JP2016196703A - HIGH Mn STEEL MATERIAL FOR CRYOGENIC USE - Google Patents

HIGH Mn STEEL MATERIAL FOR CRYOGENIC USE Download PDF

Info

Publication number
JP2016196703A
JP2016196703A JP2016062107A JP2016062107A JP2016196703A JP 2016196703 A JP2016196703 A JP 2016196703A JP 2016062107 A JP2016062107 A JP 2016062107A JP 2016062107 A JP2016062107 A JP 2016062107A JP 2016196703 A JP2016196703 A JP 2016196703A
Authority
JP
Japan
Prior art keywords
less
austenite
amount
steel material
steel
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2016062107A
Other languages
Japanese (ja)
Other versions
JP6693217B2 (en
Inventor
政昭 藤岡
Masaaki Fujioka
政昭 藤岡
崇之 加賀谷
Takayuki Kagaya
崇之 加賀谷
学 星野
Manabu Hoshino
学 星野
仁志 古谷
Hitoshi Furuya
仁志 古谷
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Nippon Steel and Sumitomo Metal Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel and Sumitomo Metal Corp filed Critical Nippon Steel and Sumitomo Metal Corp
Publication of JP2016196703A publication Critical patent/JP2016196703A/en
Application granted granted Critical
Publication of JP6693217B2 publication Critical patent/JP6693217B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Heat Treatment Of Steel (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a high Mn steel material for cryogenic use, which materializes a base metal and a heat affected zone each having an excellent toughness.SOLUTION: The high Mn steel material for cryogenic use is provided that has composition containing C: 0.001 to 0.80%, Mn: 15.0 to 35.0%, S: 0.0001 to 0.01%, Cr: 0.01 to 10.0%, Ti: 0.001 to 0.05%, N: 0.0001 to 0.10%, and O: 0.001 to 0.010%;, P: limited to 0.02% or less; further containing either or both of Si: 0.001 to 5.0% and Al: 0.001 to 5.0%; further containing one or two or more kinds of Mg: 0.01% or less, Ca: 0.01% or less, and REM: 0.01% or less in total of 0.0002% or more, the composition satisfying 30C+0.5Mn+Ni+0.8Cr+1.2Si+0.8Mo≥25 --(Equation 1) and O/S≥1 --(Equation 2), the remainder being composed of Fe and inevitable impurities. The high Mn steel material for cryogenic use is characterized in that the volume fraction of austenite is 95% or more, the austenite has a crystal grain size of 20 to 200 μm, and the carbide coverage ratio at the crystal grain boundary of the austenite is 50% or less.SELECTED DRAWING: None

Description

本発明は、液化天然ガス(LNG)、液体水素、液体ヘリウムなどの液化ガスの貯蔵容器など、極低温環境での使用に適する高Mn鋼材に関する。   The present invention relates to a high Mn steel material suitable for use in a cryogenic environment, such as a storage container for liquefied gas such as liquefied natural gas (LNG), liquid hydrogen, and liquid helium.

液化天然ガス(沸点:−164℃)、液体水素(沸点:−249℃)、液体ヘリウム(沸点:−269℃)など、極低温環境下で使用可能な材料として、従来からSUS304等のNi−Cr系オーステナイト合金や9%Ni鋼板などが使用されてきた。しかし、Niを多量に含有する合金鋼はコストが高いため、NiをMnに置き換えた高Mn系オーステナイト合金が提案されている(例えば、特許文献1〜4、参照)。   As materials that can be used in a cryogenic environment, such as liquefied natural gas (boiling point: −164 ° C.), liquid hydrogen (boiling point: −249 ° C.), liquid helium (boiling point: −269 ° C.), Ni—such as SUS304 has been used. Cr-based austenitic alloys and 9% Ni steel sheets have been used. However, since alloy steel containing a large amount of Ni is expensive, high Mn austenitic alloys in which Ni is replaced with Mn have been proposed (see, for example, Patent Documents 1 to 4).

特許文献1ではCrを0.3%以下に制限した高Mn鋼が、特許文献2では10%以上のCrを含有する高Mn鋼が提案されている。更に、特許文献3では、Cuの添加による炭化物生成の抑制と、溶接部の冷却速度の下限値の規制が提案されている。また、特許文献4では、0.01〜0.25%のC、15〜40%のMnを含有し、X=30×P+50×(S+N)+300×Oで表わされるパラメータが3.0%以下を満足することによって極低温においても高強度と高靭性を有する高Mn鋼が開示されている。   Patent Document 1 proposes a high Mn steel in which Cr is limited to 0.3% or less, and Patent Document 2 proposes a high Mn steel containing 10% or more of Cr. Further, Patent Document 3 proposes suppression of carbide generation by addition of Cu and regulation of the lower limit value of the cooling rate of the welded portion. Patent Document 4 contains 0.01 to 0.25% C, 15 to 40% Mn, and the parameter represented by X = 30 × P + 50 × (S + N) + 300 × O is 3.0% or less. High Mn steel having high strength and high toughness even at extremely low temperatures by satisfying

特開昭47−154号公報JP 47-154 特開昭59−104455号公報JP 59-104455 A 国際公開第2013/100614号International Publication No. 2013/100614 特開2007−126715号公報JP 2007-126715 A

一般に、鋼の靱性を高めるには、結晶粒径の微細化が有効である。しかし、結晶粒界にCr炭化物やセメンタイトなどの炭化物が生成する場合、結晶粒径を微細化すると、破壊の起点が増加し、また、亀裂が伝播し易くなるため、必ずしも低温靭性が向上しない場合がある。一方で、鋼材に溶接が施される際に溶接熱影響部(HAZ)の結晶粒径が粗大化すると、溶接継手の低温靭性が低下する。   In general, refinement of the crystal grain size is effective for increasing the toughness of steel. However, when carbides such as Cr carbide and cementite are generated at the grain boundaries, if the crystal grain size is made finer, the starting point of fracture increases and cracks tend to propagate, so the low temperature toughness does not necessarily improve There is. On the other hand, when the crystal grain size of the weld heat-affected zone (HAZ) becomes coarse when the steel material is welded, the low temperature toughness of the welded joint decreases.

本発明はこのような実情に鑑み、母材及び溶接熱影響部の靱性に優れた、極低温用高Mn鋼材を提供するものである。   In view of such circumstances, the present invention provides a high-Mn steel material for cryogenic use that is excellent in the toughness of the base material and the weld heat-affected zone.

本発明は、結晶粒界に生成する炭化物が破壊の起点や亀裂の伝播の経路とならないように、オーステナイト粒径を適切なサイズに制御するものである。そして、本発明は、合金元素の添加量やバランス、更には、O量及びS量を適正に制御し、Mg、Ca、REMの1種又は2種以上を添加することにより、ピンニング効果を利用して、オーステナイト粒径を適正に制御し、HAZの結晶粒径の粗大化の抑制をも可能にするものである。本発明の要旨は以下のとおりである。   In the present invention, the austenite grain size is controlled to an appropriate size so that carbides generated at the crystal grain boundaries do not become the starting point of fracture or the propagation path of cracks. And this invention utilizes the pinning effect by adding the 1 type (s) or 2 or more types of Mg, Ca, and REM appropriately controlling the addition amount and balance of an alloy element, and also O amount and S amount. Thus, the austenite grain size is appropriately controlled, and the coarsening of the HAZ crystal grain size can be suppressed. The gist of the present invention is as follows.

(1)質量%で、
C:0.001〜0.80%、
Mn:15.0〜35.0%、
S:0.0001〜0.01%、
Cr:0.01〜10.0%、
Ti:0.001〜0.05%、
N:0.0001〜0.10%、
O:0.001〜0.010%
を含有し、
P:0.02%以下、
に制限し、更に、
Si:0.001〜5.0%、
Al:0.001〜5.0%
の一方又は両方を含有し、更に、
Mg:0.01%以下、
Ca:0.01%以下、
REM:0.01%以下
の1種又は2種以上を合計で0.0002%以上含有し、
30C+0.5Mn+Ni+0.8Cr+1.2Si+0.8Mo≧25 ・・・ (式1)
O/S≧1 ・・・ (式2)
を満足し、残部がFe及び不可避的不純物からなり、
オーステナイトの体積率が95%以上であり、
前記オーステナイトの結晶粒径が20〜200μmであり、
前記オーステナイトの結晶粒界における炭化物被覆率が50%以下である
ことを特徴とする極低温用高Mn鋼材。
ただし、Ni、Si、Moを含まない場合、上記(式1)ではこれらの項を0とする。
(1) In mass%,
C: 0.001 to 0.80%,
Mn: 15.0-35.0%,
S: 0.0001 to 0.01%,
Cr: 0.01-10.0%,
Ti: 0.001 to 0.05%,
N: 0.0001 to 0.10%,
O: 0.001 to 0.010%
Containing
P: 0.02% or less,
In addition to
Si: 0.001 to 5.0%,
Al: 0.001 to 5.0%
One or both of
Mg: 0.01% or less,
Ca: 0.01% or less,
REM: containing 0.0002% or more in total of one or more of 0.01% or less,
30C + 0.5Mn + Ni + 0.8Cr + 1.2Si + 0.8Mo ≧ 25 (Formula 1)
O / S ≧ 1 (Formula 2)
And the balance consists of Fe and inevitable impurities,
The volume ratio of austenite is 95% or more,
The austenite has a crystal grain size of 20 to 200 μm,
A high Mn steel material for cryogenic use, characterized in that a carbide coverage at a crystal grain boundary of the austenite is 50% or less.
However, when Ni, Si, and Mo are not included, these terms are set to 0 in the above (Formula 1).

(2)更に、質量%で、
Nb:0.05%以下、
Ta:0.05%以下、
Zr:0.05%以下、
V:0.10%以下
の1種又は2種類以上を含有することを特徴とする上記(1)に記載の極低温用高Mn鋼材。
(3)更に、質量%で、
Cu:3.0%以下、
Ni:3.0%以下、
Co:3.0%以下、
Mo:3.0%以下、
W:3.0%以下
の1種又は2種以上を含有することを特徴とする上記(1)又は(2)に記載の極低温用高Mn鋼材。
(4)更に、質量%で、
B:0.010%以下
を含有することを特徴とする上記(1)〜(3)の何れかに記載の極低温用高Mn鋼材。
(5)更に、C、Si、Mn、P、S、Al、N、Cr、Cu、Ni、Co、Mo、Wの含有量が、
CI=−2C+0.8Si−0,2Mn+3.3Cr+9(Mo+W/2)
+1.5(Cu+Ni+Co)+60N+0.8Al−90P−90S
≧6.5 ・・・ (式3)
を満足することを特徴とする上記(1)〜(4)の何れかに記載の極低温用高Mn鋼材。
ただし、Cu、Ni、Co、Mo、Wを含まない場合、上記(式3)ではこれらの項を0とする。
(2) Furthermore, in mass%,
Nb: 0.05% or less,
Ta: 0.05% or less,
Zr: 0.05% or less,
V: The high Mn steel material for cryogenic temperature as described in said (1) characterized by containing 1 type or 2 types or less of 0.10% or less.
(3) Furthermore, in mass%,
Cu: 3.0% or less,
Ni: 3.0% or less,
Co: 3.0% or less,
Mo: 3.0% or less,
W: High Mn steel material for cryogenic temperature as described in said (1) or (2) characterized by containing 1 type or 2 types or less of 3.0% or less.
(4) Furthermore, in mass%,
B: The high-Mn steel material for cryogenic temperature according to any one of (1) to (3) above, containing 0.010% or less.
(5) Furthermore, the contents of C, Si, Mn, P, S, Al, N, Cr, Cu, Ni, Co, Mo, W are
CI = -2C + 0.8Si-0,2Mn + 3.3Cr + 9 (Mo + W / 2)
+1.5 (Cu + Ni + Co) + 60N + 0.8Al-90P-90S
≧ 6.5 (Formula 3)
The high Mn steel material for cryogenic temperature according to any one of the above (1) to (4), characterized in that:
However, when Cu, Ni, Co, Mo, and W are not included, these terms are set to 0 in the above (Formula 3).

本発明によれば、母材及び溶接熱影響部の靱性に優れた極低温用高Mn鋼材を提供することが可能になる。具体的には、引張強さが800MPa以上の高強度で、150000J/cm程度までの大入熱溶接が可能で、−164℃以下、更には−269℃以下の極低温における各使用温度で100J以上のシャルピー吸収エネルギーを有し、好ましくは優れた耐食性をも具備する、極低温用高Mn鋼材の提供が可能になり、本発明は産業上の貢献が極めて顕著である。   ADVANTAGE OF THE INVENTION According to this invention, it becomes possible to provide the high Mn steel material for cryogenic temperatures excellent in the toughness of a base material and a welding heat affected zone. Specifically, high strength welding with a tensile strength of 800 MPa or more and large heat input welding up to about 150,000 J / cm is possible, and at each use temperature at a cryogenic temperature of −164 ° C. or lower, and −269 ° C. or lower, 100 J It is possible to provide a high-Mn steel material for cryogenic temperatures that has the above Charpy absorbed energy, and preferably also has excellent corrosion resistance, and the present invention has an extremely significant industrial contribution.

結晶構造が体心立方構造(bcc)である鋼材は、例えば、マイナス数10度程度の低温で脆性破壊するため、極低温での使用には適していない。したがって、極低温用鋼材には、例えば、−196℃以下の温度で、結晶構造が面心立方構造(fcc)であるオーステナイトを安定に維持できることが求められる。これは、オーステナイトが不安定であると、極低温でマルテンサイトに変態し、靱性が低下することがあるためである。本発明者らは、極低温でオーステナイトを維持できるように安定化させるには、C、Mn、Ni、Cr、Si、Moの添加が有効であり、下記(式1)を満足する必要があるという知見を得た。
30C+0.5Mn+Ni+0.8Cr+1.2Si+0.8Mo≧25 ・・・ (式1)
A steel material whose crystal structure is a body-centered cubic structure (bcc) is not suitable for use at an extremely low temperature because it brittlely breaks at a low temperature of, for example, about minus several tens of degrees. Accordingly, the cryogenic steel material is required to stably maintain austenite whose crystal structure is a face-centered cubic structure (fcc), for example, at a temperature of −196 ° C. or lower. This is because if austenite is unstable, it transforms into martensite at a very low temperature and the toughness may be lowered. In order to stabilize the austenite at an extremely low temperature, the present inventors are effective to add C, Mn, Ni, Cr, Si, and Mo, and it is necessary to satisfy the following (Formula 1). I got the knowledge.
30C + 0.5Mn + Ni + 0.8Cr + 1.2Si + 0.8Mo ≧ 25 (Formula 1)

また、靭性を向上させるためには、オーステナイト粒径を制御することが重要である。オーステナイト粒径が大き過ぎると、オーステナイト粒界への応力集中が発生し、粒界を起点として破壊が生じる。また、通常、オーステナイト粒径の微細化は靭性の向上に有効であるが、オーステナイトの結晶粒界に、硬質のCr炭化物やセメンタイトが生成すると、細粒化によって破壊の発生起点が増加し、また、亀裂の伝播が促進され、靭性が低下する場合がある。本発明者らの検討により、極低温靭性を確保するには、オーステナイト粒径を20〜200μmにする必要があることがわかった。   In order to improve toughness, it is important to control the austenite grain size. If the austenite grain size is too large, stress concentration on the austenite grain boundary occurs, and fracture starts from the grain boundary. In general, refinement of the austenite grain size is effective in improving toughness, but when hard Cr carbide or cementite is generated at the austenite grain boundaries, the origin of fracture increases due to refinement, and , The propagation of cracks may be promoted and the toughness may be reduced. According to the study by the present inventors, it has been found that the austenite grain size needs to be 20 to 200 μm in order to ensure cryogenic toughness.

更に、極低温用鋼材を用いて液化ガスの貯蔵容器などを製造する際には溶接が施される。特に、溶接の効率を高めるために大入熱溶接を行うと、溶接熱影響部(HAZ)は1400℃に加熱され、結晶粒が粗大化し、靱性が低下する。母材の結晶粒径の微細化やHAZの結晶粒径の粗大化の抑制には、高温で安定な微細な粒子を利用するピン止め効果が有効である。
大入熱HAZの粒径の粗大化を抑制するためには、Mg、Ca、REMの1種又は2種以上を添加して、鋼中に微細な酸化物や酸硫化物を生成させることが有効である。しかし、本発明者らは、O量に対してS量が過剰になると、酸硫化物の熱的安定性が低下し、高温に加熱されたHAZのオーステナイトの粒成長を抑制し得る有効なピン止め粒子とならないため、下記(式2)を満足する必要があるという知見を得た。
O/S≧1 ・・・ (式2)
Furthermore, when manufacturing a liquefied gas storage container using a cryogenic steel material, welding is performed. In particular, when high heat input welding is performed in order to increase the welding efficiency, the weld heat affected zone (HAZ) is heated to 1400 ° C., the crystal grains become coarse and the toughness decreases. A pinning effect using fine particles that are stable at high temperatures is effective in reducing the crystal grain size of the base material and the coarsening of the crystal grain size of HAZ.
In order to suppress the coarsening of the particle size of the high heat input HAZ, it is possible to add one or more of Mg, Ca, and REM to generate fine oxides and oxysulfides in the steel. It is valid. However, the present inventors have found that when the amount of S is excessive with respect to the amount of O, the thermal stability of the oxysulfide decreases, and an effective pin capable of suppressing the grain growth of HAZ austenite heated to a high temperature. Since it does not become a stop particle, the knowledge that it is necessary to satisfy the following (Formula 2) was obtained.
O / S ≧ 1 (Formula 2)

以下、本発明を詳細に説明する。まず、鋼材の各組成を限定した理由について説明する。   Hereinafter, the present invention will be described in detail. First, the reason why each composition of the steel material is limited will be described.

C:0.001〜0.80%
Cは、オーステナイトを安定化させ、強度を高める重要な元素であり、0.001%以上を添加する。好ましくは、C量を0.01%以上、より好ましくは0.05%以上、更に好ましくは0.10%以上とする。常温での強度が求められる場合、好適なC量は0.20%以上である。一方、C量が多すぎると、延性破壊の起点となるCr炭化物やセメンタイトの析出により、靱性が低下するため、上限を0.80%以下とする。好ましくはC量を0.70%以下、より好ましくは0.60%以下、更に好ましくは0.50%以下とする。
C: 0.001 to 0.80%
C is an important element that stabilizes austenite and increases strength, and 0.001% or more is added. Preferably, the C content is 0.01% or more, more preferably 0.05% or more, and still more preferably 0.10% or more. When the intensity | strength in normal temperature is calculated | required, suitable C amount is 0.20% or more. On the other hand, if the amount of C is too large, the toughness decreases due to the precipitation of Cr carbide and cementite, which is the starting point of ductile fracture, so the upper limit is made 0.80% or less. Preferably, the C content is 0.70% or less, more preferably 0.60% or less, and still more preferably 0.50% or less.

Mn:15.0〜35.0%
Mnは、オーステナイトを安定化させるために、15.0%以上を添加する。好ましくはMn量を17.0%以上、より好ましくは20.0%以上、更に好ましくは22.0%以上とする。一方、Mn量が35.0%を超えると、鋼材の耐食性の低下や溶接時のヒューム発生を招き、また、熱間加工性が低下して鋼材の表面に割れを生じる場合があるため、Mn量の上限を35.0%以下とする。好ましくはMn量を33.0%以下、より好ましくは30.0%以下とする。
Mn: 15.0-35.0%
Mn is added in an amount of 15.0% or more in order to stabilize austenite. Preferably, the Mn content is 17.0% or more, more preferably 20.0% or more, and further preferably 22.0% or more. On the other hand, if the amount of Mn exceeds 35.0%, corrosion resistance of the steel material and fume generation at the time of welding are caused, and hot workability is deteriorated and the surface of the steel material may be cracked. The upper limit of the amount is 35.0% or less. Preferably, the Mn content is 33.0% or less, more preferably 30.0% or less.

Cr:0.01〜10.0%
Crは、オーステナイトを安定化させ、耐食性の向上に寄与し、また、固溶強化によって鋼材の強度を高める元素であり、0.01%以上を添加する。好ましくはCr量を0.10%以上、より好ましくは0.50%以上、更に好ましくは1.0%以上とする。一方、Cr量が10.0%を超えると、Cr炭化物を形成して靭性を劣化させるため、上限を10.0%以下とする。好ましくはCr量を8.0%以下、より好ましくは6.0%以下、更に好ましくは5.0%以下とする。また、Cr炭化物の析出による応力腐食割れ(SCC)を抑制するためには、Cr≦0.3/C+2を満足するように添加することが好ましい。
Cr: 0.01-10.0%
Cr is an element that stabilizes austenite, contributes to improvement of corrosion resistance, and increases the strength of the steel material by solid solution strengthening, and is added in an amount of 0.01% or more. Preferably, the Cr content is 0.10% or more, more preferably 0.50% or more, and still more preferably 1.0% or more. On the other hand, if the Cr content exceeds 10.0%, Cr carbide is formed and the toughness is deteriorated, so the upper limit is made 10.0% or less. Preferably, the Cr content is 8.0% or less, more preferably 6.0% or less, and still more preferably 5.0% or less. Further, in order to suppress stress corrosion cracking (SCC) due to precipitation of Cr carbide, it is preferable to add so as to satisfy Cr ≦ 0.3 / C + 2.

Ti:0.001〜0.05%
Tiは、鋼中のNとTiNを形成する元素であり、TiNは、Ca、Mg、REMの酸化物や酸硫化物を析出核として生成する。Ca、Mg、REMの酸化物や酸硫化物とTiNとの複合析出物は、熱的安定性に優れ、HAZの粒径の粗大化抑制に寄与する。このような効果を得るには、0.001%以上のTiを添加することが必要である。好ましくはTi量を0.005%以上、より好ましくは0.010%以上とする。一方、Tiを過剰に添加すると、粗大なTiNが生成して、靱性を低下させるため、Ti量の上限を0.05%以下とする。好ましくはTi量の上限を0.040%以下、より好ましくは0.030%以下、更に好ましくは0.025%以下とする。
Ti: 0.001 to 0.05%
Ti is an element that forms TiN and N in steel, and TiN is generated by using Ca, Mg, and REM oxides and oxysulfides as precipitation nuclei. A composite precipitate of Ca, Mg, REM oxide or oxysulfide and TiN is excellent in thermal stability and contributes to suppression of coarsening of the HAZ particle size. In order to obtain such an effect, it is necessary to add 0.001% or more of Ti. Preferably, the Ti amount is 0.005% or more, more preferably 0.010% or more. On the other hand, if Ti is added excessively, coarse TiN is generated and the toughness is lowered, so the upper limit of the Ti amount is made 0.05% or less. Preferably, the upper limit of the Ti amount is 0.040% or less, more preferably 0.030% or less, and still more preferably 0.025% or less.

N:0.0001〜0.10%
Nは、Ca、Mg、REMの酸化物や酸硫化物とTiNとの複合析出物を形成させて、HAZ靭性を向上させるために、含有量を0.0001%以上とする。また、Nは、オーステナイトの安定化や、特に低温での強化に有効な元素であり、好ましくはN量を0.0010%以上、より好ましくは0.0020%以上、更に好ましくは0.0030%以上とする。一方、N量が0.10%を超えると、強度の上昇や窒化物の影響により、靱性が劣化するため、上限を0.10%以下とする。好ましくはN量を0.03%以下とする。
N: 0.0001 to 0.10%
N is contained in an amount of 0.0001% or more in order to form composite precipitates of oxides of Ca, Mg, REM or oxysulfides and TiN to improve HAZ toughness. N is an element effective for stabilizing austenite and strengthening particularly at low temperatures. Preferably, the N content is 0.0010% or more, more preferably 0.0020% or more, and still more preferably 0.0030%. That's it. On the other hand, if the N content exceeds 0.10%, the toughness deteriorates due to an increase in strength or the influence of nitrides, so the upper limit is made 0.10% or less. Preferably, the N content is 0.03% or less.

O:0.001〜0.010%
Oは、Ca、Mg、REMの酸化物や酸硫化物を形成する元素であり、含有量を0.001%以上とする。一方、O量が0.010%を超えると、介在物による靭性の劣化が顕著になるため、上限を0.010%以下とする。好ましくはO量を0.0070%以下、より好ましくは0.0050%以下、更に好ましくは0.0030%以下とする。
O: 0.001 to 0.010%
O is an element forming an oxide or oxysulfide of Ca, Mg, or REM, and the content is 0.001% or more. On the other hand, if the amount of O exceeds 0.010%, the deterioration of toughness due to inclusions becomes significant, so the upper limit is made 0.010% or less. Preferably, the amount of O is 0.0070% or less, more preferably 0.0050% or less, and still more preferably 0.0030% or less.

S:0.0001〜0.01%以下
Sは不純物であり、含有量が過剰であると、MnSが起点となって延性破壊を助長し、靱性を低下させるため、S量を0.01%以下に制限する。また、S量が過剰であると、Ca、Mg、REMの酸硫化物に過剰にSが固溶して熱的安定性が低下する場合があるため、上限を0.005%以下に制限することが好ましい。より好ましくはS量を0.003%以下、更に好ましくは0.002%以下とする。S量の下限値は、製鋼コストの観点から0.0001%とする。
S: 0.0001 to 0.01% or less S is an impurity, and if the content is excessive, MnS starts as a starting point to promote ductile fracture and reduce toughness. Restrict to: Further, if the amount of S is excessive, S may be excessively dissolved in Ca, Mg, and REM oxysulfides to lower the thermal stability, so the upper limit is limited to 0.005% or less. It is preferable. More preferably, the S amount is 0.003% or less, and further preferably 0.002% or less. The lower limit of the amount of S is 0.0001% from the viewpoint of steelmaking cost.

P:0.02%以下
Pは不純物であり、含有量が過剰であると結晶粒界にPが偏析し、粒界脆化によって靭性が低下するため、P量を0.02%以下に制限する。P量は0.015%以下が好ましく、より好ましくは0.010%以下、更に好ましくは0.008%以下とする。
P: 0.02% or less P is an impurity, and if the content is excessive, P segregates at the grain boundaries, and the toughness decreases due to grain boundary embrittlement, so the P content is limited to 0.02% or less. To do. The amount of P is preferably 0.015% or less, more preferably 0.010% or less, and still more preferably 0.008% or less.

Si、Al:それぞれ0.001〜5.0%
Si及びAlは、通常、脱酸元素として添加したり、強化のために添加することが多いが、本発明では、Cr炭化物やセメンタイトの生成を抑制するために一方又は両方を添加する。Si及びAlの添加による炭化物の生成の抑制は、本発明者らが得た新たな知見であり、効果を得るために、Si量、Al量の下限を何れも0.001%以上とする。好ましくは、Si量、Al量を単独で、又は、両方の合計で、0.01%以上とする。一方、Si量、Al量の上限は、粗大な介在物の生成による靭性の低下を防止するため、何れも5.0%以下とする。Si量、Al量の好ましい上限は、何れも2.0%以下であり、より好ましくは1.0%以下、更に好ましくは0.05%以下とする。
Si, Al: 0.001 to 5.0% each
Si and Al are usually added as deoxidizing elements or for strengthening in many cases, but in the present invention, one or both are added in order to suppress the formation of Cr carbide and cementite. The suppression of the formation of carbides by the addition of Si and Al is a new finding obtained by the present inventors, and in order to obtain the effect, the lower limits of the Si amount and the Al amount are both 0.001% or more. Preferably, the Si amount and the Al amount are 0.01% or more alone or in total of both. On the other hand, the upper limits of the Si content and the Al content are both set to 5.0% or less in order to prevent a decrease in toughness due to the formation of coarse inclusions. The upper limit of the Si amount and the Al amount is preferably 2.0% or less, more preferably 1.0% or less, and still more preferably 0.05% or less.

Mg、Ca、REM:それぞれ0.01%以下で、合計で0.0002%以上
Mg、Ca、REMは、微細な酸化物や酸硫化物を形成し、母材やHAZの結晶粒径の粗大化を抑制する重要な元素であり、1種又は2種以上を添加する。効果を得るために、Mg量、Ca量、REM量を単独で、又は、2種以上の合計で、0.0002%以上とする。好ましくは0.0005%以上、より好ましくは0.0010%以上とする。一方、Mg量、Ca量、REM量の上限は、粗大な介在物の生成による靭性の低下を防止するため、何れも0.010%以下とする。Mg量、Ca量、REM量の好ましい上限は、何れも0.0070%以下であり、より好ましくは0.0050%以下、更に好ましくは0.0040%以下とする。
Mg, Ca, and REM: 0.01% or less each, 0.0002% or more in total Mg, Ca, and REM form fine oxides and oxysulfides, and coarse crystal grains of the base material and HAZ It is an important element that suppresses crystallization, and one or more are added. In order to obtain an effect, the amount of Mg, the amount of Ca, and the amount of REM are set individually or in total of two or more to 0.0002% or more. Preferably it is 0.0005% or more, More preferably, it is 0.0010% or more. On the other hand, the upper limits of the amount of Mg, the amount of Ca, and the amount of REM are all set to 0.010% or less in order to prevent a decrease in toughness due to the formation of coarse inclusions. The upper limit of the Mg amount, Ca amount, and REM amount is preferably 0.0070% or less, more preferably 0.0050% or less, and still more preferably 0.0040% or less.

更に、強度を向上させるため、必要に応じて、Nb、Ta、Zr、Vの1種又は2種以上を含有させることができる。   Furthermore, in order to improve the strength, one or more of Nb, Ta, Zr, and V can be contained as necessary.

Nb、Ta、Zr:それぞれ0.05%以下、V:0.10%以下
Nb、Ta、Zr、Vは、炭化物や窒化物を形成し、析出強化によって強度の向上に寄与する元素であり、1種又は2種以上を添加することが好ましい。このうち、Zrは、鋼中にTiNと同様に、Ca、Mg、REMの酸化物や酸硫化物とZrNとの複合析出物を形成して、HAZの粒径の粗大化の抑制にも寄与する。Nb量、Ta量、Zr量、V量の下限は、何れも、0.005%以上が好ましい。一方、Nb量、Ta量、Zr量は0.05%、V量は0.10%を超えると、析出物の粗大化によって靱性が低下することがあるため、Nb量、Ta量、Zr量は何れも0.05%以下、V量は0.10%以下が好ましい。
Nb, Ta, Zr: each 0.05% or less, V: 0.10% or less Nb, Ta, Zr, V is an element that forms carbides and nitrides and contributes to improving the strength by precipitation strengthening, It is preferable to add 1 type (s) or 2 or more types. Among these, Zr, like TiN, forms composite precipitates of Ca, Mg, REM oxides and oxysulfides and ZrN in the steel, contributing to the suppression of coarsening of the HAZ particle size. To do. The lower limits of the Nb amount, Ta amount, Zr amount, and V amount are all preferably 0.005% or more. On the other hand, if the Nb content, Ta content, and Zr content exceed 0.05% and the V content exceeds 0.10%, the toughness may decrease due to the coarsening of the precipitates, so the Nb content, Ta content, and Zr content. Are preferably 0.05% or less, and the V amount is preferably 0.10% or less.

更に、オーステナイトの安定性を高め、粒界へのCr炭化物やセメンタイトの析出を抑制するために、必要に応じて、Cu、Ni、Co、Mo、Wの1種又は2種以上を含有させることができる。   Furthermore, in order to increase the stability of austenite and suppress the precipitation of Cr carbide and cementite at grain boundaries, one or more of Cu, Ni, Co, Mo, and W may be included as necessary. Can do.

Cu:3.0%以下
Cuは、オーステナイトの安定化や強化、更にはCr炭化物やセメンタイトの析出の抑制に寄与する元素であり、0.01%以上の添加が好ましい。より好ましくはCu量を0.10%以上とする。一方、Cu量が3.0%を超えると熱間加工性が劣化することがあるため、上限は3.0%以下が好ましい。より好ましくはCu量を1.0%以下とする。
Cu: 3.0% or less Cu is an element that contributes to stabilization and strengthening of austenite and further suppression of precipitation of Cr carbide and cementite, and addition of 0.01% or more is preferable. More preferably, the amount of Cu is 0.10% or more. On the other hand, if the Cu content exceeds 3.0%, the hot workability may deteriorate, so the upper limit is preferably 3.0% or less. More preferably, the Cu amount is 1.0% or less.

Ni、Co:それぞれ3.0%以下
Ni及びCoは、オーステナイトの安定化や強化、更にはCr炭化物やセメンタイトの析出の抑制に寄与する元素であり、何れも0.01%以上の添加が好ましい。より好ましくはNi量、Co量を、何れも0.10%以上とする。一方、Ni、Coを過剰に添加すると、マルテンサイトが生成し易くなり、溶接部の靭性や透磁率が劣化する恐れがあるため、Ni量、Co量を何れも3.0%以下とすることが好ましい。より好ましくは、Ni量、Co量を何れも1.0%以下とする。
Ni and Co: 3.0% or less, respectively Ni and Co are elements that contribute to stabilization and strengthening of austenite, and further suppression of precipitation of Cr carbide and cementite, both of which are preferably added in an amount of 0.01% or more. . More preferably, the Ni amount and the Co amount are both 0.10% or more. On the other hand, if Ni and Co are added excessively, martensite is likely to be generated, and the toughness and permeability of the welded portion may be deteriorated. Therefore, both the Ni content and the Co content should be 3.0% or less. Is preferred. More preferably, both the Ni amount and the Co amount are 1.0% or less.

Mo、W:それぞれ3.0%以下
Mo及びWは、オーステナイトの安定化や強化、更にはCr炭化物やセメンタイトの析出の抑制に寄与する元素であり、何れも0.01%以上の添加が好ましい。より好ましくはMo量、W量を、何れも0.10%以上とする。一方、Mo、Wを過剰に添加しても効果は飽和するので、コストの観点から、Mo量、W量を何れも3.0%以下とすることが好ましい。より好ましくは、Mo量、W量を何れも1.0%以下、更に好ましくは0.80%以下とする。
Mo and W: 3.0% or less respectively Mo and W are elements that contribute to stabilization and strengthening of austenite, and further suppression of precipitation of Cr carbide and cementite, and both are preferably added in an amount of 0.01% or more. . More preferably, the Mo amount and the W amount are both 0.10% or more. On the other hand, since the effect is saturated even if Mo and W are added excessively, it is preferable that both the Mo amount and the W amount be 3.0% or less from the viewpoint of cost. More preferably, the Mo amount and the W amount are both 1.0% or less, and more preferably 0.80% or less.

B:0.010%以下
Bは、オーステナイト粒界に偏析し、粒界破壊を防止して靭性や耐力を向上させる元素であり、0.0002%以上の添加が好ましい。より好ましくは、B量を0.0003%以上、更に好ましくは0.0010%以上とする。一方、Bを過剰に含有すると、靱性が低下することがあるため、B量は0.01%以下が好ましい。より好ましくはB量を0.005%以下とする。
B: 0.010% or less B is an element that segregates at the austenite grain boundaries and prevents intergranular fracture to improve toughness and yield strength. Addition of 0.0002% or more is preferable. More preferably, the B amount is 0.0003% or more, and further preferably 0.0010% or more. On the other hand, when B is contained excessively, the toughness may be lowered, so the amount of B is preferably 0.01% or less. More preferably, the B amount is 0.005% or less.

必須的に含有されるC、Mn、Cr、更に、選択的に含有されるSi、Ni、Moは、オーステナイトを安定化させるために、含有量が下記(式1)を満足するように添加することが必要である。下記(式1)は、実験によって、元素と極低温でのオーステナイト量との関係から求められたものである。Si、Ni、Moを含まない場合は、含有量を0として計算する。
30C+0.5Mn+Ni+0.8Cr+1.2Si+0.8Mo≧25 ・・・ (式1)
Essentially contained C, Mn, Cr, and optionally contained Si, Ni, and Mo are added so that the content satisfies the following (formula 1) in order to stabilize austenite. It is necessary. The following (Formula 1) is obtained from the relationship between the element and the amount of austenite at an extremely low temperature by experiment. When Si, Ni, and Mo are not included, the content is calculated as 0.
30C + 0.5Mn + Ni + 0.8Cr + 1.2Si + 0.8Mo ≧ 25 (Formula 1)

Mg、Ca、REMの酸硫化物の熱的安定性を高め、高温に加熱されたHAZのオーステナイトの粒成長を抑制するためには、下記(式2)を満足することが必要である。(式2)は、実験によって、Mg、Ca、REMの酸化物及び酸硫化物によるHAZの粒径の粗大化の抑制の効果と、S量及びO量との関係から求めたものである。
O/S≧1 ・・・ (式2)
In order to increase the thermal stability of oxysulfides of Mg, Ca, and REM and to suppress the grain growth of HAZ austenite heated to a high temperature, it is necessary to satisfy the following (Formula 2). (Expression 2) is obtained from the relationship between the effect of suppressing the coarsening of the particle size of the HAZ by the oxides and oxysulfides of Mg, Ca, and REM, and the amounts of S and O by experiments.
O / S ≧ 1 (Formula 2)

上述の元素のうち、炭化物の形成傾向やCrの保護性酸化膜の生成状態などを通じて、Crを含有する高Mnオーステナイト鋼材の耐食性の改善に有効な元素と悪影響を及ぼす元素とがある。大気暴露(1年)における腐食減量の大小をもとに各元素の効果を定量化し、得られた耐食性指標(Corrosion Index:CI)を6.5以上、好ましくは11.5以上とすれば、鋼材の腐食を顕著に抑制することができ、特に、大気暴露(60日)でもほぼ発錆しない優れた耐食性が得られる。CIを求める下記(式3)では、係数の符号がプラスの元素は耐食性を向上させ、係数の符号がマイナスの元素は耐食性を低下させることを意味する。また、係数の大きさは、影響の大きさを表している。
CI=−2C+0.8Si−0,2Mn+3.3Cr+9(Mo+W/2)+1.5(Cu+NI+Co)+60N+0.8Al−90P−90S ・・・ (式3)
ただし、Cu、Ni、Co、Mo、Wを含まない場合、上記(式3)ではこれらの項を0とする。
Among the above-mentioned elements, there are elements that are effective for improving the corrosion resistance of high-Mn austenitic steel materials containing Cr and elements that have an adverse effect on the formation tendency of carbides and the state of formation of a protective oxide film of Cr. If the effect of each element is quantified based on the level of corrosion weight loss in atmospheric exposure (1 year), and the obtained corrosion resistance index (Corrosion Index: CI) is 6.5 or more, preferably 11.5 or more, The corrosion of the steel material can be remarkably suppressed, and in particular, excellent corrosion resistance that hardly rusts even when exposed to the atmosphere (60 days) can be obtained. In the following (Equation 3) for obtaining CI, an element having a positive coefficient sign means that the corrosion resistance is improved, and an element having a negative coefficient sign means that the corrosion resistance is lowered. The magnitude of the coefficient represents the magnitude of the influence.
CI = -2C + 0.8Si-0,2Mn + 3.3Cr + 9 (Mo + W / 2) +1.5 (Cu + NI + Co) + 60N + 0.8Al-90P-90S (Formula 3)
However, when Cu, Ni, Co, Mo, and W are not included, these terms are set to 0 in the above (Formula 3).

次に、本発明の極低温用高Mn鋼材の金属組織について説明する。
本発明の極低温用高Mn鋼材の金属組織は、極低温環境での脆性破壊を防止するため、オーステナイトの体積率を95%以上とする。オーステナイトの残部は、フェライト、マルテンサイト、ベイナイト、パーライトなどであるが、何れも極低温環境では脆化するため、5%未満に制限することが好ましい。オーステナイトの体積率は100%でもよい。オーステナイトの体積率は、光学顕微鏡による金属組織の観察の他、X線回折法や磁気誘導法によって測定することができる。
Next, the metal structure of the cryogenic high Mn steel material will be described.
In order to prevent brittle fracture in a cryogenic environment, the metal structure of the high-temperature Mn steel material for cryogenic use of the present invention has a volume ratio of austenite of 95% or more. The balance of austenite is ferrite, martensite, bainite, pearlite, etc., but all of them are brittle in a cryogenic environment, so it is preferable to limit it to less than 5%. The volume ratio of austenite may be 100%. The volume ratio of austenite can be measured by an X-ray diffraction method or a magnetic induction method in addition to observation of a metal structure by an optical microscope.

オーステナイトの結晶粒径は、極低温環境での靭性を確保するため、200μm以下とする。好ましくは150μm以下とする。一方、オーステナイトの結晶粒径が小さすぎる場合、結晶粒界に析出した硬質のCr炭化物やセメンタイトが破壊の発生起点になり、また、亀裂の伝播を促進させるため、オーステナイトの結晶粒径を20μm以上とする。好ましくは50μm以上とする。オーステナイトの結晶粒径は光学顕微鏡を用いた組織観察によって求めることができる。   The crystal grain size of austenite is set to 200 μm or less in order to ensure toughness in a cryogenic environment. Preferably, it is 150 μm or less. On the other hand, if the crystal grain size of austenite is too small, hard Cr carbide and cementite precipitated at the grain boundaries become the starting point of fracture, and in order to promote the propagation of cracks, the crystal grain size of austenite is 20 μm or more. And Preferably, it is 50 μm or more. The crystal grain size of austenite can be determined by structural observation using an optical microscope.

オーステナイトの結晶粒界に存在する炭化物が近接している場合、炭化物の間や周囲に亀裂が生じたり、結晶粒界を亀裂が伝播し易くなり、靱性が低下する。したがって、靱性の低下を抑制するためには、炭化物によるオーステナイトの結晶粒界の被覆率(粒界炭化物被覆率)を50%以下に制御することが好ましい。炭化物粒界被覆率は低いほど好ましいが、1%以上であっても、5%以上であってもよい。オーステナイトの粒界炭化物被覆率は透過型電子顕微鏡を用いた組織観察によって求めることができる。   When the carbides present in the austenite grain boundaries are close to each other, cracks are generated between and around the carbides, and cracks easily propagate through the grain boundaries, resulting in a decrease in toughness. Therefore, in order to suppress a decrease in toughness, it is preferable to control the coverage of the austenite grain boundaries with carbide (grain boundary carbide coverage) to 50% or less. The carbide grain boundary coverage is preferably as low as possible, but may be 1% or more or 5% or more. The grain boundary carbide coverage of austenite can be determined by structural observation using a transmission electron microscope.

次に、本発明の極低温用高Mn鋼材の製造方法について説明する。
一般に、高Mn鋼は炭素鋼や低合金鋼に比べて熱間加工性が劣るため、適正な条件で圧延を行うことが好ましい。適正な条件から外れると、鋼片若しくは鋼塊又は鋼板の表面に割れが生じるので、歩留の低下を招く場合がある。鋼片又は鋼塊は、常法によって溶製し、鋳造することによって得られる。
Next, the manufacturing method of the high Mn steel material for cryogenics of this invention is demonstrated.
Generally, high-Mn steel is inferior in hot workability compared to carbon steel and low alloy steel, and therefore it is preferable to perform rolling under appropriate conditions. If it deviates from appropriate conditions, cracks occur on the surface of the steel slab, the steel ingot, or the steel sheet, which may lead to a decrease in yield. A steel piece or a steel ingot is obtained by melting and casting by a conventional method.

鋼片又は鋼塊の加熱温度は、1000℃未満では、圧延時の変形抵抗が大きく、圧延機への負荷が過大になるため1000℃以上が好ましい。一方、1250℃を超えて高温に加熱すると、表面の酸化による歩留まりの低下が懸念されるため、加熱温度の上限は1250℃以下が好ましい。   If the heating temperature of the steel slab or the steel ingot is less than 1000 ° C., the deformation resistance during rolling is large, and the load on the rolling mill becomes excessive. On the other hand, if the temperature is higher than 1250 ° C. and heated to a high temperature, there is concern about a decrease in yield due to surface oxidation. Therefore, the upper limit of the heating temperature is preferably 1250 ° C. or less.

鋼片又は鋼塊を加熱した後、熱間圧延を施す。結晶粒径を微細化するには、1100℃以下での累積圧下率を高めて再結晶を促進させることが必要であり、好ましくは1100℃から仕上温度までの累積圧下率を30%以上とする。熱間圧延の仕上温度は、オーステナイトの結晶粒径を過剰に微細化させず、20μm以上にするために、950℃以上が好ましい。   After the steel slab or ingot is heated, hot rolling is performed. In order to refine the crystal grain size, it is necessary to increase the cumulative reduction rate at 1100 ° C. or less to promote recrystallization, and preferably the cumulative reduction rate from 1100 ° C. to the finishing temperature is 30% or more. . The finishing temperature of the hot rolling is preferably 950 ° C. or higher so that the crystal grain size of austenite is not excessively refined and is 20 μm or more.

熱間圧延ままで極低温用高Mn鋼材を使用する場合は、熱間圧延後に強制冷却を施すことが好ましい。熱間圧延後、Cr炭化物やセメンタイトの析出を抑制し、低温靭性を高めるためには、500〜900℃の温度範囲の冷却速度を高めることが有効である。そのため、熱間圧延の終了後、900℃以上の温度から水冷等による強制冷却を行うことが好ましく、冷却速度は3℃/s以上が好ましい。強制冷却の停止温度は、600℃が好ましく、より好ましくは500℃とする。
熱間圧延後に強制冷却を施さない場合は、溶体化処理を施すことが好ましい。溶体化処理では、熱間圧延によって析出したCr炭化物やセメンタイトを鋼中に固溶させるために、加熱温度を950〜1250℃とし、900℃以上の温度から冷却速度を3℃/s以上とし、600℃以下の温度まで冷却することが好ましい。
When using a high Mn steel material for cryogenic temperatures as it is in hot rolling, it is preferable to perform forced cooling after hot rolling. In order to suppress the precipitation of Cr carbide and cementite after hot rolling and increase the low temperature toughness, it is effective to increase the cooling rate in the temperature range of 500 to 900 ° C. Therefore, after completion of hot rolling, it is preferable to perform forced cooling by water cooling or the like from a temperature of 900 ° C. or higher, and the cooling rate is preferably 3 ° C./s or higher. The forced cooling stop temperature is preferably 600 ° C., more preferably 500 ° C.
When forced cooling is not performed after hot rolling, it is preferable to perform solution treatment. In the solution treatment, the heating temperature is set to 950 to 1250 ° C., and the cooling rate is set to 3 ° C./s or higher from a temperature of 900 ° C. or higher in order to solidify the Cr carbide and cementite precipitated by hot rolling in the steel. It is preferable to cool to a temperature of 600 ° C. or lower.

以下、実施例により、本発明を更に詳しく説明する。
表1に示す化学組成を有する鋼片を用い、表2に示す製造条件で高Mn鋼材を製造した。それぞれの鋼材(母材)の金属組織を光学顕微鏡で観察し、オーステナイトの体積率(γ体積率)、結晶粒径(γ粒径)を測定した。また、炭化物(Cr炭化物及びセメンタイト)は透過型電子顕微鏡により10000倍の倍率にて20視野観察し、オーステナイトの粒界炭化物被覆率を測定した。また、炭化物の円相当径を測定し、各炭化物の体積を算出して体積率を求めた。
Hereinafter, the present invention will be described in more detail by way of examples.
Using steel slabs having the chemical composition shown in Table 1, high Mn steel materials were produced under the production conditions shown in Table 2. The metal structure of each steel material (base material) was observed with an optical microscope, and the volume ratio (γ volume ratio) and crystal grain size (γ particle diameter) of austenite were measured. Further, the carbides (Cr carbide and cementite) were observed with a transmission electron microscope at 20 magnifications at a magnification of 10,000 times, and the grain boundary carbide coverage of austenite was measured. Further, the equivalent circle diameter of the carbide was measured, and the volume of each carbide was calculated to obtain the volume ratio.

Figure 2016196703
Figure 2016196703
Figure 2016196703
Figure 2016196703
Figure 2016196703
Figure 2016196703
Figure 2016196703
Figure 2016196703

Figure 2016196703
Figure 2016196703
Figure 2016196703
Figure 2016196703

更に、JIS Z 2241に準拠して室温で引張試験を行い、降伏強度(YS)、引張強度(TS)を測定した。また、JIS Z 2242のVノッチ試験片を用いて、液体窒素温度(−196℃)及び液体He温度(−269℃)におけるシャルピー吸収エネルギーを測定した。耐食性の評価は、200mm×500mmの鋼板をエメリ―研磨し、60日の大気曝露試験を行って評価した。発錆性の評価は、曝露期間が終了した後に錆が発生した面積率(発錆率)を測定し、評価した。発錆率が5%以下を大変良好(◎)、5%超〜10%以下を良好(○)、10%超〜25%以下をやや不良(△)、25%超を不良(×)とした。結果を表3に示す。   Furthermore, a tensile test was performed at room temperature in accordance with JIS Z 2241, and yield strength (YS) and tensile strength (TS) were measured. Moreover, the Charpy absorbed energy in liquid nitrogen temperature (-196 degreeC) and liquid He temperature (-269 degreeC) was measured using the V notch test piece of JISZ2242. Corrosion resistance was evaluated by emulsifying a 200 mm × 500 mm steel plate and performing an atmospheric exposure test for 60 days. The evaluation of rusting property was evaluated by measuring the area ratio (rusting rate) at which rust was generated after the exposure period was completed. A rusting rate of 5% or less is very good (◎), more than 5% to 10% or less is good (O), more than 10% to 25% or less is slightly bad (△), and more than 25% is bad (X). did. The results are shown in Table 3.

Figure 2016196703
Figure 2016196703
Figure 2016196703
Figure 2016196703
Figure 2016196703
Figure 2016196703
Figure 2016196703
Figure 2016196703

また、溶接熱影響部の金属組織及び特性を評価するため、表4に示す条件で、熱サイクルシミュレータにより溶接の熱サイクルを再現する熱処理を施した。オーステナイトの結晶粒径(γ粒径)は光学顕微鏡による組織観察によって測定した。オーステナイト粒界の炭化物被覆率、炭化物体積率は、母材と同様に、透過型電子顕微鏡を用いて求めた。また、JIS Z 2242のVノッチ試験片を用いて、液体窒素温度(−196℃)及び液体He温度(−269℃)におけるシャルピー吸収エネルギーを測定した。結果を表4に示す。   In addition, in order to evaluate the metal structure and characteristics of the weld heat affected zone, heat treatment for reproducing the thermal cycle of welding was performed by a thermal cycle simulator under the conditions shown in Table 4. The crystal grain size (γ grain size) of austenite was measured by structural observation with an optical microscope. The carbide coverage and carbide volume ratio at the austenite grain boundaries were determined using a transmission electron microscope, as with the base material. Moreover, the Charpy absorbed energy in liquid nitrogen temperature (-196 degreeC) and liquid He temperature (-269 degreeC) was measured using the V notch test piece of JISZ2242. The results are shown in Table 4.

Figure 2016196703
Figure 2016196703
Figure 2016196703
Figure 2016196703

表3及び4から、本発明例に係る高Mn鋼材は、母材及びHAZの特性に優れており、極低温材料として優れていることが分かる。これに対して、本発明で規定する条件を満足しない比較例では、強度、シャルピー特性の一方又は両方において、目的とする特性が得られない。また、表3に示したように、表1に、その値を記載したCIの高い鋼材は耐食性も良好である。   From Tables 3 and 4, it can be seen that the high Mn steel materials according to the examples of the present invention are excellent in the properties of the base material and the HAZ and are excellent as a cryogenic material. On the other hand, in the comparative example that does not satisfy the conditions defined in the present invention, the desired characteristics cannot be obtained in one or both of the strength and the Charpy characteristics. Moreover, as shown in Table 3, the steel materials with high CI whose values are listed in Table 1 have good corrosion resistance.

本発明に係る高Mn鋼材は安価な合金成分を用い液体ヘリウム、液体水素、LNG、液体窒素など極低温で使用されるタンク等に適した鋼材として使用可能であり、高価なアルミニウム合金、Ni系オーステナイトステンレス鋼、9%Ni鋼材の代替として使用することができるので、Ni資源の節約に貢献し、タンク建造コストの低減を可能にするものである。   The high Mn steel material according to the present invention can be used as a steel material suitable for tanks used at cryogenic temperatures such as liquid helium, liquid hydrogen, LNG, liquid nitrogen using inexpensive alloy components, and is an expensive aluminum alloy, Ni-based Since it can be used as an alternative to austenitic stainless steel and 9% Ni steel, it contributes to saving of Ni resources and enables the tank construction cost to be reduced.

Claims (5)

質量%で、
C:0.001〜0.80%、
Mn:15.0〜35.0%、
S:0.0001〜0.01%、
Cr:0.01〜10.0%、
Ti:0.001〜0.05%、
N:0.0001〜0.10%、
O:0.001〜0.010%
を含有し、
P:0.02%以下、
に制限し、更に、
Si:0.001〜5.0%、
Al:0.001〜5.0%
の一方又は両方を含有し、更に、
Mg:0.01%以下、
Ca:0.01%以下、
REM:0.01%以下
の1種又は2種以上を合計で0.0002%以上含有し、
30C+0.5Mn+Ni+0.8Cr+1.2Si+0.8Mo≧25 ・・・ (式1)
O/S≧1 ・・・ (式2)
を満足し、残部がFe及び不可避的不純物からなり、
オーステナイトの体積率が95%以上であり、
前記オーステナイトの結晶粒径が20〜200μmであり、
前記オーステナイトの結晶粒界における炭化物被覆率が50%以下である
ことを特徴とする極低温用高Mn鋼材。
ただし、Ni、Si、Moを含まない場合、上記(式1)ではこれらの項を0とする。
% By mass
C: 0.001 to 0.80%,
Mn: 15.0-35.0%,
S: 0.0001 to 0.01%,
Cr: 0.01-10.0%,
Ti: 0.001 to 0.05%,
N: 0.0001 to 0.10%,
O: 0.001 to 0.010%
Containing
P: 0.02% or less,
In addition to
Si: 0.001 to 5.0%,
Al: 0.001 to 5.0%
One or both of
Mg: 0.01% or less,
Ca: 0.01% or less,
REM: containing 0.0002% or more in total of one or more of 0.01% or less,
30C + 0.5Mn + Ni + 0.8Cr + 1.2Si + 0.8Mo ≧ 25 (Formula 1)
O / S ≧ 1 (Formula 2)
And the balance consists of Fe and inevitable impurities,
The volume ratio of austenite is 95% or more,
The austenite has a crystal grain size of 20 to 200 μm,
A high Mn steel material for cryogenic use, characterized in that a carbide coverage at a crystal grain boundary of the austenite is 50% or less.
However, when Ni, Si, and Mo are not included, these terms are set to 0 in the above (Formula 1).
更に、質量%で、
Nb:0.05%以下、
Ta:0.05%以下、
Zr:0.05%以下、
V:0.10%以下
の1種又は2種類以上を含有することを特徴とする請求項1に記載の極低温用高Mn鋼材。
Furthermore, in mass%,
Nb: 0.05% or less,
Ta: 0.05% or less,
Zr: 0.05% or less,
The high-Mn steel material for cryogenic use according to claim 1, characterized by containing one or more of V: 0.10% or less.
更に、質量%で、
Cu:3.0%以下、
Ni:3.0%以下、
Co:3.0%以下、
Mo:3.0%以下、
W:3.0%以下
の1種又は2種以上を含有することを特徴とする請求項1又は2に記載の極低温用高Mn鋼材。
Furthermore, in mass%,
Cu: 3.0% or less,
Ni: 3.0% or less,
Co: 3.0% or less,
Mo: 3.0% or less,
The high-Mn steel material for cryogenic use according to claim 1 or 2, which contains one or more of W: 3.0% or less.
更に、質量%で、
B:0.010%以下
を含有することを特徴とする請求項1〜3の何れか1項に記載の極低温用高Mn鋼材。
Furthermore, in mass%,
B: 0.010% or less is contained, The high Mn steel material for cryogenic temperatures of any one of Claims 1-3 characterized by the above-mentioned.
更に、C、Si、Mn、P、S、Al、N、Cr、Cu、Ni、Co、Mo、Wの含有量が、
CI=−2C+0.8Si−0,2Mn+3.3Cr+9(Mo+W/2)
+1.5(Cu+Ni+Co)+60N+0.8Al−90P−90S
≧6.5 ・・・ (式3)
を満足することを特徴とする請求項1〜4の何れか1項に記載の極低温用高Mn鋼材。
ただし、Cu、Ni、Co、Mo、Wを含まない場合、上記(式3)ではこれらの項を0とする。
Furthermore, the contents of C, Si, Mn, P, S, Al, N, Cr, Cu, Ni, Co, Mo, W are
CI = -2C + 0.8Si-0,2Mn + 3.3Cr + 9 (Mo + W / 2)
+1.5 (Cu + Ni + Co) + 60N + 0.8Al-90P-90S
≧ 6.5 (Formula 3)
The high-Mn steel material for cryogenic use according to any one of claims 1 to 4, wherein:
However, when Cu, Ni, Co, Mo, and W are not included, these terms are set to 0 in the above (Formula 3).
JP2016062107A 2015-04-02 2016-03-25 High Mn steel for cryogenic temperatures Active JP6693217B2 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2015076293 2015-04-02
JP2015076293 2015-04-02

Publications (2)

Publication Number Publication Date
JP2016196703A true JP2016196703A (en) 2016-11-24
JP6693217B2 JP6693217B2 (en) 2020-05-13

Family

ID=57358110

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2016062107A Active JP6693217B2 (en) 2015-04-02 2016-03-25 High Mn steel for cryogenic temperatures

Country Status (1)

Country Link
JP (1) JP6693217B2 (en)

Cited By (50)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016084529A (en) * 2014-10-22 2016-05-19 新日鐵住金株式会社 HIGH Mn STEEL MATERIAL AND PRODUCTION METHOD THEREFOR
JP2017071817A (en) * 2015-10-06 2017-04-13 新日鐵住金株式会社 Thick steel sheet for low temperature and manufacturing method therefor
JP2017155300A (en) * 2016-03-03 2017-09-07 新日鐵住金株式会社 Thick steel sheet for low temperature and manufacturing method therefor
WO2018105510A1 (en) * 2016-12-08 2018-06-14 Jfeスチール株式会社 High mn steel sheet and method for producing same
WO2018117678A1 (en) * 2016-12-23 2018-06-28 주식회사 포스코 Austenite steel material having superb surface characteristic, and method for producing same
KR20180072967A (en) * 2016-12-22 2018-07-02 주식회사 포스코 High manganese steel with superior low temperature toughness and yield strength and method for manufacturing the same
KR20180074450A (en) * 2016-12-23 2018-07-03 주식회사 포스코 Low temperature austenitic high manganese steel and method for manufacturing the same
WO2018199145A1 (en) 2017-04-26 2018-11-01 Jfeスチール株式会社 HIGH-Mn STEEL AND PRODUCTION METHOD THEREFOR
JP2018204109A (en) * 2017-06-08 2018-12-27 新日鐵住金株式会社 Abrasion resistant thick steel plate
JP2018204110A (en) * 2017-06-08 2018-12-27 新日鐵住金株式会社 Abrasion resistant thick steel plate
JP6477983B1 (en) * 2018-03-29 2019-03-06 新日鐵住金株式会社 Austenitic wear-resistant steel sheet
WO2019044928A1 (en) * 2017-09-01 2019-03-07 Jfeスチール株式会社 High-mn steel and production method therefor
WO2019059095A1 (en) 2017-09-20 2019-03-28 Jfeスチール株式会社 Steel plate and method for manufacturing same
WO2019078538A1 (en) * 2017-10-18 2019-04-25 주식회사 포스코 High manganese steel for low temperature, having excellent surface quality, and manufacturing method therefor
KR20190043466A (en) * 2017-10-18 2019-04-26 주식회사 포스코 Low temperature high manganese steel plate with excellent surface property and method for manufacturing the same
WO2019112012A1 (en) 2017-12-07 2019-06-13 Jfeスチール株式会社 High-mn steel and method for manufacturing same
WO2019125025A1 (en) * 2017-12-24 2019-06-27 주식회사 포스코 High-strength austenite-based high-manganese steel material and manufacturing method for same
KR20190077794A (en) * 2017-12-26 2019-07-04 주식회사 포스코 Hot-rolled steel sheet having excellent low temperature toughness, steel pipe using the steel sheet and method for manufacturing thereof
WO2019168172A1 (en) * 2018-03-02 2019-09-06 Jfeスチール株式会社 HIGH Mn STEEL AND METHOD FOR PRODUCING SAME
JP2019151920A (en) * 2018-03-02 2019-09-12 Jfeスチール株式会社 HIGH Mn STEEL AND MANUFACTURING METHOD THEREFOR
CN110273113A (en) * 2019-07-24 2019-09-24 深圳市富鹏达金属材料有限公司 A kind of manganese alloy steel and preparation method thereof
WO2019186911A1 (en) * 2018-03-29 2019-10-03 新日鐵住金株式会社 Austenitic wear-resistant steel sheet
JP2020007635A (en) * 2018-06-28 2020-01-16 Jfeスチール株式会社 Processing method of austenitic rail
WO2020035917A1 (en) * 2018-08-15 2020-02-20 Jfeスチール株式会社 Steel sheet and method for manufacturing same
WO2020044421A1 (en) 2018-08-28 2020-03-05 Jfeスチール株式会社 Steel sheet and method for producing same
WO2020085864A1 (en) * 2018-10-25 2020-04-30 주식회사 포스코 Cryogenic austenitic high-manganese steel having excellent corrosion resistance, and manufacturing method therefor
WO2020085849A1 (en) * 2018-10-25 2020-04-30 주식회사 포스코 High-strength and high-ductility nonmagnetic steel having excellent weldability, and manufacturing method therefor
WO2020085862A1 (en) * 2018-10-25 2020-04-30 주식회사 포스코 Cryogenic austenitic high-manganese steel having excellent scale peeling properties, and manufacturing method therefor
WO2020153407A1 (en) 2019-01-25 2020-07-30 Jfeスチール株式会社 High-manganese steel cast slab production method and method for producing billet or sheet of high-manganese steel
WO2020166538A1 (en) 2019-02-12 2020-08-20 Jfeスチール株式会社 High-mn steel and method for manufacturing same
CN111684093A (en) * 2018-02-07 2020-09-18 杰富意钢铁株式会社 High Mn steel and method for producing same
WO2020189762A1 (en) * 2019-03-19 2020-09-24 Jfeスチール株式会社 Method for producing cast slabs of high manganese steel and method for producing high manganese steel billets and high manganese steel sheets
WO2021033694A1 (en) * 2019-08-21 2021-02-25 Jfeスチール株式会社 Steel and method for manufacturing same
WO2021033693A1 (en) * 2019-08-21 2021-02-25 Jfeスチール株式会社 Steel, and method for producing same
CN112513307A (en) * 2018-08-03 2021-03-16 杰富意钢铁株式会社 High Mn steel and method for producing same
CN112708823A (en) * 2020-11-24 2021-04-27 河钢股份有限公司 High-manganese and high-aluminum TWIP steel with high thermoplasticity and production method thereof
CN112831716A (en) * 2019-11-25 2021-05-25 衡阳市鑫诚和重型机械设备制造有限公司 Wear-resistant steel casting process for manufacturing front blade of bucket of underground scraper
CN113383102A (en) * 2019-01-22 2021-09-10 气体运输技术公司 Storage and/or transport system for liquefied gases
CN113383092A (en) * 2019-01-22 2021-09-10 艾普伦 Iron-manganese alloy with improved weldability
JPWO2021181543A1 (en) * 2020-03-11 2021-09-16
WO2021196364A1 (en) * 2020-03-30 2021-10-07 南京钢铁股份有限公司 Nickel-free lpg marine steel plate and manufacturing method therefor
KR20210136132A (en) 2019-03-29 2021-11-16 제이에프이 스틸 가부시키가이샤 Manufacturing method of high strength welded joint for cryogenic use
JP2022031163A (en) * 2020-08-07 2022-02-18 Jfeスチール株式会社 Steel material and manufacturing method thereof
WO2022041819A1 (en) * 2020-08-25 2022-03-03 华为技术有限公司 Fe-mn-al-c lightweight steel and preparation method therefor, terminal, steel structure, and electronic device
WO2022168686A1 (en) 2021-02-08 2022-08-11 Jfeスチール株式会社 Steel material and method for producing same, and tank and method for producing same
WO2022186096A1 (en) 2021-03-01 2022-09-09 Jfeスチール株式会社 Submerged arc welded joint
WO2022186097A1 (en) 2021-03-01 2022-09-09 Jfeスチール株式会社 Tig welding joint
CN115074615A (en) * 2021-03-16 2022-09-20 宝山钢铁股份有限公司 Environment-friendly ultralow-temperature high manganese steel and steel plate and manufacturing method thereof
WO2023121223A1 (en) * 2021-12-21 2023-06-29 주식회사 포스코 Austenitic steel having excellent ultra-low temperature toughness in weld heat-affected zone, and manufacturing method therefor
CN116426836B (en) * 2023-05-16 2024-01-05 燕山大学 Fe-Mn-Al-C-Nb-V austenitic light steel and preparation method thereof

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5118913A (en) * 1974-08-09 1976-02-14 Nippon Steel Corp Teionjinseito netsukankakoseinosugureta oosutenaitoko
JPS5118916A (en) * 1974-08-09 1976-02-14 Nippon Steel Corp TEIONJINSEINOSUGURETA OOSUTENAITOKONO SEIZOHO
JPS61270356A (en) * 1985-05-24 1986-11-29 Kobe Steel Ltd Austenitic stainless steels plate having high strength and high toughness at very low temperature
JP2007126715A (en) * 2005-11-04 2007-05-24 Sumitomo Metal Ind Ltd HIGH-Mn STEEL MATERIAL AND MANUFACTURING METHOD THEREFOR
US20110308673A1 (en) * 2008-11-12 2011-12-22 Voestalpine Stahl Gmbh Manganese steel strip having an increased phosphorous content and process for producing the same
JP2016512288A (en) * 2013-03-15 2016-04-25 エクソンモービル リサーチ アンド エンジニアリング カンパニーExxon Research And Engineering Company Abrasion-resistant reinforced steel and method for producing the same
JP2016084529A (en) * 2014-10-22 2016-05-19 新日鐵住金株式会社 HIGH Mn STEEL MATERIAL AND PRODUCTION METHOD THEREFOR

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5118913A (en) * 1974-08-09 1976-02-14 Nippon Steel Corp Teionjinseito netsukankakoseinosugureta oosutenaitoko
JPS5118916A (en) * 1974-08-09 1976-02-14 Nippon Steel Corp TEIONJINSEINOSUGURETA OOSUTENAITOKONO SEIZOHO
JPS61270356A (en) * 1985-05-24 1986-11-29 Kobe Steel Ltd Austenitic stainless steels plate having high strength and high toughness at very low temperature
JP2007126715A (en) * 2005-11-04 2007-05-24 Sumitomo Metal Ind Ltd HIGH-Mn STEEL MATERIAL AND MANUFACTURING METHOD THEREFOR
US20110308673A1 (en) * 2008-11-12 2011-12-22 Voestalpine Stahl Gmbh Manganese steel strip having an increased phosphorous content and process for producing the same
JP2016512288A (en) * 2013-03-15 2016-04-25 エクソンモービル リサーチ アンド エンジニアリング カンパニーExxon Research And Engineering Company Abrasion-resistant reinforced steel and method for producing the same
JP2016084529A (en) * 2014-10-22 2016-05-19 新日鐵住金株式会社 HIGH Mn STEEL MATERIAL AND PRODUCTION METHOD THEREFOR

Cited By (151)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016084529A (en) * 2014-10-22 2016-05-19 新日鐵住金株式会社 HIGH Mn STEEL MATERIAL AND PRODUCTION METHOD THEREFOR
JP2017071817A (en) * 2015-10-06 2017-04-13 新日鐵住金株式会社 Thick steel sheet for low temperature and manufacturing method therefor
JP2017155300A (en) * 2016-03-03 2017-09-07 新日鐵住金株式会社 Thick steel sheet for low temperature and manufacturing method therefor
CN110050082A (en) * 2016-12-08 2019-07-23 杰富意钢铁株式会社 High Mn steel plate and its manufacturing method
WO2018105510A1 (en) * 2016-12-08 2018-06-14 Jfeスチール株式会社 High mn steel sheet and method for producing same
WO2018104984A1 (en) * 2016-12-08 2018-06-14 Jfeスチール株式会社 HIGH Mn STEEL SHEET AND PRODUCTION METHOD THEREFOR
KR102309644B1 (en) 2016-12-08 2021-10-06 제이에프이 스틸 가부시키가이샤 High mn steel sheet and method for producing same
CN110050082B (en) * 2016-12-08 2021-06-22 杰富意钢铁株式会社 High Mn steel sheet and method for producing same
KR20210072140A (en) * 2016-12-08 2021-06-16 제이에프이 스틸 가부시키가이샤 High mn steel sheet and method for producing same
EP3553195A4 (en) * 2016-12-08 2019-10-16 JFE Steel Corporation High mn steel sheet and method for producing same
JP6418358B1 (en) * 2016-12-08 2018-11-07 Jfeスチール株式会社 High Mn steel sheet and method for producing the same
US11505853B2 (en) 2016-12-22 2022-11-22 Posco High manganese steel having superior low-temperature toughness and yield strength and manufacturing method thereof
JP2020509207A (en) * 2016-12-22 2020-03-26 ポスコPosco High manganese steel excellent in low temperature toughness and yield strength and method for producing the same
KR101940874B1 (en) * 2016-12-22 2019-01-21 주식회사 포스코 High manganese steel with superior low temperature toughness and yield strength and method for manufacturing the same
KR20180072967A (en) * 2016-12-22 2018-07-02 주식회사 포스코 High manganese steel with superior low temperature toughness and yield strength and method for manufacturing the same
KR101920973B1 (en) 2016-12-23 2018-11-21 주식회사 포스코 Austenitic steel having excellent surface properties and method for manufacturing thereof
KR101899692B1 (en) * 2016-12-23 2018-09-17 주식회사 포스코 Low temperature austenitic high manganese steel and method for manufacturing the same
KR20180074450A (en) * 2016-12-23 2018-07-03 주식회사 포스코 Low temperature austenitic high manganese steel and method for manufacturing the same
WO2018117678A1 (en) * 2016-12-23 2018-06-28 주식회사 포스코 Austenite steel material having superb surface characteristic, and method for producing same
CN110573642A (en) * 2017-04-26 2019-12-13 杰富意钢铁株式会社 High Mn steel and method for producing same
KR20190134704A (en) 2017-04-26 2019-12-04 제이에프이 스틸 가부시키가이샤 High Mn steel and its manufacturing method
WO2018199145A1 (en) 2017-04-26 2018-11-01 Jfeスチール株式会社 HIGH-Mn STEEL AND PRODUCTION METHOD THEREFOR
JP2018204109A (en) * 2017-06-08 2018-12-27 新日鐵住金株式会社 Abrasion resistant thick steel plate
JP7135464B2 (en) 2017-06-08 2022-09-13 日本製鉄株式会社 Wear-resistant thick steel plate
JP7135465B2 (en) 2017-06-08 2022-09-13 日本製鉄株式会社 Wear-resistant thick steel plate
JP2018204110A (en) * 2017-06-08 2018-12-27 新日鐵住金株式会社 Abrasion resistant thick steel plate
EP3677700A4 (en) * 2017-09-01 2020-07-08 JFE Steel Corporation High-mn steel and production method therefor
JP7063364B2 (en) 2017-09-01 2022-05-09 Jfeスチール株式会社 High Mn steel
JPWO2019044928A1 (en) * 2017-09-01 2020-03-26 Jfeスチール株式会社 High Mn steel and method for producing the same
KR102355570B1 (en) 2017-09-01 2022-01-25 제이에프이 스틸 가부시키가이샤 High Mn steel and its manufacturing method
CN111051553A (en) * 2017-09-01 2020-04-21 杰富意钢铁株式会社 High Mn steel and method for producing same
JP2021036077A (en) * 2017-09-01 2021-03-04 Jfeスチール株式会社 HIGH-Mn STEEL
WO2019044928A1 (en) * 2017-09-01 2019-03-07 Jfeスチール株式会社 High-mn steel and production method therefor
KR20200033901A (en) * 2017-09-01 2020-03-30 제이에프이 스틸 가부시키가이샤 High Mn steel and its manufacturing method
WO2019059095A1 (en) 2017-09-20 2019-03-28 Jfeスチール株式会社 Steel plate and method for manufacturing same
JPWO2019059095A1 (en) * 2017-09-20 2019-11-14 Jfeスチール株式会社 Steel sheet and manufacturing method thereof
KR20200041938A (en) 2017-09-20 2020-04-22 제이에프이 스틸 가부시키가이샤 Steel sheet and its manufacturing method
EP3686306A4 (en) * 2017-09-20 2020-07-29 JFE Steel Corporation Steel plate and method for manufacturing same
KR102363482B1 (en) * 2017-09-20 2022-02-15 제이에프이 스틸 가부시키가이샤 Steel plate and its manufacturing method
WO2019078538A1 (en) * 2017-10-18 2019-04-25 주식회사 포스코 High manganese steel for low temperature, having excellent surface quality, and manufacturing method therefor
KR20190043466A (en) * 2017-10-18 2019-04-26 주식회사 포스코 Low temperature high manganese steel plate with excellent surface property and method for manufacturing the same
JP2020537714A (en) * 2017-10-18 2020-12-24 ポスコPosco High-temperature high-manganese steel with excellent surface quality and its manufacturing method
CN111225992A (en) * 2017-10-18 2020-06-02 株式会社Posco High manganese steel for low temperature with excellent surface quality and method for manufacturing the same
KR102109270B1 (en) * 2017-10-18 2020-05-12 주식회사 포스코 Low temperature high manganese steel plate with excellent surface property and method for manufacturing the same
WO2019112012A1 (en) 2017-12-07 2019-06-13 Jfeスチール株式会社 High-mn steel and method for manufacturing same
KR20200088469A (en) 2017-12-07 2020-07-22 제이에프이 스틸 가부시키가이샤 High Mn steel and its manufacturing method
EP3722448A4 (en) * 2017-12-07 2020-10-14 JFE Steel Corporation High-mn steel and method for manufacturing same
JP6590117B1 (en) * 2017-12-07 2019-10-16 Jfeスチール株式会社 High Mn steel and manufacturing method thereof
KR102405388B1 (en) 2017-12-07 2022-06-03 제이에프이 스틸 가부시키가이샤 High Mn steel and its manufacturing method
JP2021508006A (en) * 2017-12-24 2021-02-25 ポスコPosco High-strength austenitic high-manganese steel and its manufacturing method
KR102020386B1 (en) 2017-12-24 2019-09-10 주식회사 포스코 High manganese austenitic steel having high strength and method for manufacturing the same
JP7438967B2 (en) 2017-12-24 2024-02-27 ポスコ カンパニー リミテッド High strength austenitic high manganese steel and manufacturing method thereof
US11634800B2 (en) 2017-12-24 2023-04-25 Posco Co., Ltd High-strength austenite-based high-manganese steel material and manufacturing method for same
KR20190077192A (en) * 2017-12-24 2019-07-03 주식회사 포스코 High manganese austenitic steel having high strength and method for manufacturing the same
WO2019125025A1 (en) * 2017-12-24 2019-06-27 주식회사 포스코 High-strength austenite-based high-manganese steel material and manufacturing method for same
KR20190077794A (en) * 2017-12-26 2019-07-04 주식회사 포스코 Hot-rolled steel sheet having excellent low temperature toughness, steel pipe using the steel sheet and method for manufacturing thereof
WO2019132189A1 (en) * 2017-12-26 2019-07-04 주식회사 포스코 Hot-rolled steel sheet with excellent low-temperature toughness, steel pipe, and manufacturing method therefor
CN111566248B (en) * 2017-12-26 2022-05-06 Posco公司 Hot-rolled steel sheet and steel pipe having excellent low-temperature toughness, and method for producing same
US11519060B2 (en) 2017-12-26 2022-12-06 Posco Holdings Inc. Hot-rolled steel sheet with excellent low-temperature toughness, steel pipe, and manufacturing method therefor
JP7032541B2 (en) 2017-12-26 2022-03-08 ポスコ Hot-rolled steel sheets, steel pipes and their manufacturing methods with excellent low-temperature toughness
CN111566248A (en) * 2017-12-26 2020-08-21 Posco公司 Hot-rolled steel sheet and steel pipe having excellent low-temperature toughness, and method for producing same
JP2021509148A (en) * 2017-12-26 2021-03-18 ポスコPosco Hot-rolled steel sheet, steel pipe and its manufacturing method with excellent low-temperature toughness
KR102031455B1 (en) * 2017-12-26 2019-10-11 주식회사 포스코 Hot-rolled steel sheet having excellent low temperature toughness, steel pipe using the steel sheet and method for manufacturing thereof
KR20200112950A (en) 2018-02-07 2020-10-05 제이에프이 스틸 가부시키가이샤 High Mn steel and manufacturing method thereof
KR102367801B1 (en) 2018-02-07 2022-02-24 제이에프이 스틸 가부시키가이샤 High Mn steel and manufacturing method thereof
CN111684093A (en) * 2018-02-07 2020-09-18 杰富意钢铁株式会社 High Mn steel and method for producing same
KR102387364B1 (en) 2018-03-02 2022-04-14 제이에프이 스틸 가부시키가이샤 High Mn steel and manufacturing method thereof
CN111788325B (en) * 2018-03-02 2021-11-30 杰富意钢铁株式会社 High Mn steel and method for producing same
JP2019151920A (en) * 2018-03-02 2019-09-12 Jfeスチール株式会社 HIGH Mn STEEL AND MANUFACTURING METHOD THEREFOR
CN111788325A (en) * 2018-03-02 2020-10-16 杰富意钢铁株式会社 High Mn steel and method for producing same
KR20200123831A (en) * 2018-03-02 2020-10-30 제이에프이 스틸 가부시키가이샤 High Mn steel and manufacturing method thereof
WO2019168172A1 (en) * 2018-03-02 2019-09-06 Jfeスチール株式会社 HIGH Mn STEEL AND METHOD FOR PRODUCING SAME
EP3778950A4 (en) * 2018-03-29 2021-10-06 Nippon Steel Corporation Austenitic wear-resistant steel sheet
JP6477983B1 (en) * 2018-03-29 2019-03-06 新日鐵住金株式会社 Austenitic wear-resistant steel sheet
CN111727267A (en) * 2018-03-29 2020-09-29 日本制铁株式会社 Austenitic wear-resistant steel plate
WO2019186906A1 (en) * 2018-03-29 2019-10-03 日本製鉄株式会社 Austenitic abrasion-resistant steel sheet
KR20200105925A (en) * 2018-03-29 2020-09-09 닛폰세이테츠 가부시키가이샤 Austenitic wear-resistant steel plate
US11326237B2 (en) 2018-03-29 2022-05-10 Nippon Steel Corporation Austenitic wear-resistant steel plate
EP3594374A4 (en) * 2018-03-29 2020-06-10 Nippon Steel Corporation Austenitic abrasion-resistant steel sheet
KR102453321B1 (en) * 2018-03-29 2022-10-11 닛폰세이테츠 가부시키가이샤 Austenitic wear-resistant steel sheet
WO2019186911A1 (en) * 2018-03-29 2019-10-03 新日鐵住金株式会社 Austenitic wear-resistant steel sheet
JP2020007635A (en) * 2018-06-28 2020-01-16 Jfeスチール株式会社 Processing method of austenitic rail
CN112513307A (en) * 2018-08-03 2021-03-16 杰富意钢铁株式会社 High Mn steel and method for producing same
US11959157B2 (en) 2018-08-03 2024-04-16 Jfe Steel Corporation High-Mn steel and method of producing same
CN112513309B (en) * 2018-08-15 2022-04-26 杰富意钢铁株式会社 Steel sheet and method for producing same
JPWO2020036090A1 (en) * 2018-08-15 2020-08-20 Jfeスチール株式会社 Steel plate and method of manufacturing the same
EP3825436A4 (en) * 2018-08-15 2021-05-26 JFE Steel Corporation Steel sheet and method for manufacturing same
KR20210035867A (en) 2018-08-15 2021-04-01 제이에프이 스틸 가부시키가이샤 Steel plate and its manufacturing method
CN112513309A (en) * 2018-08-15 2021-03-16 杰富意钢铁株式会社 Steel sheet and method for producing same
WO2020035917A1 (en) * 2018-08-15 2020-02-20 Jfeスチール株式会社 Steel sheet and method for manufacturing same
KR102497359B1 (en) 2018-08-15 2023-02-08 제이에프이 스틸 가부시키가이샤 Steel plate and method of producing same
WO2020036090A1 (en) 2018-08-15 2020-02-20 Jfeスチール株式会社 Steel sheet and method for manufacturing same
TWI702296B (en) * 2018-08-15 2020-08-21 日商杰富意鋼鐵股份有限公司 Steel plate and its manufacturing method
KR20210035263A (en) 2018-08-28 2021-03-31 제이에프이 스틸 가부시키가이샤 Steel plate and its manufacturing method
WO2020044421A1 (en) 2018-08-28 2020-03-05 Jfeスチール株式会社 Steel sheet and method for producing same
KR20200046799A (en) * 2018-10-25 2020-05-07 주식회사 포스코 High-strength and high-ductility steel having excellent weldability and method for manufacturing thereof
WO2020085849A1 (en) * 2018-10-25 2020-04-30 주식회사 포스코 High-strength and high-ductility nonmagnetic steel having excellent weldability, and manufacturing method therefor
WO2020085862A1 (en) * 2018-10-25 2020-04-30 주식회사 포스코 Cryogenic austenitic high-manganese steel having excellent scale peeling properties, and manufacturing method therefor
KR102119962B1 (en) 2018-10-25 2020-06-05 주식회사 포스코 High-strength and high-ductility steel having excellent weldability and method for manufacturing thereof
WO2020085864A1 (en) * 2018-10-25 2020-04-30 주식회사 포스코 Cryogenic austenitic high-manganese steel having excellent corrosion resistance, and manufacturing method therefor
CN113383092A (en) * 2019-01-22 2021-09-10 艾普伦 Iron-manganese alloy with improved weldability
CN113383102A (en) * 2019-01-22 2021-09-10 气体运输技术公司 Storage and/or transport system for liquefied gases
JP2022518252A (en) * 2019-01-22 2022-03-14 ギャズトランスポルト エ テクニギャズ Storage and / or transportation system for liquefied gas
WO2020153407A1 (en) 2019-01-25 2020-07-30 Jfeスチール株式会社 High-manganese steel cast slab production method and method for producing billet or sheet of high-manganese steel
US11819909B2 (en) 2019-01-25 2023-11-21 Jfe Steel Corporation Method for manufacturing high-manganese steel cast slab and method for manufacturing high-manganese steel slab or steel sheet
WO2020166538A1 (en) 2019-02-12 2020-08-20 Jfeスチール株式会社 High-mn steel and method for manufacturing same
JPWO2020166538A1 (en) * 2019-02-12 2021-03-11 Jfeスチール株式会社 High Mn steel and its manufacturing method
KR102628769B1 (en) 2019-02-12 2024-01-23 제이에프이 스틸 가부시키가이샤 HIGH-Mn STEEL AND MANUFACTURING METHOD THEREFOR
TWI754893B (en) * 2019-02-12 2022-02-11 日商杰富意鋼鐵股份有限公司 High Mn steel and its manufacturing method
KR20210113682A (en) 2019-02-12 2021-09-16 제이에프이 스틸 가부시키가이샤 High Mn steel and manufacturing method thereof
JP7126077B2 (en) 2019-03-19 2022-08-26 Jfeスチール株式会社 Method for producing high-manganese steel billet, method for producing high-manganese steel billet and high-manganese steel plate
CN113366138A (en) * 2019-03-19 2021-09-07 杰富意钢铁株式会社 Method for manufacturing high manganese steel cast sheet, high manganese steel sheet, and method for manufacturing high manganese steel sheet
KR20210105418A (en) 2019-03-19 2021-08-26 제이에프이 스틸 가부시키가이샤 Manufacturing method of high manganese steel slab, manufacturing method of high manganese steel slab and high manganese steel sheet
JPWO2020189762A1 (en) * 2019-03-19 2021-05-20 Jfeスチール株式会社 Manufacturing method of high manganese steel slab, manufacturing method of high manganese steel slab and high manganese steel sheet
WO2020189762A1 (en) * 2019-03-19 2020-09-24 Jfeスチール株式会社 Method for producing cast slabs of high manganese steel and method for producing high manganese steel billets and high manganese steel sheets
KR20210136132A (en) 2019-03-29 2021-11-16 제이에프이 스틸 가부시키가이샤 Manufacturing method of high strength welded joint for cryogenic use
CN110273113A (en) * 2019-07-24 2019-09-24 深圳市富鹏达金属材料有限公司 A kind of manganese alloy steel and preparation method thereof
EP4019657A4 (en) * 2019-08-21 2022-06-29 JFE Steel Corporation Steel, and method for producing same
KR20220030292A (en) * 2019-08-21 2022-03-10 제이에프이 스틸 가부시키가이샤 Steel and its manufacturing method
CN114302977A (en) * 2019-08-21 2022-04-08 杰富意钢铁株式会社 Steel and method for producing same
JPWO2021033693A1 (en) * 2019-08-21 2021-09-13 Jfeスチール株式会社 Steel and its manufacturing method
WO2021033693A1 (en) * 2019-08-21 2021-02-25 Jfeスチール株式会社 Steel, and method for producing same
CN114269959A (en) * 2019-08-21 2022-04-01 杰富意钢铁株式会社 Steel and method for producing same
EP4019656A4 (en) * 2019-08-21 2022-06-29 JFE Steel Corporation Steel and method for manufacturing same
TWI726798B (en) * 2019-08-21 2021-05-01 日商杰富意鋼鐵股份有限公司 Steel and its manufacturing method
KR102714307B1 (en) * 2019-08-21 2024-10-07 제이에프이 스틸 가부시키가이샤 Steel and method of manufacturing the same
JPWO2021033694A1 (en) * 2019-08-21 2021-09-13 Jfeスチール株式会社 Steel and its manufacturing method
WO2021033694A1 (en) * 2019-08-21 2021-02-25 Jfeスチール株式会社 Steel and method for manufacturing same
CN112831716A (en) * 2019-11-25 2021-05-25 衡阳市鑫诚和重型机械设备制造有限公司 Wear-resistant steel casting process for manufacturing front blade of bucket of underground scraper
TWI842982B (en) * 2020-03-11 2024-05-21 日商杰富意鋼鐵股份有限公司 Steel material, method for manufacturing the same, and groove
JPWO2021181543A1 (en) * 2020-03-11 2021-09-16
WO2021182110A1 (en) * 2020-03-11 2021-09-16 Jfeスチール株式会社 Steel material, manufacturing method therefor, and tank
JP7024877B2 (en) 2020-03-11 2022-02-24 Jfeスチール株式会社 Steel materials and their manufacturing methods, as well as tanks
JP7272438B2 (en) 2020-03-11 2023-05-12 Jfeスチール株式会社 Steel material, manufacturing method thereof, and tank
WO2021181543A1 (en) * 2020-03-11 2021-09-16 Jfeスチール株式会社 Steel material, manufacturing method therefor, and tank
JPWO2021182110A1 (en) * 2020-03-11 2021-09-16
WO2021196364A1 (en) * 2020-03-30 2021-10-07 南京钢铁股份有限公司 Nickel-free lpg marine steel plate and manufacturing method therefor
JP2022031163A (en) * 2020-08-07 2022-02-18 Jfeスチール株式会社 Steel material and manufacturing method thereof
JP7380655B2 (en) 2020-08-07 2023-11-15 Jfeスチール株式会社 Steel materials and their manufacturing methods
WO2022041819A1 (en) * 2020-08-25 2022-03-03 华为技术有限公司 Fe-mn-al-c lightweight steel and preparation method therefor, terminal, steel structure, and electronic device
CN112708823A (en) * 2020-11-24 2021-04-27 河钢股份有限公司 High-manganese and high-aluminum TWIP steel with high thermoplasticity and production method thereof
KR20230125288A (en) 2021-02-08 2023-08-29 제이에프이 스틸 가부시키가이샤 Steel and its manufacturing method, tank and its manufacturing method
WO2022168686A1 (en) 2021-02-08 2022-08-11 Jfeスチール株式会社 Steel material and method for producing same, and tank and method for producing same
KR20230133347A (en) 2021-03-01 2023-09-19 제이에프이 스틸 가부시키가이샤 Submerged arc welded joints
KR20230130122A (en) 2021-03-01 2023-09-11 제이에프이 스틸 가부시키가이샤 TIG welded seams
WO2022186097A1 (en) 2021-03-01 2022-09-09 Jfeスチール株式会社 Tig welding joint
WO2022186096A1 (en) 2021-03-01 2022-09-09 Jfeスチール株式会社 Submerged arc welded joint
CN115074615B (en) * 2021-03-16 2023-10-17 宝山钢铁股份有限公司 Environment-friendly ultralow-temperature high-manganese steel, steel plate and manufacturing method thereof
CN115074615A (en) * 2021-03-16 2022-09-20 宝山钢铁股份有限公司 Environment-friendly ultralow-temperature high manganese steel and steel plate and manufacturing method thereof
WO2023121223A1 (en) * 2021-12-21 2023-06-29 주식회사 포스코 Austenitic steel having excellent ultra-low temperature toughness in weld heat-affected zone, and manufacturing method therefor
CN116426836B (en) * 2023-05-16 2024-01-05 燕山大学 Fe-Mn-Al-C-Nb-V austenitic light steel and preparation method thereof

Also Published As

Publication number Publication date
JP6693217B2 (en) 2020-05-13

Similar Documents

Publication Publication Date Title
JP6693217B2 (en) High Mn steel for cryogenic temperatures
JP6645103B2 (en) High Mn steel material and method for producing the same
JP4529872B2 (en) High Mn steel material and manufacturing method thereof
JP6589535B2 (en) Low temperature thick steel plate and method for producing the same
JP6728779B2 (en) Low temperature thick steel plate and method of manufacturing the same
JP5494166B2 (en) Cryogenic steel plate and manufacturing method thereof
JPWO2018199145A1 (en) High Mn steel and method of manufacturing the same
JP2017507249A (en) Low temperature steel with excellent surface processing quality
JP6097087B2 (en) Submerged arc welding wire for high strength 2.25Cr-1Mo-V steel and method for producing weld metal
JP2011241419A (en) Thick steel plate for low temperature, and method of manufacturing the same
JP2014034708A (en) Thick steel plate for ultra-low temperature and production method thereof
WO2014030618A1 (en) Thick steel plate having good ultralow-temperature toughness
JP2010202916A (en) Ferritic stainless steel excellent in corrosion resistance of welded part with austenite stainless steel
JP2012107333A (en) High-strength steel for high-pressure hydrogen storage container
JP6513495B2 (en) Duplex stainless steel and duplex stainless steel pipe
JP7135649B2 (en) Welding consumables for austenitic stainless steel
JP2013227644A (en) Austenite-based heat resistant alloy
JP5111910B2 (en) Ferritic stainless steel with low surface defects and excellent weldability and crevice corrosion resistance
JP6856083B2 (en) High Mn steel and its manufacturing method
JP7272438B2 (en) Steel material, manufacturing method thereof, and tank
JP2012158798A (en) Cr-CONTAINING STEEL PIPE FOR LINE PIPE EXCELLENT IN INTERGRANULAR STRESS CORROSION CRACKING RESISTANCE OF WELD HEAT-AFFECTED ZONE
TW201207128A (en) Structural stainless steel sheet having excellent corrosion resistance at weld and method for manufacturing same
JP5176847B2 (en) Low yield ratio low temperature steel and method for producing the same
JP2016169406A (en) Ferrite steel
JP4586080B2 (en) High-strength steel sheet with excellent stress-relieving annealing characteristics and low-temperature toughness

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20181105

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20190821

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20190827

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20191028

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20191119

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20200219

A911 Transfer to examiner for re-examination before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20200227

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20200317

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20200330

R151 Written notification of patent or utility model registration

Ref document number: 6693217

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151