硫酸、塩酸などの酸濃度について化学分析する方法が実施されている。   Conventionally, as a method of managing the electrolytic solution composition of electrolytic purification, a method of chemically analyzing the concentration of metal components such as copper and nickel as main components and the concentration of acids such as sulfuric acid and hydrochloric acid has been carried out.

また、チオ尿素、ニカワなどの添加剤濃度についても化学分析することが可能であるが、一般に化学分析は時間が掛かってしまう。また、添加剤の分解生成物が電着状態に影響を与えることがあり、化学分析による添加剤濃度の測定が、必ずしも有効ではないことがある。   In addition, chemical analysis can be performed on the concentration of additives such as thiourea and glue, but in general, chemical analysis takes time. In addition, decomposition products of the additive may affect the electrodeposition state, and measurement of the additive concentration by chemical analysis may not always be effective.

よって、従来、電解液に含まれる添加剤の濃度評価には、ハルセル試験や分極測定が用いられる。ハルセル試験は、カソードとアノードを斜めに対面させて通電し、カソード上の電流分布に偏りを生じさせ、電着状態を観察するものであり、チオ尿素濃度やニカワ濃度の評価が可能である(例えば、特許文献1参照。)。また、分極測定については、分極曲線の形状を他の分極曲線と比較することにより、電解液の評価が可能である。   Therefore, conventionally, the hull cell test or the polarization measurement is used for evaluating the concentration of the additive contained in the electrolytic solution. In the Hull cell test, current is applied with the cathode and anode facing diagonally, the current distribution on the cathode is biased, and the electrodeposition state is observed, and thiourea concentration and glue concentration can be evaluated ( For example, see Patent Document 1.) As for the polarization measurement, the electrolyte solution can be evaluated by comparing the shape of the polarization curve with other polarization curves.

しかし、ハルセル試験は、通電後のカソードの乾燥などに時間や手間が掛かってしまい、添加剤濃度を操業現場で簡便に評価することはできない。また、分極測定は、添加剤量について定性的な評価に留まっており、どの添加剤をどの程度電解液に補充するべきかという定量的な評価を得ることは困難である。   However, in the Hull cell test, it takes time and labor to dry the cathode after energization, and the additive concentration cannot be easily evaluated at the operation site. In addition, polarization measurement is limited to qualitative evaluation of the amount of additive, and it is difficult to obtain a quantitative evaluation as to which additive should be replenished to the electrolyte solution.

特開平6−264278号公報JP-A-6-264278

本発明は、上記実情に鑑みて提案されたものであり、銅の電解精製において電解液中の添加剤量を定量的に評価し得るとともに添加剤量を操業現場で簡便に管理し得る添加剤の濃度管理方法を提供する。   The present invention has been proposed in view of the above circumstances, and an additive capable of quantitatively evaluating the amount of additive in an electrolytic solution in electrolytic purification of copper and easily managing the amount of additive at an operation site Provides a concentration management method.

本発明者らは、鋭意研究を重ねた結果、分極曲線の所定の電位範囲の形状を線形近似により数値化することにより、電解液に含まれる添加剤量を定量的に評価可能であることを見出した。   As a result of intensive studies, the present inventors have shown that the amount of additive contained in the electrolyte can be quantitatively evaluated by quantifying the shape of the predetermined potential range of the polarization curve by linear approximation. I found it.

すなわち、本発明に係る添加剤の濃度管理方法は、銅電解精製の電解液に含まれる添加剤の濃度管理方法において、電解液中に、作用電極、対向電極、及び参照電極を浸漬し、作用電極と対向電極の間に電圧を掃引印加し、分極曲線を測定する分極測定工程と、分極曲線において、ニカワ量の増加に伴い下方に湾曲する第1の湾曲部、チオ尿素の増加に伴い下方に湾曲する第2の湾曲部、及び第1の湾曲部と第2の湾曲部の間に位置する上方に湾曲する第3の湾曲部をそれぞれ2本の直線により線形近似し、2本の直線の交点をそれぞれ電位が貴な方から第1の交点、第2の交点、及び第3の交点とする解析工程と、第1の交点の電位に基づいてニカワ量の適否を判別するニカワ量判別工程と、第2の交点の電流値と第3の交点の電流値の差分に基づいてチオ尿素量の適否を判別するチオ尿素量判別工程とを有することを特徴とする。   That is, the additive concentration control method according to the present invention is a method of immersing the working electrode, the counter electrode, and the reference electrode in the electrolyte solution in the additive concentration control method contained in the electrolytic solution of copper electrolytic purification, A polarization measurement step of sweeping and applying a voltage between the electrode and the counter electrode to measure a polarization curve; a first curve portion that curves downward with an increase in the amount of glue in the polarization curve; and downward with an increase in thiourea The second bending portion that is bent in a straight line and the third bending portion that is bent upward between the first bending portion and the second bending portion are linearly approximated by two straight lines, respectively. Analyzing the crossing points of the first crossing point, the second crossing point, and the third crossing point from the one having the highest potential, and determining the amount of glue based on the potential of the first crossing point Difference between the current value at the second intersection and the current value at the third intersection And having a thiourea amount determination step of determining the appropriateness of thiourea amount based on.

本発明によれば、分極曲線の所定の電位範囲の形状に基づいてチオ尿素量及びニカワ量を定量的に評価することができるため、チオ尿素量及びニカワ量を操業現場で簡便に管理することができる。   According to the present invention, since the amount of thiourea and the amount of glue can be quantitatively evaluated based on the shape of the predetermined potential range of the polarization curve, the amount of thiourea and the amount of glue can be easily managed at the operation site. Can do.

銅の電解精製装置の構成例を示すブロック図である。It is a block diagram which shows the structural example of the electrolytic purification apparatus of copper. 濃度管理装置の構成例を示すブロック図である。It is a block diagram which shows the structural example of a density | concentration management apparatus. 添加剤の濃度変化に伴う分極曲線の変化を説明するための図である。It is a figure for demonstrating the change of the polarization curve accompanying the density | concentration change of an additive. 分極曲線の形状を表す評価値の決定方法を説明するための図である。It is a figure for demonstrating the determination method of the evaluation value showing the shape of a polarization curve. 作用電極及び対向電極を示す模式図である。It is a schematic diagram which shows a working electrode and a counter electrode. 測定用セルを示す模式図である。It is a schematic diagram which shows the cell for a measurement. ハルセル試験片の電着表面を示す模式図である。It is a schematic diagram which shows the electrodeposition surface of a hull cell test piece. ニカワ濃度について、ハルセル試験の評価結果と本手法の評価結果の関係を示すグラフである。It is a graph which shows the relationship between the evaluation result of a hull cell test, and the evaluation result of this method about a glue concentration. チオ尿素濃度について、ハルセル試験の評価結果と本手法の評価結果の関係を示すグラフである。It is a graph which shows the relationship between the evaluation result of a hull cell test, and the evaluation result of this method about thiourea density | concentration. 電気銅の不良率と、その電気銅の製造に用いられた電解液のニカワ量の評価結果の関係を示すグラフである。It is a graph which shows the relationship between the defective rate of electrolytic copper, and the evaluation result of the amount of glue of the electrolyte solution used for manufacture of the electrolytic copper. 電気銅の不良率と、その電気銅の製造に用いられた電解液のチオ尿素量の評価結果の関係を示すグラフである。It is a graph which shows the relationship between the defective rate of electrolytic copper, and the evaluation result of the amount of thiourea of the electrolyte solution used for manufacture of the electrolytic copper.

以下、本発明を適用した具体的な実施の形態について、図面を参照しながら下記順序で詳細に説明する。
1.銅の電解精製装置 (図1)
2.濃度管理装置 (図2)
3.分極曲線に基づく添加剤量の評価方法 (図3、図4)
4.実施例1 (図5〜図9)
5.実施例2 (図10、図11)
6.まとめ
Hereinafter, specific embodiments to which the present invention is applied will be described in detail in the following order with reference to the drawings.
1. Copper electrolytic purification equipment (Figure 1)
2. Concentration management device (Fig. 2)
3. Method for evaluating additive amount based on polarization curve (Figs. 3 and 4)
4). Example 1 (FIGS. 5 to 9)
5. Example 2 (FIGS. 10 and 11)
6). Summary

1.銅の電解精製装置
図1は、銅の電解精製装置10の構成例を示すブロック図である。電解精製装置10は、電解液を入れるための電解槽11と、電解槽11から排液された電解液に含まれる添加剤の濃度を管理する濃度管理装置20と、濃度管理装置20の添加指示に応じて添加剤を供給する添加剤供給部30とを備える。また、電解精製装置10は、電解槽11の排液を貯蔵する第1の貯蔵槽14と、塩酸、硫酸、スチームが供給される第2の貯蔵槽15と、電解液を循環させるポンプ16と、電解槽11に電解液を供給する供給槽17とを備える。
1. Copper Electrolytic Purification Device FIG. 1 is a block diagram showing a configuration example of a copper electrolytic purification device 10. The electrolytic purification apparatus 10 includes an electrolytic bath 11 for containing an electrolytic solution, a concentration management device 20 that manages the concentration of an additive contained in the electrolytic solution drained from the electrolytic bath 11, and an addition instruction from the concentration management device 20. And an additive supply unit 30 for supplying the additive according to the above. The electrolytic purification apparatus 10 includes a first storage tank 14 that stores the drainage of the electrolytic tank 11, a second storage tank 15 that is supplied with hydrochloric acid, sulfuric acid, and steam, and a pump 16 that circulates the electrolyte. And a supply tank 17 for supplying an electrolytic solution to the electrolytic tank 11.

電解槽11からの一部の排液は、濃度管理装置20にて定期的にサンプリングされ、残りの排液は、第1の貯蔵槽14に排出される。第1の貯蔵槽14の排液は、第2の貯蔵槽15に排出され、塩酸や硫酸と混合され、スチームにより液温が所定温度となる。第2の貯蔵槽15の電解液は、ポンプ16により供給槽17に供給され、供給槽17を介して電解槽11に供給される。   A part of the drainage from the electrolytic cell 11 is periodically sampled by the concentration management device 20, and the remaining drainage is discharged to the first storage tank 14. The drainage liquid in the first storage tank 14 is discharged to the second storage tank 15, mixed with hydrochloric acid or sulfuric acid, and the liquid temperature is set to a predetermined temperature by steam. The electrolytic solution in the second storage tank 15 is supplied to the supply tank 17 by the pump 16 and is supplied to the electrolytic tank 11 through the supply tank 17.

電解槽11の電解液中には、カソード12とアノード13が交互に浸漬される。カソード12には、例えば、ステンレスなどの母板上に0.5〜1mm程度の厚さになるように銅を電着し、これを剥ぎ取ったものが使用され、アノード13には、精製粗銅が使用される。電解液は、銅、塩酸、硫酸等を含んでおり、さらに均一電着性の向上や結晶の微細化のための添加剤として、ニカワとチオ尿素を含む。   The cathode 12 and the anode 13 are alternately immersed in the electrolytic solution of the electrolytic cell 11. For the cathode 12, for example, copper is electrodeposited on a base plate such as stainless steel so as to have a thickness of about 0.5 to 1 mm and peeled off. For the anode 13, purified crude copper is used. Is used. The electrolytic solution contains copper, hydrochloric acid, sulfuric acid and the like, and further contains glue and thiourea as additives for improving the throwing power and making the crystals finer.

濃度管理装置20は、後述するように電解槽11から排液された電解液を分極測定し、所定の電位範囲の分極曲線の形状に基づいてニカワ量及びチオ尿素量の適否を判別する。また、濃度管理装置20は、判別結果に応じてニカワ及びチオ尿素の添加の可否を決定し、添加剤供給部30に添加指示を行う。   The concentration management device 20 measures the polarization of the electrolyte drained from the electrolytic cell 11 as described later, and determines whether the amount of glue and the amount of thiourea are appropriate based on the shape of the polarization curve in a predetermined potential range. Further, the concentration management device 20 determines whether or not glue and thiourea can be added according to the determination result, and instructs the additive supply unit 30 to add.

添加剤供給部30は、ニカワの貯蔵槽とチオ尿素の貯蔵槽とを有し、濃度管理装置20の添加指示に応じてニカワ又はチオ尿素を電解槽11中の電解液に所定量添加する。   The additive supply unit 30 includes a glue storage tank and a thiourea storage tank, and adds a predetermined amount of glue or thiourea to the electrolytic solution in the electrolytic tank 11 in accordance with an addition instruction from the concentration management device 20.

このように電解液を循環させ、濃度管理装置20が、電解槽11の排液の分極曲線の形状に基づいて添加剤量を評価し、添加剤の不足分を補充することにより、電解槽11中の電解液の添加剤量が一定範囲に保たれる。   In this way, the electrolytic solution is circulated, and the concentration management device 20 evaluates the amount of the additive based on the shape of the polarization curve of the drainage of the electrolytic cell 11 and replenishes the shortage of the additive. The amount of the additive in the electrolyte is kept within a certain range.

2.添加剤の濃度管理方法
次に、上述した濃度管理装置20における添加剤の濃度管理方法について説明する。
2. Additive Concentration Management Method Next, an additive concentration management method in the above-described concentration management apparatus 20 will be described.

図2は、濃度管理装置20の構成例を示すブロック図である。濃度管理装置20は、浴槽21と、浴槽21に注入された電解液22中に浸漬する作用電極23と、対向電極24と、参照電極25とを備える。   FIG. 2 is a block diagram illustrating a configuration example of the density management device 20. The concentration management device 20 includes a bathtub 21, a working electrode 23 immersed in the electrolytic solution 22 injected into the bathtub 21, a counter electrode 24, and a reference electrode 25.

浴槽21には、酸やアルカリに耐食性を有するものが用いられ、例えば、ビーカなどの耐薬品性ガラス、ポリカーボネートなどのエンジニアリングプラスチック、ステンレス、チタンなどの金属などが用いられる。作用電極23及び対向電極24には、銅、ステンレス、白金などの金属が用いられ、実操業の銅電解液を測定する場合には、銅が最適である。参照電極25には、銀−塩化銀電極(SSE:Silver/Silver Chloride Electrode)、飽和カンコウ電極(SCE:Saturated Calomel Electrode)などの汎用のものを用いることができる。   The bath 21 is made of a material having corrosion resistance to acids and alkalis. For example, chemical resistant glass such as a beaker, engineering plastic such as polycarbonate, metal such as stainless steel and titanium, and the like are used. Metals such as copper, stainless steel, and platinum are used for the working electrode 23 and the counter electrode 24, and copper is optimal when measuring a copper electrolyte in actual operation. The reference electrode 25 may be a general-purpose one such as a silver-silver chloride electrode (SSE: Silver / Silver Chloride Electrode) or a saturated calomel electrode (SCE).

また、濃度管理装置20は、作用電極23と対向電極24との間に電圧を掃引印加するための電源部41と、参照電極25に対する作用電極23の電位及び作用電極23と対向電極24の間に生じる電流を測定する測定部42と、電源部41及び測定部42を制御する制御部43と、参照電極25に対する作用電極23の電位及び作用電極23と対向電極24の間に生じる電流から分極曲線を描く演算部44と、演算結果等を記憶する記憶部45とを備える。   In addition, the concentration management device 20 includes a power source 41 for sweeping and applying a voltage between the working electrode 23 and the counter electrode 24, the potential of the working electrode 23 with respect to the reference electrode 25, and between the working electrode 23 and the counter electrode 24. Polarization is based on the measurement unit 42 that measures the current generated in the power source, the control unit 43 that controls the power supply unit 41 and the measurement unit 42, the potential of the working electrode 23 with respect to the reference electrode 25, and the current generated between the working electrode 23 and the counter electrode 24 A calculation unit 44 that draws a curve and a storage unit 45 that stores calculation results and the like are provided.

電源部41は、作用電極23と対向電極24との間に電圧を掃引印加するものであり、制御部43によって制御される。測定部42は、参照電極25に対する作用電極23の電位差、及び作用電極23と対向電極24との間に生じる電流を測定する。この測定結果は、演算部44に送られ、後述するように分極曲線が解析される。分極曲線は、チャート紙に描画されるか、あるいはデータ化され記憶部45に格納される。   The power supply unit 41 sweeps and applies a voltage between the working electrode 23 and the counter electrode 24, and is controlled by the control unit 43. The measuring unit 42 measures the potential difference of the working electrode 23 with respect to the reference electrode 25 and the current generated between the working electrode 23 and the counter electrode 24. The measurement result is sent to the calculation unit 44, and the polarization curve is analyzed as will be described later. The polarization curve is drawn on chart paper or converted into data and stored in the storage unit 45.

また、制御部43には、電圧を掃引印加し、得られた分極曲線を記憶部45に記憶させるプログラム、記憶部45に記憶された分極曲線に基づき添加剤量を評価するのを演算部44で計算させるプログラム、添加剤量の評価結果を添加剤供給部30に通知するプログラム等が収められている。   The control unit 43 sweeps and applies a voltage, and stores the obtained polarization curve in the storage unit 45, and evaluates the additive amount based on the polarization curve stored in the storage unit 45. And the program for notifying the additive supply unit 30 of the evaluation result of the additive amount.

3.分極曲線に基づく添加剤量の評価方法
続いて、上述した濃度管理装置20により測定された分極曲線に基づいて添加剤量を評価する方法について説明する。
3. Method for Evaluating Additive Amount Based on Polarization Curve Next, a method for evaluating the amount of additive based on the polarization curve measured by the concentration management apparatus 20 described above will be described.

図3は、添加剤濃度の変化に伴う分極曲線の変化の様子を示すグラフである。分極曲線は、電位・電流曲線の形の変化として得られ、図中点線の分極曲線は、ニカワ及びチオ尿素の濃度が低く、図中実線の分極曲線は、ニカワ及びチオ尿素の濃度が高い。   FIG. 3 is a graph showing how the polarization curve changes as the additive concentration changes. The polarization curve is obtained as a change in the shape of the potential / current curve. The dotted polarization curve in the figure has a low concentration of glue and thiourea, and the solid curve in the figure has a high concentration of glue and thiourea.

図3に示すように、ニカワの濃度が増加すると、30〜140mV(vs.SSE)の範囲のA部において、分極曲線が下方に湾曲し、矢印の方向に移行する。すなわち、ニカワ濃度は、分解電圧に影響し、ニカワ量が多くなるほどカソード電位は卑になり、分極して分解電圧が高くなる。   As shown in FIG. 3, when the concentration of glue increases, the polarization curve curves downward in the A part in the range of 30 to 140 mV (vs. SSE) and shifts in the direction of the arrow. That is, the glue concentration affects the decomposition voltage, and as the amount of glue increases, the cathode potential becomes lower and polarizes to increase the decomposition voltage.

また、チオ尿素が増加すると、180〜290mV(vs.SSE)の範囲のB部において、分極曲線が下方に湾曲し、矢印の方向に移行する。すなわち、チオ尿素濃度は、電流密度が停滞する形状に影響し、チオ尿素量が多くなるほど電流密度が停滞する電位の幅は広がり、電流密度の値は低下する。   Further, when thiourea increases, the polarization curve is curved downward in the portion B in the range of 180 to 290 mV (vs. SSE) and shifts in the direction of the arrow. That is, the thiourea concentration affects the shape in which the current density stagnates, and as the amount of thiourea increases, the potential range in which the current density stagnates increases, and the value of the current density decreases.

よって、本手法では、ニカワ濃度は、A部の分極曲線の形状で評価し、チオ尿素濃度は、B部の分極曲線の形状で評価する。具体的には、A部における湾曲部の矢印方向の移行を表す評価値として電位を用い、B部における湾曲部の矢印方向の移行を表す評価値として電流を用いる。   Therefore, in this method, the glue concentration is evaluated by the shape of the polarization curve of the A part, and the thiourea concentration is evaluated by the shape of the polarization curve of the B part. Specifically, an electric potential is used as an evaluation value representing the transition in the arrow direction of the bending portion in the A portion, and an electric current is used as an evaluation value representing the transition in the arrow direction of the bending portion in the B portion.

図4は、A部及びB部における評価値の決定方法の一例を説明するための図である。この例では、30〜140mV(vs.SSE)の範囲のA部における下方湾曲部と、180〜290mV(vs.SSE)の範囲のB部における下方湾曲部と、110〜210mV(vs.SSE)の範囲の上方湾曲部とを用いて評価値を求める。   FIG. 4 is a diagram for explaining an example of a method of determining evaluation values in the A part and the B part. In this example, the downward bending portion in the portion A in the range of 30 to 140 mV (vs. SSE), the downward bending portion in the portion B in the range of 180 to 290 mV (vs. SSE), and 110 to 210 mV (vs. SSE). An evaluation value is obtained using an upward curved portion in the range of.

A部においては、下方湾曲部を2本の接線により線形近似し、2本の接線の交点A1のx座標により、評価値aである電位を求める。   In the part A, the downward curved part is linearly approximated by two tangents, and the potential as the evaluation value a is obtained from the x coordinate of the intersection A1 of the two tangents.

B部においては、110〜210mV(vs.SSE)の範囲の上方湾曲部を2本の接線により線形近似し、2本の接線の交点B1を求め、180〜290mV(vs.SSE)の範囲の下方湾曲部を2本の接線により線形近似し、2本の接線の交点B2を求める。そして、交点B1と交点B2のy座標の差分を求め、評価値bとする。ここで、交点B1と交点B2の差分としたのは、ニカワ及びチオ尿素の濃度の増加に伴い、110〜210mV(vs.SSE)の範囲の電流密度が低下したとしても、電流密度が停滞する形状を正しく表すためである。   In the part B, the upper curved part in the range of 110 to 210 mV (vs. SSE) is linearly approximated by two tangents to obtain the intersection B1 of the two tangents, and the range of 180 to 290 mV (vs. SSE) is obtained. The downward curved portion is linearly approximated by two tangents, and an intersection B2 of the two tangents is obtained. And the difference of the y coordinate of intersection B1 and intersection B2 is calculated | required, and it is set as the evaluation value b. Here, the difference between the intersection point B1 and the intersection point B2 is that even if the current density in the range of 110 to 210 mV (vs. SSE) decreases with the increase in the concentration of glue and thiourea, the current density is stagnant. This is to correctly represent the shape.

このように評価値a及び評価値bを求めることにより、ニカワ及びチオ尿素の濃度の増加に伴うA部及びB部における湾曲部の矢印方向の移行を表すことができる。   Thus, by calculating | requiring the evaluation value a and the evaluation value b, the transition of the curved part in the arrow direction in the A part and B part accompanying the increase in the concentration of glue and thiourea can be expressed.

なお、分極曲線の湾曲部の線形近似は、接線に限られるものではなく、近似直線を用いても構わない。例えば、図4に示す分極曲線の30〜60mV(vs.SSE)の範囲及び110〜140mV(vs.SSE)の範囲を最小二乗法により直線近似し、この2本の直線の交点から評価値の電位を求めてもよい。同様に、図4に示す分極曲線の110〜140mV(vs.SSE)の範囲及び180〜210mV(vs.SSE)の範囲を最小二乗法により直線近似し、この2本の直線の交点を求め、図4に示す分極曲線の180〜210mV(vs.SSE)の範囲及び260〜290mV(vs.SSE)の範囲を最小二乗法により直線近似し、この2本の直線の交点を求め、これら2つの交点のy座標の差分により評価値を求めてもよい。   The linear approximation of the curved portion of the polarization curve is not limited to the tangent line, and an approximate straight line may be used. For example, the range of 30 to 60 mV (vs. SSE) and the range of 110 to 140 mV (vs. SSE) of the polarization curve shown in FIG. 4 are linearly approximated by the least square method, and the evaluation value is calculated from the intersection of the two lines. The potential may be obtained. Similarly, the range of 110 to 140 mV (vs. SSE) and the range of 180 to 210 mV (vs. SSE) of the polarization curve shown in FIG. 4 is linearly approximated by the least square method, and the intersection of these two lines is obtained. The range of 180 to 210 mV (vs. SSE) and the range of 260 to 290 mV (vs. SSE) of the polarization curve shown in FIG. 4 is linearly approximated by the least square method, and the intersection of these two straight lines is obtained. You may obtain | require an evaluation value by the difference of the y coordinate of an intersection.

すなわち、図2に示す濃度管理装置20において、演算部44は、ニカワ量の増加に伴い下方に湾曲した30〜140mV(vs.SSE)の範囲(A部)の下方湾曲部、チオ尿素の増加に伴い下方に湾曲した180〜290mV(vs.SSE)の範囲(B部)の下方湾曲部、及びA部の下方湾曲部とB部の下方湾曲部の間に位置し、上方に湾曲した110〜210mV(vs.SSE)の範囲の上方湾曲部をそれぞれ2本の直線により線形近似し、2本の直線の交点を、電位が貴な方から交点A1、交点B1、及び交点B2とする。そして、演算部44は、交点A1の電位と、予め適量のニカワが含まれた電解液を用いて求められた交点A1の電位とを比較し、ニカワ量の適否を判別する。また、演算部44は、交点B1の電流密度と交点B2の電流密度の差分と、予め適量のチオ尿素が含まれた電解液を用いて求められた交点B1の電流値と交点B2の電流値の差分とを比較し、チオ尿素量の適否を判別する。ニカワ量の判別結果及びチオ尿素量の判別結果は、添加剤供給部30に通知される。   That is, in the concentration management apparatus 20 shown in FIG. 2, the calculation unit 44 increases the amount of thiourea, the downward curved portion in the range (A portion) of 30 to 140 mV (vs. SSE) curved downward as the glue amount increases. 110 to 290 mV (vs. SSE) curved in the downward direction (B part), and between the downward curved part of part A and the downward curved part of part B, and curved upward 110 The upper curved portion in the range of ~ 210 mV (vs. SSE) is linearly approximated by two straight lines, and the intersection of the two straight lines is defined as an intersection A1, an intersection B1, and an intersection B2 from the noble potential. Then, the calculation unit 44 compares the potential at the intersection A1 with the potential at the intersection A1 obtained in advance using an electrolyte containing an appropriate amount of glue, and determines whether the amount of glue is appropriate. Further, the calculation unit 44 calculates the difference between the current density at the intersection B1 and the current density at the intersection B2, and the current value at the intersection B1 and the current value at the intersection B2 which are obtained in advance using an electrolyte containing an appropriate amount of thiourea. Are compared with each other to determine whether the amount of thiourea is appropriate. The additive supply unit 30 is notified of the discrimination result of the glue amount and the discrimination result of the thiourea amount.

このように分極測定結果に基づいて電解液中の添加剤量を評価することにより、銅の電解精製工程の添加剤の濃度を操業現場で簡便に管理することができる。   As described above, by evaluating the amount of the additive in the electrolytic solution based on the polarization measurement result, the concentration of the additive in the copper electrolytic purification process can be easily managed at the operation site.

4.実施例1:本手法による評価結果とハルセル試験による評価結果の比較
本手法の有用性を確認するために、添加剤量について分極測定による定量評価とハルセル試験による定量評価の比較を行った。電解液には、おおよそ銅濃度が45g/l、硫酸濃度が185g/l、液温が60℃である実操業のものを使用した。
4). Example 1: Comparison of evaluation results obtained by this method and evaluation results obtained by the Hull cell test In order to confirm the usefulness of this method, the quantitative evaluation by polarization measurement and the quantitative evaluation by the hull cell test were compared for the amount of additive. The electrolyte used was an actual operation having a copper concentration of 45 g / l, a sulfuric acid concentration of 185 g / l, and a liquid temperature of 60 ° C.

4−1.分極測定
分極測定には、図5(A)に示す作用電極231及び図5(B)に示す対向電極241を使用した。作用電極231には、圧延銅板233を使用し、電極面積(Wd×Wd)が20mm×20mmとなるようにテープ232でマスキングした。同様に、作用電極241にも、圧延銅板243を使用し、電極面積(Wd×Wd)が20mm×20mmとなるようにテープ242でマスキングした。そして、作用電極231の電極面と対向電極241の電極面を、図6に示す測定用セルにより平行に対向させた。
4-1. Polarization Measurement For the polarization measurement, a working electrode 231 shown in FIG. 5A and a counter electrode 241 shown in FIG. 5B were used. A rolled copper plate 233 was used as the working electrode 231 and masked with a tape 232 so that the electrode area (Wd × Wd) was 20 mm × 20 mm. Similarly, a rolled copper plate 243 was used for the working electrode 241 and masked with a tape 242 so that the electrode area (Wd × Wd) was 20 mm × 20 mm. Then, the electrode surface of the working electrode 231 and the electrode surface of the counter electrode 241 were opposed in parallel by the measurement cell shown in FIG.

図6(A)に示すように対向電極241側の圧延銅板243と、圧延銅板243の両端及び下端に配置される薄板状のシート52Aとを、透明なアクリル板51A、51Bによって挟み、アクリル板51A、51B両端のシート52A上の部分を長ネジボルトとナット54、55、56により固定し、同様に、作用電極231側の圧延銅板233と、圧延銅板233の両端及び下端に配置される薄板状のシート52B、53とを、透明なアクリル板51C、51Dによって挟み、アクリル板51C、51D両端のシート52B上の部分を長ネジボルトとナット54、55、56により固定し、測定用セルを作製した。そして、図6(B)に示すようにアクリル板51A、51B、51C、51Dの両端6箇所において、長ネジボルトとナット54A、54B、55A、55B、56A、56Bを調整し、作用電極と対向電極の距離Dを40mmとした。また、ルギン管251の先端が、作用電極231の近くになるように配置した。ルギン管251に接続する参照電極には、Ag−AgCl電極を用いた。   As shown in FIG. 6A, the rolled copper plate 243 on the counter electrode 241 side and the thin sheet-like sheets 52A arranged at both ends and the lower end of the rolled copper plate 243 are sandwiched between transparent acrylic plates 51A and 51B, and the acrylic plate The portions on the sheet 52A at both ends of 51A and 51B are fixed by long screw bolts and nuts 54, 55 and 56, and similarly, the rolled copper plate 233 on the working electrode 231 side, and the thin plate-like shape disposed at both ends and the lower end of the rolled copper plate 233 The sheets 52B and 53 were sandwiched between transparent acrylic plates 51C and 51D, and the portions on the sheet 52B at both ends of the acrylic plates 51C and 51D were fixed with long screw bolts and nuts 54, 55, and 56 to produce a measurement cell. . Then, as shown in FIG. 6B, the long screw bolts and nuts 54A, 54B, 55A, 55B, 56A, and 56B are adjusted at the six positions on both ends of the acrylic plates 51A, 51B, 51C, and 51D, and the working electrode and the counter electrode The distance D was set to 40 mm. Further, the Lugin tube 251 was arranged so that the tip of the Lugin tube 251 was close to the working electrode 231. An Ag—AgCl electrode was used as a reference electrode connected to the Lugin tube 251.

図6に示す測定用セルを500mlビーカ内の実操業の電解液に浸漬し、ポテンシオスタットを用いて、電位0mVから卑方向に10mV/secの掃引速度で分極させ、分極曲線を作成した。そして、上述した接線による線形近似により評価値a及び評価値bを求めた。   The measurement cell shown in FIG. 6 was immersed in an electrolytic solution of an actual operation in a 500 ml beaker, and was polarized using a potentiostat from a potential of 0 mV to a base direction at a sweep rate of 10 mV / sec to create a polarization curve. And the evaluation value a and the evaluation value b were calculated | required by the linear approximation by the tangent mentioned above.

4−2.ハルセル試験
ハルセル試験は、特開平6−264278号公報に記載された方法により行った。実操業の電解液を容量267mlのハルセル電解槽に入れ、電流を2Aとして1時間通電した。ハルセル試験片としてステンレス板を用いた。電解終了後、ハルセル試験片の電着面を観察し、ニカワ及びチオ尿素の濃度を評価した。
4-2. Hull cell test The hull cell test was carried out by the method described in JP-A-6-264278. The electrolyte of actual operation was put into a Hull cell electrolytic cell having a capacity of 267 ml, and the current was supplied for 1 hour at a current of 2A. A stainless steel plate was used as the hull cell test piece. After completion of electrolysis, the electrodeposited surface of the Hull cell test piece was observed to evaluate the concentrations of glue and thiourea.

図7は、特開平6−264278号公報の図1に示すハルセル試験片の電着面である。ニカワ及びチオ尿素の濃度評価は、図7に示すハルセル試験片の電着面において、ニカワの濃度と相関があるノビ(F部)の長さLと、チオ尿素の濃度と相関があるヒゲ(C部)の長さを測定した。 FIG. 7 is an electrodeposition surface of the hull cell test piece shown in FIG. 1 of JP-A-6-264278. Concentration Evaluation of glue and thiourea is correlated in electrostatic Chakumen the Hull cell test piece shown in FIG. 7, the length L F of Novi (F unit) which is correlated to the concentration of glue, and the concentration of thiourea beard The length of (C part) was measured.

4−3.比較結果
図8は、実操業の電解液に含まれるニカワ濃度について、ハルセル試験の評価結果と本手法の評価結果の関係を示すグラフである。ハルセル試験によるノビ(F部)の長さLと本手法による読み値(評価値)aの相関係数(R)は、0.8538であり、高い相関を示すことが分かる。
4-3. Comparison Results FIG. 8 is a graph showing the relationship between the evaluation results of the Hull Cell test and the evaluation results of the present method for the glue concentration contained in the electrolytic solution in actual operation. The correlation coefficient (R 2 ) between the length L F of Nobi (F section) by the Hull cell test and the reading value (evaluation value) a by this method is 0.8538, which shows that a high correlation is exhibited.

また、図9は、実操業の電解液に含まれるチオ尿素濃度について、ハルセル試験の評価結果と本手法の評価結果の関係を示すグラフである。ハルセル試験によるヒゲ(C部)の長さと本手法による読み値(評価値)bの相関係数(R)は、0.8456であり、高い相関を示すことが分かる。 Moreover, FIG. 9 is a graph which shows the relationship between the evaluation result of a hull cell test, and the evaluation result of this method about the thiourea density | concentration contained in the electrolyte solution of a real operation. The correlation coefficient (R 2 ) between the length of beard (C section) by the Hull cell test and the reading value (evaluation value) b by this method is 0.8456, which indicates that a high correlation is exhibited.

すなわち、本手法による評価結果は、ニカワ濃度、チオ尿素濃度のいずれにおいてもハルセル試験結果と高い相関を示し、従来行われているハルセル試験結果の定量評価方法と同等の信頼性が得られることが分かる。   In other words, the evaluation results obtained by this method are highly correlated with the Hull Cell test results for both the glue concentration and the thiourea concentration, and the reliability equivalent to the conventional quantitative evaluation method for the Hull Cell test results can be obtained. I understand.

5.実施例2:本手法による評価結果と電気銅の不良率との関係
本手法の実操業への適用を確認するため、分極測定による定量評価と電気銅の不良率の関係を調査した。電気銅は、2004年4月から2006年5月までの期間に実操業の電解槽から引き揚げられたものを使用し、その電気銅の製造に用いられた電解液を分極測定した分極曲線により評価した。
5. Example 2: Relationship between the evaluation result of this method and the defective rate of electrolytic copper In order to confirm the application of this method to actual operation, the relationship between the quantitative evaluation by polarization measurement and the defective rate of electrolytic copper was investigated. The electrolytic copper was taken from an electrolytic cell in actual operation during the period from April 2004 to May 2006, and evaluated by a polarization curve obtained by polarization measurement of the electrolytic solution used for the production of the electrolytic copper. did.

分極測定は、4−1にて述べた方法と同様に行った。また、電気銅の良・不良の判断は、電気銅表面に10mm以上の粒が表面全体の30%以上見られるものを不良とし、それ以外を良とした。   The polarization measurement was performed in the same manner as described in 4-1. Moreover, the judgment of good / bad electric copper was judged as bad if 30% or more of the entire surface was observed with particles of 10 mm or more on the surface of the electric copper, and good.

図10は、電気銅の不良率と、その電気銅の製造に用いられた電解液のニカワ量の評価結果の関係を示すグラフである。このグラフより、電気銅の不良が少なくなるニカワの読み値(評価値)aの最適範囲は、80〜100mVであることが分かる。   FIG. 10 is a graph showing the relationship between the defective rate of electrolytic copper and the evaluation result of the amount of glue of the electrolytic solution used in the production of electrolytic copper. From this graph, it can be seen that the optimum range of the reading value (evaluation value) a of Nika that reduces the defect of electrolytic copper is 80 to 100 mV.

また、図11は、電気銅の不良率と、その電気銅の製造に用いられた電解液のチオ尿素量の評価結果の関係を示すグラフである。このグラフより、電気銅の不良が少なくなるチオ尿素の読み値(評価値)bの最適範囲は、1000〜1500A/mであることが分かる。 Moreover, FIG. 11 is a graph which shows the relationship between the defective rate of electrolytic copper, and the evaluation result of the thiourea amount of the electrolyte solution used for manufacture of the electrolytic copper. From this graph, it is understood that the optimum range of the reading value (evaluation value) b of thiourea in which defects of electrolytic copper are reduced is 1000 to 1500 A / m 2 .

すなわち、ニカワ量を評価する評価値a及びチオ尿素量を評価する評価値bを上述した最適な数値範囲で管理することにより、実操業において電気銅不良率を低減することができる。   That is, by managing the evaluation value “a” for evaluating the amount of glue and the evaluation value “b” for evaluating the amount of thiourea within the above-described optimal numerical range, the electrolytic copper defect rate can be reduced in actual operation.

6.まとめ
以上説明したように本手法による評価結果は、適量の添加剤が含まれた電解液の評価結果と比較することにより、実操業を行う上での添加剤量の過多を判断する指標とすることができる。また、本手法の評価結果を用いて添加剤量を最適な状態に維持することにより、電気銅の品質を良好な状態で且つ安定的に維持することができる。
6). Summary As described above, the evaluation result by this method is used as an index for judging the excessive amount of additive in actual operation by comparing with the evaluation result of the electrolyte containing the appropriate amount of additive. be able to. Moreover, the quality of electrolytic copper can be stably maintained in a good state by maintaining the additive amount in an optimal state using the evaluation result of this method.

10 電解精製装置、 11 電解槽、 12 カソード、 13 アノード、 14第1の貯蔵槽、 15 第2の貯蔵槽、 16 ポンプ、 17 供給槽、 20 濃度管理装置、 21 浴槽、 22 電解液、 23 作用電極、 24 対向電極、 25 参照電極、 30 添加剤供給部、 41 電源部、 42 測定部、 43 制御部、 44 演算部、 45 記憶部   DESCRIPTION OF SYMBOLS 10 Electrolytic refining device, 11 Electrolysis tank, 12 Cathode, 13 Anode, 14 First storage tank, 15 Second storage tank, 16 Pump, 17 Supply tank, 20 Concentration control device, 21 Bath, 22 Electrolyte, 23 Action Electrode, 24 Counter electrode, 25 Reference electrode, 30 Additive supply unit, 41 Power supply unit, 42 Measuring unit, 43 Control unit, 44 Calculation unit, 45 Storage unit

Claims (4)

銅電解精製の電解液に含まれる添加剤の濃度管理方法において、
上記電解液中に、作用電極、対向電極、及び参照電極を浸漬し、該作用電極と該対向電極の間に電圧を掃引印加し、分極曲線を測定する分極測定工程と、
上記分極曲線において、ニカワ量の増加に伴い下方に湾曲する第1の湾曲部、チオ尿素の増加に伴い下方に湾曲する第2の湾曲部、及び該第1の湾曲部と該第2の湾曲部の間に位置し、上方に湾曲する第3の湾曲部をそれぞれ2本の直線により線形近似し、2本の直線の交点を、電位が貴な方から第1の交点、第2の交点、及び第3の交点とする解析工程と、
上記第1の交点の電位に基づいてニカワ量の適否を判別するニカワ量判別工程と、
上記第2の交点の電流値と上記第3の交点の電流値の差分に基づいてチオ尿素量の適否を判別するチオ尿素量判別工程と
を有することを特徴とする添加剤の濃度管理方法。
In the concentration control method of the additive contained in the electrolytic solution of copper electrolytic purification,
A polarization measuring step of immersing the working electrode, the counter electrode, and the reference electrode in the electrolyte, sweeping and applying a voltage between the working electrode and the counter electrode, and measuring a polarization curve;
In the polarization curve, a first curved portion that curves downward with an increase in glue amount, a second curved portion that curves downward with an increase in thiourea, and the first curved portion and the second curved portion. The third curved part that is located between the two parts and that is curved upward is linearly approximated by two straight lines, and the intersection of the two straight lines is defined as the first intersection and the second intersection from the noble potential. And an analysis step as a third intersection point;
A glue amount determining step for determining the suitability of the glue amount based on the potential of the first intersection;
A thiourea amount determination step of determining whether or not the thiourea amount is appropriate based on a difference between the current value at the second intersection and the current value at the third intersection.
上記ニカワ量判別工程では、上記第1の交点の電位と、予め適量のニカワが含まれた電解液を用いて求められた第1の交点の電位とを比較し、ニカワ量の適否を判別し、
上記チオ尿素量判別工程では、上記第2の交点の電流値と上記第3の交点の電流値の差分と、予め適量のチオ尿素が含まれた電解液を用いて求められた第2の交点の電流値と第3の交点の電流値の差分とを比較し、チオ尿素量の適否を判別する
ことを特徴とする請求項1記載の添加剤の濃度管理方法。
In the glue amount determination step, the potential of the first intersection point is compared with the potential of the first intersection point obtained in advance using an electrolyte containing an appropriate amount of glue, and the suitability of the glue amount is determined. ,
In the thiourea amount determination step, a difference between a current value at the second intersection and a current value at the third intersection, and a second intersection obtained in advance using an electrolyte containing an appropriate amount of thiourea. The additive concentration control method according to claim 1, wherein the current value and the difference between the current values at the third intersection are compared to determine whether or not the amount of thiourea is appropriate.
上記解析工程では、上記第1の湾曲部、上記第2の湾曲部、及び上記第3の湾曲部を、それぞれ2本の接線により線形近似することを特徴とする請求項2記載の添加剤の濃度管理方法。   3. The additive according to claim 2, wherein in the analysis step, the first bending portion, the second bending portion, and the third bending portion are linearly approximated by two tangent lines, respectively. Concentration management method. 上記第1の湾曲部、上記第2の湾曲部、及び上記第3の湾曲部は、それぞれ上記参照電極として銀−塩化銀電極を用いたときの分極曲線の30〜140mVの電位範囲、180〜290mVの電位範囲、及び110〜210mVの電位範囲であることを特徴とする請求項3記載の添加剤の濃度管理方法。   The first bending portion, the second bending portion, and the third bending portion are each in a potential range of 30 to 140 mV of a polarization curve when a silver-silver chloride electrode is used as the reference electrode, 180 to 4. The method for controlling the concentration of an additive according to claim 3, wherein the potential range is 290 mV and the potential range is 110 to 210 mV.
JP2009200426A 2009-08-31 2009-08-31 Method of managing concentration of additive Withdrawn JP2011053017A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2009200426A JP2011053017A (en) 2009-08-31 2009-08-31 Method of managing concentration of additive

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2009200426A JP2011053017A (en) 2009-08-31 2009-08-31 Method of managing concentration of additive

Publications (1)

Publication Number Publication Date
JP2011053017A true JP2011053017A (en) 2011-03-17

Family

ID=43942191

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2009200426A Withdrawn JP2011053017A (en) 2009-08-31 2009-08-31 Method of managing concentration of additive

Country Status (1)

Country Link
JP (1) JP2011053017A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112763554A (en) * 2020-12-28 2021-05-07 安徽工业大学 Method for rapidly detecting thiourea content in copper electrolyte
CN113447556A (en) * 2021-05-11 2021-09-28 浙江工业大学 Method for analyzing quality of electrolyte in copper electrolytic refining

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112763554A (en) * 2020-12-28 2021-05-07 安徽工业大学 Method for rapidly detecting thiourea content in copper electrolyte
CN113447556A (en) * 2021-05-11 2021-09-28 浙江工业大学 Method for analyzing quality of electrolyte in copper electrolytic refining
CN113447556B (en) * 2021-05-11 2022-10-04 浙江工业大学 Method for analyzing quality of electrolyte in copper electrolytic refining

Similar Documents

Publication Publication Date Title
Xu et al. A study on the deactivation of an IrO2–Ta2O5 coated titanium anode
Aromaa et al. Evaluation of the electrochemical activity of a Ti–RuO2–TiO2 permanent anode
Tan et al. Heterogeneous electrode processes and localized corrosion
Ismail et al. Effect of oxygen concentration on corrosion rate of carbon steel in seawater
Mechelhoff et al. Super-faradaic charge yields for aluminium dissolution in neutral aqueous solutions
CA1166187A (en) Method for determining current efficiency in galvanic baths
Bastos et al. Micropotentiometric mapping of local distributions of Zn2+ relevant to corrosion studies
Budiansky et al. Use of coupled multi-electrode arrays to advance the understanding of selected corrosion phenomena
US20160053398A1 (en) Graphene Anti-Corrosion Coating and Method of Application Thereof
CN108220965A (en) A kind of metallographic etchant and its application method
Thomas et al. Oxygen consumption upon electrochemically polarised zinc
Pilla et al. Evaluation of anode deactivation in chlor-alkali cells
Tan Sensing electrode inhomogeneity and electrochemical heterogeneity using an electrochemically integrated multielectrode array
JP2011053017A (en) Method of managing concentration of additive
Eickes et al. The electrochemical quartz crystal microbalance (EQCM) in the studies of complex electrochemical reactions
KR20070005732A (en) One-point recalibration method for reducing error in concentration measurements for an electrolytic solution
US4153521A (en) Method of automatic control and optimization of electrodeposition conditions
Coleman et al. Mechanical properties of Zr-2.5 Nb pressure tubes made from electrolytic powder
Klassen et al. A novel approach to characterizing localized corrosion within a crevice
US7675297B1 (en) Methods for measuring bounding corrosion rates using coupled multielectrode sensors and eliminating the effects of bad electrodes
JP6011874B2 (en) Method for evaluating inhibitors contained in plating solution
JP5223783B2 (en) Method for predicting the amount of corrosion of metallic materials in contact with different metals
US20040020772A1 (en) Method and system for measuring active animal glue concentration in industrial electrolytes
JP2004031256A (en) Inspection method for polymer electrolyte fuel cell, and polymer electrolyte fuel cell by the method
Cong et al. Use of coupled multi-electrode arrays to advance the understanding of selected corrosion phenomena

Legal Events

Date Code Title Description
A300 Withdrawal of application because of no request for examination

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 20121106