JPS6112849A - Reinforced steel bar having excellent low-temperature toughness and sea water resistance - Google Patents

Reinforced steel bar having excellent low-temperature toughness and sea water resistance

Info

Publication number
JPS6112849A
JPS6112849A JP8228285A JP8228285A JPS6112849A JP S6112849 A JPS6112849 A JP S6112849A JP 8228285 A JP8228285 A JP 8228285A JP 8228285 A JP8228285 A JP 8228285A JP S6112849 A JPS6112849 A JP S6112849A
Authority
JP
Japan
Prior art keywords
steel bar
steel
low
toughness
reinforced
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP8228285A
Other languages
Japanese (ja)
Other versions
JPH0224904B2 (en
Inventor
Toshimichi Mori
俊道 森
Takeo Harada
原田 武夫
Tetsuo Oosasa
大佐々 哲夫
Takayoshi Konishi
孝義 小西
Haruo Shimada
島田 春夫
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Nippon Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel Corp filed Critical Nippon Steel Corp
Priority to JP8228285A priority Critical patent/JPS6112849A/en
Publication of JPS6112849A publication Critical patent/JPS6112849A/en
Publication of JPH0224904B2 publication Critical patent/JPH0224904B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Heat Treatment Of Steel (AREA)

Abstract

PURPOSE:To produce a reinforced steel bar for reinforced concrete having excellent sea water resistance without decrease in toughness at a cryogenic temp. by using a low-Ni steel as a starting stock and subjecting the material to hot rolling, hardening and tempering under specific conditions thereby producing the reinforced steel bar. CONSTITUTION:The billet of the low-Ni alloy steel which contains <0.17% C, <0.03% Si, <0.70% Mn, <0.015% P, <0.005% S and 2-4% Ni and in which the content of P and S is decreased as far as possible is hot rolled to a steel bar at 750-850 deg.C finishing temp. The bar is forcibly cooled to harden the surface part and is then placed on a cooling bed to recuperate the heat in the steel bar and to temper automatically the steel bar. The reinforced steel bar which has the tempered martensite or bainite layer of >=3mm. depth in the outside circumferential part of the steel bar, has internally the structue consisting of ferrite and pearlite and has >=40kg/mm.<2> yield strength and >=4kg-cm Carpy impact value at -150 deg.C as well as the excellent low-temp. toughness and sea water resistance is obtained.

Description

【発明の詳細な説明】 本発明は低温靭性および耐海水性の優れた鉄筋棒鋼に関
するものである。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a reinforced steel bar with excellent low-temperature toughness and seawater resistance.

近年の石油事情から液化天然ガスの需要が増加し、貯蔵
基地建設用として鉄筋棒鋼の需要量が多くなってきた。
Demand for liquefied natural gas has increased due to the oil situation in recent years, and the demand for reinforced steel bars for use in constructing storage bases has increased.

すなわち最近設置される天然ガス貯蔵用容器は、安全性
が重視され、外殻をコンクリートで覆った構造のものが
指向され、補強用鉄筋棒鋼の需要量が増加している。天
然ガス貯蔵用コンクリート鉄筋棒鋼に要求される特性は
、川砂の枯渇からコンクリートの原料として海砂が使用
されるため耐海水性に優れている事、さらに天然ガスの
沸点は一165℃であるため一165℃までの低温にお
いても脆性を示さない事、および鉄筋棒鋼に要求される
一般的な特性として降伏強度が高い事等である。
That is, safety is emphasized in the natural gas storage containers installed recently, and the outer shell is being covered with concrete, and the demand for reinforcing steel bars is increasing. The characteristics required for concrete reinforced steel bars for natural gas storage are excellent seawater resistance because sea sand is used as a raw material for concrete due to the depletion of river sand, and because the boiling point of natural gas is -165°C. It does not exhibit brittleness even at low temperatures of -165°C, and it has high yield strength, which is a general characteristic required of reinforced steel bars.

高Ni鋼は周知のように低温靭性にすぐれ、低温用圧力
容器等に使用されているが非常に高価なため、さほどの
低温靭性を必要としない場合は数%のNiを含有する鋼
材が低温圧力用鋼板や低温用鋼管に実用されている。
As is well known, high-Ni steel has excellent low-temperature toughness and is used in low-temperature pressure vessels, etc., but it is very expensive, so if high-temperature toughness is not required, steel containing a few percent of Ni is used at low temperatures. It is used in pressure steel plates and low-temperature steel pipes.

しかしこれは再加熱による焼ならし一焼戻や焼入−焼戻
等のコストの高い熱処理を施して製造されており、また
コンクリート用に海砂が多用される事から近年要求され
始めた耐海水性は必ずしも満足出来るものではなかった
However, this is manufactured through expensive heat treatments such as normalizing and tempering by reheating, and quenching and tempering, and due to the heavy use of sea sand in concrete, there has been a demand for durability in recent years. Seawater properties were not always satisfactory.

一方鉄筋棒鋼は直径数10mmに対して長さ数mの独特
の細長い形状のため、再加熱焼入・焼戻による製造法で
は熱処理による曲りが避けられず、これの矯正工程およ
び矯正による硬化を除去するための焼鈍工程がさらに必
要となり、繁雑な手間と高い製造コストを要するため従
来殆んどがえりみられていない。このような棒鋼の簡便
な熱処理方法のひとつとして熱間圧延直後の保有熱を利
用し、オーステナイト組織の温度範囲にある赤熱鋼材を
急冷し表層部のみを焼入硬化する方法が提案されている
。この方法は熱処理による曲りも極めて少なくコストも
比較的安い製造法である。
On the other hand, reinforcing steel bars have a unique elongated shape with a diameter of several tens of millimeters and a length of several meters, so bending due to heat treatment is unavoidable in the manufacturing method using reheating quenching and tempering, and the straightening process and hardening due to straightening are unavoidable. It requires an additional annealing process to remove it, which requires complicated labor and high manufacturing costs, so it has not been carefully considered in the past. As one of the simple heat treatment methods for such steel bars, a method has been proposed in which the retained heat immediately after hot rolling is used to rapidly cool red-hot steel materials in the temperature range of the austenitic structure and quench harden only the surface layer. This method is a manufacturing method that causes very little bending due to heat treatment and is relatively inexpensive.

従来は低炭素鋼鉄筋に表面焼入法を適用する事によって
合金元素の節減や溶接性の改善を目的としたものであっ
たが、鉄筋内部はフェライトとパーライトの混合組織の
ため、焼入焼戻材に匹敵する靭性を得る事は困雅であっ
た。本発明者らは、低Ni棒鋼の圧延後の表面焼入につ
いて研究した結果、仕上圧延温度をコントロールし結晶
粒度を細かくする事によってNiの効果とあいまって棒
鋼内部の非硬化部も低温靭性が低下せず、さらに鋼材成
分中のSi、PおよびS含有量を低減すれば靭性が改善
できる事を見出した。
Conventionally, surface hardening was applied to low carbon steel reinforcing bars to reduce alloying elements and improve weldability. It was difficult to obtain toughness comparable to that of recycled material. As a result of research on surface quenching after rolling of low-Ni steel bars, the present inventors found that by controlling the finish rolling temperature and making the grain size finer, the low-temperature toughness of the non-hardened parts inside the steel bars can be improved by combining the effect of Ni with the effect of Ni. It has been found that the toughness can be improved by further reducing the Si, P, and S contents in the steel components without decreasing the toughness.

次にNi鋼の耐海水性について試験したところ、Niの
耐食作用により耐海水性は一般炭素鋼よりややすぐれて
いるが焼入によるマルテンサイトやベーナイト組織鋼は
焼戻されても化学的に不安定のため耐食性は劣り、目標
とする耐海水性が得られなかった。しかしながら、これ
らの焼戻マルテンサイトまたはベーナイト組織鋼におい
てもsi。
Next, we tested the seawater resistance of Ni steel, and found that the seawater resistance was slightly better than that of general carbon steel due to the corrosion resistance of Ni, but martensitic and bainitic steels due to quenching are chemically stable even after tempering. Due to its stability, corrosion resistance was poor, and the target seawater resistance could not be achieved. However, even in these tempered martensitic or bainitic steels, si.

PおよびSを低減する事によって耐海水性が著しく向」
ニする事がわかった。とくにS量の影響は極めて顕著で
ある。
Seawater resistance is significantly improved by reducing P and S.
I found out that it does. In particular, the influence of the amount of S is extremely significant.

本発明は以上の知見にもとづいて、耐海水性および低温
靭性に著しくすぐれた鉄筋棒鋼を提供するものである。
The present invention is based on the above findings, and provides a reinforcing steel bar with outstanding seawater resistance and low-temperature toughness.

即ち、本発明の要旨とするところは、 C: 0.17%以下、Si:Q、Q3%以下、Mn:
0.70%以下、P:0.015%以下、S : O。
That is, the gist of the present invention is as follows: C: 0.17% or less, Si: Q, Q 3% or less, Mn:
0.70% or less, P: 0.015% or less, S: O.

005%以下、Ni:2〜4%、残部が鉄および不可避
的不純物から成り、外周部に深さ3mm以上の焼戻しマ
ルテンサイトまたはベーナイト層を有し内部はフェライ
トおよびパーライトから成る降伏強度40kg/mrr
?以上、−150℃におけるシャルピー衝撃値4kg−
m以上を有する低温靭性および耐海水性のすぐれた鉄筋
棒鋼、である。
005% or less, Ni: 2 to 4%, the balance is iron and unavoidable impurities, the outer periphery has a tempered martensite or bainite layer with a depth of 3 mm or more, and the interior is made of ferrite and pearlite. Yield strength: 40 kg/mrr
? Above, Charpy impact value 4kg at -150℃
It is a reinforcing steel bar with excellent low temperature toughness and seawater resistance, and has a toughness of at least m.

次に本発明において前記のように成分範囲を定めた理由
と本発明鋼に適した製造方法について述べる。
Next, the reason for determining the above-described range of components in the present invention and the manufacturing method suitable for the steel of the present invention will be described.

Cを0.17%以下としたのは、Cは焼入性の高い元素
であり0.17%を超えると靭性の劣化をきたすためで
ある。他元素との組合せにおいてC量が増加すると棒鋼
内部の非硬化部はもとより表層の焼入焼戻部の靭性も低
下し、C量が0.17%を越えると目標とする貯蔵タン
クに必要な低温靭性が得られないがらである。Siはコ
ンクリ−1〜中に埋設した際、鉄筋の表面に生成した被
膜中にSiが富化し、シリケートを生成し、コンクリー
トを構成するアルカリ液に侵食される傾向が大きくなる
。従ってこの傾向を軽減させるためにSi量は0.03
%以下とした。Mnは靭性低下の少ない強化元素として
使用するものであるが、0.70%超では焼入性が過大
となってC同様靭性を劣化させるため0.07%以下と
した。Pは不純物元素として避けられない元素であり0
.015%超では耐海水性および低温靭性が劣化するの
で0.015%以下とした。SはPとの組合せにおいて
0.005%以下にする事によって耐海水性および低温
靭性が著しく向上することが判明したので0.005%
以下とした。Niは地鉄に固溶し強度および靭性を向上
させるもので、2%未満ではその効果が小さくなりまた
合金コストの点も考慮して2〜4%の範囲とした。また
表層部の焼戻マルテンサイトまたはベーナイト層の深さ
を3 m m以上としたのは3mm未満では所要の降伏
強度およびシャルピー衝撃値が得られないからである。
The reason why C is set to 0.17% or less is that C is an element with high hardenability, and if it exceeds 0.17%, toughness deteriorates. When the amount of C increases in combination with other elements, the toughness of not only the unhardened portion inside the steel bar but also the quenched and tempered portion of the surface layer decreases. Although low-temperature toughness cannot be obtained. When Si is buried in concrete, it becomes enriched in the film formed on the surface of the reinforcing bars, forms silicates, and has a greater tendency to be eroded by the alkaline liquid that constitutes the concrete. Therefore, in order to reduce this tendency, the amount of Si is 0.03
% or less. Mn is used as a reinforcing element that causes less deterioration in toughness, but if it exceeds 0.70%, the hardenability becomes excessive and like C, the toughness deteriorates, so it is set to 0.07% or less. P is an element that cannot be avoided as an impurity element and is 0
.. If it exceeds 0.015%, seawater resistance and low-temperature toughness deteriorate, so the content was set at 0.015% or less. It has been found that seawater resistance and low temperature toughness are significantly improved by reducing S to 0.005% or less in combination with P.
The following was made. Ni is a solid solution in the base iron to improve strength and toughness, and if it is less than 2%, the effect will be small, and in consideration of alloy cost, the range is set to 2 to 4%. The depth of the tempered martensite or bainite layer in the surface layer is set to 3 mm or more because if it is less than 3 mm, the required yield strength and Charpy impact value cannot be obtained.

次に本発明鋼に適した製造方法について述べる。Next, a manufacturing method suitable for the steel of the present invention will be described.

本発明鋼のAr、変態点は750〜800℃、Ar工変
態点は670〜680℃であり、オーステナイト域での
圧延、およびオーステナイトーフェライトニ相域での圧
延のいずれにおいても結晶粒が微細化し良好な特性が得
られる事から面域における圧延温度は750℃〜900
℃とするのが望ましい。しかしこの範囲の中でも750
0C〜850℃の低温仕上げ圧延の方が更に好ましい。
The Ar transformation point of the steel of the present invention is 750 to 800°C, and the Ar transformation point is 670 to 680°C, and the crystal grains are fine in both rolling in the austenite region and rolling in the austenite-ferrite dual phase region. The rolling temperature in the area is 750°C to 900°C to obtain good properties.
It is desirable to set it to ℃. However, within this range, 750
Low-temperature finish rolling at 0C to 850C is even more preferred.

下限温度750℃は、750℃未満では圧延時の変形抵
抗が大となり、通常圧延機の能力を越える。また材質上
も強度が向上する反面、靭性が劣化するからである。な
お、790℃〜750℃における二相域圧延による材質
特性はオーステナイト域圧延におけるよりも、非焼入部
のフェライト・パーライト組織がより細粒となり低温靭
性および降伏強度の優れたものが得られる。しかし変形
抵抗はオーステナイト域圧延におけるよりも大きい。
If the lower limit temperature is 750°C, the deformation resistance during rolling becomes large and exceeds the capacity of a normal rolling mill. Furthermore, although the strength of the material improves, the toughness deteriorates. Note that the material properties obtained by rolling in the two-phase region at 790° C. to 750° C. are such that the ferrite/pearlite structure in the non-quenched portion becomes finer grained than in rolling in the austenite region, resulting in excellent low-temperature toughness and yield strength. However, the deformation resistance is greater than in austenite region rolling.

従って低温靭性および降伏強度を若干犠牲にしてよい場
合にはオーステナイト域における圧延を行なう方が圧延
負荷上有利である。上限温度900℃は、これを越える
温度ではオーステナイト結晶粒の粗大化および加熱温度
上昇に伴なう燃料コス1への上昇を来たす。
Therefore, it is more advantageous in terms of rolling load to perform rolling in the austenite region if it is acceptable to sacrifice some low-temperature toughness and yield strength. The upper limit temperature is 900° C. If the temperature exceeds 900° C., the austenite crystal grains become coarse and the fuel cost increases to 1 due to the increase in heating temperature.

また圧延終了後の冷却速度(γ域から400℃まで)を
20 ’C/ see以上とするのが有効でこれ未満の
冷却速度では表面層が焼入組織にならない。
Further, it is effective to set the cooling rate after rolling (from the γ range to 400°C) to 20'C/see or higher; if the cooling rate is lower than this, the surface layer will not become a hardened structure.

次に本発明の実施例について述べる。第1表に供試材の
種類および化学組成を示す。
Next, examples of the present invention will be described. Table 1 shows the types and chemical compositions of the test materials.

供試材として本発明鋼の他に比較材として通常生産され
ている3、5Ni鋼(JIS  G3127゜5L3N
45) 、異形鉄筋棒鋼3種(JIS  G31’12
,5D35)および鉄筋コンクリート用棒鋼1種(JI
’S  G31’12.’5R24)に適合する化学組
成の120 のビレットを用いた。
In addition to the steel of the present invention, 3,5Ni steel (JIS G3127゜5L3N), which is normally produced as a comparative material, was used as a test material.
45), deformed reinforced steel bar type 3 (JIS G31'12
, 5D35) and class 1 steel bars for reinforced concrete (JI
'SG31'12. 120 billet having a chemical composition compatible with '5R24) was used.

各供試材ビレットいずれも1100℃〜1150℃に加
熱し異形棒′鋼(D25)に圧延した。この時の仕上圧
延温度を800℃〜850℃となるようコントロールし
た。仕上圧延直後供試材のうち本発明鋼及び3.5%鋼
は強力なり−リングトラフによって強制冷却し鋼材表面
部を焼入処理したのち、冷却床上において鋼材内部の熱
によって復熱せしめ自動的°に焼戻させた。供試材5D
35゜5R24は強制冷却を行なわず通常どおり冷却床
上において単純に放冷した。
Each sample billet was heated to 1100°C to 1150°C and rolled into a deformed steel bar (D25). The finishing rolling temperature at this time was controlled to be 800°C to 850°C. Among the test materials immediately after finish rolling, the present invention steel and 3.5% steel are strong - after forced cooling in a ring trough and quenching of the surface of the steel material, the steel is reheated automatically using the heat inside the steel material on a cooling bed. Tempered to °. Sample material 5D
35°5R24 was simply cooled on a cooling bed as usual without performing forced cooling.

第1図は表面焼入処理を実施した供試材の冷却曲線を示
す。最表面部における平均冷却速度は120℃/see
程度であり、この場合外周部の焼入組織の深さは5 m
 mであった。次に前記圧延材を用いて、機械的特性を
調査するために引張および低温衝撃試験を実施した。引
張試験片はJIS2号(L=8D)を、また衝撃試験片
はJIS4号(Vノツチ)を用いた。第2表に機械試験
結果を示す。
FIG. 1 shows the cooling curve of the sample material subjected to surface hardening treatment. The average cooling rate at the outermost surface is 120°C/see
In this case, the depth of the hardened structure at the outer periphery is about 5 m.
It was m. Next, using the rolled material, tensile and low-temperature impact tests were conducted to investigate the mechanical properties. JIS No. 2 (L=8D) was used as the tensile test piece, and JIS No. 4 (V-notch) was used as the impact test piece. Table 2 shows the mechanical test results.

本発明鋼および3 、5 q i鋼の引張強度はクーリ
ングトラフにより起用性冷却を行なったため、単純放冷
によって製造した5D35および5R24に比較し高い
値を示している。一方低温衝撃値はSi、PおよびSを
低減した本発明鋼では一165℃において10kg−m
以上であり他の供試材に比較し高強度であるにもかかわ
らず低温靭性のすぐれた性質を示している。
The tensile strength of the steel of the present invention and the 3,5 q i steel is higher than that of 5D35 and 5R24 produced by simple cooling, because the steel was cooled during use using a cooling trough. On the other hand, the low-temperature impact value of the steel of the present invention with reduced Si, P, and S content is 10 kg-m at -165°C.
These results indicate that the material exhibits excellent low-temperature toughness despite its high strength compared to other test materials.

次に第1表に示す成分の本発明鋼を用い、従来行なわれ
ていた熱処理方法に、よる機械的特性値と比較するため
に焼入・焼戻処理(800℃×30分保持→水冷、60
0℃X6Q分→水冷)を実施した。第3表に焼入・焼戻
処理を行なった場合および表面焼入を行なった場合の特
性値を併記した。
Next, using the steel of the present invention having the components shown in Table 1, quenching and tempering were performed (holding at 800°C for 30 minutes → water cooling, 60
0°C x 6Q minutes → water cooling). Table 3 also lists the characteristic values when quenching and tempering were performed and when surface quenching was performed.

クーリングトラフにより強制冷却を行って製造した表面
焼入鋼は従来から行われている焼入焼戻法とほぼ同等の
引張特性および低温靭性が得られた。
The surface-hardened steel produced by forced cooling using a cooling trough had almost the same tensile properties and low-temperature toughness as the conventional hardening and tempering method.

第2図は第1表に示す成分の本発明鋼について焼入焼戻
および本発明に係る表面焼入処理した場合のミクロ組織
を示す。焼入焼戻材の組織は表層部および中心部共焼入
・焼戻マルテンサイトおよびベイナイト組織であるが、
表面焼入処理処理材は表層部は焼戻マルテンサイトおよ
びベーナイト組織、中心部は著しく微細なフェライト−
パーライト組織となっている。
FIG. 2 shows the microstructure of the steel of the present invention having the components shown in Table 1 after being quenched and tempered and subjected to the surface hardening treatment according to the present invention. The structure of the quenched and tempered material is a co-quenched and tempered martensite and bainite structure in the surface layer and center.
The surface hardened material has a tempered martensite and bainite structure in the surface layer, and extremely fine ferrite in the center.
It has a perlite structure.

次に耐海水性を調査するために前記第1表に示した供試
材を用い、試験方法として0.2%食塩水を使用し液温
25℃で定電位法により供試材の陽分極曲線の測定を行
なった。第3図に各供試材の電位−電流密度曲線を示す
。同図に示すように本発明鋼は最も高電位まで電流密度
は増加しない。
Next, in order to investigate the seawater resistance, using the test materials shown in Table 1 above, the test method was to anodic polarize the test materials using 0.2% saline solution at a liquid temperature of 25°C by constant potential method. Curve measurements were taken. FIG. 3 shows potential-current density curves for each sample material. As shown in the figure, in the steel of the present invention, the current density does not increase up to the highest potential.

すなわち耐海水性が従来鉄筋はもちろん従来の3゜5%
Ni1llに比較しても非常にすぐれている事がわかる
In other words, the seawater resistance is 3.5% of that of conventional reinforcing steel.
It can be seen that it is extremely superior when compared to Ni1ll.

以上あように本発明鋼は、従来にない低温靭性および耐
海水性のすぐれた高強度鉄筋棒鋼であり、かつ従来行な
われていた再加熱による熱処理を施す事なくきわめて安
価に製造することができるきわめて有用な発明である。
As described above, the steel of the present invention is a high-strength reinforced steel bar with unprecedented low-temperature toughness and seawater resistance, and can be manufactured at an extremely low cost without the conventional reheating heat treatment. This is an extremely useful invention.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明になる棒鋼の冷却曲線を示す。 第2図はミクロ組織を示す。 第3図は耐海水性試験結果を示す。 FIG. 1 shows the cooling curve of the steel bar according to the present invention. Figure 2 shows the microstructure. Figure 3 shows the seawater resistance test results.

Claims (1)

【特許請求の範囲】[Claims] C:0.17%以下、Si:0.03%以下、Mn:0
.70%以下、P:0.015%以下、S:0.005
%以下、Ni:2〜4%、残部が鉄および不可避的不純
物から成り、外周部に深さ3mm以上の焼戻しマルテン
サイトまたはベイナイト層を有し内部はフェライトおよ
びパーライトから成る降伏強度40kg/mm^2以上
、−150℃におけるシャルピー衝撃値4kg−m以上
を有する低温靭性および耐海水性のすぐれた鉄筋棒鋼。
C: 0.17% or less, Si: 0.03% or less, Mn: 0
.. 70% or less, P: 0.015% or less, S: 0.005
% or less, Ni: 2-4%, the balance consists of iron and unavoidable impurities, the outer periphery has a tempered martensite or bainite layer with a depth of 3 mm or more, and the interior consists of ferrite and pearlite. Yield strength 40 kg/mm^ A reinforced steel bar with excellent low-temperature toughness and seawater resistance, having a Charpy impact value of 4 kg-m or more at -150°C.
JP8228285A 1985-04-19 1985-04-19 Reinforced steel bar having excellent low-temperature toughness and sea water resistance Granted JPS6112849A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP8228285A JPS6112849A (en) 1985-04-19 1985-04-19 Reinforced steel bar having excellent low-temperature toughness and sea water resistance

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP8228285A JPS6112849A (en) 1985-04-19 1985-04-19 Reinforced steel bar having excellent low-temperature toughness and sea water resistance

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP18701780A Division JPS57114638A (en) 1980-12-30 1980-12-30 Bar steel for reinforcing rod with superior toughness at low temperature and seawater resistance, and its manufacture

Publications (2)

Publication Number Publication Date
JPS6112849A true JPS6112849A (en) 1986-01-21
JPH0224904B2 JPH0224904B2 (en) 1990-05-31

Family

ID=13770157

Family Applications (1)

Application Number Title Priority Date Filing Date
JP8228285A Granted JPS6112849A (en) 1985-04-19 1985-04-19 Reinforced steel bar having excellent low-temperature toughness and sea water resistance

Country Status (1)

Country Link
JP (1) JPS6112849A (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6451328A (en) * 1987-08-18 1989-02-27 Furukawa Co Ltd Production of cuprous chloride having high purity
JPH02125839A (en) * 1988-07-01 1990-05-14 Nippon Steel Corp Coastal corrosion resistant steel material and its manufacture
JP2010281687A (en) * 2009-06-04 2010-12-16 Sumitomo Electric Ind Ltd Method for predicting amount of corrosion of metal material in contact state of different metal
CN104745968A (en) * 2014-12-24 2015-07-01 福建三宝特钢有限公司 HRB500E seismic steel bar and preparation method thereof
CN104853460A (en) * 2015-04-22 2015-08-19 昆明理工大学 Reinforcing steel bar with heating function, and manufacturing and using method thereof
JP2019535892A (en) * 2016-10-21 2019-12-12 ヒュンダイ スチール カンパニー High-strength rebar and manufacturing method thereof
WO2021125624A1 (en) * 2019-12-19 2021-06-24 주식회사 포스코 Steel material having excellent strain-aging impact toughness at extremely low temperatures and method of manufacturing same

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS52117830A (en) * 1976-03-31 1977-10-03 Sumitomo Metal Ind Ltd Preparation of strong and tough high tensile steel

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS52117830A (en) * 1976-03-31 1977-10-03 Sumitomo Metal Ind Ltd Preparation of strong and tough high tensile steel

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6451328A (en) * 1987-08-18 1989-02-27 Furukawa Co Ltd Production of cuprous chloride having high purity
JPH0331645B2 (en) * 1987-08-18 1991-05-08 Furukawa Co Ltd
JPH02125839A (en) * 1988-07-01 1990-05-14 Nippon Steel Corp Coastal corrosion resistant steel material and its manufacture
JP2010281687A (en) * 2009-06-04 2010-12-16 Sumitomo Electric Ind Ltd Method for predicting amount of corrosion of metal material in contact state of different metal
CN104745968A (en) * 2014-12-24 2015-07-01 福建三宝特钢有限公司 HRB500E seismic steel bar and preparation method thereof
CN104745968B (en) * 2014-12-24 2017-02-01 福建三宝特钢有限公司 HRB500E seismic steel bar and preparation method thereof
CN104853460A (en) * 2015-04-22 2015-08-19 昆明理工大学 Reinforcing steel bar with heating function, and manufacturing and using method thereof
JP2019535892A (en) * 2016-10-21 2019-12-12 ヒュンダイ スチール カンパニー High-strength rebar and manufacturing method thereof
WO2021125624A1 (en) * 2019-12-19 2021-06-24 주식회사 포스코 Steel material having excellent strain-aging impact toughness at extremely low temperatures and method of manufacturing same

Also Published As

Publication number Publication date
JPH0224904B2 (en) 1990-05-31

Similar Documents

Publication Publication Date Title
US5695576A (en) High ductility steel, manufacturing process and use
US4946516A (en) Process for producing high toughness, high strength steel having excellent resistance to stress corrosion cracking
WO2021104417A1 (en) Carbon steel and austenitic stainless steel rolling clad plate and manufacturing method therefor
CN108431272B (en) Steel sheet for low-temperature pressure vessel having excellent resistance to PWHT and method for producing same
JPH10509768A (en) High strength secondary hardened steel with excellent toughness and weldability
US6827797B2 (en) Process for making triple-phase nano-composite steels
US4938266A (en) Method of producing steel having a low yield ratio
JPH0741856A (en) Production of high strength steel pipe excellent in sulfide stress corrosion cracking resistance
US4826543A (en) Process for producing high toughness, high strength steel having excellent resistance to stress corrosion cracking
JPH0441616A (en) Production of low-hardness water-resistant steel excellent in wear resistance and bendability
US8652273B2 (en) High tensile steel for deep drawing and manufacturing method thereof and high-pressure container produced thereof
NO336435B1 (en) Low-carbon steel with superior mechanical and corrosion properties
CN111225987B (en) Thick steel sheet having excellent low-temperature strain aging impact characteristics and method for producing same
JPS6112849A (en) Reinforced steel bar having excellent low-temperature toughness and sea water resistance
JPH04285119A (en) Production of thick-walled high tensile strength steel plate excellent in toughness at low temperature
JPH039168B2 (en)
JP2000160300A (en) 655 Nmm-2 CLASS LOW-C HIGH-Cr ALLOY OIL WELL PIPE WITH HIGH CORROSION RESISTANCE, AND ITS MANUFACTURE
JPS6148521A (en) Manufacture of reinforcing bar steel superior in low temperature toughness and strength
JPH0219175B2 (en)
JPS6286125A (en) Production of hot rolled steel products having high strength and high toughness
JPH01319629A (en) Production of cr-mo steel sheet having excellent toughness
US5827379A (en) Process for producing extra high tensile steel having excellent stress corrosion cracking resistance
JP3327065B2 (en) Method for producing tempered high-strength steel sheet excellent in brittle crack propagation arrestability
JPS63183123A (en) Production of high tensile steel having excellent low-temperature toughness after linear and spotty reheating
JP2004197213A (en) Steel sheet to be hot-formed superior in hardenability after high-temperature forming