JP2016204480A - ポリカーボネート樹脂組成物 - Google Patents

ポリカーボネート樹脂組成物 Download PDF

Info

Publication number
JP2016204480A
JP2016204480A JP2015085984A JP2015085984A JP2016204480A JP 2016204480 A JP2016204480 A JP 2016204480A JP 2015085984 A JP2015085984 A JP 2015085984A JP 2015085984 A JP2015085984 A JP 2015085984A JP 2016204480 A JP2016204480 A JP 2016204480A
Authority
JP
Japan
Prior art keywords
component
polycarbonate resin
weight
resin composition
bis
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2015085984A
Other languages
English (en)
Other versions
JP6588219B2 (ja
Inventor
祐樹 松本
Yuki Matsumoto
祐樹 松本
泰規 稲澤
Yasunori Inasawa
泰規 稲澤
仁美 佐藤
Hitomi Sato
仁美 佐藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Teijin Ltd
Original Assignee
Teijin Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Teijin Ltd filed Critical Teijin Ltd
Priority to JP2015085984A priority Critical patent/JP6588219B2/ja
Publication of JP2016204480A publication Critical patent/JP2016204480A/ja
Application granted granted Critical
Publication of JP6588219B2 publication Critical patent/JP6588219B2/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Compositions Of Macromolecular Compounds (AREA)

Abstract

【課題】機械特性、耐薬品性及び長期耐クリープ特性を高次元で満足するポリカーボネート樹脂組成物を提供する。【解決手段】(A)ポリカーボネート系樹脂(A成分)および(B)ポリプロピレン系樹脂(B成分)の合計100重量部に対し、(C)スチレン系熱可塑性エラストマー(C成分)1〜15重量部並びに(D)ガラス繊維(D−1成分)および炭素繊維(D−2成分)からなる群より選ばれる少なくとも一種の繊維状充填材(D成分)1〜100重量部を含むポリカーボネート樹脂組成物。【選択図】なし

Description

本発明はポリカーボネート樹脂組成物およびその成形品に関するものである。さらに詳細には、ポリカーボネート系樹脂、ポリプロピレン系樹脂、スチレン系熱可塑性エラストマーを含む樹脂組成物にガラス繊維および/または炭素繊維を添加することにより、機械特性、耐薬品性、長期耐クリープ特性が改良されたポリカーボネート樹脂組成物に関するものである。
ポリカーボネート樹脂は、優れた機械特性、熱特性を有しているため、OA機器分野、電子電気機器分野、および自動車分野など様々な分野で広く利用されている。しかしながら、ポリカーボネート樹脂は溶融粘度が高いため加工性に乏しく、また、非晶樹脂であることから、特に家庭用あるいは業務用洗剤などへの耐薬品性に難点をもつ。そのため、これらの欠点を補うべく、ポリオレフィン系樹脂を添加することが知られているが、単純添加ではポリカーボネート樹脂とポリオレフィン系樹脂の相溶性が低く、層状剥離等が生じて、十分な機械特性が得られにくいため、実用化に乏しい状態にある。
そこで、ポリカーボネート樹脂とポリオレフィン系樹脂の相溶性を高め、実用的な機械特性を付与するべく、種々の樹脂組成物が提案されている。例えば、水酸基含有ビニルモノマーでグラフト変性させたエラストマーを相溶化剤として添加する方法(特許文献1、2参照)や、水酸基含有ビニルモノマーで変性させたポリプロピレンを相溶化剤とし、エチレンと炭素数4以上のα−オレフィンからなるエチレン−α−オレフィン共重合体を耐衝撃剤とする方法(特許文献3、4参照)、末端カルボキシル化ポリカーボネート樹脂とエポキシ化ポリプロピレン樹脂を使用する方法(特許文献5参照)、末端カルボキシ化ポリカーボネート樹脂と無水マレイン酸変性ポリプロピレン樹脂を使用する方法(特許文献6参照)、スチレン−エチレン・ブチレン−スチレンブロック共重合体を相溶化剤として添加する方法(特許文献7参照)、スチレン−エチレン・プロピレン−スチレン共重合体を添加する方法(特許文献8参照)などがあるが、いずれもポリカーボネートの実用範囲の域を超えるほどの耐薬品性とPC/ABS並みの実用に耐えうる機械特性を両立するに至っていない。
また、ポリカーボネートを含む樹脂組成物に対して剛性を始めとする機械特性を付与する方法は多々報告されているが、ポリカーボネートとポリプロピレンの両方を含む樹脂組成物に対して剛性、長期耐クリープ特性を付与する方法はほとんど報告例がないのが現状である。
特開平7−330972号公報 特開平8−134277号公報 特開2005−132937号公報 特開昭54−53162号公報 特開昭63−215750号公報 特開昭63−215752号公報 特開平5−17633号公報 特開2000−17120号公報
上記に鑑み、本発明の目的は優れた機械特性、耐薬品性、長期耐クリープ特性を有するポリカーボネート樹脂組成物を提供することにある。
本発明者は上記課題を解決すべく鋭意検討を行った結果、ポリカーボネート系樹脂、ポリプロピレン系樹脂、スチレン系熱可塑性エラストマーを含む樹脂組成物にガラス繊維および/または炭素繊維を添加することにより、機械特性、耐薬品性、長期耐クリープ特性を高い次元で満足するポリカーボネート樹脂組成物を得る方法を見出し、本発明を完成するに至った。
本発明によれば、上記課題は、(A)ポリカーボネート系樹脂(A成分)および(B)ポリプロピレン系樹脂(B成分)の合計100重量部に対し、(C)スチレン系熱可塑性エラストマー(C成分)1〜15重量部並びに(D)ガラス繊維(D−1成分)および炭素繊維(D−2成分)からなる群より選ばれる少なくとも一種の強化繊維状充填材(D成分)1〜100重量部を含むポリカーボネート樹脂組成物により達成される。
以下、本発明の詳細について説明する。
(A成分:ポリカーボネート系樹脂)
本発明において使用されるポリカーボネート系樹脂は、二価フェノールとカーボネート前駆体とを反応させて得られるものである。反応方法の一例として界面重合法、溶融エステル交換法、カーボネートプレポリマーの固相エステル交換法、および環状カーボネート化合物の開環重合法などを挙げることができる。
ここで使用される二価フェノールの代表的な例としては、ハイドロキノン、レゾルシノール、4,4’−ビフェノール、1,1−ビス(4−ヒドロキシフェニル)エタン、2,2−ビス(4−ヒドロキシフェニル)プロパン(通称ビスフェノールA)、2,2−ビス(4−ヒドロキシ−3−メチルフェニル)プロパン、2,2−ビス(4−ヒドロキシフェニル)ブタン、1,1−ビス(4−ヒドロキシフェニル)−1−フェニルエタン、1,1−ビス(4−ヒドロキシフェニル)シクロヘキサン、1,1−ビス(4−ヒドロキシフェニル)−3,3,5−トリメチルシクロヘキサン、2,2−ビス(4−ヒドロキシフェニル)ペンタン、4,4’−(p−フェニレンジイソプロピリデン)ジフェノール、4,4’−(m−フェニレンジイソプロピリデン)ジフェノール、1,1−ビス(4−ヒドロキシフェニル)−4−イソプロピルシクロヘキサン、ビス(4−ヒドロキシフェニル)オキシド、ビス(4−ヒドロキシフェニル)スルフィド、ビス(4−ヒドロキシフェニル)スルホキシド、ビス(4−ヒドロキシフェニル)スルホン、ビス(4−ヒドロキシフェニル)ケトン、ビス(4−ヒドロキシフェニル)エステル、ビス(4−ヒドロキシ−3−メチルフェニル)スルフィド、9,9−ビス(4−ヒドロキシフェニル)フルオレンおよび9,9−ビス(4−ヒドロキシ−3−メチルフェニル)フルオレンなどが挙げられる。好ましい二価フェノールは、ビス(4−ヒドロキシフェニル)アルカンであり、なかでも耐衝撃性の点からビスフェノールAが特に好ましく、汎用されている。
本発明では、汎用のポリカーボネートであるビスフェノールA系のポリカーボネート以外にも、他の2価フェノール類を用いて製造した特殊なポリカーボネ−トをA成分として使用することが可能である。
例えば、2価フェノール成分の一部又は全部として、4,4’−(m−フェニレンジイソプロピリデン)ジフェノール(以下“BPM”と略称することがある)、1,1−ビス(4−ヒドロキシフェニル)シクロヘキサン、1,1−ビス(4−ヒドロキシフェニル)−3,3,5−トリメチルシクロヘキサン(以下“Bis−TMC”と略称することがある)、9,9−ビス(4−ヒドロキシフェニル)フルオレン及び9,9−ビス(4−ヒドロキシ−3−メチルフェニル)フルオレン(以下“BCF”と略称することがある)を用いたポリカーボネ−ト(単独重合体又は共重合体)は、吸水による寸法変化や形態安定性の要求が特に厳しい用途に適当である。これらのBPA以外の2価フェノールは、該ポリカーボネートを構成する2価フェノール成分全体の5モル%以上、特に10モル%以上、使用するのが好ましい。
殊に、高剛性かつより良好な耐加水分解性が要求される場合には、樹脂組成物を構成するA成分が次の(1)〜(3)の共重合ポリカーボネートであるのが特に好適である。
(1)該ポリカーボネートを構成する2価フェノール成分100モル%中、BPMが20〜80モル%(より好適には40〜75モル%、さらに好適には45〜65モル%)であり、かつBCFが20〜80モル%(より好適には25〜60モル%、さらに好適には35〜55モル%)である共重合ポリカーボネート。
(2)該ポリカーボネートを構成する2価フェノール成分100モル%中、BPAが10〜95モル%(より好適には50〜90モル%、さらに好適には60〜85モル%)であり、かつBCFが5〜90モル%(より好適には10〜50モル%、さらに好適には15〜40モル%)である共重合ポリカーボネート。
(3)該ポリカーボネートを構成する2価フェノール成分100モル%中、BPMが20〜80モル%(より好適には40〜75モル%、さらに好適には45〜65モル%)であり、かつBis−TMCが20〜80モル%(より好適には25〜60モル%、さらに好適には35〜55モル%)である共重合ポリカーボネート。
これらの特殊なポリカーボネートは、単独で用いてもよく、2種以上を適宜混合して使用してもよい。また、これらを汎用されているビスフェノールA型のポリカーボネートと混合して使用することもできる。
これらの特殊なポリカーボネートの製法及び特性については、例えば、特開平6−172508号公報、特開平8−27370号公報、特開2001−55435号公報及び特開2002−117580号公報等に詳しく記載されている。
なお、上述した各種のポリカーボネートの中でも、共重合組成等を調整して、吸水率及びTg(ガラス転移温度)を下記の範囲内にしたものは、ポリマー自体の耐加水分解性が良好で、かつ成形後の低反り性においても格段に優れているため、形態安定性が要求される分野では特に好適である。
(i)吸水率が0.05〜0.15%、好ましくは0.06〜0.13%であり、かつTgが120〜180℃であるポリカーボネート、あるいは
(ii)Tgが160〜250℃、好ましくは170〜230℃であり、かつ吸水率が0.10〜0.30%、好ましくは0.13〜0.30%、より好ましくは0.14〜0.27%であるポリカーボネート。
ここで、ポリカーボネートの吸水率は、直径45mm、厚み3.0mmの円板状試験片を用い、ISO62−1980に準拠して23℃の水中に24時間浸漬した後の水分率を測定した値である。また、Tg(ガラス転移温度)は、JIS K7121に準拠した示差走査熱量計(DSC)測定により求められる値である。
カーボネート前駆体としてはカルボニルハライド、炭酸ジエステルまたはハロホルメートなどが使用され、具体的にはホスゲン、ジフェニルカーボネートまたは二価フェノールのジハロホルメートなどが挙げられる。
前記二価フェノールとカーボネート前駆体を界面重合法によって芳香族ポリカーボネート樹脂を製造するに当っては、必要に応じて触媒、末端停止剤、二価フェノールが酸化するのを防止するための酸化防止剤などを使用してもよい。また本発明の芳香族ポリカーボネート樹脂は三官能以上の多官能性芳香族化合物を共重合した分岐ポリカーボネート樹脂、芳香族または脂肪族(脂環式を含む)の二官能性カルボン酸を共重合したポリエステルカーボネート樹脂、二官能性アルコール(脂環式を含む)を共重合した共重合ポリカーボネート樹脂、並びにかかる二官能性カルボン酸および二官能性アルコールを共に共重合したポリエステルカーボネート樹脂を含む。また、得られた芳香族ポリカーボネート樹脂の2種以上を混合した混合物であってもよい。
分岐ポリカーボネート樹脂は、本発明の樹脂組成物に、ドリップ防止性能などを付与できる。かかる分岐ポリカーボネート樹脂に使用される三官能以上の多官能性芳香族化合物としては、フロログルシン、フロログルシド、または4,6−ジメチル−2,4,6−トリス(4−ヒドロキジフェニル)ヘプテン−2、2,4,6−トリメチル−2,4,6−トリス(4−ヒドロキシフェニル)ヘプタン、1,3,5−トリス(4−ヒドロキシフェニル)ベンゼン、1,1,1−トリス(4−ヒドロキシフェニル)エタン、1,1,1−トリス(3,5−ジメチル−4−ヒドロキシフェニル)エタン、2,6−ビス(2−ヒドロキシ−5−メチルベンジル)−4−メチルフェノール、4−{4−[1,1−ビス(4−ヒドロキシフェニル)エチル]ベンゼン}−α,α−ジメチルベンジルフェノール等のトリスフェノール、テトラ(4−ヒドロキシフェニル)メタン、ビス(2,4−ジヒドロキシフェニル)ケトン、1,4−ビス(4,4−ジヒドロキシトリフェニルメチル)ベンゼン、またはトリメリット酸、ピロメリット酸、ベンゾフェノンテトラカルボン酸およびこれらの酸クロライド等が挙げられ、中でも1,1,1−トリス(4−ヒドロキシフェニル)エタン、1,1,1−トリス(3,5−ジメチル−4−ヒドロキシフェニル)エタンが好ましく、特に1,1,1−トリス(4−ヒドロキシフェニル)エタンが好ましい。
分岐ポリカーボネートにおける多官能性芳香族化合物から誘導される構成単位は、2価フェノールから誘導される構成単位とかかる多官能性芳香族化合物から誘導される構成単位との合計100モル%中、好ましくは0.01〜1モル%、より好ましくは0.05〜0.9モル%、さらに好ましくは0.05〜0.8モル%である。
また、特に溶融エステル交換法の場合、副反応として分岐構造単位が生ずる場合があるが、かかる分岐構造単位量についても、2価フェノールから誘導される構成単位との合計100モル%中、好ましくは0.001〜1モル%、より好ましくは0.005〜0.9モル%、さらに好ましくは0.01〜0.8モル%であるものが好ましい。なお、かかる分岐構造の割合については1H−NMR測定により算出することが可能である。
脂肪族の二官能性のカルボン酸は、α,ω−ジカルボン酸が好ましい。脂肪族の二官能性のカルボン酸としては例えば、セバシン酸(デカン二酸)、ドデカン二酸、テトラデカン二酸、オクタデカン二酸、イコサン二酸などの直鎖飽和脂肪族ジカルボン酸、並びにシクロヘキサンジカルボン酸などの脂環族ジカルボン酸が好ましく挙げられる。二官能性アルコールとしては脂環族ジオールがより好適であり、例えばシクロヘキサンジメタノール、シクロヘキサンジオール、およびトリシクロデカンジメタノールなどが例示される。
本発明のポリカーボネート系樹脂の製造方法である界面重合法、溶融エステル交換法、カーボネートプレポリマー固相エステル交換法、および環状カーボネート化合物の開環重合法などの反応形式は、各種の文献および特許公報などで良く知られている方法である。
本発明の樹脂組成物を製造するにあたり、ポリカーボネート系樹脂の粘度平均分子量(M)は、特に限定されないが、好ましくは1×10〜5×10であり、より好ましくは1.4×10〜3×10、さらに好ましくは1.4×10〜2.4×10である。粘度平均分子量が1×10未満のポリカーボネート系樹脂では、良好な機械的特性が得られない場合がある。一方、粘度平均分子量が5×10を超える芳香族ポリカーボネート樹脂から得られる樹脂組成物は、射出成形時の流動性に劣る点で汎用性に劣る場合がある。
なお、前記ポリカーボネート系樹脂は、その粘度平均分子量が前記範囲外のものを混合して得られたものであってもよい。殊に、前記範囲(5×10)を超える粘度平均分子量を有するポリカーボネート系樹脂は、樹脂のエントロピー弾性が向上する。その結果、強化樹脂材料を構造部材に成形する際に使用されることのあるガスアシスト成形、および発泡成形において、良好な成形加工性を発現する。かかる成形加工性の改善は前記分岐ポリカーボネートよりもさらに良好である。より好適な態様としては、A成分が粘度平均分子量7×10〜3×10のポリカーボネート系樹脂A−1−1−1成分)、および粘度平均分子量1×10〜3×10の芳香族ポリカーボネート樹脂(A−1−1−2成分)からなり、その粘度平均分子量が1.6×10〜3.5×10であるポリカーボネート系樹脂(A−1−1成分)(以下、“高分子量成分含有ポリカーボネート系樹脂”と称することがある)も使用できる。
かかる高分子量成分含有ポリカーボネート系樹脂(A−1−1成分)において、A−1−1−1成分の分子量は7×10〜2×10が好ましく、より好ましくは8×10〜2×10、さらに好ましくは1×10〜2×10、特に好ましくは1×10〜1.6×10である。またA−1−1−2成分の分子量は1×10〜2.5×10が好ましく、より好ましくは1.1×10〜2.4×10、さらに好ましくは1.2×10〜2.4×10、特に好ましくは1.2×10〜2.3×10である。
高分子量成分含有ポリカーボネート系樹脂(A−1−1成分)は前記A−1−1−1成分とA−1−1−2成分を種々の割合で混合し、所定の分子量範囲を満足するよう調整して得ることができる。好ましくは、A−1−1成分100重量%中、A−1−1−1成分が2〜40重量%の場合であり、より好ましくはA−1−1−1成分が3〜30重量%であり、さらに好ましくはA−1−1−1成分が4〜20重量%であり、特に好ましくはA−1−1−1成分が5〜20重量%である。
また、A−1−1成分の調製方法としては、(1)A−1−1−1成分とA−1−1−2成分とを、それぞれ独立に重合しこれらを混合する方法、(2)特開平5−306336号公報に示される方法に代表される、GPC法による分子量分布チャートにおいて複数のポリマーピークを示す芳香族ポリカーボネート樹脂を同一系内において製造する方法を用い、かかる芳香族ポリカーボネート樹脂を本発明のA−1−1成分の条件を満足するよう製造する方法、および(3)かかる製造方法((2)の製造法)により得られた芳香族ポリカーボネート樹脂と、別途製造されたA−1−1−1成分および/またはA−1−1−2成分とを混合する方法などを挙げることができる。
本発明でいう粘度平均分子量は、まず、次式にて算出される比粘度(ηSP)を20℃で塩化メチレン100mlにポリカーボネート0.7gを溶解した溶液からオストワルド粘度計を用いて求め、
比粘度(ηSP)=(t−t)/t
[tは塩化メチレンの落下秒数、tは試料溶液の落下秒数]
求められた比粘度(ηSP)から次の数式により粘度平均分子量Mを算出する。
ηSP/c=[η]+0.45×[η]c(但し[η]は極限粘度)
[η]=1.23×10−40.83
c=0.7
尚、本発明のポリカーボネート樹脂組成物におけるポリカーボネート系樹脂の粘度平均分子量の算出は次の要領で行なわれる。すなわち、該組成物を、その20〜30倍重量の塩化メチレンと混合し、組成物中の可溶分を溶解させる。かかる可溶分をセライト濾過により採取する。その後得られた溶液中の溶媒を除去する。溶媒除去後の固体を十分に乾燥し、塩化メチレンに溶解する成分の固体を得る。かかる固体0.7gを塩化メチレン100mlに溶解した溶液から、上記と同様にして20℃における比粘度を求め、該比粘度から上記と同様にして粘度平均分子量Mを算出する。
本発明のポリカーボネート系樹脂(A成分)としてポリカーボネート−ポリジオルガノシロキサン共重合樹脂を使用することも出来る。ポリカーボネート−ポリジオルガノシロキサン共重合樹脂とは下記一般式(1)で表される二価フェノールおよび下記一般式(3)で表されるヒドロキシアリール末端ポリジオルガノシロキサンを共重合させることにより調製される共重合樹脂であることが好ましい。
Figure 2016204480
[上記一般式(1)において、R及びRは夫々独立して水素原子、ハロゲン原子、炭素原子数1〜18のアルキル基、炭素原子数1〜18のアルコキシ基、炭素原子数6〜20のシクロアルキル基、炭素原子数6〜20のシクロアルコキシ基、炭素原子数2〜10のアルケニル基、炭素原子数3〜14のアリール基、炭素原子数3〜14のアリールオキシ基、炭素原子数7〜20のアラルキル基、炭素原子数7〜20のアラルキルオキシ基、ニトロ基、アルデヒド基、シアノ基及びカルボキシル基からなる群から選ばれる基を表し、それぞれ複数ある場合はそれらは同一でも異なっていても良く、e及びfは夫々1〜4の整数であり、Wは単結合もしくは下記一般式(2)で表される基からなる群より選ばれる少なくとも一つの基である。]
Figure 2016204480
[上記一般式(2)においてR11,R12,R13,R14,R15,R16,R17及びR18は夫々独立して水素原子、炭素原子数1〜18のアルキル基、炭素原子数3〜14のアリール基及び炭素原子数7〜20のアラルキル基からなる群から選ばれる基を表し、R19及びR20は夫々独立して水素原子、ハロゲン原子、炭素原子数1〜18のアルキル基、炭素原子数1〜10のアルコキシ基、炭素原子数6〜20のシクロアルキル基、炭素原子数6〜20のシクロアルコキシ基、炭素原子数2〜10のアルケニル基、炭素原子数3〜14のアリール基、炭素原子数6〜10のアリールオキシ基、炭素原子数7〜20のアラルキル基、炭素原子数7〜20のアラルキルオキシ基、ニトロ基、アルデヒド基、シアノ基及びカルボキシル基からなる群から選ばれる基を表し、複数ある場合はそれらは同一でも異なっていても良く、gは1〜10の整数、hは4〜7の整数である。]
Figure 2016204480
[上記一般式(3)において、R、R、R、R、R及びRは、各々独立に水素原子、炭素数1〜12のアルキル基又は炭素数6〜12の置換若しくは無置換のアリール基であり、R及びR10は夫々独立して水素原子、ハロゲン原子、炭素原子数1〜10のアルキル基、炭素原子数1〜10のアルコキシ基であり、pは自然数であり、qは0又は自然数であり、p+qは10〜300の自然数である。Xは炭素数2〜8の二価脂肪族基である。]
一般式(1)で表される二価フェノール(I)としては、例えば、4,4’−ジヒドロキシビフェニル、ビス(4−ヒドロキシフェニル)メタン、1,1−ビス(4−ヒドロキシフェニル)エタン、1,1−ビス(4−ヒドロキシフェニル)−1−フェニルエタン、2,2−ビス(4−ヒドロキシフェニル)プロパン、2,2−ビス(4−ヒドロキシ−3−メチルフェニル)プロパン、1,1−ビス(4−ヒドロキシフェニル)−3,3,5−トリメチルシクロヘキサン、2,2−ビス(4−ヒドロキシ−3,3’−ビフェニル)プロパン、2,2−ビス(4−ヒドロキシ−3−イソプロピルフェニル)プロパン、2,2−ビス(3−t−ブチル−4−ヒドロキシフェニル)プロパン、2,2−ビス(4−ヒドロキシフェニル)ブタン、2,2−ビス(4−ヒドロキシフェニル)オクタン、2,2−ビス(3−ブロモ−4−ヒドロキシフェニル)プロパン、2,2−ビス(3,5−ジメチル−4−ヒドロキシフェニル)プロパン、2,2−ビス(3−シクロヘキシル−4−ヒドロキシフェニル)プロパン、1,1−ビス(3−シクロヘキシル−4−ヒドロキシフェニル)シクロヘキサン、ビス(4−ヒドロキシフェニル)ジフェニルメタン、9,9−ビス(4−ヒドロキシフェニル)フルオレン、9,9−ビス(4−ヒドロキシ−3−メチルフェニル)フルオレン、1,1−ビス(4−ヒドロキシフェニル)シクロヘキサン、1,1−ビス(4−ヒドロキシフェニル)シクロペンタン、4,4’−ジヒドロキシジフェニルエ−テル、4,4’−ジヒドロキシ−3,3’−ジメチルジフェニルエ−テル、4,4’−スルホニルジフェノール、4,4’−ジヒドロキシジフェニルスルホキシド、4,4’−ジヒドロキシジフェニルスルフィド、2,2’−ジメチル−4,4’−スルホニルジフェノール、4,4’−ジヒドロキシ−3,3’−ジメチルジフェニルスルホキシド、4,4’−ジヒドロキシ−3,3’−ジメチルジフェニルスルフィド、2,2’−ジフェニル−4,4’−スルホニルジフェノール、4,4’−ジヒドロキシ−3,3’−ジフェニルジフェニルスルホキシド、4,4’−ジヒドロキシ−3,3’−ジフェニルジフェニルスルフィド、1,3−ビス{2−(4−ヒドロキシフェニル)プロピル}ベンゼン、1,4−ビス{2−(4−ヒドロキシフェニル)プロピル}ベンゼン、1,4−ビス(4−ヒドロキシフェニル)シクロヘキサン、1,3−ビス(4−ヒドロキシフェニル)シクロヘキサン、4,8−ビス(4−ヒドロキシフェニル)トリシクロ[5.2.1.02,6]デカン、4,4’−(1,3−アダマンタンジイル)ジフェノール、1,3−ビス(4−ヒドロキシフェニル)−5,7−ジメチルアダマンタン等が挙げられる。
なかでも、1,1−ビス(4−ヒドロキシフェニル)−1−フェニルエタン、2,2−ビス(4−ヒドロキシフェニル)プロパン、2,2−ビス(4−ヒドロキシ−3−メチルフェニル)プロパン、1,1−ビス(4−ヒドロキシフェニル)シクロヘキサン、1,1−ビス(4−ヒドロキシフェニル)−3,3,5−トリメチルシクロヘキサン、4,4’−スルホニルジフェノール、2,2’−ジメチル−4,4’−スルホニルジフェノール、9,9−ビス(4−ヒドロキシ−3−メチルフェニル)フルオレン、1,3−ビス{2−(4−ヒドロキシフェニル)プロピル}ベンゼン、1,4−ビス{2−(4−ヒドロキシフェニル)プロピル}ベンゼンが好ましく、殊に2,2−ビス(4−ヒドロキシフェニル)プロパン、1,1−ビス(4−ヒドロキシフェニル)シクロヘキサン(BPZ)、4,4’−スルホニルジフェノール、9,9−ビス(4−ヒドロキシ−3−メチルフェニル)フルオレンが好ましい。中でも強度に優れ、良好な耐久性を有する2,2−ビス(4−ヒドロキシフェニル)プロパンが最も好適である。また、これらは単独または二種以上組み合わせて用いてもよい。
上記一般式(3)で表されるヒドロキシアリール末端ポリジオルガノシロキサンとしては、例えば下記に示すような化合物が好適に用いられる。
Figure 2016204480
ヒドロキシアリール末端ポリジオルガノシロキサン(II)は、オレフィン性の不飽和炭素−炭素結合を有するフェノール類、好適にはビニルフェノール、2−アリルフェノール、イソプロペニルフェノール、2−メトキシ−4−アリルフェノールを所定の重合度を有するポリシロキサン鎖の末端に、ハイドロシリレーション反応させることにより容易に製造される。なかでも、(2−アリルフェノール)末端ポリジオルガノシロキサン、(2−メトキシ−4−アリルフェノール)末端ポリジオルガノシロキサンが好ましく、殊に(2−アリルフェノール)末端ポリジメチルシロキサン、(2−メトキシ−4−アリルフェノール)末端ポリジメチルシロキサンが好ましい。ヒドロキシアリール末端ポリジオルガノシロキサン(II)は、その分子量分布(Mw/Mn)が3以下であることが好ましい。さらに優れた高温成形時の低アウトガス性と低温衝撃性を発現させるために、かかる分子量分布(Mw/Mn)はより好ましくは2.5以下であり、さらに好ましくは2以下である。かかる好適な範囲の上限を超えると高温成形時のアウトガス発生量が多く、また、低温衝撃性に劣る場合がある。
また、高度な耐衝撃性を実現するためにヒドロキシアリール末端ポリジオルガノシロキサン(II)のジオルガノシロキサン重合度(p+q)は10〜300が適切である。かかるジオルガノシロキサン重合度(p+q)は好ましくは10〜200、より好ましくは12〜150、更に好ましくは14〜100である。かかる好適な範囲の下限未満では、ポリカーボネート−ポリジオルガノシロキサン共重合体の特徴である耐衝撃性が有効に発現せず、かかる好適な範囲の上限を超えると外観不良が現れる。
A成分で使用されるポリカーボネート−ポリジオルガノシロキサン共重合樹脂全重量に占めるポリジオルガノシロキサン含有量は0.1〜50重量%が好ましい。かかるポリジオルガノシロキサン成分含有量はより好ましくは0.5〜30重量%、さらに好ましくは1〜20重量%である。かかる好適な範囲の下限以上では、耐衝撃性や難燃性に優れ、かかる好適な範囲の上限以下では、成形条件の影響を受けにくい安定した外観が得られやすい。かかるポリジオルガノシロキサン重合度、ポリジオルガノシロキサン含有量は、1H−NMR測定により算出することが可能である。
本発明において、ヒドロキシアリール末端ポリジオルガノシロキサン(II)は1種のみを用いてもよく、また、2種以上を用いてもよい。
また、本発明の妨げにならない範囲で、上記二価フェノール(I)、ヒドロキシアリール末端ポリジオルガノシロキサン(II)以外の他のコモノマーを共重合体の全重量に対して10重量%以下の範囲で併用することもできる。
本発明においては、あらかじめ水に不溶性の有機溶媒とアルカリ水溶液との混合液中における二価フェノール(I)と炭酸エステル形成性化合物の反応により末端クロロホルメート基を有するオリゴマーを含む混合溶液を調製する。
二価フェノール(I)のオリゴマーを生成するにあたり、本発明の方法に用いられる二価フェノール(I)の全量を一度にオリゴマーにしてもよく、又は、その一部を後添加モノマーとして後段の界面重縮合反応に反応原料として添加してもよい。後添加モノマーとは、後段の重縮合反応を速やかに進行させるために加えるものであり、必要のない場合には敢えて加える必要はない。
このオリゴマー生成反応の方式は特に限定はされないが、通常、酸結合剤の存在下、溶媒中で行う方式が好適である。
炭酸エステル形成性化合物の使用割合は、反応の化学量論比(当量)を考慮して適宜調整すればよい。また、ホスゲン等のガス状の炭酸エステル形成性化合物を使用する場合、これを反応系に吹き込む方法が好適に採用できる。
前記酸結合剤としては、例えば、水酸化ナトリウム、水酸化カリウム等のアルカリ金属水酸化物、炭酸ナトリウム、炭酸カリウム等のアルカリ金属炭酸塩、ピリジン等の有機塩基あるいはこれらの混合物などが用いられる。酸結合剤の使用割合も、上記同様に、反応の化学量論比(当量)を考慮して適宜定めればよい。具体的には、オリゴマーの形成に使用する二価フェノール(I)のモル数(通常1モルは2当量に相当)に対して2当量若しくはこれより若干過剰量の酸結合剤を用いることが好ましい。
前記溶媒としては、公知のポリカーボネートの製造に使用されるものなど各種の反応に不活性な溶媒を1種単独であるいは混合溶媒として使用すればよい。代表的な例としては、例えば、キシレン等の炭化水素溶媒、塩化メチレン、クロロベンゼンをはじめとするハロゲン化炭化水素溶媒などが挙げられる。特に塩化メチレン等のハロゲン化炭化水素溶媒が好適に用いられる。
オリゴマー生成の反応圧力は特に制限はなく、常圧、加圧、減圧のいずれでもよいが、通常常圧下で反応を行うことが有利である。反応温度は−20〜50℃の範囲から選ばれ、多くの場合、重合に伴い発熱するので、水冷又は氷冷することが望ましい。反応時間は他の条件に左右され一概に規定できないが、通常、0.2〜10時間で行われる。オリゴマー生成反応のpH範囲は、公知の界面反応条件と同様であり、pHは常に10以上に調製される。
本発明はこのようにして、末端クロロホルメート基を有する二価フェノール(I)のオリゴマーを含む混合溶液を得た後、該混合溶液を攪拌しながら分子量分布(Mw/Mn)が3以下まで高度に精製された一般式(4)で表わされるヒドロキシアリール末端ポリジオルガノシロキサン(II)を二価フェノール(I)に加え、該ヒドロキシアリール末端ポリジオルガノシロキサン(II)と該オリゴマーを界面重縮合させることによりポリカーボネート−ポリジオルガノシロキサン共重合体を得る。
Figure 2016204480
(上記一般式(4)において、R、R、R、R、R及びRは、各々独立に水素原子、炭素数1〜12のアルキル基又は炭素数6〜12の置換若しくは無置換のアリール基であり、R及びR10は夫々独立して水素原子、ハロゲン原子、炭素原子数1〜10のアルキル基、炭素原子数1〜10のアルコキシ基であり、pは自然数であり、qは0又は自然数であり、p+qは10〜300の自然数である。Xは炭素数2〜8の二価脂肪族基である。)
界面重縮合反応を行うにあたり、酸結合剤を反応の化学量論比(当量)を考慮して適宜追加してもよい。酸結合剤としては、例えば、水酸化ナトリウム、水酸化カリウム等のアルカリ金属水酸化物、炭酸ナトリウム、炭酸カリウム等のアルカリ金属炭酸塩、ピリジン等の有機塩基あるいはこれらの混合物などが用いられる。具体的には、使用するヒドロキシアリール末端ポリジオルガノシロキサン(II)、又は上記の如く二価フェノール(I)の一部を後添加モノマーとしてこの反応段階に添加する場合には、後添加分の二価フェノール(I)とヒドロキシアリール末端ポリジオルガノシロキサン(II)との合計モル数(通常1モルは2当量に相当)に対して2当量若しくはこれより過剰量のアルカリを用いることが好ましい。
二価フェノール(I)のオリゴマーとヒドロキシアリール末端ポリジオルガノシロキサン(II)との界面重縮合反応による重縮合は、上記混合液を激しく攪拌することにより行われる。
かかる重合反応においては、末端停止剤或いは分子量調節剤が通常使用される。末端停止剤としては一価のフェノール性水酸基を有する化合物が挙げられ、通常のフェノール、p−tert−ブチルフェノール、p−クミルフェノール、トリブロモフェノールなどの他に、長鎖アルキルフェノール、脂肪族カルボン酸クロライド、脂肪族カルボン酸、ヒドロキシ安息香酸アルキルエステル、ヒドロキシフェニルアルキル酸エステル、アルキルエーテルフェノールなどが例示される。その使用量は用いる全ての二価フェノール系化合物100モルに対して、100〜0.5モル、好ましくは50〜2モルの範囲であり、二種以上の化合物を併用することも当然に可能である。
重縮合反応を促進するために、トリエチルアミンのような第三級アミン又は第四級アンモニウム塩などの触媒を添加してもよい。
かかる重合反応の反応時間は、好ましくは30分以上、更に好ましくは50分以上である。所望に応じ、亜硫酸ナトリウム、ハイドロサルファイドなどの酸化防止剤を少量添加してもよい。
分岐化剤を上記の二価フェノール系化合物と併用して分岐化ポリカーボネート−ポリジオルガノシロキサンとすることができる。かかる分岐ポリカーボネート−ポリジオルガノシロキサン共重合樹脂に使用される三官能以上の多官能性芳香族化合物としては、フロログルシン、フロログルシド、または4,6−ジメチル−2,4,6−トリス(4−ヒドロキジフェニル)ヘプテン−2、2,4,6−トリメチル−2,4,6−トリス(4−ヒドロキシフェニル)ヘプタン、1,3,5−トリス(4−ヒドロキシフェニル)ベンゼン、1,1,1−トリス(4−ヒドロキシフェニル)エタン、1,1,1−トリス(3,5−ジメチル−4−ヒドロキシフェニル)エタン、2,6−ビス(2−ヒドロキシ−5−メチルベンジル)−4−メチルフェノール、4−{4−[1,1−ビス(4−ヒドロキシフェニル)エチル]ベンゼン}−α,α−ジメチルベンジルフェノール等のトリスフェノール、テトラ(4−ヒドロキシフェニル)メタン、ビス(2,4−ジヒドロキシフェニル)ケトン、1,4−ビス(4,4−ジヒドロキシトリフェニルメチル)ベンゼン、またはトリメリット酸、ピロメリット酸、ベンゾフェノンテトラカルボン酸およびこれらの酸クロライド等が挙げられ、中でも1,1,1−トリス(4−ヒドロキシフェニル)エタン、1,1,1−トリス(3,5−ジメチル−4−ヒドロキシフェニル)エタンが好ましく、特に1,1,1−トリス(4−ヒドロキシフェニル)エタンが好ましい。分岐ポリカーボネート−ポリジオルガノシロキサン共重合樹脂中の多官能性化合物の割合は、芳香族ポリカーボネート−ポリジオルガノシロキサン共重合樹脂全量中、好ましくは0.001〜1モル%、より好ましくは0.005〜0.9モル%、さらに好ましくは0.01〜0.8モル%、特に好ましくは0.05〜0.4モル%である。なお、かかる分岐構造量については1H−NMR測定により算出することが可能である。
反応圧力は、減圧、常圧、加圧のいずれでも可能であるが、通常は、常圧若しくは反応系の自圧程度で好適に行い得る。反応温度は−20〜50℃の範囲から選ばれ、多くの場合、重合に伴い発熱するので、水冷又は氷冷することが望ましい。反応時間は反応温度等の他の条件によって異なるので一概に規定はできないが、通常、0.5〜10時間で行われる。
場合により、得られたポリカーボネート−ポリジオルガノシロキサン共重合樹脂に適宜物理的処理(混合、分画など)及び/又は化学的処理(ポリマー反応、架橋処理、部分分解処理など)を施して所望の還元粘度[ηsp/c]のポリカーボネート−ポリジオルガノシロキサン共重合樹脂として取得することもできる。
得られた反応生成物(粗生成物)は公知の分離精製法等の各種の後処理を施して、所望の純度(精製度)のポリカーボネート−ポリジオルガノシロキサン共重合樹脂として回収することができる。 ポリカーボネート−ポリジオルガノシロキサン共重合樹脂成形品中のポリジオルガノシロキサンドメインの平均サイズは、1〜40nmの範囲が好ましい。かかる平均サイズはより好ましくは1〜30nm、更に好ましくは5〜25nmである。かかる好適な範囲の下限未満では、耐衝撃性や難燃性が十分に発揮されず、かかる好適な範囲の上限を超えると耐衝撃性が安定して発揮されない場合がある。これにより耐衝撃性および外観に優れたポリカーボネート樹脂組成物が提供される。
本発明におけるポリカーボネート−ポリジオルガノシロキサン共重合樹脂成形品のポリジオルガノシロキサンドメインの平均ドメインサイズは、小角エックス線散乱法(Small Angle X-ray Scattering:SAXS)により評価した。小角エックス線散乱法とは、散乱角(2θ)<1 0°以内の小角領域で生じる散漫な散乱・回折を測定する方法である。この小角エックス線散乱法では、物質中に1〜100nm程度の大きさの電子密度の異なる領域があると、その電子密度差によりエックス線の散漫散乱が計測される。この散乱角と散乱強度に基づいて測定対象物の粒子径を求める。ポリカーボネートポリマーのマトリックス中にポリジオルガノシロキサンドメインが分散した凝集構造となるポリカーボネート−ポリジオルガノシロキサン共重合樹脂の場合、ポリカーボネートマトリックスとポリジオルガノシロキサンドメインの電子密度差により、エックス線の散漫散乱が生じる。散乱角(2θ)が10°未満の範囲の各散乱角(2θ)における散乱強度I を測定して、小角エックス線散乱プロファイルを測定し、ポリジオルガノシロキサンドメインが球状ドメインであり、粒径分布のばらつきが存在すると仮定して、仮の粒径と仮の粒径分布モデルから、市販の解析ソフトウェアを用いてシミュレーションを行い、ポリジオルガノシロキサンドメインの平均サイズを求める。小角エックス線散乱法によれば、透過型電子顕微鏡による観察では正確に測定できない、ポリカーボネートポリマーのマトリックス中に分散したポリジオルガノシロキサンドメインの平均サイズを、精度よく、簡便に、再現性良く測定することができる。平均ドメインサイズとは個々のドメインサイズの数平均を意味する。
本発明に関連して用いる用語「平均ドメインサイズ」は、かかる小角エックス線散乱法により、実施例記載の方法で作製した3段型プレートの厚み1.0mm部を測定することにより得られる測定値を示す。また、粒子間相互作用(粒子間干渉)を考慮しない孤立粒子モデルにて解析を行った。
(B成分:ポリプロピレン系樹脂)
本発明の樹脂組成物はB成分として、ポリプロピレン系樹脂を含有する。ポリプロピレン樹脂は、プロピレンの重合体であるが、本発明においては、他のモノマーとの共重合体も含む。本発明のポリプロピレン樹脂の例には、ホモポリプロピレン樹脂、プロピレンとエチレンおよび炭素数4〜10のα−オレフィンとのブロック共重合体(「ブロックポリプロピレン」ともいう)、プロピレンとエチレンおよび炭素数4〜10のα−オレフィンとのランダム共重合体(「ランダムポリプロピレン」ともいう)が含まれる。なお、「ブロックポリプロピレン」と「ランダムポリプロピレン」を合わせて、「ポリプロピレン共重合体」ともいう。
本発明においては、ポリプロピレン樹脂として上記のホモポリプロピレン樹脂、ブロックポリプロピレン、ランダムポリプロピレンの1種あるいは2種以上を使用してよく、中でもホモポリプロピレン、ブロックポリプロピレンが好ましい。
ポリプロピレン共重合体に用いられる炭素数4〜10のα−オレフィンの例には、1−ブテン、1−ペンテン、イソブチレン、3−メチル−1−ブテン、1−ヘキセン、3,4−ジメチル−1−ブテン、1−ヘプテン、3−メチル−1−ヘキセンが含まれる。
ポリプロピレン共重合体中のエチレンの含有量は、全モノマー中、5質量%以下であることが好ましい。ポリプロピレン共重合体中の炭素数4〜10のα−オレフィンの含有量は、全モノマー中20質量%以下であることが好ましい。
ポリプロピレン共重合体は、プロピレンとエチレンとの共重合体、またはプロピレンと1−ブテンとの共重合体であることが好ましく、特にプロピレンとエチレンとの共重合体が好ましい。
本発明におけるポリプロピレン樹脂のメルトフローレイト(230℃、2.16kg)は、0.1〜5g/10minであることが好ましく、0.2〜4g/10minであることがより好ましく、0.3〜3g/10minであることが特に好ましい。ポリプロピレン樹脂のメルトフローレイトが0.1g/10min未満では高粘度のため成形性に劣り、5g/10minを越えると十分な靭性が発現しない場合がある。なお、メルトフローレイトは「MFR」とも呼ばれる。なお、MFRはISO1133に準拠して測定した。
本発明の樹脂組成物中におけるポリカーボネート系樹脂(A成分)とポリプロピレン系樹脂(B成分)との割合は両者の合計100重量部において、A成分は30〜80重量部が好ましく、より好ましくは40〜70重量部、さらに好ましくは45〜60重量部、B成分は好ましくは20〜70重量部、より好ましくは30〜60重量部、さらに好ましくは40〜55重量部である。A成分が30重量部未満では、機械特性が十分に発現せず、長期耐クリープ特性が低くなり、80重量部を超えると耐薬品性が悪くなる場合がある。
(C成分:スチレン系熱可塑性エラストマー)
本発明の樹脂組成物はC成分としてスチレン系熱可塑性エラストマーを含有する。本発明で使用するスチレン系熱可塑性エラストマーは下記式(I)または(II)で表されるブロック共重合体であることが好ましい。
X−(Y−X)n …(I)
(X−Y)n …(II)
一般式(I)および(II)におけるXは芳香族ビニル重合体ブロックで、式(I)においては分子鎖両末端で重合度が同じであってもよいし、異なっていてもよい。また、Yとしてはブタジエン重合体ブロック、イソプレン重合体ブロック、ブタジエン/イソプレン共重合体ブロック、水添されたブタジエン重合体ブロック、水添されたイソプレン重合体ブロック、水添されたブタジエン/イソプレン共重合体ブロック、部分水添されたブタジエン重合体ブロック、部分水添されたイソプレン重合体ブロックおよび部分水添されたブタジエン/イソプレン共重合体ブロックの中から選ばれた少なくとも1種である。また、nは1以上の整数である。
具体例としては、スチレン−エチレン・ブチレン−スチレン共重合体、スチレン−エチレン・プロピレン−スチレン共重合体、スチレン−エチレン・エチレン・プロピレン−スチレン共重合体、スチレン−ブタジエン−ブテン−スチレン共重合体、スチレン−ブタジエン−スチレン共重合体、スチレン−イソプレン−スチレン共重合体、スチレン−水添ブタジエンジブロック共重合体、スチレン−水添イソプレンジブロック共重合体、スチレン−ブタジエンジブロック共重合体、スチレン−イソプレンジブロック共重合体等が挙げられ、その中でもスチレン−エチレン・ブチレン−スチレン共重合体、スチレン−エチレン・プロピレン−スチレン共重合体、スチレン−エチレン・エチレン・プロピレン−スチレン共重合体、スチレン−ブタジエン−ブテン−スチレン共重合体が最も好適である。
前記ブロック共重合体におけるX成分の含有量は20〜80重量%、好ましくは30〜75重量%、より好ましくは40〜70重量%の範囲にあることが望ましい。この量が20重量%未満では樹脂組成物の剛性および衝撃強度が低下し、また80重量%を超えると衝撃強度が低下する場合があるため、いずれも好ましくない。
スチレン系熱可塑性エラストマーの重量平均分子量は25万以下が好ましく、20万以下がより好ましく、15万以下がさらに好ましい。重量平均分子量が25万を超えると、成形加工性が低下し、ポリカーボネート樹脂組成物中の分散性も悪化する場合がある。また、重量平均分子量の下限については特に限定されないが、4万以上が好ましく、5万以上がより好ましい。なお、重量平均分子量は以下の方法で測定した。すなわち、ゲルパーミエーションクロマトグラフにより、ポリスチレン換算で分子量を測定し、重量平均分子量を算出した。本発明におけるスチレン系熱可塑性エラストマーのメルトフローレイト(230℃、2.16kg)は、0.1〜10g/10minであることが好ましく、0.15〜9g/10minであることがより好ましく、0.2〜8g/10minであることが特に好ましい。スチレン系熱可塑性エラストマーのメルトフローレイトが0.1g/10min未満および、10g/10minを越えると十分な靭性が発現しない場合がある。なお、MFRはISO1133に準拠して230℃、2.16kg荷重にて測定した。
C成分の含有量は、A成分とB成分との合計100重量部に対し、1〜15重量部であり、好ましくは2〜14重量部、より好ましくは3〜13重量部である。含有量が1重量部未満では衝撃強度および長期耐クリープ特性の低下が発生し、15重量部を超えると剛性および長期耐クリープ特性が低下する。
(D成分:ガラス繊維および/または炭素繊維)
本発明の樹脂組成物はD成分として、ガラス繊維(D−1成分)および炭素繊維(D−2成分)からなる群より選ばれる少なくとも一種の繊維状充填材を含有する。
(D−1成分:ガラス繊維)
D−1成分として用いるガラス繊維としては、丸型断面を有するガラス繊維、繊維長断面の長径の平均値が7〜50μm、長径と短径の比(長径/短径)の平均値が1.5〜8である扁平断面ガラス繊維、ガラスミルドファイバーが好適に例示される。
上記のガラス繊維のガラス組成は、Aガラス、Cガラス、およびEガラス等に代表される各種のガラス組成が適用され、特に限定されない。かかるガラス繊維は、必要に応じてTiO、SO、およびP等の成分を含有するものであってもよい。これらの中でもEガラス(無アルカリガラス)がより好ましい。かかるガラス繊維は、周知の表面処理剤、例えばシランカップリング剤、チタネートカップリング剤、またはアルミネートカップリング剤等で表面処理が施されたものが機械的強度の向上の点から好ましい。また、オレフィン系樹脂、スチレン系樹脂、アクリル系樹脂、ポリエステル系樹脂、エポキシ系樹脂、およびウレタン系樹脂等で集束処理されたものが好ましく、エポキシ系樹脂、ウレタン系樹脂が機械的強度の点から特に好ましい。集束処理されたガラス繊維の集束剤付着量は、ガラス繊維100重量%中、好ましくは0.1〜3重量%、より好ましくは0.2〜1重量%である。
(D−2成分:炭素繊維)
本発明の炭素繊維としては、例えば金属コートカーボンファイバー、カーボンミルドファイバー、気相成長カーボンファイバー等のカーボンファイバー、およびカーボンナノチューブ等が挙げられる。カーボンナノチューブは繊維径0.003〜0.1μm、単層、2層、および多層のいずれであってもよく、多層(いわゆるMWCNT)が好ましい。これらの中でも機械的強度に優れる点において、カーボンファイバーが好ましい。
カーボンファイバーとしては、セルロース系、ポリアクリロニトリル系、およびピッチ系などのいずれも使用可能である。また芳香族スルホン酸類またはそれらの塩のメチレ型結合による重合体と溶媒よりなる原料組成を紡糸または成形し、次いで炭化するなどの方法に代表される不融化工程を経ない紡糸を行う方法により得られたものも使用可能である。更に汎用タイプ、中弾性率タイプ、および高弾性率タイプのいずれも使用可能である。これらの中でも特にポリアクリロニトリル系の高弾性率タイプが好ましい。
また、カーボンファイバーの表面はマトリックス樹脂との密着性を高め、機械的強度を向上する目的で酸化処理されることが好ましい。酸化処理方法は特に限定されないが、例えば、(1)炭素繊維を酸もしくはアルカリまたはそれらの塩、あるいは酸化性気体により処理する方法、(2)炭素繊維化可能な繊維または炭素繊維を、含酸素化合物を含む不活性ガスの存在下、700℃以上の温度で焼成する方法、および(3)炭素繊維を酸化処理した後、不活性ガスの存在下で熱処理する方法などが好適に例示される。
金属コートカーボンファイバーは、カーボンファイバーの表面に金属層をコートしたものである。金属としては、銀、銅、ニッケル、およびアルミニウムなどが挙げられ、ニッケルが金属層の耐腐食性の点から好ましい。金属コートの方法としては、メッキ法および蒸着法等の公知の方法が挙げられ、中でもメッキ法が好適に利用される。また、かかる金属コートカーボンファイバーの場合も、元となるカーボンファイバーとしては上記のカーボンファイバーとして挙げたものが使用可能である。金属被覆層の厚みは好ましくは0.1〜1μm、より好ましくは0.15〜0.5μmである。更に好ましくは0.2〜0.35μmである。
かかるカーボンファイバー、金属コートカーボンファイバーは、オレフィン系樹脂、スチレン系樹脂、アクリル系樹脂、ポリエステル系樹脂、エポキシ系樹脂、およびウレタン系樹脂等で集束処理されたものが好ましい。特にウレタン系樹脂、エポキシ系樹脂で処理された炭素繊維は、機械的強度に優れることから本発明において好適である。
D成分の含有量は、A成分とB成分との合計100重量部に対して、1〜100 重量部であり、好ましくは5〜50重量部、より好ましくは6〜40重量部である。D成分の含有量が1重量部未満ではD成分の配合に期待される特性、例えば、剛性、長期耐クリープ特性の向上が不十分となる。一方、100重量部を超える場合には、強度が低下したり、剛性の向上により材料への応力が大きくかかるようになるため一定歪みを加える耐薬品性試験で評価される耐薬品性が低下したり、押出ができなくなる。
(E成分:リン系熱安定剤)
本発明の樹脂組成物はE成分としてリン系熱安定剤を含有することができる。リン系安定剤としては、亜リン酸、リン酸、亜ホスホン酸、ホスホン酸およびこれらのエステル、並びに第3級ホスフィンなどが例示される。
具体的にはホスファイト化合物としては、例えば、トリフェニルホスファイト、トリス(ノニルフェニル)ホスファイト、トリデシルホスファイト、トリオクチルホスファイト、トリオクタデシルホスファイト、ジデシルモノフェニルホスファイト、ジオクチルモノフェニルホスファイト、ジイソプロピルモノフェニルホスファイト、モノブチルジフェニルホスファイト、モノデシルジフェニルホスファイト、モノオクチルジフェニルホスファイト、トリス(ジエチルフェニル)ホスファイト、トリス(ジ−iso−プロピルフェニル)ホスファイト、トリス(ジ−n−ブチルフェニル)ホスファイト、トリス(2,4−ジ−tert−ブチルフェニル)ホスファイト、トリス(2,6−ジ−tert−ブチルフェニル)ホスファイト、ジステアリルペンタエリスリトールジホスファイト、ビス(2,4−ジ−tert−ブチルフェニル)ペンタエリスリトールジホスファイト、ビス(2,6−ジ−tert−ブチル−4−メチルフェニル)ペンタエリスリトールジホスファイト、ビス(2,6−ジ−tert−ブチル−4−エチルフェニル)ペンタエリスリトールジホスファイト、ビス{2,4−ビス(1−メチル−1−フェニルエチル)フェニル}ペンタエリスリトールジホスファイト、フェニルビスフェノールAペンタエリスリトールジホスファイト、ビス(ノニルフェニル)ペンタエリスリトールジホスファイト、およびジシクロヘキシルペンタエリスリトールジホスファイトなどが挙げられる。
更に他のホスファイト化合物としては二価フェノール類と反応し環状構造を有するものも使用できる。例えば、2,2’−メチレンビス(4,6−ジ−tert−ブチルフェニル)(2,4−ジ−tert−ブチルフェニル)ホスファイト、2,2’−メチレンビス(4,6−ジ−tert−ブチルフェニル)(2−tert−ブチル−4−メチルフェニル)ホスファイト、および2,2−メチレンビス(4,6−ジ−tert−ブチルフェニル)オクチルホスファイトなどが例示される。
ホスフェート化合物としては、トリブチルホスフェート、トリメチルホスフェート、トリクレジルホスフェート、トリフェニルホスフェート、トリクロルフェニルホスフェート、トリエチルホスフェート、ジフェニルクレジルホスフェート、ジフェニルモノオルソキセニルホスフェート、トリブトキシエチルホスフェート、ジブチルホスフェート、ジオクチルホスフェート、ジイソプロピルホスフェートなどを挙げることができ、好ましくはトリフェニルホスフェート、トリメチルホスフェートである。
ホスホナイト化合物としては、テトラキス(2,4−ジ−tert−ブチルフェニル)−4,4’−ビフェニレンジホスホナイト、テトラキス(2,4−ジ−tert−ブチルフェニル)−4,3’−ビフェニレンジホスホナイト、テトラキス(2,4−ジ−tert−ブチルフェニル)−3,3’−ビフェニレンジホスホナイト、テトラキス(2,6−ジ−tert−ブチルフェニル)−4,4’−ビフェニレンジホスホナイト、テトラキス(2,6−ジ−tert−ブチルフェニル)−4,3’−ビフェニレンジホスホナイト、テトラキス(2,6−ジ−tert−ブチルフェニル)−3,3’−ビフェニレンジホスホナイト、ビス(2,4−ジ−tert−ブチルフェニル)−4−フェニル−フェニルホスホナイト、ビス(2,4−ジ−tert−ブチルフェニル)−3−フェニル−フェニルホスホナイト、ビス(2,6−ジ−n−ブチルフェニル)−3−フェニル−フェニルホスホナイト、ビス(2,6−ジ−tert−ブチルフェニル)−4−フェニル−フェニルホスホナイト、ビス(2,6−ジ−tert−ブチルフェニル)−3−フェニル−フェニルホスホナイト等があげられ、テトラキス(ジ−tert−ブチルフェニル)−ビフェニレンジホスホナイト、ビス(ジ−tert−ブチルフェニル)−フェニル−フェニルホスホナイトが好ましく、テトラキス(2,4−ジ−tert−ブチルフェニル)−ビフェニレンジホスホナイト、ビス(2,4−ジ−tert−ブチルフェニル)−フェニル−フェニルホスホナイトがより好ましい。かかるホスホナイト化合物は上記アルキル基が2以上置換したアリール基を有するホスファイト化合物との併用可能であり好ましい。
ホスホネイト化合物としては、ベンゼンホスホン酸ジメチル、ベンゼンホスホン酸ジエチル、およびベンゼンホスホン酸ジプロピル等が挙げられる。
第3級ホスフィンとしては、トリエチルホスフィン、トリプロピルホスフィン、トリブチルホスフィン、トリオクチルホスフィン、トリアミルホスフィン、ジメチルフェニルホスフィン、ジブチルフェニルホスフィン、ジフェニルメチルホスフィン、ジフェニルオクチルホスフィン、トリフェニルホスフィン、トリ−p−トリルホスフィン、トリナフチルホスフィン、およびジフェニルベンジルホスフィンなどが例示される。特に好ましい第3級ホスフィンは、トリフェニルホスフィンである。
上記リン系安定剤は、1種のみならず2種以上を混合して用いることができる。上記リン系安定剤の中でも、ホスホナイト化合物もしくは下記一般式(5)で表されるホスファイト化合物が好ましい。
Figure 2016204480
(式(5)中、RおよびR’は炭素数6〜30のアルキル基または炭素数6〜30のアリール基を表し、互いに同一であっても異なっていてもよい。)
上記の如く、ホスホナイト化合物としてはテトラキス(2,4−ジ−tert−ブチルフェニル)−ビフェニレンジホスホナイトが好ましく、該ホスホナイトを主成分とする安定剤は、Sandostab P−EPQ(商標、Clariant社製)およびIrgafos P−EPQ(商標、CIBA SPECIALTY CHEMICALS社製)として市販されておりいずれも利用できる。
また上記式(5)の中でもより好適なホスファイト化合物は、ジステアリルペンタエリスリトールジホスファイト、ビス(2,4−ジ−tert−ブチルフェニル)ペンタエリスリトールジホスファイト、ビス(2,6−ジ−tert−ブチル−4−メチルフェニル)ペンタエリスリトールジホスファイト、およびビス{2,4−ビス(1−メチル−1−フェニルエチル)フェニル}ペンタエリスリトールジホスファイトである。
ジステアリルペンタエリスリトールジホスファイトは、アデカスタブPEP−8(商標、旭電化工業(株)製)、JPP681S(商標、城北化学工業(株)製)として市販されておりいずれも利用できる。ビス(2,4−ジ−tert−ブチルフェニル)ペンタエリスリトールジホスファイトは、アデカスタブPEP−24G(商標、旭電化工業(株)製)、Alkanox P−24(商標、Great Lakes社製)、Ultranox P626(商標、GE Specialty Chemicals社製)、Doverphos S−9432(商標、Dover Chemical社製)、並びにIrgaofos126および126FF(商標、CIBA SPECIALTY CHEMICALS社製)などとして市販されておりいずれも利用できる。ビス(2,6−ジ−tert−ブチル−4−メチルフェニル)ペンタエリスリトールジホスファイトはアデカスタブPEP−36(商標、旭電化工業(株)製)として市販されており容易に利用できる。またビス{2,4−ビス(1−メチル−1−フェニルエチル)フェニル}ペンタエリスリトールジホスファイトは、アデカスタブPEP−45(商標、旭電化工業(株)製)、およびDoverphos S−9228(商標、Dover Chemical社製)として市販されておりいずれも利用できる。
リン系熱安定剤はフェノール系熱安定剤と併用されるのが更に好ましく、リン系熱安定剤の含有量はA成分とB成分との合計100重量部に対して、好ましくは0.001〜3.0重量部、より好ましくは0.01〜2.0重量部、さらに好ましくは0.05〜1.0重量部である。E成分の含有量が0.001重量部未満では機械特性が十分に発現せず、3.0重量部を超えても機械特性を十分に発現しない場合がある。フェノール系熱安定剤と併用の場合はA成分とB成分との合計100重量部に対し、0.01〜1.0重量部のリン系熱安定剤および0.05〜1.0重量部のフェノール系熱安定剤が配合されることがより好ましい。
(F成分:フェノール系熱安定剤)
本発明の樹脂組成物はF成分としてフェノール系熱安定剤を含有することができる。フェノール系熱安定剤としては一般的にヒンダードフェノール、セミヒンダードフェノール、レスヒンダードフェノール化合物が挙げられるが、ポリプロピレン系樹脂に対して熱安定処方を施すという観点で特にヒンダードフェノール化合物がより好適に用いられる。かかるヒンダードフェノール化合物としては、例えば、α−トコフェロール、ブチルヒドロキシトルエン、シナピルアルコール、ビタミンE、オクタデシル−3−(3,5−ジ−tert−ブチル−4−ヒドロキシフェニル)プロピオネート、2−tert−ブチル−6−(3’−tert−ブチル−5’−メチル−2’−ヒドロキシベンジル)−4−メチルフェニルアクリレート、2,6−ジ−tert−ブチル−4−(N,N−ジメチルアミノメチル)フェノール、3,5−ジ−tert−ブチル−4−ヒドロキシベンジルホスホネートジエチルエステル、2,2’−メチレンビス(4−メチル−6−tert−ブチルフェノール)、2,2’−メチレンビス(4−エチル−6−tert−ブチルフェノール)、4,4’−メチレンビス(2,6−ジ−tert−ブチルフェノール)、2,2’−メチレンビス(4−メチル−6−シクロヘキシルフェノール)、2,2’−ジメチレン−ビス(6−α−メチル−ベンジル−p−クレゾール)、2,2’−エチリデン−ビス(4,6−ジ−tert−ブチルフェノール)、2,2’−ブチリデン−ビス(4−メチル−6−tert−ブチルフェノール)、4,4’−ブチリデンビス(3−メチル−6−tert−ブチルフェノール)、トリエチレングリコール−N−ビス−3−(3−tert−ブチル−4−ヒドロキシ−5−メチルフェニル)プロピオネート、1,6−へキサンジオールビス[3−(3,5−ジ−tert−ブチル−4−ヒドロキシフェニル)プロピオネート]、ビス[2−tert−ブチル−4−メチル6−(3−tert−ブチル−5−メチル−2−ヒドロキシベンジル)フェニル]テレフタレート、3,9−ビス{2−[3−(3−tert−ブチル−4−ヒドロキシ−5−メチルフェニル)プロピオニルオキシ]−1,1,−ジメチルエチル}−2,4,8,10−テトラオキサスピロ[5,5]ウンデカン、4,4’−チオビス(6−tert−ブチル−m−クレゾール)、4,4’−チオビス(3−メチル−6−tert−ブチルフェノール)、2,2’−チオビス(4−メチル−6−tert−ブチルフェノール)、ビス(3,5−ジ−tert−ブチル−4−ヒドロキシベンジル)スルフィド、4,4’−ジ−チオビス(2,6−ジ−tert−ブチルフェノール)、4,4’−トリ−チオビス(2,6−ジ−tert−ブチルフェノール)、2,2−チオジエチレンビス−[3−(3,5−ジ−tert−ブチル−4−ヒドロキシフェニル)プロピオネート]、2,4−ビス(n−オクチルチオ)−6−(4−ヒドロキシ−3,5−ジ−tert−ブチルアニリノ)−1,3,5−トリアジン、N,N’−ヘキサメチレンビス−(3,5−ジ−tert−ブチル−4−ヒドロキシヒドロシンナミド)、N,N’−ビス[3−(3,5−ジ−tert−ブチル−4−ヒドロキシフェニル)プロピオニル]ヒドラジン、1,1,3−トリス(2−メチル−4−ヒドロキシ−5−tert−ブチルフェニル)ブタン、1,3,5−トリメチル−2,4,6−トリス(3,5−ジ−tert−ブチル−4−ヒドロキシベンジル)ベンゼン、トリス(3,5−ジ−tert−ブチル−4−ヒドロキシフェニル)イソシアヌレート、トリス(3,5−ジ−tert−ブチル−4−ヒドロキシベンジル)イソシアヌレート、1,3,5−トリス(4−tert−ブチル−3−ヒドロキシ−2,6−ジメチルベンジル)イソシアヌレート、1,3,5−トリス2[3(3,5−ジ−tert−ブチル−4−ヒドロキシフェニル)プロピオニルオキシ]エチルイソシアヌレート、テトラキス[メチレン−3−(3,5−ジ−tert−ブチル−4−ヒドロキシフェニル)プロピオネート]メタン、トリエチレングリコール−N−ビス−3−(3−tert−ブチル−4−ヒドロキシ−5−メチルフェニル)プロピオネート、トリエチレングリコール−N−ビス−3−(3−tert−ブチル−4−ヒドロキシ−5−メチルフェニル)アセテート、3,9−ビス[2−{3−(3−tert−ブチル−4−ヒドロキシ−5−メチルフェニル)アセチルオキシ}−1,1−ジメチルエチル]−2,4,8,10−テトラオキサスピロ[5,5]ウンデカン、テトラキス[メチレン−3−(3−tert−ブチル−4−ヒドロキシ−5−メチルフェニル)プロピオネート]メタン、1,3,5−トリメチル−2,4,6−トリス(3−tert−ブチル−4−ヒドロキシ−5−メチルベンジル)ベンゼン、およびトリス(3−tert−ブチル−4−ヒドロキシ−5−メチルベンジル)イソシアヌレートなどが例示される。上記化合物の中でも、本発明において、テトラキス[メチレン−3−(3−tert−ブチル−4−ヒドロキシ−5−メチルフェニル)プロピオネート]メタン、オクタデシル−3−(3,5−ジ−tert−ブチル−4−ヒドロキシフェニル)プロピオネートが好適に用いられ、さらに加工時の熱分解による機械特性低下の抑制に優れるものとして、下記式(6)で表される(3,3’,3’’,5,5’,5’’−ヘキサ−tert−ブチル−a,a’,a’’−(メシチレン−2,4,6−トリイル)トリ−p−クレゾール、および下記式(7)で表される1,3,5−トリス−(3,5−ジ−tert−ブチル−4−ヒドロキシベンジル)−1,3,5−トリアジン−2,4,6(1H,3H,5H)−トリオンがより好適に用いられる。
Figure 2016204480
Figure 2016204480
上記フェノール系熱安定剤は、単独でまたは2種以上を組合せて使用することができる。
F成分の含有量は、A成分とB成分との合計100重量部に対し、好ましくは0.05〜1.0重量部であり、より好ましくは0.07〜0.8重量部、さらに好ましくは0.1〜0.5重量部である。含有量が0.05重量部未満では加工時の熱分解抑制効果が発現せず、機械特性の低下が発生する場合があり、1.0重量部を超えても機械特性が低下する場合がある。
(その他の添加剤)
(i)離型剤
本発明のポリカーボネート樹脂組成物には、その成形時の生産性向上や成形品の歪みの低減を目的として、更に離型剤を配合することが好ましい。かかる離型剤としては公知のものが使用できる。例えば、飽和脂肪酸エステル、不飽和脂肪酸エステル、ポリオレフィン系ワックス(ポリエチレンワックス、1−アルケン重合体など。酸変性などの官能基含有化合物で変性されているものも使用できる)、シリコーン化合物、フッ素化合物(ポリフルオロアルキルエーテルに代表されるフッ素オイルなど)、パラフィンワックス、蜜蝋などを挙げることができる。中でも好ましい離型剤として脂肪酸エステルが挙げられる。かかる脂肪酸エステルは、脂肪族アルコールと脂肪族カルボン酸とのエステルである。かかる脂肪族アルコールは1価アルコールであっても2価以上の多価アルコールであってもよい。また該アルコールの炭素数としては、3〜32の範囲、より好適には5〜30の範囲である。かかる一価アルコールとしては、例えばドデカノール、テトラデカノール、ヘキサデカノール、オクタデカノール、エイコサノール、テトラコサノール、セリルアルコール、およびトリアコンタノールなどが例示される。かかる多価アルコールとしては、ペンタエリスリトール、ジペンタエリスリトール、トリペンタエリスリトール、ポリグリセロール(トリグリセロール〜ヘキサグリセロール)、ジトリメチロールプロパン、キシリトール、ソルビトール、およびマンニトールなどが挙げられる。本発明の脂肪酸エステルにおいては多価アルコールがより好ましい。
一方、脂肪族カルボン酸は炭素数3〜32であることが好ましく、特に炭素数10〜22の脂肪族カルボン酸が好ましい。該脂肪族カルボン酸としては、例えばデカン酸、ウンデカン酸、ドデカン酸、トリデカン酸、テトラデカン酸、ペンタデカン酸、ヘキサデカン酸(パルミチン酸)、ヘプタデカン酸、オクタデカン酸(ステアリン酸)、ノナデカン酸、ベヘン酸、イコサン酸、およびドコサン酸などの飽和脂肪族カルボン酸、並びにパルミトレイン酸、オレイン酸、リノール酸、リノレン酸、エイコセン酸、エイコサペンタエン酸、およびセトレイン酸などの不飽和脂肪族カルボン酸を挙げることができる。上記の中でも脂肪族カルボン酸は、炭素原子数14〜20であるものが好ましい。なかでも飽和脂肪族カルボン酸が好ましい。特にステアリン酸およびパルミチン酸が好ましい。
ステアリン酸やパルミチン酸など上記の脂肪族カルボン酸は通常、牛脂や豚脂などに代表される動物性油脂およびパーム油やサンフラワー油に代表される植物性油脂などの天然油脂類から製造されるため、これらの脂肪族カルボン酸は、通常炭素原子数の異なる他のカルボン酸成分を含む混合物である。したがって本発明の脂肪酸エステルの製造においてもかかる天然油脂類から製造され、他のカルボン酸成分を含む混合物の形態からなる脂肪族カルボン酸、殊にステアリン酸やパルミチン酸が好ましく使用される。
本発明の脂肪酸エステルは、部分エステルおよび全エステル(フルエステル)のいずれであってもよい。しかしながら部分エステルでは通常水酸基価が高くなり高温時の樹脂の分解などを誘発しやすいことから、より好適にはフルエステルである。本発明の脂肪酸エステルにおける酸価は、熱安定性の点から好ましく20以下、より好ましくは4〜20の範囲、更に好ましくは4〜12の範囲である。尚、酸価は実質的に0を取り得る。また脂肪酸エステルの水酸基価は、0.1〜30の範囲がより好ましい。更にヨウ素価は、10以下が好ましい。尚、ヨウ素価は実質的に0を取り得る。これらの特性はJIS K 0070に規定された方法により求めることができる。
離型剤の含有量は、A成分とB成分との合計100重量部に対して、好ましくは0.005〜2重量部、より好ましくは0.01〜1重量部、更に好ましくは0.05〜0.5重量部である。かかる範囲においては、ポリカーボネート樹脂組成物は良好な離型性および離ロール性を有する。特にかかる量の脂肪酸エステルは良好な色相を損なうことなく良好な離型性および離ロール性を有するポリカーボネート樹脂組成物を提供する。
(ii)紫外線吸収剤
本発明のポリカーボネート樹脂組成物は紫外線吸収剤を含有することができる。ベンゾフェノン系では、例えば、2,4−ジヒドロキシベンゾフェノン、2−ヒドロキシ−4−メトキシベンゾフェノン、2−ヒドロキシ−4−オクトキシベンゾフェノン、2−ヒドロキシ−4−ベンジロキシベンゾフェノン、2−ヒドロキシ−4−メトキシ−5−スルホキシベンゾフェノン、2−ヒドロキシ−4−メトキシ−5−スルホキシトリハイドライドレイトベンゾフェノン、2,2’−ジヒドロキシ−4−メトキシベンゾフェノン、2,2’,4,4’−テトラヒドロキシベンゾフェノン、2,2’−ジヒドロキシ−4,4’−ジメトキシベンゾフェノン、2,2’−ジヒドロキシ−4,4’−ジメトキシ−5−ソジウムスルホキシベンゾフェノン、ビス(5−ベンゾイル−4−ヒドロキシ−2−メトキシフェニル)メタン、2−ヒドロキシ−4−n−ドデシルオキシベンソフェノン、および2−ヒドロキシ−4−メトキシ−2’−カルボキシベンゾフェノンなどが例示される。
ベンゾトリアゾール系では、例えば、2−(2−ヒドロキシ−5−メチルフェニル)ベンゾトリアゾ−ル、2−(2−ヒドロキシ−5−tert−オクチルフェニル)ベンゾトリアゾ−ル、2−(2−ヒドロキシ−3,5−ジクミルフェニル)フェニルベンゾトリアゾール、2−(2−ヒドロキシ−3−tert−ブチル−5−メチルフェニル)−5−クロロベンゾトリアゾール、2,2’−メチレンビス[4−(1,1,3,3−テトラメチルブチル)−6−(2H−ベンゾトリアゾール−2−イル)フェノール]、2−(2−ヒドロキシ−3,5−ジ−tert−ブチルフェニル)ベンゾトリアゾ−ル、2−(2−ヒドロキシ−3,5−ジ−tert−ブチルフェニル)−5−クロロベンゾトリアゾール、2−(2−ヒドロキシ−3,5−ジ−tert−アミルフェニル)ベンゾトリアゾ−ル、2−(2−ヒドロキシ−5−tert−オクチルフェニル)ベンゾトリアゾ−ル、2−(2−ヒドロキシ−5−tert−ブチルフェニル)ベンゾトリアゾ−ル、2−(2−ヒドロキシ−4−オクトキシフェニル)ベンゾトリアゾ−ル、2,2’−メチレンビス(4−クミル−6−ベンゾトリアゾールフェニル)、2,2’−p−フェニレンビス(1,3−ベンゾオキサジン−4−オン)、および2−[2−ヒドロキシ−3−(3,4,5,6−テトラヒドロフタルイミドメチル)−5−メチルフェニル]ベンゾトリアゾ−ル、並びに2−(2’−ヒドロキシ−5−メタクリロキシエチルフェニル)−2H−ベンゾトリアゾールと該モノマーと共重合可能なビニル系モノマーとの共重合体や2−(2’―ヒドロキシ−5−アクリロキシエチルフェニル)―2H―ベンゾトリアゾールと該モノマーと共重合可能なビニル系モノマーとの共重合体などの2−ヒドロキシフェニル−2H−ベンゾトリアゾール骨格を有する重合体などが例示される。
ヒドロキシフェニルトリアジン系では、例えば、2−(4,6−ジフェニル−1,3,5−トリアジン−2−イル)−5−ヘキシルオキシフェノール、2−(4,6−ジフェニル−1,3,5−トリアジン−2−イル)−5−メチルオキシフェノール、2−(4,6−ジフェニル−1,3,5−トリアジン−2−イル)−5−エチルオキシフェノール、2−(4,6−ジフェニル−1,3,5−トリアジン−2−イル)−5−プロピルオキシフェノール、および2−(4,6−ジフェニル−1,3,5−トリアジン−2−イル)−5−ブチルオキシフェノールなどが例示される。さらに2−(4,6−ビス(2,4−ジメチルフェニル)−1,3,5−トリアジン−2−イル)−5−ヘキシルオキシフェノールなど、上記例示化合物のフェニル基が2,4−ジメチルフェニル基となった化合物が例示される。
環状イミノエステル系では、例えば2,2’−p−フェニレンビス(3,1−ベンゾオキサジン−4−オン)、2,2’−(4,4’−ジフェニレン)ビス(3,1−ベンゾオキサジン−4−オン)、および2,2’−(2,6−ナフタレン)ビス(3,1−ベンゾオキサジン−4−オン)などが例示される。
シアノアクリレート系では、例えば1,3−ビス−[(2’−シアノ−3’,3’−ジフェニルアクリロイル)オキシ]−2,2−ビス[(2−シアノ−3,3−ジフェニルアクリロイル)オキシ]メチル)プロパン、および1,3−ビス−[(2−シアノ−3,3−ジフェニルアクリロイル)オキシ]ベンゼンなどが例示される。
さらに上記紫外線吸収剤は、ラジカル重合が可能な単量体化合物の構造をとることにより、かかる紫外線吸収性単量体および/またはヒンダードアミン構造を有する光安定性単量体と、アルキル(メタ)アクリレートなどの単量体とを共重合したポリマー型の紫外線吸収剤であってもよい。上記紫外線吸収性単量体としては、(メタ)アクリル酸エステルのエステル置換基中にベンゾトリアゾール骨格、ベンゾフェノン骨格、トリアジン骨格、環状イミノエステル骨格、およびシアノアクリレート骨格を含有する化合物が好適に例示される。
上記の中でも紫外線吸収能の点においてはベンゾトリアゾール系およびヒドロキシフェニルトリアジン系が好ましく、耐熱性や色相(透明性)の点では、環状イミノエステル系およびシアノアクリレート系が好ましい。上記紫外線吸収剤は単独であるいは2種以上の混合物で用いてもよい。
紫外線吸収剤の含有量は、A成分とB成分との合計100重量部に対して、好ましくは0.01〜2重量部、より好ましくは0.02〜2重量部、さらに好ましくは0.03〜1重量部、更に好ましくは0.05〜0.5重量部である。
(iii)ヒンダードアミン系光安定剤
本発明のポリカーボネート樹脂組成物はヒンダードアミン系光安定剤を含有することができる。ヒンダードアミン系光安定剤は一般にHALS(Hindered Amine Light Stabilizer)と呼ばれ、2,2,6,6−テトラメチルピペリジン骨格を構造中に有する化合物であり、例えば、4−アセトキシ−2,2,6,6−テトラメチルピペリジン、4−ステアロイルオキシ−2,2,6,6−テトラメチルピペリジン、4−アクリロイルオキシ−2,2,6,6−テトラメチルピペリジン、4−(フェニルアセトキシ)−2,2,6,6−テトラメチルピペリジン、4−ベンゾイルオキシ−2,2,6,6−テトラメチルピペリジン、4−メトキシ−2,2,6,6−テトラメチルピペリジン、4−ステアリルオキシ−2,2,6,6−テトラメチルピペリジン、4−シクロヘキシルオキシ−2,2,6,6−テトラメチルピペリジン、4−ベンジルオキシ−2,2,6,6−テトラメチルピペリジン、4−フェノキシ−2,2,6,6−テトラメチルピペリジン、4−(エチルカルバモイルオキシ)−2,2,6,6−テトラメチルピペリジン、4−(シクロヘキシルカルバモイルオキシ)−2,2,6,6−テトラメチルピペリジン、4−(フェニルカルバモイルオキシ)−2,2,6,6−テトラメチルピペリジン、ビス(2,2,6,6−テトラメチル−4−ピペリジル)カーボネート、ビス(2,2,6,6−テトラメチル−4−ピペリジル)オキサレート、ビス(2,2,6,6−テトラメチル−4−ピペリジル)マロネート、ビス(2,2,6,6−テトラメチル−4−ピペリジル)セバケート、ビス(2,2,6,6−テトラメチル−4−ピペリジル)アジペート、ビス(2,2,6,6−テトラメチル−4−ピペリジル)テレフタレート、ビス(1,2,2,6,6−ペンタメチル−4−ピペリジル)カーボネート、ビス(1,2,2,6,6−ペンタメチル−4−ピペリジル)オキサレート、ビス(1,2,2,6,6−ペンタメチル−4−ピペリジル)マロネート、ビス(1,2,2,6,6−ペンタメチル−4−ピペリジル)セバケート、ビス(1,2,2,6,6−ペンタメチル−4−ピペリジル)アジペート、ビス(1,2,2,6,6−ペンタメチル−4−ピペリジル)テレフタレート、N,N’−ビス−2,2,6,6−テトラメチル−4−ピペリジニル−1,3−ベンゼンジカルボキシアミド、1,2−ビス(2,2,6,6−テトラメチル−4−ピペリジルオキシ)エタン、α,α’−ビス(2,2,6,6−テトラメチル−4−ピペリジルオキシ)−p−キシレン、ビス(2,2,6,6−テトラメチル−4−ピペリジルトリレン−2,4−ジカルバメート、ビス(2,2,6,6−テトラメチル−4−ピペリジル)−ヘキサメチレン−1,6−ジカルバメート、トリス(2,2,6,6−テトラメチル−4−ピペリジル)−ベンゼン−1,3,5−トリカルボキシレート、N,N’,N’’,N’’’−テトラキス−(4,6−ビス−(ブチル−(N−メチル−2,2,6,6−テトラメチルピペリジン−4−イル)アミノ)−トリアジン−2−イル)−4,7−ジアザデカン−1,10−ジアミン、ジブチルアミン・1,3,5−トリアジン・N,N’−ビス(2,2,6,6−テトラメチル−4−ピペリジル)−1,6−ヘキサメチレンジアミンとN−(2,2,6,6−テトラメチル−4−ピペリジル)ブチルアミンの重縮合物、ポリ[{6−(1,1,3,3−テトラメチルブチル)アミノ−1,3,5−トリアジン−2,4−ジイル}{(2,2,6,6−テトラメチル−4−ピペリジル)イミノ}ヘキサメチレン{(2,2,6,6−テトラメチル−4−ピペリジル)イミノ}]、テトラキス(2,2,6,6−テトラメチル−4−ピペリジル)−1,2,3,4−ブタンテトラカルボキシラート、テトラキス(1,2,2,6,6−ペンタメチル−4−ピペリジル)−1,2,3,4−ブタンテトラカルボキシラート、トリス(2,2,6,6−テトラメチル−4−ピペリジル)−ベンゼン−1,3,4−トリカルボキシレート、1−[2−{3−(3,5−ジ−t−ブチル−4−ヒドロキシフェニル)プロピオニルオキシ}ブチル]−4−[3−(3,5−ジ−t−ブチル−4−ヒドロキシフェニル)プロピオニルオキシ]2,2,6,6−テトラメチルピペリジン、及び1,2,3,4−ブタンテトラカルボン酸と1,2,2,6,6−ペンタメチル−4−ピペリジノールとβ,β,β’,β’−テトラメチル−3,9−[2,4,8,10−テトラオキサスピロ(5,5)ウンデカン]ジエタノールとの縮合物などが挙げられる。
ヒンダードアミン系光安定剤はピペリジン骨格中の窒素原子の結合相手により大きく分けて、N−H型(窒素原子に水素が結合)、N−R型(窒素原子にアルキル基(R)が結合)、N−OR型(窒素原子にアルコキシ基(OR)が結合)の3タイプがあるが、ポリカーボネート樹脂に適用する際、ヒンダードアミン系光安定剤の塩基性の観点から、低塩基性であるN−R型、N−OR型を用いるのがより好ましい。
上記化合物の中でも、本発明において、下記式(8)で表される化合物がより好適に用いられる。
Figure 2016204480
上記ヒンダードアミン系光安定剤は、単独でまたは2種以上を組合せて使用することができる。
ヒンダードアミン系光安定剤の含有量は、A成分およびB成分の合計100重量部に対し、0〜1重量部であることが好ましく、0.05〜1重量部がより好ましく、さらに好ましくは0.08〜0.7重量部、特に好ましくは0.1〜0.5重量部である。ヒンダードアミン系光安定剤の含有量が1重量部より多いとガス発生による外観不良やポリカーボネート樹脂の分解による物性低下が起こる場合があり好ましくない。また、0.05重量部未満であると、十分な耐光性が発現しない場合がある。
(iv)染顔料
本発明のポリカーボネート樹脂組成物は更に各種の染顔料を含有し多様な意匠性を発現する成形品を提供できる。蛍光増白剤やそれ以外の発光をする蛍光染料を配合することにより、発光色を生かした更に良好な意匠効果を付与することができる。また極微量の染顔料による着色、かつ鮮やかな発色性を有するポリカーボネート樹脂組成物もまた提供可能である。
本発明で使用する蛍光染料(蛍光増白剤を含む)としては、例えば、クマリン系蛍光染料、ベンゾピラン系蛍光染料、ペリレン系蛍光染料、アンスラキノン系蛍光染料、チオインジゴ系蛍光染料、キサンテン系蛍光染料、キサントン系蛍光染料、チオキサンテン系蛍光染料、チオキサントン系蛍光染料、チアジン系蛍光染料、およびジアミノスチルベン系蛍光染料などを挙げることができる。これらの中でも耐熱性が良好でポリカーボネート樹脂の成形加工時における劣化が少ないクマリン系蛍光染料、ベンゾピラン系蛍光染料、およびペリレン系蛍光染料が好適である。
上記ブルーイング剤および蛍光染料以外の染料としては、ペリレン系染料、クマリン系染料、チオインジゴ系染料、アンスラキノン系染料、チオキサントン系染料、紺青等のフェロシアン化物、ペリノン系染料、キノリン系染料、キナクリドン系染料、ジオキサジン系染料、イソインドリノン系染料、およびフタロシアニン系染料などを挙げることができる。更に本発明の樹脂組成物はメタリック顔料を配合してより良好なメタリック色彩を得ることもできる。メタリック顔料としては、各種板状フィラーに金属被膜または金属酸化物被膜を有するものが好適である。
上記の染顔料の含有量は、A成分とB成分との合計100重量部に対して、0.00001〜1重量部が好ましく、0.00005〜0.5重量部がより好ましい。
(v)その他の熱安定剤
本発明のポリカーボネート樹脂組成物には、上記のリン系熱安定剤およびフェノール系熱安定剤以外の他の熱安定剤を配合することもできる。かかるその他の熱安定剤は、これらの安定剤および酸化防止剤のいずれかと併用されることが好ましく、特に両者と併用されることが好ましい。かかる他の熱安定剤としては、例えば3−ヒドロキシ−5,7−ジ−tert−ブチル−フラン−2−オンとo−キシレンとの反応生成物に代表されるラクトン系安定剤(かかる安定剤の詳細は特開平7−233160号公報に記載されている)が好適に例示される。かかる化合物はIrganox HP−136(商標、CIBA SPECIALTY CHEMICALS社製)として市販され、該化合物を利用できる。更に該化合物と各種のホスファイト化合物およびヒンダードフェノール化合物を混合した安定剤が市販されている。例えば上記社製のIrganox HP−2921が好適に例示される。本発明においてもかかる予め混合された安定剤を利用することもできる。ラクトン系安定剤の配合量は、A成分とB成分との合計100重量部に対し、好ましくは0.0005〜0.05重量部、より好ましくは0.001〜0.03重量部である。
またその他の安定剤としては、ペンタエリスリトールテトラキス(3−メルカプトプロピオネート)、ペンタエリスリトールテトラキス(3−ラウリルチオプロピオネート)、およびグリセロール−3−ステアリルチオプロピオネートなどのイオウ含有安定剤が例示される。かかる安定剤は、樹脂組成物が回転成形に適用される場合に特に有効である。かかるイオウ含有安定剤の配合量は、A成分とB成分との合計100重量部に対して、好ましくは0.001〜0.1重量部、より好ましくは0.01〜0.08重量部である。
(vi)光高反射用白色顔料
本発明のポリカーボネート樹脂組成物には光高反射用白色顔料を配合して光反射効果を付与することができる。かかる白色顔料としては硫化亜鉛、酸化亜鉛、硫酸バリウム、炭酸カルシウム、焼成カオリンなどが挙げられる。かかる光高反射用白色顔料の含有量は、A成分とB成分との合計100重量部に対して、3〜30重量部が好ましく、8〜25重量部がより好ましい。尚、光高反射用白色顔料は2種以上を併用することができる。
(vii)難燃剤
本発明のポリカーボネート樹脂組成物には難燃剤を配合して難燃性を付与することができる。かかる難燃剤としては従来、熱可塑性樹脂、特にポリカーボネート系樹脂の難燃剤として知られる各種の化合物が適用できるが、より好適には、(i)ハロゲン系難燃剤(例えば、臭素化ポリカーボネート化合物など)(ii)リン系難燃剤(例えば、モノホスフェート化合物、ホスフェートオリゴマー化合物ホスホネートオリゴマー化合物、ホスホニトリルオリゴマー化合物、ホスホン酸アミド化合物、およびホスファゼン化合物など)、(iii)金属塩系難燃剤(例えば有機スルホン酸アルカリ(土類)金属塩、ホウ酸金属塩系難燃剤、および錫酸金属塩系難燃剤など)、(iv)シリコーン化合物からなるシリコーン系難燃剤である。尚、難燃剤として使用される化合物の配合は難燃性の向上のみならず、各化合物の性質に基づき、例えば帯電防止性、流動性、剛性、および熱安定性の向上などがもたらされる。
難燃剤の含有量は、A成分とB成分との合計100重量部に対し、好ましくは0.01〜30重量部であり、より好ましくは0.05〜28重量部、さらに好ましくは0.08〜25重量部である。難燃剤の含有量が0.01重量部未満の場合、十分な難燃性が得られない場合があり、30重量部を超えた場合、衝撃強度および耐薬品性の低下が大きい場合がある。
(viii)他の樹脂
本発明の樹脂組成物には、他の樹脂を本発明の効果を発揮する範囲において、少割合使用することもできる。
かかる他の樹脂としては、例えばポリエチレンテレフタレート、ポリブチレンテレフタレート等のポリエステル樹脂、ポリアミド樹脂、ポリイミド樹脂、ポリエーテルイミド樹脂、ポリウレタン樹脂、シリコーン樹脂、ポリフェニレンエーテル樹脂、ポリフェニレンスルフィド樹脂、ポリスルホン樹脂、ポリエチレン等のポリオレフィン樹脂、ポリメタクリレート樹脂、フェノール樹脂、エポキシ樹脂等の樹脂が挙げられる。
(ix)その他充填材
本発明の樹脂組成物には、他の充填材を本発明の効果を発揮する範囲において、少割合使用することもできる。
かかる他の充填材としてはチタン酸カリウィスカ、酸化亜鉛ウィスカ、アルミナ繊維
、炭化珪素繊維、セラミック繊維、アスベスト繊維、石コウ繊維、金属繊維などの繊維状充填剤、ワラストナイト、セリサイト、カオリン、マイカ、クレー、ベントナイト、アスベスト、タルク、アルミナシリケートなどの珪酸塩、モンモリロナイト、合成雲母などの膨潤性の層状珪酸塩、アルミナ、酸化珪素、酸化マグネシウム、酸化ジルコニウム、酸化チタン、酸化鉄などの金属化合物、炭酸カルシウム、炭酸マグネシウム、ドロマイトなどの炭酸塩、硫酸カルシウム、硫酸バリウムなどの硫酸塩、ガラス・ビーズ、セラミックビ−ズ、窒化ホウ素、炭化珪素、燐酸カルシウムおよびシリカなどの非繊維状充填剤が挙げられる。
(x)その他の添加剤
その他、本発明の芳香族ポリカーボネート樹脂組成物には、成形品に種々の機能の付与や特性改善のために、それ自体知られた添加物を少割合配合することができる。これら添加物は本発明の目的を損なわない限り、通常の配合量である。
かかる添加剤としては、摺動剤(例えばPTFE粒子)、H成分以外の着色剤(例えばカーボンブラックなどの顔料、染料)、光拡散剤(例えばアクリル架橋粒子、シリコン架橋粒子、極薄ガラスフレーク、炭酸カルシウム粒子)、蛍光染料、無機系蛍光体(例えばアルミン酸塩を母結晶とする蛍光体)、帯電防止剤、結晶核剤、無機および有機の抗菌剤、光触媒系防汚剤(例えば微粒子酸化チタン、微粒子酸化亜鉛)、ラジカル発生剤、赤外線吸収剤(熱線吸収剤)、およびフォトクロミック剤などが挙げられる。
(ポリカーボネート脂組成物の製造)
本発明のポリカーボネート樹脂組成物を製造するには、任意の方法が採用される。例えばA成分〜D成分および任意に他の添加剤を、V型ブレンダー、ヘンシェルミキサー、メカノケミカル装置、押出混合機などの予備混合手段を用いて充分に混合した後、必要に応じて押出造粒器やブリケッティングマシーンなどによりかかる予備混合物の造粒を行い、その後ベント式二軸押出機に代表される溶融混練機で溶融混練し、その後ペレタイザーによりペレット化する方法が挙げられる。
他に、各成分をそれぞれ独立にベント式二軸押出機に代表される溶融混練機に供給する方法や、各成分の一部を予備混合した後、残りの成分と独立に溶融混練機に供給する方法なども挙げられる。各成分の一部を予備混合する方法としては例えば、A成分以外の成分を予め予備混合した後、A成分のポリカーボネート樹脂に混合または押出機に直接供給する方法が挙げられる。
予備混合する方法としては例えば、A成分としてパウダーの形態を有するものを含む場合、かかるパウダーの一部と配合する添加剤とをブレンドしてパウダーで希釈した添加剤のマスターバッチを製造し、かかるマスターバッチを利用する方法が挙げられる。更に一成分を独立に溶融押出機の途中から供給する方法なども挙げられる。尚、配合する成分に液状のものがある場合には、溶融押出機への供給にいわゆる液注装置、または液添装置を使用することができる。
押出機としては、原料中の水分や、溶融混練樹脂から発生する揮発ガスを脱気できるベントを有するものが好ましく使用できる。ベントからは発生水分や揮発ガスを効率よく押出機外部へ排出するための真空ポンプが好ましく設置される。また押出原料中に混入した異物などを除去するためのスクリーンを押出機ダイス部前のゾーンに設置し、異物を樹脂組成物から取り除くことも可能である。かかるスクリーンとしては金網、スクリーンチェンジャー、焼結金属プレート(ディスクフィルターなど)などを挙げることができる。
溶融混練機としては二軸押出機の他にバンバリーミキサー、混練ロール、単軸押出機、3軸以上の多軸押出機などを挙げることができる。
上記の如く押出された樹脂は、直接切断してペレット化するか、またはストランドを形成した後かかるストランドをペレタイザーで切断してペレット化される。ペレット化に際して外部の埃などの影響を低減する必要がある場合には、押出機周囲の雰囲気を清浄化することが好ましい。更にかかるペレットの製造においては、光学ディスク用ポリカーボネート樹脂において既に提案されている様々な方法を用いて、ペレットの形状分布の狭小化、ミスカット物の低減、運送または輸送時に発生する微小粉の低減、並びにストランドやペレット内部に発生する気泡(真空気泡)の低減を適宜行うことができる。これらの処方により成形のハイサイクル化、およびシルバーの如き不良発生割合の低減を行うことができる。またペレットの形状は、円柱、角柱、および球状など一般的な形状を取り得るが、より好適には円柱である。かかる円柱の直径は好ましくは1〜5mm、より好ましくは1.5〜4mm、さらに好ましくは2〜3.3mmである。一方、円柱の長さは好ましくは1〜30mm、より好ましくは2〜5mm、さらに好ましくは2.5〜3.5mmである。
(本発明の樹脂組成物からなる成形品について)
本発明における樹脂組成物は、通常上述の方法で得られたペレットを射出成形して各種製品を製造することができる。かかる射出成形においては、通常の成形方法だけでなく、適宜目的に応じて、射出圧縮成形、射出プレス成形、ガスアシスト射出成形、発泡成形(超臨界流体の注入によるものを含む)、インサート成形、インモールドコーティング成形、断熱金型成形、急速加熱冷却金型成形、二色成形、サンドイッチ成形、および超高速射出成形などの射出成形法を用いて成形品を得ることができる。これら各種成形法の利点は既に広く知られるところである。また成形はコールドランナー方式およびホットランナー方式のいずれも選択することができる。
また本発明における樹脂組成物は、押出成形により各種異形押出成形品、シート、フィルムなどの形で使用することもできる。またシート、フィルムの成形にはインフレーション法や、カレンダー法、キャスティング法なども使用可能である。さらに特定の延伸操作をかけることにより熱収縮チューブとして成形することも可能である。また本発明の樹脂組成物を回転成形やブロー成形などにより成形品とすることも可能である。
本発明の樹脂組成物が利用される成形品の具体例としては、生活資材・建材・インテリア用品やOA機器・家電製品の内部部品やハウジングなどへの応用に好適なものである。これらの製品としては例えば、パソコン、ノートパソコン、CRTディスプレー、プリンター、携帯端末、携帯電話、コピー機、ファックス、記録媒体(CD、CD−ROM、DVD、PD、FDDなど)ドライブ、パラボラアンテナ、電動工具、VTR、テレビ、アイロン、ヘアードライヤー、炊飯器、電子レンジ、音響機器、オーディオ・レーザーディスク(登録商標)・コンパクトディスクなどの音声機器、照明機器、冷蔵庫、エアコン、タイプライター、ワードプロセッサー、スーツケースや清掃用具などの生活資材などを挙げることができ、これらの筐体などの各種部品に本発明の熱可塑性樹脂組成物から形成された樹脂製品を使用することができる。またその他の樹脂製品としては、ディフレクター部品、カーナビケーション部品、カーステレオ部品などの車両用部品を挙げることができる。
本発明のポリカーボネート樹脂組成物は、機械特性、耐薬品性および長期耐クリープ特性を高い次元で両立していることから、屋外/屋内に限らず、住宅設備用途、建材用途、生活資材用途、インフラ設備用途、自動車用途、OA・EE用途、屋外機器用途、その他の各種分野において幅広く有用である。したがって本発明の奏する産業上の効果は極めて大である。
本発明者が現在最良と考える発明の形態は、上記の各要件の好ましい範囲を集約したものとなるが、例えば、その代表例を下記の実施例中に記載する。もちろん本発明はこれらの形態に限定されるものではない。
以下に実施例をあげて本発明を更に説明する。なお、特に説明が無い限り実施例中の部は重量部、%は重量%である。なお、評価は下記の方法によって実施した。
(ポリカーボネート樹脂組成物の評価)
(i)長期耐クリープ特性
下記方法で得られたISO曲げ試験片を用いて、60℃雰囲気下、荷重13MPaの負荷をかけ、処理前の歪み量と100時間後の歪み量の測定を実施した。なお、長期耐クリープ特性は下記式より算出した。
長期耐クリープ特性(%)=100×[(100時間後の歪み量)−(処理前の歪み量)]/(処理前の歪み量)
(ii)耐薬品性
下記の方法で得られたISO引張試験片を用いて、3点曲げ試験法にて、0.5%歪みをかけた後、マジックリン、バスマジックリンおよびトイレマジックリン(全て、花王(株)製)を含浸させた布をかけ、23℃で96時間放置した後に、外観変化の有無を確認した。なお、評価は下記の基準で実施した。
○:外観変化が見られないもの
△:微細なクラックの発生が見られるもの
×:破断にいたるような大きなクラックが見られるもの
(iii)曲げ弾性率
下記の方法で得られたISO曲げ試験片を用いて、ISO 178に従い、曲げ弾性率の測定を実施した。
(iv)シャルピー衝撃強度
下記の方法で得られたISO曲げ試験片を用いて、ISO 179に従い、ノッチ無のシャルピー衝撃強度の測定を実施した。
[実施例1〜30、比較例1〜8]
表1〜表4に示す組成で、B成分のポリプロピレン系樹脂を除く成分からなる混合物を押出機の第1供給口から供給した。かかる混合物はV型ブレンダーで混合して得た。B成分のポリプロピレン系樹脂は、第2供給口からサイドフィーダーを用いて供給した。押出は径30mmφのベント式二軸押出機((株)日本製鋼所TEX30α−38.5BW−3V)を使用し、スクリュー回転数230rpm、吐出量25kg/h、ベントの真空度3kPaで溶融混練しペレットを得た。なお、押出温度については、第1供給口からダイス部分まで260℃で実施した。
得られたペレットの一部は、90〜100℃で6時間熱風循環式乾燥機にて乾燥した後、射出成形機を用いて、シリンダー温度260℃、金型温度70℃にて評価用の試験片(ISO引張試験片(ISO527−1及びISO527−2準拠)、ISO曲げ試験片(ISO178およびISO179準拠))を成形した。
なお、表1〜表4中の記号表記の各成分は下記の通りである。
(A成分)
A−1:芳香族ポリカーボネート樹脂(ビスフェノールAとホスゲンから常法によって作られた粘度平均分子量25,100のポリカーボネート樹脂粉末、帝人(株)製 パンライトL−1250WQ(製品名))
A−2:芳香族ポリカーボネート樹脂(ビスフェノールAとホスゲンから常法によって作られた粘度平均分子量22,400のポリカーボネート樹脂粉末、帝人(株)製 パンライトL−1225WP(製品名))
A−3:芳香族ポリカーボネート樹脂(ビスフェノールAとホスゲンから常法によって作られた粘度平均分子量19,800のポリカーボネート樹脂粉末、帝人(株)製 パンライトL−1225WX(製品名))
A−4:ポリカーボネート−ポリジオルガノシロキサン共重合樹脂(粘度平均分子量19,800、PDMS量8.4%、PDMS重合度37)
(B成分)
B−1:ポリプロピレン樹脂(ホモポリマー、MFR:2.0g/10min、(株)サンアロマー製 サンアロマーPL400A(製品名))
B−2:ポリプロピレン樹脂(ホモポリマー、MFR:0.5g/10min、(株)サンアロマー製 サンアロマーVS200A(製品名))
B−3:ポリプロピレン樹脂(ホモポリマー、MFR:10g/10min、(株)サンアロマー製 サンアロマーVS700A(製品名))
B−4:ポリプロピレン樹脂(ブロックポリマー、MFR:1.5g/10min、(株)サンアロマー製 サンアロマーVB370BA(製品名))
(C成分)
C−1:スチレン−エチレン・プロピレン−スチレンブロック共重合体(スチレン含有量:65wt%、MFR:0.4g/10min、(株)クラレ製 セプトン2104(製品名))
C−2:スチレン−エチレン・プロピレン−スチレンブロック共重合体(スチレン含有量:30wt%、MFR:70g/10min、(株)クラレ製 セプトン2002(製品名))
C−3:スチレン−エチレン・ブチレン−スチレンブロック共重合体(スチレン含有量:67wt%、MFR:2.0g/10min、旭化成ケミカルズ(株)製 タフテックH1043(製品名))
C−4:スチレン−ブタジエン・ブチレン−スチレンブロック共重合体(スチレン含有量:67wt%、MFR:28g/10min、旭化成ケミカルズ(株)製 タフテックP2000(製品名))
(D成分)
(D−1成分)
GFー1:円形断面チョップドガラス繊維(日東紡績(株)製;CSG 3PE−455(商品名)、長径13μm、カット長3mm、ウレタン系集束剤)
GF−2:円形断面チョップドガラス繊維(日東紡績(株)製;CSG 3PE−937(商品名)、長径13μm、カット長3mm、エポキシ系集束剤)
GF−3:扁平断面チョップドガラス繊維(日東紡績(株)製;CSG 3PA−830(商品名)、長径27μm、短径4μm、カット長3mm、エポキシ系集束剤)
(D−2成分)
CF−1:炭素繊維(東邦テナックス(株)製;HT C422、径7μm)
CF−2:ニッケルコート炭素繊維(東邦テナックス(株)製;HT C923、径7.5μm)
(E成分)
E−1:リン系熱安定剤(トリメチルフォスフェート、大八化学工業(株)製 TMP(製品名))
E−2:リン系熱安定剤(トリス(2,4−ジ−tert−ブチルフェニル)ホスファイト、チバスペシャルティケミカルズ(株)製;Irgafos168(商品名))
(F成分)
F−1:フェノール系熱安定剤(オクタデシル−3−(3,5−ジ−tert−ブチル−4−ヒドロキシフェニル)プロピオネート、分子量531、BASFジャパン(株)製 Irganox 1076(製品名))
F−2:フェノール系熱安定剤(3,3´,3´´,5,5´,5´´−ヘキサ−tert−ブチル−a,a´,a´´−(メシチレン−2,4,6−トリイル)トリ−p−クレゾール、分子量775、BASFジャパン(株)製 Irganox 1330(製品名))
F−3:フェノール系熱安定剤(1,3,5−トリス−(3,5−ジ−tert−ブチル−4−ヒドロキシベンジル)−1,3,5−トリアジン−2,4,6(1H,3H,5H)−トリオン、分子量784、BASFジャパン(株)製 Irganox 3114(製品名))
Figure 2016204480
Figure 2016204480
Figure 2016204480
Figure 2016204480
上記表1〜表4から本発明の配合により、機械特性、耐薬品性及び長期耐クリープ特性を高次元で満足するポリカーボネート樹脂組成物が得られることが分かる。

Claims (13)

  1. (A)ポリカーボネート系樹脂(A成分)および(B)ポリプロピレン系樹脂(B成分)の合計100重量部に対し、(C)スチレン系熱可塑性エラストマー(C成分)1〜15重量部並びに(D)ガラス繊維(D−1成分)および炭素繊維(D−2成分)からなる群より選ばれる少なくとも一種の繊維状充填材(D成分)1〜100重量部を含むポリカーボネート樹脂組成物。
  2. C成分のスチレン単位の含有量が40〜70重量%である請求項1に記載のポリカーボネート樹脂組成物。
  3. C成分中の水添ポリジエン単位が水添イソプレン単位であり、エチレン・プロピレンブロック単位を有するブロック共重合体である請求項1または2に記載のポリカーボネート樹脂組成物。
  4. C成分中の水添ポリジエン単位が水添ブタジエン単位であり、エチレン・ブチレンブロック単位を有するブロック共重合体である請求項1または2に記載のポリカーボネート樹脂組成物。
  5. C成分中の水添ポリジエン単位が部分水添ブタジエン単位であり、ブダジエン・ブチレンブロック単位を有するブロック共重合体である請求項1または2に記載のポリカーボネート樹脂組成物。
  6. C成分の230℃、2.16kg荷重でのMFRが0.1〜10g/10minである請求項1〜5のいずれかに記載のポリカーボネート樹脂組成物。
  7. B成分の230℃、2.16kg荷重でのMFRが0.1〜5g/10minである請求項1〜6のいずれかに記載のポリカーボネート樹脂組成物。
  8. (A)ポリカーボネート系樹脂(A成分)および(B)ポリプロピレン系樹脂(B成分)の割合(重量比)(A/B)が80/20〜30/70である請求項1〜7のいずれかに記載のポリカーボネート樹脂組成物。
  9. 樹脂成分100重量部に対し、(E)リン系熱安定剤(G成分)を0.05〜1.0重量部含む請求項1〜8のいずれかに記載のポリカーボネート樹脂組成物。
  10. 樹脂成分100重量部に対し、(F)フェノール系熱安定剤(F成分)を0.05〜1.0重量部含む請求項1〜9のいずれかに記載のポリカーボネート樹脂組成物。
  11. F成分が下記式(6)または(7)で表される構造を有する化合物である請求項10に記載のポリカーボネート樹脂組成物。
    Figure 2016204480
    Figure 2016204480
  12. 請求項1〜11のいずれかに記載のポリカーボネート樹脂組成物からなる射出成形品。
  13. 請求項1〜11のいずれかに記載のポリカーボネート樹脂組成物からなる構造部材。
JP2015085984A 2015-04-20 2015-04-20 ポリカーボネート樹脂組成物 Active JP6588219B2 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2015085984A JP6588219B2 (ja) 2015-04-20 2015-04-20 ポリカーボネート樹脂組成物

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2015085984A JP6588219B2 (ja) 2015-04-20 2015-04-20 ポリカーボネート樹脂組成物

Publications (2)

Publication Number Publication Date
JP2016204480A true JP2016204480A (ja) 2016-12-08
JP6588219B2 JP6588219B2 (ja) 2019-10-09

Family

ID=57487573

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2015085984A Active JP6588219B2 (ja) 2015-04-20 2015-04-20 ポリカーボネート樹脂組成物

Country Status (1)

Country Link
JP (1) JP6588219B2 (ja)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2019519643A (ja) * 2016-06-03 2019-07-11 コベストロ、ドイチュラント、アクチエンゲゼルシャフトCovestro Deutschland Ag マトリックス材料としての特定のコポリカーボネートを含む多層複合材料
JP2019126964A (ja) * 2018-01-24 2019-08-01 帝人株式会社 積層体およびそれからなる繊維強化樹脂複合体
JP2020147683A (ja) * 2019-03-14 2020-09-17 帝人株式会社 芳香族ポリカーボネート樹脂組成物
WO2021033543A1 (ja) * 2019-08-21 2021-02-25 帝人株式会社 ポリカーボネート樹脂組成物
KR20210091266A (ko) 2018-12-27 2021-07-21 우베 마테리알즈 가부시키가이샤 폴리카보네이트 수지 조성물 및 그의 제조 방법, 마스터 배치 펠렛, 및 성형체
CN113518799A (zh) * 2019-03-04 2021-10-19 帝人株式会社 聚碳酸酯树脂组合物

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS57200444A (en) * 1981-06-03 1982-12-08 Idemitsu Petrochem Co Ltd Polycarbonate resin composition
JPS61115945A (ja) * 1984-11-08 1986-06-03 モ−ビル オイル コ−ポレ−ション ポリプロピレン、ポリカーボネート、およびスチレン‐エチレン‐ブチレン‐スチレン飽和ゴムからなる配合物
JPH0517633A (ja) * 1991-07-08 1993-01-26 Idemitsu Petrochem Co Ltd ポリプロピレン系樹脂組成物
JPH0718152A (ja) * 1993-06-30 1995-01-20 Calp Corp 帯電持続性複合材料
JP2004067951A (ja) * 2002-08-08 2004-03-04 Techno Polymer Co Ltd 熱可塑性樹脂組成物
JP2014058610A (ja) * 2012-09-14 2014-04-03 Tsubakuro Kagaku Kogyo Kk 樹脂成形体
JP2014181323A (ja) * 2013-03-21 2014-09-29 Teijin Ltd ポリカーボネート樹脂組成物およびその成形品

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS57200444A (en) * 1981-06-03 1982-12-08 Idemitsu Petrochem Co Ltd Polycarbonate resin composition
JPS61115945A (ja) * 1984-11-08 1986-06-03 モ−ビル オイル コ−ポレ−ション ポリプロピレン、ポリカーボネート、およびスチレン‐エチレン‐ブチレン‐スチレン飽和ゴムからなる配合物
JPH0517633A (ja) * 1991-07-08 1993-01-26 Idemitsu Petrochem Co Ltd ポリプロピレン系樹脂組成物
JPH0718152A (ja) * 1993-06-30 1995-01-20 Calp Corp 帯電持続性複合材料
JP2004067951A (ja) * 2002-08-08 2004-03-04 Techno Polymer Co Ltd 熱可塑性樹脂組成物
JP2014058610A (ja) * 2012-09-14 2014-04-03 Tsubakuro Kagaku Kogyo Kk 樹脂成形体
JP2014181323A (ja) * 2013-03-21 2014-09-29 Teijin Ltd ポリカーボネート樹脂組成物およびその成形品

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2019519643A (ja) * 2016-06-03 2019-07-11 コベストロ、ドイチュラント、アクチエンゲゼルシャフトCovestro Deutschland Ag マトリックス材料としての特定のコポリカーボネートを含む多層複合材料
JP7269012B2 (ja) 2016-06-03 2023-05-08 コベストロ、ドイチュラント、アクチエンゲゼルシャフト マトリックス材料としての特定のコポリカーボネートを含む多層複合材料
JP2019126964A (ja) * 2018-01-24 2019-08-01 帝人株式会社 積層体およびそれからなる繊維強化樹脂複合体
KR20210091266A (ko) 2018-12-27 2021-07-21 우베 마테리알즈 가부시키가이샤 폴리카보네이트 수지 조성물 및 그의 제조 방법, 마스터 배치 펠렛, 및 성형체
DE112019006408T5 (de) 2018-12-27 2021-09-23 National University Corporation Yamagata University Polycarbonatharzzusammensetzung, Verfahren zu ihrer Herstellung, Masterbatch-Pellet und Formkörper
US11891509B2 (en) 2018-12-27 2024-02-06 Ube Material Industries, Ltd. Polycarbonate resin composition, method for producing the same, masterbatch pellet, and molded body
CN113518799A (zh) * 2019-03-04 2021-10-19 帝人株式会社 聚碳酸酯树脂组合物
JP2020147683A (ja) * 2019-03-14 2020-09-17 帝人株式会社 芳香族ポリカーボネート樹脂組成物
JP7283928B2 (ja) 2019-03-14 2023-05-30 帝人株式会社 芳香族ポリカーボネート樹脂組成物
WO2021033543A1 (ja) * 2019-08-21 2021-02-25 帝人株式会社 ポリカーボネート樹脂組成物
JPWO2021033543A1 (ja) * 2019-08-21 2021-12-23 帝人株式会社 ポリカーボネート樹脂組成物
JP7111905B2 (ja) 2019-08-21 2022-08-02 帝人株式会社 ポリカーボネート樹脂組成物

Also Published As

Publication number Publication date
JP6588219B2 (ja) 2019-10-09

Similar Documents

Publication Publication Date Title
JP6588219B2 (ja) ポリカーボネート樹脂組成物
JP6328985B2 (ja) ポリカーボネート樹脂組成物
JP5592046B2 (ja) 帯電防止性に優れた難燃性ポリカーボネート樹脂組成物
JP5587655B2 (ja) 難燃性樹脂組成物
JP6807634B2 (ja) 繊維強化ポリプロピレン樹脂組成物
JP2016003329A (ja) ポリカーボネート樹脂組成物
JP2016125025A (ja) ポリカーボネート樹脂組成物
JP6495669B2 (ja) 難燃性ポリカーボネート樹脂組成物
JP6577162B2 (ja) 透明難燃性熱可塑性樹脂組成物およびその成形品
JP7090652B2 (ja) 繰返し利用可能な医療用ボックス
JP7208069B2 (ja) 繊維強化ポリプロピレン樹脂組成物
JP7260251B2 (ja) 難燃性ポリカーボネート樹脂組成物
JP7283928B2 (ja) 芳香族ポリカーボネート樹脂組成物
JP2016113480A (ja) 難燃性ポリカーボネート樹脂組成物
JP7267839B2 (ja) 難燃性ポリカーボネート樹脂組成物
JP2016130291A (ja) 難燃性ポリカーボネート樹脂組成物
JP6976438B2 (ja) ポリカーボネート樹脂組成物
JP2020132830A (ja) 樹脂組成物の製造方法
JP7219332B2 (ja) ポリカーボネート樹脂組成物
WO2017145682A1 (ja) 雨水貯留槽用のブロック部材
JP7428558B2 (ja) 難燃性ポリカーボネート樹脂組成物
JP2023110207A (ja) 難燃性ポリカーボネート樹脂組成物およびその成形品
JP2023137248A (ja) 難燃性ポリカーボネート樹脂組成物およびその成形品
JP2023113987A (ja) ポリカーボネート樹脂組成物およびそれからなる成形品
JP2023130833A (ja) 難燃性ポリカーボネート樹脂組成物およびその成形品

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20180119

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20180919

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20181023

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20181130

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20190423

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20190607

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20190820

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20190912

R150 Certificate of patent or registration of utility model

Ref document number: 6588219

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150