JP2016213414A - 半導体装置および半導体装置の製造方法 - Google Patents

半導体装置および半導体装置の製造方法 Download PDF

Info

Publication number
JP2016213414A
JP2016213414A JP2015098341A JP2015098341A JP2016213414A JP 2016213414 A JP2016213414 A JP 2016213414A JP 2015098341 A JP2015098341 A JP 2015098341A JP 2015098341 A JP2015098341 A JP 2015098341A JP 2016213414 A JP2016213414 A JP 2016213414A
Authority
JP
Japan
Prior art keywords
film
titanium
semiconductor device
conductivity type
titanium nitride
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2015098341A
Other languages
English (en)
Other versions
JP6582537B2 (ja
Inventor
民雅 呂
Mina Ryo
民雅 呂
卓也 小松
Takuya Komatsu
卓也 小松
文一 今井
Fumikazu Imai
文一 今井
卓巳 藤本
Takumi Fujimoto
卓巳 藤本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fuji Electric Co Ltd
Original Assignee
Fuji Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fuji Electric Co Ltd filed Critical Fuji Electric Co Ltd
Priority to JP2015098341A priority Critical patent/JP6582537B2/ja
Publication of JP2016213414A publication Critical patent/JP2016213414A/ja
Application granted granted Critical
Publication of JP6582537B2 publication Critical patent/JP6582537B2/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Electrodes Of Semiconductors (AREA)

Abstract

【課題】ゲート電圧印加後のしきい値電圧変動を低減することができる半導体装置および半導体装置の製造方法を提供すること。【解決手段】SiC基板1上にSiO2膜を形成した半導体装置において、アルミニウムからなるソース配線電極(Al膜12)とゲート酸化膜8との間にチタン膜15、または窒化チタン膜、またはチタン膜15と窒化チタン膜とチタン膜、のいずれかを設け、チタン膜15または窒化チタン膜の結晶粒径が50nm未満の柱状多結晶からなる構造とする。【選択図】図1

Description

本発明は、炭化珪素を基板に用いた半導体装置および半導体装置の製造方法に関する。
炭化珪素(SiC)は高い絶縁破壊電界を有し、低損失パワーデバイスに最適な半導体として近年注目されている。
SiC基板上に熱酸化により二酸化珪素(SiO2)膜を形成でき、SiO2膜を用いたSiCパワーMOSFET(Metal Oxide Semiconductor Field Effect Transistor:絶縁ゲート型電界効果トランジスタ)の開発が進められている。熱酸化によりSiC基板上に形成されたMOSゲート(金属−酸化膜−半導体からなる絶縁ゲート)のゲート絶縁膜とSiC基板との接合界面(以下、SiC−MOS界面とする)には高密度の界面準位密度(Dit)があり、チャンネル移動度の低下をもたらす。炭化珪素基板と二酸化珪素膜の界面特性を評価する指標として、界面準位密度がある。一般的には、界面準位密度が低い方がチャネル移動度に代表される界面特性が良好となる傾向がある。
近年、亜酸化窒素(N2O)ガス雰囲気・一酸化窒素(NO)ガス雰囲気での酸化によりDitを低減したSiC−MOS界面を形成できるプロセスが開発された。
2O・NOガスを用いて作成された酸化膜の界面準位密度は2×1012cm-2eV-1以下とすることができ、高チャンネル移動度を実現でき、SiC−MOSFETのゲート酸化膜として良質な構造であると考えられてきた。
炭化珪素基板と二酸化珪素膜の界面特性を改善する一般的な手法としては、炭化珪素基板を酸素を含んだ雰囲気で酸化し、酸化後のアニール(POA:Post Oxidation Annealing)として一酸化二窒素や一酸化窒素の窒素を含むガスを用いる方法が知られている。この場合、酸化と同時に窒化が起こり、窒素原子が二酸化珪素膜中や炭化珪素基板と二酸化珪素膜との界面のダングリングボンド(未結合手)の終端に寄与し、界面準位密度を低減する効果があるとされている(例えば、下記特許文献1参照。)。
特表2004−511101号公報
このような背景技術の中、SiCパワーMOSFETの実用化の課題は、SiC−MOSFETの信頼性確保である。SiC−MOSFETの信頼性試験を検証したところ負バイアスでのしきい値電圧が大きく変動するという課題があることが判明した。以下その内
容について説明する。
SiCパワーMOSFETは駆動時にゲート電極に正電圧、負電圧双方の高電圧を印加しなければならない。また高温動作のため200℃での動作保証も必要となる。そのため、動作保証として、ゲート酸化膜に加わる電界強度がプラスマイナス2MV/cm〜4MV/cm、動作温度200℃が必要となる。この場合に、ある条件ではMOSFETのしきい値電圧(Vth)が大きく変動する現象が観測されている。
図4は、従来例を示すSiC縦型MOSFETの断面図である。製造方法を説明すると、はじめに、高濃度n+型基板1上に5×1015/cm3の窒素ドーピングした低濃度n型ドリフト層2を10μmの厚さに堆積する。次に高濃度p+型層3をイオン注入し形成する。次に、表面に5×1015/cm3のアルミニウムをドープした低濃度p-型層4を0.5μmの厚さに堆積する。その後、低濃度n-型層7を窒素イオン注入し形成する。
この後、高濃度n+型層6をリンイオン注入により、また、高濃度p+型層5をアルミニウム(Al)イオン注入により形成する。その後、アルゴン雰囲気中1600℃で活性化アニールを行う。その後、熱酸化により、SiO2からなるゲート酸化膜8をN2O雰囲気で70nm形成する。その後、ゲート電極9、層間絶縁膜10を形成する。その後、オーミック電極を形成するため、ニッケルシリサイド電極11を形成する。その後、ソース配線金属12のアルミニウム(Al)金属層を5μm形成し、保護膜14であるポリイミドを形成し、380℃でポリイミドを硬化(キュア)し、次に裏面電極(ドレイン電極)13を形成してデバイスを完成する。
このSiC−MOSFETを200℃の高温でゲート酸化膜に加わる電界強度がプラス3MV/cmとマイナス3MV/cmのゲート電圧を10分間印加した後のしきい値電圧変動について、プラス印加ではしきい値電圧シフト量は±0.1V以下であるが、マイナス印加ではしきい値電圧が負に大きくシフトする現象が観測された。
このことは、高温雰囲気でゲート電極9へ負バイアスを印加することで、ゲート酸化膜8とSiC半導体部との界面(以下、SiO2/SiC界面とする)近傍またはゲート酸化膜8中に正の固定電荷が発生したことを示す。しきい値電圧が負側にシフトする現象は正の電荷であるホールがSiO2/SiC界面に発生したことを示す。
Si系のSi−MOSFET、Si−IGBTデバイスでは、負バイアス時に正電荷が発生する報告は少ない。Si−Pチャネル型MOSFETで負バイアス時にしきい値電圧シフトの現象(スロートラップ現象)が報告されているが、ゲート電圧印加によってゲート酸化膜に加わる電界強度を−3MV/cm、動作温度150℃の条件で、しきい値電圧変動幅は1000時間後に0.1Vの変動幅である。
SiC−MOSFETの場合は、ゲート電圧印加によってゲート酸化膜に加わる電界強度を−3MV/cm、動作温度150℃の条件では−7V以上変動し、Si−MOSFETと大きく異なる。ゲート酸化膜とSi半導体部との界面(以下、SiO2/Si界面とする)の界面準位密度は1.0×1011以下であるのに対し、SiO2/SiC界面の界面準位密度は1.0×1012以上であり、SiO2/SiC界面にはホールトラップが多く存在していることを示している。界面準位密度の低減化について多くの研究がされているが、SiO2/SiC界面についてSiO2/Si界面と同等の界面準位密度になった報告はない。SiO2/SiC界面の界面準位密度が高いのは、SiO2/SiC界面に特有の問題であるが、現在の段階でSiO2/SiC界面の欠陥量・歪量・バンド構造の違いから界面準位密度が高くなるのかは明らかではない。
図5は、従来例を示すSiC横型MOSFETの断面図である。次に、しきい値電圧シフトの原因を調査するため、図5に示すように、層間絶縁膜10上にAl配線金属層12(12a,12b)のない横型MOSFETを準備した。製造方法を説明すると、はじめに、高濃度n型基板1上に5×1015/cm3の窒素ドーピングした低濃度n型ドリフト層2を10μmの厚さに堆積する。次に、高濃度p+型層3をイオン注入し形成する。次に、表面に5×1015/cm3のアルミニウムをドープした低濃度p-型層4を0.5μmの厚さに堆積する。その後、低濃度n型層7を窒素イオン注入し形成する。
次に、高濃度n型層6をリンイオン注入により、また、高濃度p型層5をアルミニウムイオン注入により形成する。その後、アルゴン雰囲気中1600℃で活性化アニールを行う。その後、ゲート酸化膜8をN2O雰囲気で70nm形成する。その後、ゲート電極9、層間絶縁膜10を形成する。その後、オーミック電極を形成するため、ニッケルシリサイド電極11を1.0μm形成する。その後、アルミニウム配線金属層12を5μm堆積してパターニングし、ソース用Al配線金属層(12a)とドレイン用Al配線金属層(12b)を層間絶縁膜10に接触せずに形成して、横型MOSFETを完成する。
このデバイスでは、200℃の高温動作でゲート酸化膜に加わる電界強度が−3MV/cmとなるゲート電圧を10分間印加した後、しきい値電圧変動は±0.1Vであった。本結果からMOSゲート上(層間絶縁膜10上)にAl配線金属層12(12a,12b)がない横型MOSFETは負バイアス時にしきい値電圧変動がないことを示している。
Al配線金属層12が層間絶縁膜10と接触していない構造はしきい値電圧変動がないことから、層間絶縁膜10/Al配線金属層12(12a,12b)の構造元素分析を昇温脱離ガス分光法による分析を行った結果、200℃以上の温度で3×1014/cm2以上の水素原子・水素イオンを検出した。Al配線金属層12中、および層間絶縁膜10(SiO2)/Al配線金属層12の界面からの水素発生はAl配線金属層12と水の反応と推定している。
SiO2/SiC界面には800℃以上の高温でのゲート酸化膜8形成時または800℃以上高温でのアニール処理により多くの水素イオンが取り込まれるが、高温での処理のため取り込まれたシリコン−水素(Si−H)結合、炭素−水素(C−H)結合は400℃以下の低温熱処理では容易には変化しない。
しかしながら低温(400℃以下)で堆積したAl配線金属層12から発生した水素原子・水素イオンは固定化されていない。高温・ゲート電圧印加状態では、Al配線金属層12から発生した水素原子・水素イオンはSiO2/SiC界面に移動し、SiO2/SiC界面のSi−H結合、C−H結合がSi+C+のダングリングボンドとなり正電荷を発生すると考えられる。200℃でのゲート酸化膜8中の水素原子・水素イオンの拡散係数は1.0×10-8[cm2/s]であり、10分後の水素原子・水素イオンの拡散長は24.5μmであり、容易にゲート酸化膜8中を移動し、SiO2/SiC界面に拡散し、しきい値電圧変動を起こす。
このように、ソース用Al配線金属層12aと層間絶縁膜10を接触させないMOS構造のデバイスを作ることは可能であるが、MOSFETのセルサイズが大きくなり実用に向かない。
上記課題を解決するため、本発明は、ゲート電圧印加後のしきい値電圧変動を低減することを目的とする。
上記目的を達成するため、本発明の半導体装置は、炭化珪素半導体基板上に二酸化珪素膜を形成した半導体装置において、アルミニウムからなるソース配線電極とゲート酸化膜との間にチタン膜または窒化チタン膜を設け、前記チタン膜または前記窒化チタン膜の結晶粒径が50nm未満の柱状多結晶からなる構造であることを特徴とする。
また、前記基板は第1導電型であり、当該基板上に設けた第1導電型ドリフト層と、前記第1導電型ドリフト層に設けた第2導電型ウエル層と、前記第2導電型ウエル層に設けた第1導電型不純物領域と、前記第2導電型ウエル層上に形成した二酸化珪素膜の前記ゲート絶縁膜と、前記ゲート絶縁膜の上に形成したゲート電極と、前記第1導電型不純物領域と電気的に接続された前記ソース配線電極と、前記基板の第1導電型ドリフト層が形成された面と、反対側の面に設けたドレイン電極と、を備えたことを特徴とする。
また、前記ソース配線電極と前記ゲート酸化膜との間に水素を吸蔵するチタン膜を設けたことを特徴とする。
また、前記ソース配線電極と前記ゲート酸化膜との間に水素を遮蔽する窒化チタン膜を設けたことを特徴とする。
また、前記ソース配線電極と前記ゲート酸化膜との間にチタン膜と窒化チタン膜、またはチタン膜と窒化チタン膜とチタン膜を有することを特徴とする。
また、本発明の半導体装置の製造方法は、炭化珪素半導体基板上に二酸化珪素膜を形成した半導体装置の製造方法において、アルミニウムからなるソース配線電極とゲート酸化膜との間にチタン膜または窒化チタンの膜、またはチタン膜と窒化チタン膜とチタン膜を、結晶粒径が50nm未満の柱状多結晶に形成することを特徴とする。
また、前記チタン膜または前記窒化チタンの膜、または前記チタン膜と窒化チタン膜とチタン膜がスパッタ法によって成膜され、当該スパッタ法の圧力が0.15Pa以上0.4Pa未満、前記基板の温度が200℃以上400℃未満であることを特徴とする。
また、前記ソース配線電極の形成後のアニール温度が450℃以下であることを特徴とする。
上記構成によれば、チタン膜および窒化チタン膜を、スパッタ法で製膜される結晶粒径50nm未満の多結晶膜とすることで、ソース配線電極からゲート酸化膜・SiC界面への水素原子・水素イオンの移動を防止する。
本発明によれば、ゲート電圧印加後のしきい値電圧変動を低減できる効果を奏する。
図1は、実施の形態1にかかる半導体装置の構成を示す断面図である。 図2は、実施の形態2にかかる半導体装置の構成を示す断面図である。 図3は、実施の形態3にかかる半導体装置の構成を示す断面図である。 図4は、従来例を示すSiC縦型MOSFETの断面図である。 図5は、従来例を示すSiC横型MOSFETの断面図である。
以下に添付図面を参照して、この発明にかかる半導体装置および半導体装置の製造方法の好適な実施の形態を詳細に説明する。本明細書および添付図面においては、nまたはpを冠記した層や領域では、それぞれ電子または正孔が多数キャリアであることを意味する。また、nやpに付す+および−は、それぞれそれが付されていない層や領域よりも高不純物濃度および低不純物濃度であることを意味する。なお、以下の実施の形態の説明および添付図面において、同様の構成には同一の符号を付し、重複する説明を省略する。また、本明細書では、ミラー指数(結晶学的面指数)の表記において、“−”はその直後の指数につくバーを意味しており、指数の前に“−”を付けることで負の指数をあらわしている。
(実施の形態1)
図1は、実施の形態1にかかる半導体装置の構成を示す断面図である。図1には、SiC縦型MOSFETの断面図を示している。この半導体装置の製造方法を順に説明すると、高濃度第1導電型(n+)基板1上に5×1015/cm3の窒素ドーピングした低濃度第1導電型(n-)ドリフト層2を10μmの厚さに堆積する。次に、高濃度第2導電型(p+)層3をイオン注入し形成する。
次に、表面に5×1015/cm3のアルミニウムをドープした低濃度第2導電型(p-)層4を0.5μmの厚さに堆積する。その後、低濃度第1導電型(n-)層7を窒素イオン注入し形成する。次に、高濃度第1導電型(n+)層6をリンイオン注入により、また、高濃度第2導電型(p+)層5をアルミニウムイオン注入により形成する。その後、アルゴン雰囲気中で1600℃の活性化アニールを行う。
その後、熱酸化により、ゲート酸化膜8をN2O雰囲気で70nm形成する。その後、ゲート電極9と、層間絶縁膜10を形成する。そして、層間絶縁膜10を深さ方向に貫通するコンタクトホールを形成し、高濃度第1導電型(n+)層6および高濃度第2導電型(p+)層5を露出させる。この後、SiC半導体部との電気的接触部となるオーミック電極を形成するため、コンタクトホールに露出するSiC半導体部(高濃度第1導電型(n+)層6および高濃度第2導電型(p+)層5)にニッケルシリサイド電極11を形成する。
その後、ソース配線電極であるAl膜(Al配線金属層)12を形成するにあたって、基板おもて面にチタン(Ti)膜15およびAl膜12を順に例えばそれぞれ0.1μmおよび5.0μmの厚さでスパッタにより成膜(形成)する(Ti/Al構造)。スパッタ条件は、基板温度250℃、アルゴン圧力0.3Paのマグネトロンスパッタなどを用いることができる。これによって、層間絶縁膜10はチタン(Ti)膜15で覆われ、ニッケルシリサイド電極11に接するAl膜(Al配線金属層)12が形成される。
その後、Al膜12のエッチングをし、ソース配線電極を形成する。その後、ソース配線電極を保護する保護膜14であるポリイミド膜を基板おもて面に形成し、例えば380℃程度の温度でのアニールにより保護膜14を硬化(ポリイミドキュア)し、基板1の裏面に裏面電極13を形成し、デバイスを完成させる。
Ti膜15とAl膜12との界面にはTiAl合金層16がアニールにより形成される。380℃のアニールでは、Al膜12下にTiAl合金層16は10nm以下の厚さで形成され、その下層のTi膜15は90nmの厚さで残っている。Al膜12下のTi膜15により、Al膜12中の水素原子・水素イオンはTi膜15に吸収され、ゲート酸化膜8に水素が拡散することは無くなり、しきい値電圧の安定したゲート酸化膜8を形成することができる。
上記構造を用いることにより、ゲート電圧印加時にゲート酸化膜に加わる電界強度を−3MV/cmとし、動作温度を200℃としたときに、1000時間後のしきい値電圧変動幅は0.1V以下に抑えることができた。
また、Ti膜15は堅い材質であり、厚さが1.0μm以上となると割れが発生する。このため、Ti膜15の膜厚は10nm以上1.0μm未満とする。すなわち、Ti膜15の膜厚は、380℃のアニールで形成可能なTiAl合金層16の厚さ以上で、かつTi膜15に割れが発生しない厚さとする。また、Al膜12からなる金属電極層を形成するための熱処理は、素子特性に悪影響を与えない例えば400℃以下程度の低温条件で行うことが一般的である。そして、400℃以上でTiAl合金層16が反応し、50nm以上の反応層が形成されることが知られている(例えば、特開平06−330287号などを参照)。なお、400℃未満ではTi膜15とAl膜12との反応は原理的には起こらないが、実際には界面での局所拡散、アニール装置の温度ムラ、化合物生成温度を下げるような不純物の混入(コンタミ)などの様々な要因で生成される可能性がある。発明者らの実験では、380℃のアニールでは、TiAl合金層16の膜厚が10nm以下であった。よって、TiAl合金層16の膜厚は、後述するように450℃以下の温度の熱処理によって形成可能な50nm未満が好ましい。
ソース配線電極形成後のアニール温度は450℃以下で形成する。発明者らの実験では、450℃で50nm以上の膜厚のTiAl合金層16が形成されることが確認された。微結晶膜同士の界面で反応が起こるため、TiAl合金層16は一様に均一な厚さの層ではない。そのため、450℃のアニール温度で形成されるTiAl合金層16の厚さは、観察された範囲内で最も薄い値の50nm以上と定義する。後述するようにTi膜15の膜厚の上限が50nm未満であるため、ソース配線電極を形成するための熱処理の温度の上限を450℃とした。
Ti膜15によるHの吸蔵効果のため、アニール後のTi膜15の膜厚は10nm以上とする。このTi膜15の吸蔵効果について実験を行った。実験では、100nmの膜厚のTi膜15に400℃の温度で水素イオン注入を行ったところ、6×1017/cm2の水素原子・水素イオンが吸蔵されたので、10nmの膜厚では1×1015/cm2以上の水素原子・水素イオンを吸蔵できる。
(実施の形態2)
図2は、実施の形態2にかかる半導体装置の構成を示す断面図である。実施の形態1では、Ti/Al構造を示したが、実施の形態2では、Al膜12中の水素原子・水素イオンの遮蔽性を高めるため、ソース配線電極であるAl膜12を形成するにあたって、基板おもて面にTi膜15、窒化チタン(TiN)膜17およびAl膜12をそれぞれ0.1μm、0.1μmおよび5.0μmの厚さで順にスパッタにより成膜する(Ti/TiN/Al構造)。スパッタ条件は、基板温度250℃、アルゴン圧力0.3Paのマグネトロンスパッタなどを用いることができる。
TiN膜17の水素拡散係数を調査するため、TiN/SiO2膜を形成し、400℃水素雰囲気中で30分アニールした後、二次イオン質量分析法(SIMS:Secondary Ion Mass Spectrometry)を用いて分析した。その結果、水素原子・水素イオンはTiN膜17が遮蔽し、ゲート酸化膜8には届いていないことを検証した。また、Ti膜15とAl膜12との間にTiN膜17を形成することにより、TiAl合金層ができていないことから、Ti吸蔵効果を高めることができる。このように、実施の形態2によれば、Ti/TiN/Al構造を用いることでさらに、水素原子・水素イオンの遮蔽性を高めることができ、しきい値電圧変動幅を小さくできる。
(実施の形態3)
図3は、実施の形態3にかかる半導体装置の構成を示す断面図である。実施の形態3では、ソース配線電極であるAl膜12を形成するにあたって、基板おもて面にTi膜15、TiN膜17、Ti膜18およびAl膜12をそれぞれ0.1μm、0.1μm、0.1μmおよび5.0μmの厚さで順に積層する(Ti/TiN/Ti/Al構造)。Ti/TiN/Ti/Al構造は、スパッタによる成膜で形成し、スパッタ条件は、基板温度300℃、アルゴン圧力0.2Paのマグネトロンスパッタなどを用いることができる。Ti膜18とAl膜12とが反応してなるTiAl合金層16は、実施の形態1と同様に形成されるが、実施の形態3ではさらに、水素原子・水素イオンの遮蔽性を高めることが可能である。
以上説明したように、本発明の各実施の形態によれば、Ti膜およびTiN膜を、スパッタ法で製膜される結晶粒径を50nm未満の柱状多結晶膜とすることで、ソース配線電極からゲート酸化膜/SiC界面(SiO2/SiC界面)への水素原子・水素イオンの移動を防止する効果を高めることができる。そして、Ti膜およびTiN膜を、基板の温度200℃以上400℃未満かつ雰囲気圧力0.15Pa以上0.4Pa未満となるスパッタ条件にて形成された膜とすることで、水素原子・水素イオンのソース配線電極からゲート酸化膜/SiC界面への移動を防止する効果を高めることができる。
これにより、マイナスゲートバイアス・プラスゲートバイアス時(ゲート電極に正電圧印加時・負電圧印加時)のしきい値電圧(Vth)の変動量を抑制でき、安定した電気的特性を有するSiC−MOSFETデバイスを提供することが可能となる。
ここで、結晶粒径50nm以上のTi膜およびTiN膜においては、微細構造部に対する被覆性が悪く、結晶粒径10nm未満のTi膜およびTiN膜においては、ボイドが多く十分な水素原子・水素イオン遮蔽性が得られない。
このような効果は、基板1に用いるSiCのC面(000−1)上にチャンネルを有するデバイスにて効果があるが、その他の方位面(たとえばSi面(0001)、(112−0)、(033−8))上にチャンネルを有するデバイスにおいても同様の効果がある。
また、ゲート電極の下のゲート酸化膜を有するデバイス(たとえばSiC−IGBTなど)のデバイスにおいても同様の効果を得ることができる。また、本発明は、導電型を反転させても同様に成り立つ。
以上のように、本発明にかかる半導体装置および半導体装置の製造方法は、電力変換装置や種々の産業用機械などの電源装置などに使用される半導体装置に有用である。
1 SiC基板
2 エピタキシャル結晶(ドリフト層)
3 p+
4 エピタキシャル結晶(ウエル層)
5 p+
6 n+
7 n-
8 ゲート酸化膜
9 ゲート電極
10 層間絶縁膜
11 電極コンタクト(ニッケルシリサイド電極)
12 Al膜(ソース配線電極)
13 裏面電極
14 保護膜
15,18 Ti膜
16 TiAl合金層
17 TiN膜

Claims (8)

  1. 炭化珪素半導体基板上に二酸化珪素膜を形成した半導体装置において、
    アルミニウムからなるソース配線電極とゲート酸化膜との間にチタン膜または窒化チタン膜を設け、前記チタン膜または前記窒化チタン膜の結晶粒径が50nm未満の柱状多結晶からなる構造であることを特徴とする半導体装置。
  2. 前記基板は第1導電型であり、当該基板上に設けた第1導電型ドリフト層と、
    前記第1導電型ドリフト層に設けた第2導電型ウエル層と、
    前記第2導電型ウエル層に設けた第1導電型不純物領域と、
    前記第2導電型ウエル層上に形成した二酸化珪素膜の前記ゲート絶縁膜と、
    前記ゲート絶縁膜の上に形成したゲート電極と、
    前記第1導電型不純物領域と電気的に接続された前記ソース配線電極と、
    前記基板の第1導電型ドリフト層が形成された面と、反対側の面に設けたドレイン電極と、
    を備えたことを特徴とする請求項1に記載の半導体装置。
  3. 前記ソース配線電極と前記ゲート酸化膜との間に水素を吸蔵するチタン膜を設けたことを特徴とする請求項2に記載の半導体装置。
  4. 前記ソース配線電極と前記ゲート酸化膜との間に水素を遮蔽する窒化チタン膜を設けたことを特徴とする請求項2に記載の半導体装置。
  5. 前記ソース配線電極と前記ゲート酸化膜との間にチタン膜と窒化チタン膜、またはチタン膜と窒化チタン膜とチタン膜を有することを特徴とする請求項2に記載の半導体装置。
  6. 炭化珪素半導体基板上に二酸化珪素膜を形成した半導体装置の製造方法において、
    アルミニウムからなるソース配線電極とゲート酸化膜との間にチタン膜または窒化チタン膜、またはチタン膜と窒化チタン膜とチタン膜を、結晶粒径が50nm未満の柱状多結晶に形成することを特徴とする半導体装置の製造方法。
  7. 前記チタン膜または前記窒化チタン膜、または前記チタン膜と窒化チタン膜とチタン膜がスパッタ法によって成膜され、当該スパッタ法の圧力が0.15Pa以上0.4Pa未満、前記基板の温度が200℃以上400℃未満であることを特徴とする請求項6に記載の半導体装置の製造方法。
  8. 前記ソース配線電極の形成後のアニール温度が450℃以下であることを特徴とする請求項6または7に記載の半導体装置の製造方法。
JP2015098341A 2015-05-13 2015-05-13 半導体装置および半導体装置の製造方法 Active JP6582537B2 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2015098341A JP6582537B2 (ja) 2015-05-13 2015-05-13 半導体装置および半導体装置の製造方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2015098341A JP6582537B2 (ja) 2015-05-13 2015-05-13 半導体装置および半導体装置の製造方法

Publications (2)

Publication Number Publication Date
JP2016213414A true JP2016213414A (ja) 2016-12-15
JP6582537B2 JP6582537B2 (ja) 2019-10-02

Family

ID=57550083

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2015098341A Active JP6582537B2 (ja) 2015-05-13 2015-05-13 半導体装置および半導体装置の製造方法

Country Status (1)

Country Link
JP (1) JP6582537B2 (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2019146300A1 (en) 2018-01-26 2019-08-01 Toyota Jidosha Kabushiki Kaisha Semiconductor device and manufacturing method of the same
WO2021215178A1 (ja) * 2020-04-22 2021-10-28 ローム株式会社 半導体装置およびその製造方法

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04267359A (ja) * 1991-02-21 1992-09-22 Sony Corp 配線形成方法
JPH07326612A (ja) * 1994-05-26 1995-12-12 Lg Semicon Co Ltd 半導体素子の配線形成方法
JP2014033200A (ja) * 2012-08-06 2014-02-20 General Electric Co <Ge> バイアス温度不安定性(bti)を低減したデバイス
WO2015033740A1 (ja) * 2013-09-05 2015-03-12 富士電機株式会社 炭化珪素半導体素子および炭化珪素半導体素子の製造方法

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04267359A (ja) * 1991-02-21 1992-09-22 Sony Corp 配線形成方法
JPH07326612A (ja) * 1994-05-26 1995-12-12 Lg Semicon Co Ltd 半導体素子の配線形成方法
JP2014033200A (ja) * 2012-08-06 2014-02-20 General Electric Co <Ge> バイアス温度不安定性(bti)を低減したデバイス
WO2015033740A1 (ja) * 2013-09-05 2015-03-12 富士電機株式会社 炭化珪素半導体素子および炭化珪素半導体素子の製造方法

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2019146300A1 (en) 2018-01-26 2019-08-01 Toyota Jidosha Kabushiki Kaisha Semiconductor device and manufacturing method of the same
WO2021215178A1 (ja) * 2020-04-22 2021-10-28 ローム株式会社 半導体装置およびその製造方法

Also Published As

Publication number Publication date
JP6582537B2 (ja) 2019-10-02

Similar Documents

Publication Publication Date Title
JP6304909B2 (ja) 炭化珪素半導体装置および炭化珪素半導体装置の製造方法
JP5452062B2 (ja) 炭化珪素半導体装置の製造方法
US9812529B2 (en) Semiconductor device and method for manufacturing the same
JP6192190B2 (ja) 炭化珪素半導体装置の製造方法および炭化珪素半導体装置
US9755064B2 (en) Semiconductor device and method for manufacturing the same
WO2014103186A1 (ja) 炭化珪素半導体装置およびその製造方法
JPWO2003047000A1 (ja) 半導体装置及びその製造方法
JP5982471B2 (ja) 電界効果型炭化珪素トランジスタ
JP5750948B2 (ja) 炭化珪素半導体装置およびその製造方法
JPWO2012131898A1 (ja) 炭化珪素半導体装置
US10453923B2 (en) Silicon carbide semiconductor device and method of manufacturing silicon carbide semiconductor device
JP2012253108A (ja) 炭化珪素半導体装置およびその製造方法
JP2016058658A (ja) 炭化ケイ素半導体装置
JP2017175115A (ja) 炭化珪素半導体素子および炭化珪素半導体素子の製造方法
JP6068042B2 (ja) 炭化珪素半導体装置およびその製造方法
JP6064977B2 (ja) 炭化珪素半導体装置
US10147797B2 (en) Silicon carbide semiconductor device and method of manufacturing silicon carbide semiconductor device
JP6582537B2 (ja) 半導体装置および半導体装置の製造方法
JP2016201500A (ja) 炭化ケイ素mos型半導体装置およびその製造方法
JP2018206872A (ja) 半導体装置
JP6772495B2 (ja) 炭化珪素半導体装置および炭化珪素半導体装置の製造方法
JP2015069989A (ja) 炭化珪素半導体装置の製造方法
JP2020150242A (ja) 半導体装置
JP6716985B2 (ja) 半導体装置および半導体装置の製造方法
JP2022015323A (ja) 炭化珪素半導体装置および炭化珪素半導体装置の製造方法

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20180214

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20181227

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20190108

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20190311

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20190806

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20190819

R150 Certificate of patent or registration of utility model

Ref document number: 6582537

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250