JP5223783B2 - Method for predicting the amount of corrosion of metallic materials in contact with different metals - Google Patents

Method for predicting the amount of corrosion of metallic materials in contact with different metals Download PDF

Info

Publication number
JP5223783B2
JP5223783B2 JP2009135221A JP2009135221A JP5223783B2 JP 5223783 B2 JP5223783 B2 JP 5223783B2 JP 2009135221 A JP2009135221 A JP 2009135221A JP 2009135221 A JP2009135221 A JP 2009135221A JP 5223783 B2 JP5223783 B2 JP 5223783B2
Authority
JP
Japan
Prior art keywords
corrosion
potential
current
metal
predicting
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2009135221A
Other languages
Japanese (ja)
Other versions
JP2010281687A (en
Inventor
崇康 杉原
茂吉 中山
美里 草刈
義幸 高木
太一郎 西川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Electric Industries Ltd
Original Assignee
Sumitomo Electric Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Electric Industries Ltd filed Critical Sumitomo Electric Industries Ltd
Priority to JP2009135221A priority Critical patent/JP5223783B2/en
Publication of JP2010281687A publication Critical patent/JP2010281687A/en
Application granted granted Critical
Publication of JP5223783B2 publication Critical patent/JP5223783B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Testing Resistance To Weather, Investigating Materials By Mechanical Methods (AREA)

Description

本発明は、2種以上の異種金属が電気的に接続された状態(異種金属接触状態)で使用される場合の、金属材料の腐食量を予測する方法に関する。   The present invention relates to a method for predicting the corrosion amount of a metal material when two or more kinds of different metals are used in an electrically connected state (a different metal contact state).

構造材料や導電性材料等として使用される金属材料は、一般に腐食するとその強度、形状等が損なわれ、又、導電性の低い腐食生成物が表面に堆積する等の原因により導電性が損なわれる。そこで、金属材料の使用環境における腐食挙動の定量的評価が重要である。   Metal materials used as structural materials, conductive materials, etc. generally lose their strength, shape, etc. when corroded, and their conductivity is impaired due to the accumulation of corrosion products with low conductivity on the surface. . Therefore, it is important to quantitatively evaluate the corrosion behavior in the environment where the metal material is used.

又、異なる種類の金属(異種金属)を接触させた場合、接触した金属間の電気化学的特性の違いによって、特定の金属の腐食が促進されることがある(異種金属接触腐食もしくはガルバニック腐食)。金属材料の用途では、異種金属が接触した状態で使用されることが多いので、ガルバニック腐食の定量評価が重要となる。   In addition, when different types of metals (foreign metals) are brought into contact, the corrosion of a specific metal may be accelerated by the difference in electrochemical characteristics between the metals in contact (foreign metal contact corrosion or galvanic corrosion). . In metal materials, galvanic corrosion is important for quantitative evaluation because it is often used in contact with dissimilar metals.

特許文献1には、異種金属を接続した状態で流れる電流値(ガルバニック腐食電流値)を測定し、その電流値の経時的な推移に基づいて異種金属接触腐食の進行を予測する方法が開示されている。この方法は、実際に異種金属を接続した状態で試験環境に暴露し、その際に流れる電流値と環境因子との相関関係に基づいて腐食速度、しいては材料の寿命を見積るものである。   Patent Document 1 discloses a method of measuring a current value (galvanic corrosion current value) flowing in a state where dissimilar metals are connected, and predicting the progress of dissimilar metal contact corrosion based on the temporal transition of the current value. ing. In this method, exposure to a test environment is actually performed with dissimilar metals connected, and the corrosion rate and the life of the material are estimated based on the correlation between the current value flowing at that time and environmental factors.

特許第4151385号公報Japanese Patent No. 4151385

特許文献1に記載の方法では、実際に2種の異種金属材料を接続した状態で流れるガルバニック腐食電流値を測定する必要がある。従って、例えば、構造材の設計の際に、使用する金属材料の選択をする際には、考えられる金属材料の組み合わせ全てについて電流値を測定する必要があり、結果を得るためは多数の測定を行わなければならなかった。(さらに、特許文献1に記載の方法では、実際に異種金属を接続した状態で試験環境に暴露し、暴露期間は最低1ヶ月、出来れば数年単位で評価するのが望ましいとされているので、その評価に膨大な期間を要するとの問題もあった。)   In the method described in Patent Document 1, it is necessary to measure a galvanic corrosion current value that flows in a state where two different kinds of metal materials are actually connected. Therefore, for example, when designing a structural material, when selecting a metal material to be used, it is necessary to measure current values for all possible combinations of metal materials. Had to be done. (Furthermore, in the method described in Patent Document 1, it is considered that it is desirable to expose to the test environment with the dissimilar metals actually connected, and to evaluate at least one month, preferably several years if possible. There was also a problem that the evaluation took a huge period of time.)

本発明は、異種金属材料の組み合わせについて、ガルバニック腐食の程度を、当該組み合わせについてのガルバニック腐食電流値を実際に測定することなく、短時間で容易にかつ高い精度で予測することができる金属材料の腐食量予測方法を提供することを課題とする。   The present invention provides a metallic material that can easily and accurately predict the degree of galvanic corrosion for a combination of different metal materials in a short time without actually measuring the galvanic corrosion current value for the combination. It is an object to provide a method for predicting the amount of corrosion.

本発明者は、鋭意検討の結果、各種金属材料単体の分極曲線を電解液中で計測し、当該分極曲線から、前記各種金属材料から選択された2種以上の金属材料が接続した場合の各金属材料に流れるガルバニック腐食電流値を見積ることができ、さらに前記ガルバニック腐食電流値に基づいて各金属材料の腐食量(又は防食効果)を予測できることを見出し、本発明を完成した。すなわち、前記の課題は以下に示す構成からなる発明により解決される。   As a result of intensive studies, the inventor measured polarization curves of various metal materials alone in an electrolytic solution, and each of the cases where two or more metal materials selected from the various metal materials were connected from the polarization curves. The present inventors have found that a galvanic corrosion current value flowing through a metal material can be estimated, and furthermore, the corrosion amount (or anticorrosion effect) of each metal material can be predicted based on the galvanic corrosion current value. That is, the above problem is solved by the invention having the following configuration.

本願第1の発明は、
各種金属材料単体を、電解液中に浸漬して所定電位を印加した際の電流密度を、印加電位を変化させて測定し、当該電位と電流密度との関係を表す分極曲線を測定する過程1、
前記各種金属材料から選択された2種以上の金属材料について、前記分極曲線の電流密度をId、金属材料の露出面積(金属材料が電解液へ露出している面積)をAとしたときのId×Aを比較して、全ての金属材料のId×Aの合計が0となる電位を得る過程2、
当該電位における、前記2種以上の金属材料から選択された金属材料Aの電流値を前記分極曲線から求める過程3、及び
過程3で得られた電流値に基づき金属材料Aの腐食速度を予測する過程4
を有することを特徴とする異種金属接触状態における金属材料の腐食量予測方法(請求項1)である。
The first invention of the present application is
Process 1 of measuring a current density when various metal materials are immersed in an electrolytic solution and applying a predetermined potential while changing the applied potential, and measuring a polarization curve representing the relationship between the potential and the current density ,
For two or more metal materials selected from the various metal materials, Id when the current density of the polarization curve is Id and the exposed area of the metal material (the area where the metal material is exposed to the electrolyte) is A Process of obtaining a potential at which the sum of Id × A of all metallic materials is 0 by comparing × A,
Step 3 for obtaining the current value of the metal material A selected from the two or more kinds of metal materials at the potential from the polarization curve, and predicting the corrosion rate of the metal material A based on the current value obtained in the step 3 Process 4
A method for predicting the amount of corrosion of a metal material in a contact state of different metals (Claim 1).

この方法では、分極曲線は、次の2ステップからなる方法により得られている。すなわち、先ず、各種金属材料単体を電解液中に浸漬し、所定の一定電位を印加して保持した際の電流の変化を測定する。電流の変化がほとんどなくなったときの電流値(理論的には、電流の変化がなくなったときの電流値、通常は、測定開始1分程度の電流値を採用する。)を当該金属材料の浸漬面積で除し、当該電位における電流密度とする。次に、この電流密度を、印加電位を変化させて測定して電位と電流密度との関係を多数点求めてこれらをプロットした点を結んで分極曲線が得られる(定電位法)。代わりに、各種金属材料単体を電解液中に浸漬し、所定の一定電流を流して保持した際の変動電位を測定し、電位の変化がほとんどなくなったときの電位(理論的には、電位の変化がなくなったときの電流値、通常は、測定開始1分程度の電位を採用する。)、及び当該金属材料の浸漬面積から当該電流(密度)における電位を求め、この電位を、電流(密度)を変化させて測定して電位と電流密度との関係を多数点求めてこれらをプロットすることによっても得ることができる(定電流法)。   In this method, the polarization curve is obtained by a method comprising the following two steps. That is, first, various metal materials are immersed in an electrolytic solution, and a change in current when a predetermined constant potential is applied and held is measured. The current value when there is almost no change in current (theoretically, the current value when there is no change in current, usually the current value for about one minute at the start of measurement) is immersed in the metal material. Divide by the area to obtain the current density at the potential. Next, this current density is measured by changing the applied potential, and a large number of relationships between the potential and the current density are obtained, and the plotted points are connected to obtain a polarization curve (constant potential method). Instead, immerse each metal material in the electrolyte and measure the fluctuation potential when it is held by flowing a certain constant current. The potential when the potential change almost disappears (theoretically, the potential The current value when there is no change, usually a potential of about 1 minute at the start of measurement is adopted), and the potential at the current (density) is obtained from the immersion area of the metal material. ) To obtain a large number of relations between the electric potential and the current density and plot them (constant current method).

本願第1の発明は、この定電位法による方法も提供するものである。すなわち、
各種金属材料単体を、電解液中に浸漬して所定電流を流した際の電位を、前記所定電流値を変化させて測定し、当該電位と電流密度との関係を表す分極曲線を測定する過程1、
前記各種金属材料から選択された2種以上の金属材料について、前記分極曲線の電流密度をId、金属材料の露出面積をAとしたときのId×Aを比較して、全ての金属材料のId×Aの合計が0となる電位を得る過程2、
当該電位における、前記2種以上の金属材料から選択された金属材料Aの電流値を前記分極曲線から求める過程3、及び
過程3で得られた電流値に基づき金属材料Aの腐食速度を予測する過程4
を有することを特徴とする異種金属接触状態における金属材料の腐食量予測方法(請求項2)である。
The first invention of the present application also provides a method by this constant potential method. That is,
The process of measuring the polarization curve representing the relationship between the potential and the current density by measuring the potential when various metal materials are immersed in an electrolytic solution and flowing a predetermined current while changing the predetermined current value. 1,
For two or more types of metal materials selected from the various metal materials, Id × A where Id is the current density of the polarization curve and A is the exposed area of the metal material, and Id of all metal materials is compared. Process 2 for obtaining a potential where the sum of xA is 0,
Step 3 for obtaining the current value of the metal material A selected from the two or more kinds of metal materials at the potential from the polarization curve, and predicting the corrosion rate of the metal material A based on the current value obtained in the step 3 Process 4
A method for predicting the amount of corrosion of a metal material in a contact state of dissimilar metals (Claim 2).

本発明の予測方法は、金属材料単体について電気化学的基礎特性評価、即ち分極曲線を電解液中で測定し、単体についての測定結果から金属材料が組合された際に流れるガルバニック腐食電流を見積り、その電流値に基づいて腐食の程度を予測することを特徴とする。即ち、取得する必要があるデータは金属材料単体のもので、組み合わせた状態のものではない。従って、実際に材料を組み合わせて評価する従来技術、例えば特許文献1に記載の方法に比べ、測定点数(取得が必要なデータ数)が少なくて済む(即ち、材料数×評価条件数で良い)。この特徴から、より多くの材料についての評価(腐食の予測)を短期間に実施することが可能である。特に、材料の腐食挙動、防食対策の効果性等に関する基礎情報を得るための初期検討等に有用である。   The prediction method of the present invention is based on electrochemical basic property evaluation for a single metal material, that is, a polarization curve is measured in an electrolytic solution, and a galvanic corrosion current flowing when the metal materials are combined is estimated from the measurement results for the single material, The degree of corrosion is predicted based on the current value. That is, the data that needs to be acquired is a single metal material, not a combined state. Therefore, the number of measurement points (the number of data that needs to be acquired) can be reduced as compared with the prior art that actually evaluates by combining materials, for example, the method described in Patent Document 1. . From this characteristic, it is possible to perform evaluation (prediction of corrosion) on more materials in a short time. In particular, it is useful for initial studies to obtain basic information on the corrosion behavior of materials and the effectiveness of anticorrosion measures.

分極曲線の経時変化や腐食速度の経時変化をより正確に予測するデータを得るため、本発明の予測方法を、一定の計測期間にわたった測定に基づいて行ってもよい。そのための計測期間は任意に設定できる。しかし、特許文献1に記載のように、一般に腐食速度は腐食生成物の堆積等によって減衰する。また、ガルバニック腐食は、一般に組み合わせる金属材料のうち貴な材料の表面で起こる還元反応に律速されるため、酸素濃度の増大やpHの大幅な低下など、特殊な環境変化がない限り腐食速度が急激に増大することはない。従って、長期間の腐食でも、腐食開始の比較的短時間の領域での腐食速度が最大となるので、腐食開始の比較的短時間のみの測定を行い、この測定値に基づき腐食量を予測しても、この予測値が実際の腐食量以上となることはなく、実用上ほとんど問題のない予測値が得られる。すなわち、本発明の予測方法によれば、短時間(数分オーダー、1〜10分程度)の測定でも、実用上ほとんど問題のない予測が可能である。   The prediction method of the present invention may be performed based on measurements over a certain measurement period in order to obtain data that more accurately predicts changes in polarization curves over time and corrosion rates over time. The measurement period for that can be set arbitrarily. However, as described in Patent Document 1, the corrosion rate is generally attenuated by the accumulation of corrosion products. In addition, galvanic corrosion is generally controlled by the reduction reaction that occurs on the surface of precious materials among the combined metal materials, so the corrosion rate increases rapidly unless there is a special environmental change such as an increase in oxygen concentration or a significant decrease in pH. Will not increase. Therefore, even during long-term corrosion, the corrosion rate is maximum in a relatively short period of time when corrosion starts, so measure only for a relatively short period of time when corrosion starts and predict the amount of corrosion based on this measured value. However, this predicted value does not exceed the actual amount of corrosion, and a predicted value with almost no problem in practice can be obtained. That is, according to the prediction method of the present invention, it is possible to perform prediction with almost no problem in practice even in a short time measurement (on the order of several minutes, about 1 to 10 minutes).

本発明の予測方法において、分極曲線の測定が行われる各種金属材料としては、構造材の設計において使用の可能性が考えられる多種類の金属材料を例示することができる。例えば、目的とする構造材の材料として、設計段階で、金属A、B、C、D、E及びFについて使用の可能性が考えられる場合は、金属A、B、C、D、E及びFの全てについて分極曲線を取得することが望ましい。   In the prediction method of the present invention, examples of various metal materials for which polarization curves are measured include many kinds of metal materials that can be used in the design of structural materials. For example, if it is possible to use the metals A, B, C, D, E, and F at the design stage as the material of the target structural material, the metals A, B, C, D, E, and F can be used. It is desirable to obtain polarization curves for all of the above.

過程2により各種金属材料単体の分極曲線が得られた後、ガルバニック腐食電流の定量評価が望まれる2種以上の金属材料からなる組み合わせを選び、当該分極曲線における電流密度をId、金属材料の露出面積をAとしたときのId×Aを比較して、Id×Aの合計が0(ゼロ)となる電位を求める。例えば、前記の例で、金属A、B、C、D、E及びFの中から選ばれた金属AとBが接触したときのガルバニック腐食電流を見積るときは、金属Aの分極曲線(×金属材料Aの露出面積)における電流値と金属Bの分極曲線(×金属材料Bの露出面積)における電流値の合計が0となる(=絶対値が同じで符号が反対であること)電位を分極曲線から求める。   After the polarization curves of various metal materials are obtained in step 2, select a combination of two or more metal materials for which quantitative evaluation of galvanic corrosion current is desired, and the current density in the polarization curve is Id, the exposure of the metal materials When the area is A, Id × A is compared, and a potential at which the total of Id × A is 0 (zero) is obtained. For example, in the above example, when estimating the galvanic corrosion current when the metals A and B selected from the metals A, B, C, D, E and F are in contact, the polarization curve of the metal A (× metal The sum of the current value in the exposed area of the material A) and the current value in the polarization curve of the metal B (× the exposed area of the metal material B) becomes 0 (= the absolute value is the same and the sign is opposite). Calculate from a curve.

電流値の合計が0となる電位が分極曲線から得られた後は、金属の当該電位に相当する電流値を求め、この電流値をガルバニック腐食電流の予測値とする。例えば、前記の例で金属Aについての腐食を予測したい場合は、金属Aについての当該電流値を求める(ただし、2種の金属材料の組み合わせの場合、例えば上記の金属AとBの組合せの場合は、金属AとBの電流値の絶対値は同じである。)。   After a potential at which the sum of current values is 0 is obtained from the polarization curve, a current value corresponding to the potential of the metal is obtained, and this current value is used as a predicted value of the galvanic corrosion current. For example, when it is desired to predict the corrosion of the metal A in the above example, the current value of the metal A is obtained (however, in the case of a combination of two kinds of metal materials, for example, in the case of the combination of the above metals A and B , The absolute values of the current values of the metals A and B are the same).

過程3でガルバニック腐食電流の予測値が得られた後は、電気化学的に腐食量を求めることができる。すなわち電流値×時間で、ガルバニック腐食を生じる電気量を求めることができ、理論的には、その電気量と同当量の金属が腐食されるので、当該時間における金属の腐食量を予測することができる。又、この電流値(=電気量/時間)から腐食速度を予測することができる。   After the predicted value of the galvanic corrosion current is obtained in process 3, the amount of corrosion can be obtained electrochemically. In other words, the amount of electricity that causes galvanic corrosion can be determined by the current value x time. Theoretically, a metal equivalent to the amount of electricity is corroded, so the amount of corrosion of the metal at that time can be predicted. it can. Further, the corrosion rate can be predicted from the current value (= electric amount / time).

このようにして、本発明により、金属の腐食量、腐食速度を予測することができるが、この金属の腐食速度の予測値から、さらに材料の寿命を予測することができる。即ち、材料の量を腐食速度の予測値で除することにより材料の寿命を予測することができる。本願第2の発明は、材料の寿命の予測方法であって、当該材料の量を、請求項1又は請求項2に記載の異種金属接触状態における金属材料の腐食量予測方法により予測された腐食速度で除することを特徴とする材料の寿命の予測方法(請求項3)である。このように本願第1の発明は、材料の寿命の予測方法としても活用することができる。   Thus, according to the present invention, the corrosion amount and corrosion rate of the metal can be predicted, but the life of the material can be further predicted from the predicted value of the corrosion rate of the metal. That is, the life of the material can be predicted by dividing the amount of the material by the predicted value of the corrosion rate. The second invention of the present application is a method for predicting the life of a material, wherein the amount of the material is corroded by the method for predicting the corrosion amount of a metal material in a different metal contact state according to claim 1 or claim 2. A method for predicting the lifetime of a material, characterized by dividing by a speed (Claim 3). As described above, the first invention of the present application can also be utilized as a method for predicting the lifetime of a material.

本発明で得られる分極曲線は、その測定条件、例えば、用いる電解液の組成、pHや温度等により影響される。そこで、測定条件を種々変えた複数の分極曲線を測定することにより、測定条件の変動が分極曲線に与える影響を定量的に求めることができ、さらにはpHや温度等の環境因子の影響を見積ることができる。そして、モデル試料(金属材料)についてのモデル環境について種々の条件による試験(モデル実験系での試験)を行い、その結果を評価条件ごとに蓄積してデータベース化し、実際の構造材の設計においては、このデータベース中のデータを用いて、材料選択や構造材の形状や大きさ等の設計を容易に行うことができる。   The polarization curve obtained in the present invention is affected by the measurement conditions, for example, the composition of the electrolyte used, pH, temperature, and the like. Therefore, by measuring a plurality of polarization curves with various measurement conditions, it is possible to quantitatively determine the influence of fluctuations in the measurement conditions on the polarization curve, and further estimate the influence of environmental factors such as pH and temperature. be able to. The model environment for the model sample (metal material) is tested under various conditions (tests in the model experiment system), and the results are stored for each evaluation condition in a database. In designing actual structural materials Using the data in this database, it is possible to easily select the material and design the shape and size of the structural material.

具体的には、前記のモデル実験系での試験結果(電流密度)を解析することにより、それぞれの環境における接続した2種以上の金属材料の露出面積比と腐食電流値(電流密度×露出面積)の関係を見積ることができ、その見積値に基づいて、材料選択や構造材の形状や大きさ等の設計を行うことができる。即ち、本発明は、異種金属材料間の露出面積比が腐食電流密度にどう影響するかを定量的に評価する方法としても有用であり、この点からも、本発明は、構造物の設計や防食対策の決定に活用することができると言える。   Specifically, by analyzing the test results (current density) in the above model experiment system, the exposed area ratio and corrosion current value (current density × exposed area) of two or more connected metal materials in each environment ) And the design of the material selection and the shape and size of the structural material can be performed based on the estimated value. That is, the present invention is useful as a method for quantitatively evaluating how the exposed area ratio between different kinds of metal materials affects the corrosion current density. It can be said that it can be used to determine anti-corrosion measures.

本発明の異種金属接触状態における金属材料の腐食量予測方法によれば、金属材料単体関しての測定により、2種以上の金属材料の組み合わせた場合の異種金属接触状態における腐食電流を見積ることができる。その結果、実際に材料を組み合わせて評価する先行技術に比べ、取得が必要なデータ数が少なくて済む。従って、金属材料の多数の組み合わせに関する評価を短期間に容易に実施可能であり、防食対策の効果性予測、初期検討等に活用できる。   According to the method for predicting the corrosion amount of a metal material in the contact state of different metals according to the present invention, the corrosion current in the contact state of different metals when two or more kinds of metal materials are combined can be estimated by measuring the metal material alone. it can. As a result, the number of data that needs to be acquired is smaller than in the prior art that actually evaluates by combining materials. Therefore, it is possible to easily evaluate a large number of combinations of metal materials in a short period of time, and it can be used for prediction of effectiveness of anticorrosion measures, initial examination, and the like.

電流−時間曲線(クロノアンペログラム)を示すグラフの一例である。It is an example of the graph which shows an electric current-time curve (chronoamperogram). AlとCuの分極曲線を示すグラフの一例である。It is an example of the graph which shows the polarization curve of Al and Cu. 本発明の方法により見積られたガルバニック腐食電流値と実際に接続した場合に流れた電流値との関係をプロットしたグラフである。It is the graph which plotted the relationship between the galvanic corrosion current value estimated by the method of this invention, and the electric current value which flowed when it actually connected.

次に、本発明を実施するための形態につき説明するが、本発明の範囲はこの形態のみに限定されるものではなく、本発明の趣旨を損ねない範囲で変更されたものも本発明に含まれる。   Next, although the form for implementing this invention is demonstrated, the range of this invention is not limited only to this form, What was changed in the range which does not impair the meaning of this invention is also included in this invention. It is.

本発明の異種金属接触状態における金属材料の腐食量予測方法では、先ず、各種金属材料の分極曲線が電解液中で測定される。そこで、定電位法による分極曲線の測定の具体的な手順について述べる。   In the method for predicting the corrosion amount of a metal material in a contact state of different metals according to the present invention, first, polarization curves of various metal materials are measured in an electrolytic solution. Therefore, a specific procedure for measuring the polarization curve by the constant potential method will be described.

先ず、金属材料、基準電極(例えば、Ag/AgCl電極が用いられる)、および対極(例えば、Pt電極)を適当な電解液に浸漬し、3電極式の電気化学測定装置を用いて金属材料と電極間に電流が流れない電位(平衡電位)を測定して初期電位とする。測定開始と同時に所定の電位を印加し、その電位に保持しながら電流を測定する。所定の電位を印加した当初は、大きな電流(充電電流)が流れるが、この電流は急激に減衰し、電流値は時間が経過すると安定する。   First, a metal material, a reference electrode (for example, an Ag / AgCl electrode is used), and a counter electrode (for example, a Pt electrode) are immersed in an appropriate electrolytic solution. The potential at which no current flows between the electrodes (equilibrium potential) is measured and set as the initial potential. A predetermined potential is applied simultaneously with the start of measurement, and the current is measured while maintaining the potential. Initially, a large current (charging current) flows when a predetermined potential is applied, but this current decays rapidly, and the current value stabilizes over time.

従って、印加した電位に対応する形で、時間に対して減衰する電流が流れるのでこれを記録する(電流−時間曲線となる)。図1は、この電流を電極の浸漬面積で除した電流密度と時間との関係=電流密度−時間曲線(クロノアンペログラム)を示すグラフの一例である。得られた電流密度−時間曲線から、電流の減衰がほぼなくなったとみなせる時間(例えば、測定開始から1分後)の電流密度を読み取る。   Therefore, a current that decays with respect to time flows in a form corresponding to the applied potential, and this is recorded (a current-time curve is obtained). FIG. 1 is an example of a graph showing a relationship between current density obtained by dividing this current by the immersion area of the electrode and time = current density-time curve (chronoamperogram). From the obtained current density-time curve, the current density at a time (for example, one minute after the start of measurement) at which it can be considered that the current attenuation has almost disappeared is read.

分極曲線を取得する際に使用する電解液は、電流の変化についての、電位の変化以外の因子が生じにくい電解液から選択される。このような電解液としては塩化ナトリウム水溶液を挙げることができる。又、硫酸ナトリウム水溶液等の硝酸塩の水溶液も用いることができる。   The electrolyte used for obtaining the polarization curve is selected from electrolytes that are less likely to cause factors other than changes in potential with respect to changes in current. An example of such an electrolytic solution is an aqueous sodium chloride solution. An aqueous solution of nitrate such as an aqueous sodium sulfate solution can also be used.

印加電位を様々に変えて上記測定を繰り返して、得られた電流密度を電位に対してプロットして電流密度と電位の関係、電流密度−電位曲線を求める。この電流密度−電位曲線が当該金属材料の分極曲線である。図2は、AlとCuの分極曲線の一例を示すグラフであり、2種の金属材料に対応する2つの分極曲線を、同一のグラフ上にプロットしたものである。   The above measurement is repeated with various applied potentials, and the obtained current density is plotted against the potential to obtain the relationship between the current density and the potential and the current density-potential curve. This current density-potential curve is a polarization curve of the metal material. FIG. 2 is a graph showing an example of Al and Cu polarization curves, in which two polarization curves corresponding to two kinds of metal materials are plotted on the same graph.

次に、2種の金属材料に対応する2つの分極曲線の比較を行う。2種の金属材料の電解液への露出面積が同じ場合は、同一グラフ上に示された2つの分極曲線をそのまま比較する。2種の金属材料の電解液への露出面積が異なる場合は、分極曲線の電流密度×露出面積(=電流値)を比較する。   Next, two polarization curves corresponding to two kinds of metal materials are compared. When the exposed areas of the two types of metal materials to the electrolyte are the same, the two polarization curves shown on the same graph are compared as they are. When the exposed areas of the two kinds of metal materials to the electrolyte are different, the current density x exposed area (= current value) of the polarization curves are compared.

異なる材料の分極曲線は完全に一致することはないため、電流密度の軸に注目すると、一方が正の電流(酸化反応に対応)、他方が負の電流(還元反応)を流すという電位領域が存在する(図2中の例は、2種の金属材料の電解液への露出面積が同じ場合であり、前記電位領域が、点線の丸で示されている)。この領域の中で、分極曲線の電流値の和が0になる電位が存在する。   Since the polarization curves of different materials do not match completely, when focusing on the current density axis, there is a potential region where one is a positive current (corresponding to an oxidation reaction) and the other is a negative current (reduction reaction). (The example in FIG. 2 is the case where the exposed areas of the two metal materials to the electrolyte are the same, and the potential region is indicated by a dotted circle). Within this region, there is a potential at which the sum of the current values of the polarization curve becomes zero.

この電位が、平衡電位(異種金属材料が接続した状態で、材料が示す電位)となる。2種の金属の組み合わせの場合では、その電位において、2つの金属の、分極曲線の電流密度×露出面積である電流値は符号が逆で絶対値が同一となるが、この電流値がガルバニック腐食電流である。(この電流を、図2に矢印で示すが、Alでは正の電流が流れ腐食の反応が起こり、Cuでは負の電流が流れ還元の反応が起こっている。)つまり、分極曲線により、平衡電位が決定できればガルバニック腐食電流も見積ることができる。なお、平衡電位の決定方法は、前記のような、複数の分極曲線の、同一電位での電流値の和を取って電流がゼロになる点から求める方法があるが、2種の金属の組み合わせの場合では、分極曲線上での電流値を絶対値で示すようにし、2つの分極曲線の交点から求める方法でも良い。   This potential becomes an equilibrium potential (a potential indicated by the material in a state where dissimilar metal materials are connected). In the case of the combination of two kinds of metals, the current value of the two metals, which is the current density of the polarization curve × the exposed area of the two metals, has the opposite sign and the absolute value is the same, but this current value is the galvanic corrosion. Current. (This current is indicated by an arrow in FIG. 2. In Al, a positive current flows and a corrosion reaction occurs, and in Cu a negative current flows and a reduction reaction occurs.) That is, the polarization curve shows an equilibrium potential. Can be determined, the galvanic corrosion current can also be estimated. In addition, there is a method for determining the equilibrium potential from the point where the current becomes zero by taking the sum of the current values at the same potential of a plurality of polarization curves as described above. In this case, the current value on the polarization curve may be indicated by an absolute value, and the method may be obtained from the intersection of the two polarization curves.

電解液として5%NaCl水溶液、基準電極としてBAS製のAg/AgCl電極(型番:RE−1B)、対極としてPt電極を用い、Al、Cuについて、室温で分極曲線を測定した。図1は、この測定の過程で得られたAlについてのクロノアンペログラムであり、所定の電位として−0.9V(vs.Ag/AgCl)印加した場合である。図2は、この測定により得られたAl、Cuについての分極曲線である。図2の分極曲線を得る際の電流は、クロノアンペログラムにおける1分経過時点の電流である。   Using a 5% NaCl aqueous solution as the electrolyte, a BAS Ag / AgCl electrode (model number: RE-1B) as the reference electrode, and a Pt electrode as the counter electrode, polarization curves of Al and Cu were measured at room temperature. FIG. 1 is a chronoamperogram for Al obtained in the course of this measurement, and shows a case where −0.9 V (vs. Ag / AgCl) is applied as a predetermined potential. FIG. 2 is a polarization curve for Al and Cu obtained by this measurement. The current for obtaining the polarization curve of FIG. 2 is the current at the time when 1 minute has elapsed in the chronoamperogram.

なお、この測定は、北斗電工社製自動分極測定装置(型番:HZ−3000)を使用して、空調のある室内(温度:25℃±2℃)で実施した。図2の分極曲線から、前記のようにして、AlとCuを接続した際に流れるガルバニック腐食電流を見積ることができる。このように本発明の方法によれば、実際に2つ(もしくは3つ以上)の材料を接続することなく、接続した際に流れるガルバニック腐食電流を見積ることができる。   This measurement was performed in an air-conditioned room (temperature: 25 ° C. ± 2 ° C.) using an automatic polarization measuring device (model number: HZ-3000) manufactured by Hokuto Denko. From the polarization curve of FIG. 2, the galvanic corrosion current that flows when Al and Cu are connected can be estimated as described above. Thus, according to the method of the present invention, it is possible to estimate the galvanic corrosion current that flows when connecting two (or three or more) materials without actually connecting them.

そして、この見積られたガルバニック腐食電流の電流値に時間をかければ腐食を生じる電気量を求めることができ、理論的には、その電気量と同当量の金属が腐食されるので、当該時間における金属の腐食量を予測することができる。又、このようにして電流値から、腐食の速度を予測することができ、この腐食の速度から材料の寿命を予測することができる。   Then, if the estimated current value of the galvanic corrosion current is given time, the amount of electricity that causes corrosion can be obtained. Theoretically, a metal equivalent to the amount of electricity is corroded. The amount of metal corrosion can be predicted. In this way, the corrosion rate can be predicted from the current value, and the life of the material can be predicted from the corrosion rate.

[本発明の方法の精度の確認]
本発明の方法により見積られたガルバニック腐食電流値の精度を確認するため、Alと他の種々の金属材料を接続した場合について、実際に接続した場合に流れた腐食電流(カップリング電流と呼ぶ)の測定値と、本発明の方法で見積られたガルバニック腐食電流値を比較した。図3は、本発明の方法により見積られたガルバニック腐食電流値と実際に接続した場合に流れた電流値との関係をプロットしたグラフである(横軸が本発明による見積り値、縦軸がカップリング電流値である。)。
[Confirmation of accuracy of the method of the present invention]
In order to confirm the accuracy of the galvanic corrosion current value estimated by the method of the present invention, in the case where Al and other various metal materials are connected, the corrosion current that flowed when actually connected (referred to as coupling current) And the galvanic corrosion current value estimated by the method of the present invention were compared. FIG. 3 is a graph plotting the relationship between the galvanic corrosion current value estimated by the method of the present invention and the current value flowing when actually connected (the horizontal axis is the estimated value according to the present invention, and the vertical axis is the cup. Ring current value.)

図3に示されるように、複数の組み合わせにてカップリング電流値と本発明の見積り値はよく一致しており、本発明による見積り値は、ガルバニック腐食電流の実測値とみなすことが出来る。カップリング電流値の実際の計測では組み合わせが異なると新たな測定が必要であるが、本発明の方法によれば、組み合わせを構成する材料個々の分極曲線データがあれば、それらを解析することで実際に計測することなくガルバニック腐食電流値を見積ることが出来、より多くの材料の組み合わせについての評価を短期間に容易に実施可能であることが、この結果からも示されている。   As shown in FIG. 3, the coupling current value and the estimated value of the present invention are in good agreement in a plurality of combinations, and the estimated value according to the present invention can be regarded as an actual measured value of the galvanic corrosion current. In actual measurement of the coupling current value, if the combination is different, a new measurement is required. However, according to the method of the present invention, if there is polarization curve data of each material constituting the combination, it can be analyzed. This result also shows that the galvanic corrosion current value can be estimated without actually measuring, and evaluation of more material combinations can be easily performed in a short time.

本発明の予測方法は短期間で容易に実施可能であるため、構造材の設計の際の、金属材料選択の判断や防食法の効果予測法として有用である。例えば、2種の金属材料を接続した状態で使用する際に、どちらの材料がどの程度腐食するかを、本発明の方法により定量的に評価することが出来る。前記のように、本発明による予測結果は、実環境中、実試料の挙動とよく一致しているので、構造材の設計の際等における、材料選択の初期判断に有用である。   Since the prediction method of the present invention can be easily implemented in a short period of time, it is useful as a judgment method for selecting a metal material and an effect prediction method for a corrosion prevention method when designing a structural material. For example, when two metal materials are used in a connected state, it can be quantitatively evaluated by the method of the present invention which material corrodes how much. As described above, since the prediction result according to the present invention is in good agreement with the behavior of the actual sample in the actual environment, it is useful for the initial judgment of material selection when designing the structural material.

腐食する方の材料に犠牲防食効果を期待して、更に卑な金属をめっきすると言う防食手法を施こす場合があるが、本発明の予測方法により、そのめっき金属のガルバニック腐食電流値を見積ることができる。さらにこの腐食電流値に基づき、めっきの腐食速度、めっきの寿命、すなわち犠牲防食効果の寿命を見積ることが可能である。   In anticipation of the sacrificial anti-corrosion effect on the corrosive material, there is a case where a corrosion prevention method of plating a base metal is applied, but the galvanic corrosion current value of the plating metal is estimated by the prediction method of the present invention. Can do. Furthermore, based on this corrosion current value, it is possible to estimate the corrosion rate of the plating, the life of the plating, that is, the life of the sacrificial anticorrosive effect.

ガルバニック腐食は、接続される材料間の露出面積比に依存する。例えば、腐食するほうの材料の露出面積を大きく、腐食しないほうの材料の露出面積を小さくすれば、腐食電流密度は小さくなる(腐食が抑制できる)。露出面積比と腐食電流密度の関係は、本発明の予測方法を用いて定量的に算出することが出来る。よって、腐食電流密度を一定以下にするために必要な露出面積比の設計等、防食対策の指標を、本発明の予測方法により定量的に見積ることが出来る。   Galvanic corrosion depends on the exposed area ratio between the connected materials. For example, if the exposed area of the corrosive material is increased and the exposed area of the non-corroded material is decreased, the corrosion current density is reduced (corrosion can be suppressed). The relationship between the exposed area ratio and the corrosion current density can be quantitatively calculated using the prediction method of the present invention. Therefore, an index of anticorrosion measures, such as the design of the exposed area ratio necessary for making the corrosion current density below a certain level, can be quantitatively estimated by the prediction method of the present invention.

Claims (3)

各種金属材料単体を、電解液中に浸漬して所定電位を印加した際の電流密度を、印加電位を変化させて測定し、当該電位と電流密度との関係を表す分極曲線を測定する過程1、
前記各種金属材料から選択された2種以上の金属材料について、前記分極曲線の電流密度をId、金属材料の露出面積(金属材料が電解液へ露出している面積)をAとしたときのId×Aを比較して、全ての金属材料のId×Aの合計が0となる電位を得る過程2、
当該電位における、前記2種以上の金属材料から選択された金属材料Aの電流値を前記分極曲線から求める過程3、及び
過程3で得られた電流値に基づき金属材料Aの腐食速度を予測する過程4
を有することを特徴とする異種金属接触状態における金属材料の腐食量予測方法。
Process 1 of measuring a current density when various metal materials are immersed in an electrolytic solution and applying a predetermined potential while changing the applied potential, and measuring a polarization curve representing the relationship between the potential and the current density ,
For two or more metal materials selected from the various metal materials, Id when the current density of the polarization curve is Id and the exposed area of the metal material (the area where the metal material is exposed to the electrolyte) is A Process of obtaining a potential at which the sum of Id × A of all metallic materials is 0 by comparing × A,
Step 3 for obtaining the current value of the metal material A selected from the two or more kinds of metal materials at the potential from the polarization curve, and predicting the corrosion rate of the metal material A based on the current value obtained in the step 3 Process 4
A method for predicting the amount of corrosion of a metal material in a contact state between different metals.
各種金属材料単体を、電解液中に浸漬して所定電流を流した際の電位を、前記所定電流値を変化させて測定し、当該電位と電流密度との関係を表す分極曲線を測定する過程1、
前記各種金属材料から選択された2種以上の金属材料について、前記分極曲線の電流密度をId、金属材料の面積をAとしたときのId×Aを比較して、全ての金属材料のId×Aの合計が0となる電位を得る過程2、
当該電位における、前記2種以上の金属材料から選択された金属材料Aの電流値を前記分極曲線から求める過程3、及び
過程3で得られた電流値に基づき金属材料Aの腐食速度を予測する過程4
を有することを特徴とする異種金属接触状態における金属材料の腐食量予測方法。
The process of measuring the polarization curve representing the relationship between the potential and the current density by measuring the potential when various metal materials are immersed in an electrolytic solution and flowing a predetermined current while changing the predetermined current value. 1,
For two or more kinds of metal materials selected from the various metal materials, Id × A where the current density of the polarization curve is Id and the area of the metal material is A is compared. Process 2 for obtaining a potential at which the sum of A becomes 0,
Step 3 for obtaining the current value of the metal material A selected from the two or more kinds of metal materials at the potential from the polarization curve, and predicting the corrosion rate of the metal material A based on the current value obtained in the step 3 Process 4
A method for predicting the amount of corrosion of a metal material in a contact state between different metals.
材料の寿命の予測方法であって、当該材料の量を、請求項1又は請求項2に記載の異種金属接触状態における金属材料の腐食量予測方法により予測された腐食速度で除することを特徴とする材料の寿命の予測方法。   A method for predicting the life of a material, characterized in that the amount of the material is divided by the corrosion rate predicted by the method for predicting the corrosion amount of a metal material in a contact state of different metals according to claim 1 or claim 2. A method for predicting the life of materials.
JP2009135221A 2009-06-04 2009-06-04 Method for predicting the amount of corrosion of metallic materials in contact with different metals Active JP5223783B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2009135221A JP5223783B2 (en) 2009-06-04 2009-06-04 Method for predicting the amount of corrosion of metallic materials in contact with different metals

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2009135221A JP5223783B2 (en) 2009-06-04 2009-06-04 Method for predicting the amount of corrosion of metallic materials in contact with different metals

Publications (2)

Publication Number Publication Date
JP2010281687A JP2010281687A (en) 2010-12-16
JP5223783B2 true JP5223783B2 (en) 2013-06-26

Family

ID=43538555

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2009135221A Active JP5223783B2 (en) 2009-06-04 2009-06-04 Method for predicting the amount of corrosion of metallic materials in contact with different metals

Country Status (1)

Country Link
JP (1) JP5223783B2 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102944508B (en) * 2012-11-09 2014-11-05 安徽省电力科学研究院 Tester for galvanic corrosion in soil medium
JP6048445B2 (en) * 2014-04-22 2016-12-21 Jfeスチール株式会社 Metal corrosivity evaluation method
CN117250146B (en) * 2023-11-20 2024-04-09 中汽数据(天津)有限公司 Evaluation method for galvanic corrosion reversal of automobile metal plate

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6112849A (en) * 1985-04-19 1986-01-21 Nippon Steel Corp Reinforced steel bar having excellent low-temperature toughness and sea water resistance
JPH01197629A (en) * 1988-02-03 1989-08-09 Hitachi Ltd Corrosion monitor element, corrosion monitor card, and corrosion environment quantifying method
JPH09297118A (en) * 1996-04-30 1997-11-18 Mitsubishi Chem Corp Corrosion measuring device for metallic material
JPH11174016A (en) * 1997-12-09 1999-07-02 Kobe Steel Ltd Al-mg base aluminum alloy capable of assuring local corrosion characteristics and local corrosion characteristic evaluation method for al-mg base aluminum alloy
JP2003107025A (en) * 2001-09-28 2003-04-09 Nobuaki Otsuki Method for calculating corrosion rate of macrocell in concrete member
JP2003119587A (en) * 2001-10-10 2003-04-23 Sumitomo Metal Mining Co Ltd Method for electrolytically refining copper

Also Published As

Publication number Publication date
JP2010281687A (en) 2010-12-16

Similar Documents

Publication Publication Date Title
Papavinasam Electrochemical polarization techniques for corrosion monitoring
US6683463B2 (en) Sensor array for electrochemical corrosion monitoring
JP6163433B2 (en) Crevice corrosion test method and crevice corrosion test equipment
US11892391B2 (en) Field monitoring electrochemical method for anticorrosion performance of organic coatings in seawater environment
US20230108997A1 (en) Corrosion-resistance testing method for coated metal member, corrosion-resistance testing apparatus for coated metal member, corrosion-resistance testing program for coated metal member, and storage medium
JP5223783B2 (en) Method for predicting the amount of corrosion of metallic materials in contact with different metals
JP2008292408A (en) Temporal evaluation method for crevice corrosion initiation
JP6048445B2 (en) Metal corrosivity evaluation method
US20230108474A1 (en) Corrosion-resistance testing method for coated metal member, corrosion-resistance testing apparatus for coated metal member, corrosion-resistance testing program for coated metal member, and storage medium
JP6289269B2 (en) Crevice corrosion test method
JP6544402B2 (en) Method of predicting corrosion of metals by numerical analysis
JP6544403B2 (en) Method of predicting corrosion of metals by numerical analysis
JPH11316209A (en) Evaluation method for weather resistance of steel product and measuring apparatus for weather resistance
JP4593382B2 (en) Method for measuring corrosion rate of metal and method for preventing metal corrosion by this method
JP6011874B2 (en) Method for evaluating inhibitors contained in plating solution
JP2016170108A (en) Method of predicting corrosion products
KR101047405B1 (en) Method of measuring porosity of coating material using EIS
Court et al. Electrochemical measurements of electroless nickel coatings on zincated aluminium substrates
Bonzom et al. Optical and chemical monitoring during foil penetration experiments to study intergranular corrosion in AA2024
Mizukami Simulation of Galvanic Corrosion of Aluminum Materials for Vehicles
CN102269729B (en) Method for detecting quality of phosphate coating
JP5013103B2 (en) Pinhole evaluation method
JP3853250B2 (en) Local corrosion sensor, local corrosion detection method and local corrosion detection apparatus using the local corrosion sensor
JP5327178B2 (en) Metal corrosion rate prediction method and metal corrosion life prediction system
JP6512198B2 (en) Metal corrosion prediction method, steel structure design method and corrosion prediction program

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20120126

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20130130

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20130212

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20130225

R150 Certificate of patent or registration of utility model

Ref document number: 5223783

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20160322

Year of fee payment: 3

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250