JP2016084529A - HIGH Mn STEEL MATERIAL AND PRODUCTION METHOD THEREFOR - Google Patents

HIGH Mn STEEL MATERIAL AND PRODUCTION METHOD THEREFOR Download PDF

Info

Publication number
JP2016084529A
JP2016084529A JP2015197686A JP2015197686A JP2016084529A JP 2016084529 A JP2016084529 A JP 2016084529A JP 2015197686 A JP2015197686 A JP 2015197686A JP 2015197686 A JP2015197686 A JP 2015197686A JP 2016084529 A JP2016084529 A JP 2016084529A
Authority
JP
Japan
Prior art keywords
less
steel
content
steel material
toughness
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2015197686A
Other languages
Japanese (ja)
Other versions
JP6645103B2 (en
Inventor
崇之 加賀谷
Takayuki Kagaya
崇之 加賀谷
学 星野
Manabu Hoshino
学 星野
政昭 藤岡
Masaaki Fujioka
政昭 藤岡
仁志 古谷
Hitoshi Furuya
仁志 古谷
哲也 滑川
Tetsuya Namekawa
哲也 滑川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Nippon Steel and Sumitomo Metal Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel and Sumitomo Metal Corp filed Critical Nippon Steel and Sumitomo Metal Corp
Publication of JP2016084529A publication Critical patent/JP2016084529A/en
Application granted granted Critical
Publication of JP6645103B2 publication Critical patent/JP6645103B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Heat Treatment Of Steel (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a high Mn steel material excellent in yield strength at room temperature and toughness at ultralow temperature without being subjected to heat treatment after hot-rolled, and to provided a production method for the high Mn steel material.SOLUTION: There is provided the high Mn steel material which has a chemical composition containing by mass%, C:0.25 to 0.75%, Si:0.05 to 1.0%, Mn:over 20% and 35% or less, Ni:0.1% or more and less than 7.0%, Cr:0.1% or more and less than 8.0%, Al:0.005 to 0.10%, N:0.005% or more and less than 0.05% and having a parameter X (%) (=C+10×Si+2×Ni,C, Si and Ni are contents of each element) of 6.0 to 15.0% and in which carbide coverage factor in a grain boundary contained in the steel material is 30% or less. One or more kind of Cu, Mo, Nb, V, Ti, B, Ca, Mg, REM may be contained. There is provided the production method in which the high Mn steel material is cooled at a cooling rate of 5°C/s or more in a temperature range from 750°C to 600°C after hot rolling the steel material and then naturally cooling the steel material as it is.SELECTED DRAWING: None

Description

本発明は、液化ガスを保存するための材料に好適な、高Mn鋼材とその製造方法に関する。   The present invention relates to a high Mn steel material suitable for a material for storing a liquefied gas and a method for producing the same.

液化天然ガス(沸点:−164℃)など極低温環境下で使用可能な材料としては、従来から5000番系(Al−Mg系)等のアルミニウム合金、SUS304等のNi−Cr系オーステナイト合金や9%Ni鋼板、が使用されてきた。しかしながら、降伏応力が低合金高張力鋼ほど高くないため板厚を厚くせざるを得ないことに加えて、溶接施工性も高くないことや、Niを多量に含有し、材料コストが高いことが問題となっており、安価でかつ強度、溶接性および溶接部靭性に優れた材料が要望されている。タンクの大型化も進み圧力容器材料へ求められる強度は上昇している。   Examples of materials that can be used in a cryogenic environment such as liquefied natural gas (boiling point: -164 ° C.) include aluminum alloys such as 5000 series (Al—Mg series), Ni—Cr austenite alloys such as SUS304, and 9 % Ni steel sheet has been used. However, the yield stress is not as high as that of a low-alloy high-strength steel, and in addition to having to increase the plate thickness, the weldability is not high, and the material cost is high due to containing a large amount of Ni. There has been a demand for materials that are problematic and inexpensive and that are excellent in strength, weldability, and weld toughness. The strength required for pressure vessel materials is increasing as the size of the tank increases.

そのため、高価なNiやAlを多用しない低温用材料として、Ni系オーステナイト合金に含まれるNiをMnに置き換えた高Mn系オーステナイト合金が提案され、核融合炉、超伝導発電機やリニアモーターカーで使用される非磁性材料として検討されている。   Therefore, a high-Mn austenitic alloy in which Ni contained in a Ni-based austenitic alloy is replaced with Mn has been proposed as a low-temperature material that does not use expensive Ni and Al. In fusion reactors, superconducting generators and linear motor cars, It has been studied as a nonmagnetic material to be used.

例えば、特許文献1には、Cを0.5%未満、Mnを16〜40%含有することによって、優れた低温靭性と磁性特性を備えた高Mn鋼が得られることが示されている。特許文献2では、C含有量が0.10%以上、N含有量が0.05%以上でかつC+2Nが1.0%以下となる範囲でMnを26〜30%含有した高Mn鋼が開示されている。   For example, Patent Document 1 shows that a high Mn steel having excellent low temperature toughness and magnetic properties can be obtained by containing less than 0.5% C and 16 to 40% Mn. Patent Document 2 discloses a high-Mn steel containing 26-30% Mn in a range where the C content is 0.10% or more, the N content is 0.05% or more, and C + 2N is 1.0% or less. Has been.

さらに、特許文献3では、10〜30%のMnと10〜25%のCrを含み、X=Ni−30C+0.5Moで表されるパラメータが5.50以上を満足し、かつ0.0005〜0.0050%のCaと0.15〜0.24%のNを含有することによって、4Kという極低温においても高強度と高靭性を有する高Mn鋼が開示されている。特許文献4では、0.01〜0.25%のC、15%超〜40%のMnを含有し、X=30×P+50×(S+N)+300×Oで表わされるパラメータが3.0%以下を満足することによって極低温においても高強度と高靭性を有する高Mn鋼が開示されている。   Furthermore, in Patent Document 3, the parameter represented by X = Ni-30C + 0.5Mo containing 10-30% Mn and 10-25% Cr satisfies 5.50 or more, and 0.0005-0. A high Mn steel having high strength and high toughness even at an extremely low temperature of 4K is disclosed by containing .0050% Ca and 0.15 to 0.24% N. Patent Document 4 contains 0.01 to 0.25% C, more than 15% to 40% Mn, and a parameter represented by X = 30 × P + 50 × (S + N) + 300 × O is 3.0% or less. High Mn steel having high strength and high toughness even at extremely low temperatures by satisfying

特公昭59−11661号公報Japanese Examined Patent Publication No.59-11661 特公平5−18887号公報Japanese Patent Publication No. 5-18887 特開平9−41087号公報Japanese Patent Laid-Open No. 9-41087 特許第4529872号公報Japanese Patent No. 4529872

特許文献2及び3に係る高Mn鋼材は、低温で鋼の強度を高めるNを多量に含有させているが、室温での強度は考慮されていない。特許文献1に係る高Mn鋼材は、熱間圧延後に溶体化処理などの再加熱処理を施して製造されるものである。特許文献4に係る高Mn鋼材は、靱性を確保するために、不純物の含有量の制限を必要としている。これらは、低コストで厚肉材に高強度化と優れた母材靭性を具備させることができるものではなく、大型の低温タンク用鋼材として必要な要件を満たすものではなかった。また、タンクの大型化に伴う使用材料の高強度化にも対応できていない。加えて高Mn鋼の靭性に影響を与える炭化物の生成形態に関しても言及されていない。   The high Mn steel materials according to Patent Documents 2 and 3 contain a large amount of N that increases the strength of the steel at low temperatures, but the strength at room temperature is not considered. The high Mn steel material according to Patent Document 1 is manufactured by performing reheating treatment such as solution treatment after hot rolling. The high Mn steel material according to Patent Document 4 needs to limit the content of impurities in order to ensure toughness. These were not able to provide a thick material with high strength and excellent base material toughness at low cost, and did not satisfy the requirements for a large steel material for low temperature tanks. In addition, it cannot cope with the increase in strength of the materials used with the increase in size of the tank. In addition, no mention is made of the form of carbides that affect the toughness of high-Mn steel.

本発明は、このような従来の問題点を解決するものであって、熱間圧延後に溶体化処理などの再加熱処理を施すことなく、加速冷却するだけで、室温(25℃)において400MPa以上の降伏応力と、液化天然ガス(沸点:−164℃)や液体窒素(沸点:−196℃)などの使用温度域でも十分な母材靭性を厚肉材においても確保できること、具体的には、−196℃でのJIS4号シャルピー吸収エネルギー値が、母材で50J以上を最大板厚50mmにおいて確保できる高Mn鋼材及びその製造方法を提供することを目的とする。   The present invention solves such a conventional problem, and it is 400 MPa or more at room temperature (25 ° C.) only by accelerated cooling without performing reheating treatment such as solution treatment after hot rolling. Yield stress of liquefied natural gas (boiling point: −164 ° C.) and liquid nitrogen (boiling point: −196 ° C.), etc. An object of the present invention is to provide a high Mn steel material capable of securing a JIS No. 4 Charpy absorbed energy value at −196 ° C. of 50 J or more as a base material at a maximum plate thickness of 50 mm, and a manufacturing method thereof.

本発明者らは、液化ガス貯蔵タンクなどに使用できる高Mn鋼材について検討した。   The present inventors examined high Mn steel materials that can be used in liquefied gas storage tanks and the like.

その結果、鋼材の化学組成に関しては、高Mn鋼をベースに、C、Si、P、S、Ni、Cr、Al、N、などの各合金元素量を適正範囲に規定するだけでなく、X(%)=C+10×Si+2×Nで定義されるパラメータX(ここで、C、Si及びNは鋼材中の各元素の含有量(単位:質量%)を示す。)を6%以上15%以下に規定し、鋼材中のオーステナイト結晶粒界における炭化物被覆率を適正な範囲に制御することによって、上記目的を達成することができることを見出した。   As a result, regarding the chemical composition of the steel material, based on the high Mn steel, not only the amount of each alloy element such as C, Si, P, S, Ni, Cr, Al, N, etc. is defined within an appropriate range, but also X (%) = Parameter X defined by C + 10 × Si + 2 × N (where C, Si and N indicate the content (unit: mass%) of each element in the steel) from 6% to 15% It was found that the above object can be achieved by controlling the carbide coverage at the austenite grain boundaries in the steel material to an appropriate range.

すなわち、高Mn鋼材の化学組成とオーステナイト結晶粒界における炭化物被覆率を適正な範囲に制御することによって、低温用鋼としての母材の強度と低温靭性値を熱間圧延ままで確保できることを見出した。   In other words, by controlling the chemical composition of the high Mn steel material and the carbide coverage at the austenite grain boundaries to an appropriate range, it has been found that the strength and low temperature toughness value of the base metal as a low temperature steel can be secured as hot rolled. It was.

本発明は、このような知見に基づいて完成したものである。本発明の要旨とするところは、以下のとおりである。   The present invention has been completed based on such findings. The gist of the present invention is as follows.

(1)質量%で、C:0.25〜0.75%、Si:0.05〜1.0%、Mn:20%を超え35%以下、Ni:0.1〜7.0%未満、Cr:0.1%以上8.0%未満、Al:0.005〜0.10%、N:0.005%以上0.05%未満を含有し、P:0.04%以下、S:0.02%以下に制限し、残部Feおよび不純物からなり、下記の(1)
式で定義されるパラメータX(%)が6.0〜15.0%であり、結晶粒界における炭化物被覆率が30%以下であることを特徴とする高Mn鋼材。
X(%)=C+10×Si+2×Ni・・・・・・・・・・・・・・・(1)式
ここで、C、Si及びNiは鋼材中の各元素の含有量(単位:質量%)を示す。
(1) In mass%, C: 0.25 to 0.75%, Si: 0.05 to 1.0%, Mn: more than 20% and 35% or less, Ni: less than 0.1 to 7.0% Cr: 0.1% or more and less than 8.0%, Al: 0.005 to 0.10%, N: 0.005% or more and less than 0.05%, P: 0.04% or less, S : It is limited to 0.02% or less, and consists of the balance Fe and impurities.
A high Mn steel having a parameter X (%) defined by the formula of 6.0 to 15.0% and a carbide coverage at a grain boundary of 30% or less.
X (%) = C + 10 × Si + 2 × Ni (1) Formula where C, Si and Ni are the contents of each element in the steel (unit: mass) %).

(2)Feの一部に代えて、質量%で、Cu:3.0%以下、Mo:3.0%以下、Nb:0.5%以下、V:0.5%以下、Ti:0.5%以下、B:0.001%以下、Ca:0.01%以下、Mg:0.01%以下及びREM:0.05%以下から選択される1種又は2種以上を含有することを特徴とする、上記(1)に記載の高Mn鋼材。 (2) Instead of a part of Fe, in mass%, Cu: 3.0% or less, Mo: 3.0% or less, Nb: 0.5% or less, V: 0.5% or less, Ti: 0 0.5% or less, B: 0.001% or less, Ca: 0.01% or less, Mg: 0.01% or less and REM: 0.05% or less The high Mn steel material according to (1) above, characterized by

(3)上記(1)又は(2)に記載の化学組成を有する鋼片又は鋼塊を、950〜1200℃に加熱後、800〜1100℃の温度範囲における累積圧下率が30%以上であってかつ圧延仕上温度を750〜950℃とする熱間圧延を施した後、750℃から600℃までの温度範囲を冷却速度5℃/s以上で冷却し、そのまま放冷することを特徴とする高Mn鋼材の製造方法。 (3) After heating the steel slab or ingot having the chemical composition described in (1) or (2) above to 950 to 1200 ° C, the cumulative rolling reduction in the temperature range of 800 to 1100 ° C was 30% or more. In addition, after performing hot rolling with a rolling finishing temperature of 750 to 950 ° C., the temperature range from 750 ° C. to 600 ° C. is cooled at a cooling rate of 5 ° C./s or more, and left to cool as it is. Manufacturing method of high Mn steel.

本発明によれば、低温靭性と溶接性だけでなく熱膨張率、透磁率や熱伝導度などの特性にも優れた高Mn鋼材を熱間圧延ままで提供することができる。また、この高Mn鋼材は、LNGタンク内槽材等に用いられるアルミニウム合金、Ni系オーステナイトステンレス鋼、9%Ni鋼材の代替として使用することができるものであって、Ni資源の節約に貢献し、タンク建造コスト低減を可能にするものである。熱間圧延後に溶体化処理などの熱処理を必要とすることなく、室温における降伏応力が400MPa以上、引張強度が800MPa以上であるとともに液体窒素温度(−196℃)における母材シャルピー吸収エネルギーが50J以上である、高Mn鋼材およびその製造方法を提供することができるなど、本発明は産業上の貢献が極めて顕著である。   ADVANTAGE OF THE INVENTION According to this invention, the high Mn steel materials excellent not only in low temperature toughness and weldability but also in characteristics such as thermal expansion coefficient, magnetic permeability and thermal conductivity can be provided as hot rolled. In addition, this high Mn steel material can be used as an alternative to aluminum alloys, Ni-based austenitic stainless steels, and 9% Ni steel materials used for tank materials in LNG tanks, and contributes to saving of Ni resources. The tank construction cost can be reduced. Without requiring heat treatment such as solution treatment after hot rolling, the yield stress at room temperature is 400 MPa or more, the tensile strength is 800 MPa or more, and the base material Charpy absorbed energy at liquid nitrogen temperature (−196 ° C.) is 50 J or more. The present invention has a remarkable industrial contribution, such as being able to provide a high Mn steel material and a method for producing the same.

以下に、本発明に係る高Mn鋼材及びその製造方法について説明する。以下、各化学成分の含有量の「%」表示は、「質量%」を意味する。   Below, the high Mn steel material and its manufacturing method which concern on this invention are demonstrated. Hereinafter, “%” display of the content of each chemical component means “mass%”.

(A)化学組成について
[C:0.25〜0.75%]
Cは、オーステナイトの安定化を通じて、液化ガスタンクなど低温用鋼材に要求される強度を確保するのに有効な元素である。特に、室温における強度を確保するために、C含有量を0.25%以上とする。好ましくはC含有量を0.35%以上とする。一方、Cの含有量が0.75%を超えるとCr炭化物がオーステナイト粒界へ大量に析出して、母材の靱性や耐食性、さらには溶接熱影響部の低温靭性が劣化するおそれがある。したがって、C含有量は0.75%以下とする。好ましくは0.65%以下、より好ましくは0.50%以下とする。
(A) Chemical composition [C: 0.25 to 0.75%]
C is an element effective for securing the strength required for low-temperature steel such as a liquefied gas tank through stabilization of austenite. In particular, in order to ensure the strength at room temperature, the C content is set to 0.25% or more. Preferably, the C content is 0.35% or more. On the other hand, if the C content exceeds 0.75%, Cr carbide precipitates in a large amount on the austenite grain boundaries, which may deteriorate the toughness and corrosion resistance of the base material and the low temperature toughness of the weld heat affected zone. Therefore, the C content is 0.75% or less. Preferably it is 0.65% or less, More preferably, it is 0.50% or less.

[Si:0.05〜1.0%]
Siは、脱酸のために有効な元素であり、また強度上昇に有効な元素である。ただし、0.05%未満では脱酸不足になる可能性があり、Si含有量を0.05%以上とする。好ましくはSi含有量を0.4%以上とする。また、Si含有量が1.0%を超えると延性および靱性の劣化をもたらすおそれがあるため、1.0%以下とする。好ましくは、Si含有量を0.8%以下とする。
[Si: 0.05-1.0%]
Si is an effective element for deoxidation and is an effective element for increasing the strength. However, if it is less than 0.05%, deoxidation may be insufficient, and the Si content is set to 0.05% or more. Preferably, the Si content is 0.4% or more. Further, if the Si content exceeds 1.0%, the ductility and toughness may be deteriorated. Preferably, the Si content is 0.8% or less.

[Mn:20%を超え35%以下]
Mnは、オーステナイトの安定化を通じて、降伏応力の増加と低温靱性の向上に有効な元素である。ただし、20%以下の含有量では降伏応力や低温靭性の低下が生ずるだけでなく、オーステナイトが不安定化し、α’マルテンサイトなどが析出して靭性が劣化するため、Mn含有量を20%超とする。好ましくはMn含有量を23%以上とする。一方、Mn含有量が35%を超えると加工性や溶接性が劣化するため、35%以下とする。好ましくはMn含有量を30%以下、より好ましくは27%以下とする。
[Mn: more than 20% and 35% or less]
Mn is an element effective for increasing yield stress and improving low temperature toughness through the stabilization of austenite. However, if the content is 20% or less, not only the yield stress and the low temperature toughness are lowered, but also austenite is destabilized and α 'martensite is precipitated to deteriorate the toughness. Therefore, the Mn content exceeds 20%. And Preferably, the Mn content is 23% or more. On the other hand, if the Mn content exceeds 35%, workability and weldability deteriorate, so the content is made 35% or less. Preferably, the Mn content is 30% or less, more preferably 27% or less.

[Ni:0.1%以上7.0%未満]
Niはオーステナイトの安定化と靱性の向上に極めて有効な元素であり、Ni含有量を0.1%以上とする。ただし、7.0%以上のNiを含有させてもその効果は飽和するとともに、α’マルテンサイトが生成しやすくなって、溶接部靭性や透磁率が劣化する恐れがあるため、Ni含有量を7.0%未満とする。好ましくはNi含有量を3.0%未満、より好ましくは2.0%以下とする。
[Ni: 0.1% or more and less than 7.0%]
Ni is an extremely effective element for stabilizing austenite and improving toughness, and the Ni content is 0.1% or more. However, even if 7.0% or more of Ni is contained, the effect is saturated and α ′ martensite is easily generated, and there is a possibility that weld toughness and magnetic permeability are deteriorated. Less than 7.0%. The Ni content is preferably less than 3.0%, more preferably 2.0% or less.

[Cr:0.1%以上8.0%未満]
Crは、オーステナイトを安定化し、耐力を向上させる元素である。本発明では、他の合金元素との関係で、Cr含有量が0.1%以上でこの効果が得られる。好ましくはCr含有量を1.0%以上、より好ましくは3.0%以上、更に好ましくは4.0%以上とする。ただし、Cr含有量が8.0%以上になるとCr炭化物が粒界上に析出しやすくなり、靱性を低下させるとともに、溶体化処理等の熱処理が必要になる。したがって、Cr含有量は8.0%未満とする。好ましくは、Cr含有量を6.0%以下とする。
[Cr: 0.1% or more and less than 8.0%]
Cr is an element that stabilizes austenite and improves yield strength. In the present invention, this effect is obtained when the Cr content is 0.1% or more in relation to other alloy elements. Preferably, the Cr content is 1.0% or more, more preferably 3.0% or more, and still more preferably 4.0% or more. However, when the Cr content is 8.0% or more, Cr carbide tends to precipitate on the grain boundaries, and the toughness is reduced and heat treatment such as solution treatment is required. Therefore, the Cr content is less than 8.0%. Preferably, the Cr content is 6.0% or less.

[Al:0.005〜0.10%]
Alは、鋼の脱酸と結晶粒の微細化による鋼の特性向上の作用を持つ元素である。ただし、0.005%未満では十分な効果が得られないため、Al含有量を0.005%以上とする。好ましくはAl含有量を0.01%以上とする。一方、Al含有量が0.10%を超えると靱性が劣化するため、上限を0.10%以下とする。好ましくは、Al含有量を0.05%以下とする。
[Al: 0.005 to 0.10%]
Al is an element having an effect of improving the properties of steel by deoxidation of steel and refinement of crystal grains. However, if less than 0.005%, a sufficient effect cannot be obtained, so the Al content is made 0.005% or more. Preferably, the Al content is 0.01% or more. On the other hand, if the Al content exceeds 0.10%, the toughness deteriorates, so the upper limit is made 0.10% or less. Preferably, the Al content is 0.05% or less.

[P:0.04%以下、S:0.02%以下]
P及びSは、ともに熱間加工性を損なう不純物元素である。オーステナイト鋼においては、P及びSの両元素の含有量を同時に低減することにより、単独に低減する場合よりも大きな母材および溶接熱影響部の靭性値の向上効果が得られる。そこで、Pの含有量は0.04%以下、そして、Sの含有量は0.02%以下に制限する。好ましくは、Pの含有量は0.02%以下、Sの含有量は0.003%以下とする。P及びSの含有量は少ないほど好ましいが、製造コストの観点から、Pの含有量は0.003%以上、Sの含有量は0.001%以上であってもよい。
[P: 0.04% or less, S: 0.02% or less]
P and S are both impurity elements that impair hot workability. In austenitic steel, by reducing the contents of both elements P and S at the same time, a greater effect of improving the toughness value of the base metal and the weld heat-affected zone can be obtained than when it is reduced solely. Therefore, the P content is limited to 0.04% or less, and the S content is limited to 0.02% or less. Preferably, the P content is 0.02% or less, and the S content is 0.003% or less. The smaller the P and S contents, the better. However, from the viewpoint of manufacturing cost, the P content may be 0.003% or more, and the S content may be 0.001% or more.

[N:0.005%以上0.05%未満]
Nは、オーステナイトの安定化と耐力向上に有効な元素である。オーステナイトの安定化元素としてNはCと同等の効果を有し、粒界析出による靱性劣化などの悪影響を及ぼさず、極低温での強度を上昇させる効果がCよりも大きい。また、Nは窒化物形成元素と共存することによって、鋼中に微細な窒化物を分散させるという効果を有する。これらの効果を発現させるために、Nの含有量を0.005%以上とする。一方、N含有量が0.05%以上になると靱性の劣化が著しくなるため、0.05%未満とする。好ましくは、N含有量を0.03%以下とする。
[N: 0.005% or more and less than 0.05%]
N is an element effective for stabilizing austenite and improving proof stress. N as an austenite stabilizing element has an effect equivalent to that of C, has no adverse effects such as deterioration of toughness due to grain boundary precipitation, and has an effect of increasing the strength at extremely low temperatures. Further, N coexists with the nitride-forming element, thereby having the effect of dispersing fine nitrides in the steel. In order to express these effects, the N content is set to 0.005% or more. On the other hand, if the N content is 0.05% or more, the toughness deteriorates remarkably, so the content is made less than 0.05%. Preferably, the N content is 0.03% or less.

[パラメータX:6.0〜15.0%]
前述の(1)式、すなわち、X(%)=C+10×Si+2×Niで定義されるパラメータXは、母材強度、炭化物生成抑制、母材靭性を改善する観点から、特に−196℃におけるシャルピー特性を改善する観点から、その制御が必要なパラメータである。ここで、パラメータXのC、Si及びNiは鋼材中の各元素の含有量(単位:質量%)を示す。本発明における高Mn鋼材は、主にオーステナイト相からなるため、いわゆる劈開破壊を生じにくい材質ではあるが、オーステナイトの結晶粒界に析出した炭化物が破壊の起点となりシャルピー特性を低下させる場合がある。
[Parameter X: 6.0 to 15.0%]
The parameter X defined by the above-mentioned formula (1), that is, X (%) = C + 10 × Si + 2 × Ni, is a Charpy at −196 ° C. in particular from the viewpoint of improving the base material strength, carbide formation suppression and base material toughness. It is a parameter that needs to be controlled from the viewpoint of improving characteristics. Here, C, Si, and Ni of the parameter X indicate the content (unit: mass%) of each element in the steel material. The high-Mn steel material in the present invention is mainly made of an austenite phase, and thus is a material that is less likely to cause so-called cleavage fracture. However, carbides precipitated at the austenite crystal grain boundaries may be the starting point of fracture and may reduce Charpy characteristics.

本発明者等は、この点について詳細に検討を行い、上記パラメータXの下限は強度との相関があり、上限は靱性、特に粒界の炭化物を起点とする破壊との相関があることを見出した。そして、上記パラメータXを適正な範囲内に制御することにより、母材強度確保と炭化物生成による靭性低下の抑制との両立に成功した。パラメータXは、強度を確保するために6.0%以上とし、好ましくは7.0%以上とする。一方、パラメータXが15.0%を超えると粒界炭化物によりシャルピー特性が得られないため、15.0%以下とし、好ましくは11.0%以下でとする。   The present inventors have examined this point in detail, and found that the lower limit of the parameter X has a correlation with strength, and the upper limit has a correlation with toughness, particularly fracture starting from carbides at grain boundaries. It was. And, by controlling the parameter X within an appropriate range, the present invention succeeded in both ensuring the strength of the base material and suppressing the decrease in toughness due to carbide formation. The parameter X is 6.0% or more, preferably 7.0% or more in order to ensure strength. On the other hand, if the parameter X exceeds 15.0%, Charpy characteristics cannot be obtained due to the grain boundary carbide, so the content is made 15.0% or less, preferably 11.0% or less.

本願発明に係る高Mn鋼材は、耐力向上のため、必要に応じて、さらにCu、Mo、
Nb、V、Ti、B、Ca、Mg及びREMから選択される1種又は2種以上を含有させることができる。以下、これらの任意含有元素について説明する。
The high Mn steel material according to the present invention is further made of Cu, Mo,
One or more selected from Nb, V, Ti, B, Ca, Mg, and REM can be contained. Hereinafter, these optional elements will be described.

[Cu:3.0%以下]
Cuは、オーステナイトを強化し、耐力の上昇に有効であるので、必要に応じて含有させてもよい。ただし、含有量が3.0%を超えると加工性を劣化させるので、Cuを含有させる場合は、その含有量は3.0%以下とし、より好ましくは1.0%以下、更に好ましくは0.7%以下とする。強度を高めるには、Cu含有量を0.01%以上とすることが好ましい。
[Cu: 3.0% or less]
Cu strengthens austenite and is effective in increasing the yield strength, so it may be contained as necessary. However, if the content exceeds 3.0%, the workability deteriorates. Therefore, when Cu is contained, the content is 3.0% or less, more preferably 1.0% or less, and still more preferably 0. 0.7% or less. In order to increase the strength, the Cu content is preferably 0.01% or more.

[Mo:3.0%以下]
Moは、強度の上昇に効果があるだけでなく、Cr炭化物の粒界析出に起因する靱性劣化を防止したり、鋼の強度を高めたりするのに有効であるので、必要に応じて含有させてもよい。ただし、含有量が3.0%を超えるとその効果は飽和する。よって、Moを含有させる場合は、その含有量は3.0%以下とし、より好ましくは2.0%以下、更に好ましくは1.0%以下、より一層好ましくは0.8%以下とする。強度を高めるには、Mo含有量を0.01%以上とすることが好ましい。
[Mo: 3.0% or less]
Mo is not only effective in increasing the strength, but also effective in preventing toughness deterioration due to grain boundary precipitation of Cr carbide and increasing the strength of steel. May be. However, if the content exceeds 3.0%, the effect is saturated. Therefore, when Mo is contained, the content is 3.0% or less, more preferably 2.0% or less, still more preferably 1.0% or less, and still more preferably 0.8% or less. In order to increase the strength, the Mo content is preferably 0.01% or more.

[Nb:0.5%以下]
Nbは、C及びNと結合して炭窒化物を析出させ、その析出強化によって鋼の耐力を向上させるのに有効な元素であるので、必要に応じて含有させてもよい。ただし、含有量が0.5%を超えると靱性が悪化する。よって、Nbを含有させる場合は、その含有量は0.5%以下とし、より好ましくは0.2%以下とする。強度を高めるには、Nb含有量を0.005%とすることが好ましく、より好ましくは0.01%とする。
[Nb: 0.5% or less]
Nb is an element effective for bonding carbon and N to precipitate carbonitride and improving the yield strength of the steel by its precipitation strengthening. Therefore, Nb may be included as necessary. However, if the content exceeds 0.5%, the toughness deteriorates. Therefore, when Nb is contained, its content is 0.5% or less, more preferably 0.2% or less. In order to increase the strength, the Nb content is preferably 0.005%, more preferably 0.01%.

[V:0.5%以下]
Vは、C及びNと結合して炭窒化物を析出させ、その析出強化によって鋼の耐力を向上させるのに有効な元素であるので、必要に応じて含有させてもよい。ただし、含有量が0.5%を超えると靱性が悪化する。よって、Vを含有させる場合は、その含有量は0.5%以下とし、より好ましくは0.2%以下とする。強度を高めるために、V含有量を0.01%以上とすることができる。
[V: 0.5% or less]
V is an element effective for binding carbon and nitride to precipitate carbonitride and improving the proof stress of the steel by precipitation strengthening, so it may be included as necessary. However, if the content exceeds 0.5%, the toughness deteriorates. Therefore, when V is contained, its content is 0.5% or less, more preferably 0.2% or less. In order to increase the strength, the V content can be 0.01% or more.

[Ti:0.5%以下]
Tiは、C及びNと結合して炭窒化物を析出させ、その析出強化によって鋼の耐力を向上させるのに有効な元素であるので、必要に応じて含有させてもよい。ただし、含有量が0.5%を超えると靱性が悪化する。よって、Tiを含有させる場合は、その含有量は0.5%以下とし、より好ましくは0.3%以下とする。強度を高めるために、Ti含有量を0.005%以上とすることができる。
[Ti: 0.5% or less]
Ti is an element effective for bonding carbon and N to precipitate carbonitride and improving the proof stress of the steel by precipitation strengthening. Therefore, Ti may be included as necessary. However, if the content exceeds 0.5%, the toughness deteriorates. Therefore, when Ti is contained, its content is 0.5% or less, more preferably 0.3% or less. In order to increase the strength, the Ti content can be 0.005% or more.

[B: 0.001%以下]
Bは、オーステナイト粒界に偏析することにより粒界破壊を防止し、耐力を向上させる効果を有するので、必要に応じて含有させてもよい。ただし、含有量が0.001%を超えると靱性が悪化する。よって、Bを含有させる場合は、その含有量は0.001%以下とする。粒界破壊を抑制するには、B含有量を0.0005%以上とすることが好ましい。
[B: 0.001% or less]
B has the effect of preventing grain boundary breakage by segregating at the austenite grain boundaries and improving the proof stress, so B may be contained as required. However, if the content exceeds 0.001%, the toughness deteriorates. Therefore, when it contains B, the content shall be 0.001% or less. In order to suppress intergranular fracture, the B content is preferably 0.0005% or more.

[Ca: 0.01%以下]
Caは、介在物の球状化作用をもたらし、靱性を向上させる効果を有するので、必要に応じて含有させてもよい。ただし、含有量が0.01%を超えると清浄度を悪化させ靱性が失われる場合があり、Caの含有量は0.01%以下が好ましい。より好ましくはCaの含有量を0.003%以下とする。靱性を向上させるには、Ca含有量を0.0003%以上とすることが好ましい。
[Ca: 0.01% or less]
Ca brings about the effect of spheroidizing inclusions and has the effect of improving toughness. Therefore, Ca may be contained as necessary. However, if the content exceeds 0.01%, cleanliness may be deteriorated and toughness may be lost, and the Ca content is preferably 0.01% or less. More preferably, the Ca content is 0.003% or less. In order to improve toughness, the Ca content is preferably 0.0003% or more.

[Mg: 0.01%以下]
Mgは、Caと同様に、介在物の球状化作用をもたらし、靱性を向上させる効果を有するので、必要に応じて含有させてもよい。ただし、含有量が0.01%を超えると清浄度を悪化させ、靱性が失われる場合があり、Mgの含有量は0.01%以下が好ましい。より好ましくはMgの含有量を0.003%以下とする。靱性を向上させるには、Mg含有量を0.0002%以上とすることが好ましい。
[Mg: 0.01% or less]
Mg, like Ca, brings about the effect of spheroidization of inclusions and has the effect of improving toughness, so it may be contained as necessary. However, if the content exceeds 0.01%, the cleanliness may be deteriorated and the toughness may be lost, and the Mg content is preferably 0.01% or less. More preferably, the Mg content is 0.003% or less. In order to improve toughness, the Mg content is preferably 0.0002% or more.

[希土類元素(REM): 0.05%以下]
希土類元素(REM)は、Caと同様に、介在物の球状化作用をもたらし、靱性を向上させる効果を有するので、必要に応じて含有させてもよい。ただし、含有量が0.05%を超えると清浄度を悪化させ、靱性が失われる場合があり、REMの含有量は0.05%以下が好ましい。より好ましくはREMの含有量を0.003%以下とする。靱性を向上させるには、希土類元素(REM)の含有量を0.0002%以上とすることが好ましく、より好ましくは0.0003%とする。REMを含有させる場合は、LaやCeを主成分とするミッシュメタルを用いてもよい。なお、本発明でいう希土類元素とは、Sc、Y及びランタノイドの合計17元素の総称であり、希土類元素の含有量はこれらの元素の合計含有量を指す。
[Rare earth element (REM): 0.05% or less]
The rare earth element (REM), like Ca, brings about the effect of spheroidization of inclusions and has the effect of improving toughness, and may be contained as necessary. However, if the content exceeds 0.05%, the cleanliness may be deteriorated and the toughness may be lost. The content of REM is preferably 0.05% or less. More preferably, the REM content is 0.003% or less. In order to improve toughness, the rare earth element (REM) content is preferably 0.0002% or more, and more preferably 0.0003%. When REM is contained, a misch metal containing La or Ce as a main component may be used. In addition, the rare earth element as used in the field of this invention is a general term of the total 17 elements of Sc, Y, and a lanthanoid, and the content of rare earth elements refers to the total content of these elements.

[高Mn鋼材中に含まれるオーステナイト結晶粒界の炭化物被覆率:30%以下]
本発明の高Mn鋼材の金属組織はオーステナイトである。本発明では、熱間圧延後に溶体化処理などの熱処理を施さないため、オーステナイトの結晶粒界(オーステナイト粒界)に炭化物が析出している。高Mn系の鋼材で低温用材料としての十分低温靭性を付与させるためには、上記の被覆率を30%以下に制御することが重要である。高Mn鋼では主にオーステナイト粒界に微細な炭化物が生成するが、これらは硬質相であり破壊の起点となり得ることから、炭化物被覆率を制御する必要がある。炭化物被覆率の下限は低いほど好ましいが、1%以上であってもよく、5%以上であってもよい。鋼材中のオーステナイト粒界炭化物被覆率は組織観察により求めることができる。
[Carbide coverage of austenite grain boundaries contained in high Mn steel: 30% or less]
The metal structure of the high Mn steel material of the present invention is austenite. In the present invention, since heat treatment such as solution treatment is not performed after hot rolling, carbides are precipitated at austenite crystal grain boundaries (austenite grain boundaries). In order to impart sufficient low-temperature toughness as a low-temperature material with a high Mn-based steel material, it is important to control the above-described coverage to 30% or less. In high-Mn steel, fine carbides are generated mainly at the austenite grain boundaries, but these are hard phases and can be the starting point of fracture, so it is necessary to control the carbide coverage. The lower limit of the carbide coverage is preferable, but it may be 1% or more, or 5% or more. The austenite grain boundary carbide coverage in the steel can be determined by structural observation.

このように、本発明に係る高Mn鋼材は、オーステナイト結晶粒界の炭化物を制御することによって、圧延後の熱処理を施すことなく低温域で使用可能な鋼材が得られる。   As described above, the high Mn steel material according to the present invention can be used in a low temperature range without performing heat treatment after rolling by controlling carbides at the austenite grain boundaries.

(B)製造条件について
一般に、高Mn鋼は炭素鋼や低合金鋼に比べて熱間加工性が劣るため、適正な条件で圧延を行う必要がある。適正な条件から外れると、鋼片若しくは鋼塊又は鋼板の表面に割れが生じるので、歩留の低下を招く。したがって、鋼片又は鋼塊の加熱条件及び圧延条件の厳密な管理が重要である。
(B) Production conditions Generally, high-Mn steel is inferior in hot workability to carbon steel and low alloy steel, and therefore, it is necessary to perform rolling under appropriate conditions. If it deviates from an appropriate condition, a crack occurs on the surface of a steel piece, a steel ingot, or a steel plate, resulting in a decrease in yield. Therefore, strict management of the heating condition and rolling condition of the steel slab or the steel ingot is important.

[加熱温度:950〜1200℃]
まず、鋼片又は鋼塊の加熱温度は、950℃未満では、圧延時の変形抵抗が大きく、圧延機に過大な負荷がかかるため、950℃以上とし、好ましくは1000℃以上とする。一方、1200℃を超えて高温に加熱すると、表面の酸化による歩留まりの低下が懸念されるとともに、オーステナイト粒が粗大化してしまい、その後に熱間圧延しても容易に細粒化できなくなるため、1200℃以下とする。
[Heating temperature: 950-1200 ° C]
First, when the heating temperature of the steel slab or the steel ingot is less than 950 ° C., the deformation resistance during rolling is large, and an excessive load is applied to the rolling mill. On the other hand, when heated to a high temperature exceeding 1200 ° C., there is a concern about a decrease in yield due to oxidation of the surface, and the austenite grains become coarse, so that even after hot rolling, they cannot be easily refined, It shall be 1200 degrees C or less.

[累積圧下率:800〜1100℃の温度範囲で30%以上]
鋼片又は鋼塊を加熱した後、800〜1100℃の温度範囲における累積圧下率が30%以上の熱間圧延を施す必要がある。これは、鋼片又は鋼塊の鋳造組織を破壊するとともに、鋼材中のオーステナイト粒を細粒化かつ扁平化するためである。800〜1100℃の温度範囲における累積圧下率が30%以上の熱間圧延の効果を更に高め、微細なオーステナイト結晶粒を得るためには、熱間圧延の圧延仕上温度が重要である。累積圧下率は、1100℃での板厚と800℃での板厚との差を、1100℃での板厚で除して求め、百分率で表す。800℃超で熱間圧延を終了する場合は、800℃での板厚を圧延後の板厚として計算する。
[Cumulative rolling reduction: 30% or more in a temperature range of 800 to 1100 ° C.]
After heating the steel slab or the steel ingot, it is necessary to perform hot rolling with a cumulative rolling reduction of 30% or more in a temperature range of 800 to 1100 ° C. This is to destroy the cast structure of the steel slab or the steel ingot, and to make the austenite grains in the steel material finer and flattened. In order to further enhance the effect of hot rolling with a cumulative rolling reduction of 30% or more in a temperature range of 800 to 1100 ° C. and obtain fine austenite crystal grains, the rolling finishing temperature of hot rolling is important. The cumulative rolling reduction is obtained by dividing the difference between the plate thickness at 1100 ° C. and the plate thickness at 800 ° C. by the plate thickness at 1100 ° C., and is expressed as a percentage. When hot rolling is finished at over 800 ° C., the plate thickness at 800 ° C. is calculated as the plate thickness after rolling.

[圧延仕上温度:750〜950℃]
熱間圧延の圧延仕上温度は750〜950℃とする必要がある。圧延仕上げ温度が950℃を超えると、圧延後のオーステナイト結晶粒成長が大きくなりすぎるため、所望の微細組織が得られない。一方、圧延仕上温度が750℃未満では、圧延時の変形抵抗が大きく、圧延機に過大な負荷がかかる。さらに、圧延集合組織が発達し、鋼板の異方性が大きくなるので好ましくない。
[Rolling finishing temperature: 750-950 ° C]
The rolling finishing temperature of hot rolling needs to be 750 to 950 ° C. When the rolling finishing temperature exceeds 950 ° C., the austenite crystal grain growth after rolling becomes too large, and thus a desired microstructure cannot be obtained. On the other hand, when the rolling finishing temperature is less than 750 ° C., the deformation resistance during rolling is large, and an excessive load is applied to the rolling mill. Furthermore, the rolling texture develops and the anisotropy of the steel sheet increases, which is not preferable.

[冷却速度:750〜600℃を5℃/s以上、以後放冷]
この後、析出物の生成を抑制し、低温靭性を高めるために、750℃から600℃までの温度範囲の冷却速度を5℃/s以上とする加速冷却を行う。5℃/s未満の冷却速度では、加速冷却の効果が十分ではなく、特に、オーステナイト結晶粒界の炭化物被覆率が大きくなる。この加速冷却は、圧延組織が変化してしまうと加速冷却の効果が得られないので、750℃以上で加速冷却を開始する必要がある。また、この加速冷却の範囲の下限を600℃とするのは、少なくとも600℃まで冷却すれば所定の加速冷却の効果は得られるからである。加速冷却の停止後はそのまま放冷し、溶体化処理などの再加熱処理を施さないが、600℃以下の温度まで加速冷却を継続しても差し支えない。これにより強度と破壊抵抗力がともに優れた鋼板が得られる。この鋼板は、LNGタンク内槽材に適した性質を有している。
[Cooling rate: 750 to 600 ° C. at 5 ° C./s or higher, then allowed to cool]
Then, in order to suppress the production | generation of a precipitate and to improve low temperature toughness, the accelerated cooling which makes the cooling rate of the temperature range from 750 degreeC to 600 degreeC 5 degrees C / s or more is performed. When the cooling rate is less than 5 ° C./s, the effect of accelerated cooling is not sufficient, and in particular, the carbide coverage of the austenite grain boundaries is increased. In this accelerated cooling, since the effect of accelerated cooling cannot be obtained if the rolling structure is changed, it is necessary to start accelerated cooling at 750 ° C. or higher. The reason why the lower limit of the accelerated cooling range is 600 ° C. is that a predetermined accelerated cooling effect can be obtained by cooling to at least 600 ° C. After accelerating cooling is stopped, it is allowed to cool as it is and reheating treatment such as solution treatment is not performed, but accelerated cooling may be continued to a temperature of 600 ° C. or lower. As a result, a steel sheet excellent in both strength and fracture resistance can be obtained. This steel sheet has properties suitable for the tank material in the LNG tank.

以下、実施例により、本発明を更に詳しく説明する。   Hereinafter, the present invention will be described in more detail by way of examples.

表1に示す化学組成とパラメータXを有する鋼種1〜38の鋼片を用い、表2に示す製造条件(加熱温度、800〜1100℃の温度範囲における累積圧下率、圧延仕上温度、750℃から600℃までの冷却速度を種々に制御した。)にて板厚10〜50mmの高Mn鋼材を製造した。そして、光学顕微鏡で金属組織を観察して鋼材中に含まれるオーステナイト粒界の炭化物被覆率を測定する(測定値を表2に示す)とともに、母材特性として、引張特性(降伏強度、引張強度)、シャルピー衝撃特性を測定した。得られた測定値を表2に示す。引張特性は、JIS Z 2241に準拠して、室温で引張試験を行い、評価した。シャルピー衝撃特性は、JIS Z 2242に準拠して、−196℃でシャルピー衝撃試験を行い、評価した。   Using steel slabs of steel types 1 to 38 having the chemical composition and parameter X shown in Table 1, production conditions shown in Table 2 (heating temperature, cumulative rolling reduction in the temperature range of 800 to 1100 ° C, rolling finish temperature, from 750 ° C A high Mn steel material having a thickness of 10 to 50 mm was produced by variously controlling the cooling rate to 600 ° C.). Then, by observing the metal structure with an optical microscope to measure the carbide coverage of the austenite grain boundaries contained in the steel (measured values are shown in Table 2), as the base material properties, tensile properties (yield strength, tensile strength) ), Charpy impact properties were measured. The obtained measured values are shown in Table 2. The tensile properties were evaluated by conducting a tensile test at room temperature in accordance with JIS Z 2241. The Charpy impact property was evaluated by conducting a Charpy impact test at -196 ° C in accordance with JIS Z 2242.

Figure 2016084529
Figure 2016084529

Figure 2016084529
Figure 2016084529

表2から、本発明例に係る高Mn鋼材は、熱間圧延ままで、母材強度、靭性のいずれにおいても優れており、低温材料として優れていることが分かる。   From Table 2, it can be seen that the high Mn steel materials according to the examples of the present invention are hot-rolled and excellent in both base material strength and toughness, and are excellent as low-temperature materials.

これに対して、本発明で規定する条件を満足しない比較例では、強度、シャルピー特性の一方又は両方において、目的とする特性が得られないことが分かる。   On the other hand, in the comparative example that does not satisfy the conditions defined in the present invention, it can be seen that the intended characteristics cannot be obtained in one or both of the strength and the Charpy characteristics.

本発明に係る高Mn鋼材は、熱間圧延後に熱処理を施すことなく、熱間圧延ままで提供することができ、LNGタンク内槽材等に用いられるアルミニウム合金、Ni系オーステナイトステンレス鋼、9%Ni鋼材の代替として使用することができるものであって、Ni資源の節約に貢献し、タンク建造コストの低減を可能にするものである。   The high-Mn steel material according to the present invention can be provided as it is without being subjected to heat treatment after hot rolling, and can be provided as it is, such as aluminum alloy, Ni-based austenitic stainless steel, 9% It can be used as a substitute for Ni steel, contributes to saving of Ni resources, and enables the tank construction cost to be reduced.

Figure 2016084529
Figure 2016084529

Figure 2016084529
Figure 2016084529

Claims (3)

質量%で、C:0.25〜0.75%、Si:0.05〜1.0%、Mn:20%を超え35%以下、Ni:0.1%以上7.0%未満、Cr:0.1%以上8.0%未満、Al:0.005〜0.10%、N:0.005%以上0.05%未満を含有し、P:0.04%以下、S:0.02%以下に制限し、残部Feおよび不純物からなり、下記の(1)式で定義されるパラメータX(%)が6.0〜15.0%であり、結晶粒界における炭化物被覆率が30%以下であることを特徴とする高Mn鋼材。
X(%)=C+10×Si+2×Ni・・・・・・・・・・・・・・・(1)式
ここで、C、Si及びNiは鋼材中の各元素の含有量(単位:質量%)を示す。
In mass%, C: 0.25 to 0.75%, Si: 0.05 to 1.0%, Mn: more than 20% to 35% or less, Ni: 0.1% or more and less than 7.0%, Cr : 0.1% or more and less than 8.0%, Al: 0.005 to 0.10%, N: 0.005% or more and less than 0.05%, P: 0.04% or less, S: 0 0.02% or less, the balance being Fe and impurities, the parameter X (%) defined by the following formula (1) is 6.0 to 15.0%, and the carbide coverage at the grain boundary is A high Mn steel material characterized by being 30% or less.
X (%) = C + 10 × Si + 2 × Ni Equation (1) where C, Si and Ni are the contents of each element in the steel (unit: mass) %).
Feの一部に代えて、質量%で、Cu:3.0%以下、Mo:3.0%以下、Nb:0.5%以下、V:0.5%以下、Ti:0.5%以下、B:0.001%以下、Ca:0.01%以下、Mg:0.01%以下及びREM:0.05%以下から選択される1種又は2種以上を含有することを特徴とする、請求項1に記載の高Mn鋼材。   Instead of a part of Fe, by mass%, Cu: 3.0% or less, Mo: 3.0% or less, Nb: 0.5% or less, V: 0.5% or less, Ti: 0.5% In the following, B: 0.001% or less, Ca: 0.01% or less, Mg: 0.01% or less, and REM: 0.05% or less are included, The high Mn steel material according to claim 1. 請求項1又は2に記載の化学組成を有する鋼片又は鋼塊を、950〜1200℃に加熱後、800〜1100℃の温度範囲における累積圧下率が30%以上であってかつ圧延仕上温度を750〜950℃とする熱間圧延を施した後、750℃から600℃までの温度範囲を冷却速度5℃/s以上で冷却し、そのまま放冷することを特徴とする高Mn鋼材の製造方法。   After heating the steel slab or steel ingot having the chemical composition according to claim 1 or 2 to 950 to 1200 ° C, the cumulative rolling reduction in the temperature range of 800 to 1100 ° C is 30% or more and the rolling finishing temperature is A method for producing a high Mn steel material, characterized in that after hot rolling at 750 to 950 ° C., the temperature range from 750 ° C. to 600 ° C. is cooled at a cooling rate of 5 ° C./s or more and left to cool. .
JP2015197686A 2014-10-22 2015-10-05 High Mn steel material and method for producing the same Active JP6645103B2 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2014215481 2014-10-22
JP2014215481 2014-10-22

Publications (2)

Publication Number Publication Date
JP2016084529A true JP2016084529A (en) 2016-05-19
JP6645103B2 JP6645103B2 (en) 2020-02-12

Family

ID=55972630

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2015197686A Active JP6645103B2 (en) 2014-10-22 2015-10-05 High Mn steel material and method for producing the same

Country Status (1)

Country Link
JP (1) JP6645103B2 (en)

Cited By (23)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016196703A (en) * 2015-04-02 2016-11-24 新日鐵住金株式会社 HIGH Mn STEEL MATERIAL FOR CRYOGENIC USE
CN106435380A (en) * 2016-10-26 2017-02-22 昆明理工大学 Microalloyed high-aluminum high-ductility steel plate and manufacturing method thereof
WO2017213781A1 (en) * 2016-06-06 2017-12-14 Exxonmobil Research And Engineering Company High strength cryogenic high manganese steels and methods of making the same
CN107739991A (en) * 2017-09-22 2018-02-27 河钢股份有限公司 The high tough ultra-low temperature surroundings high manganese steel sheet and its production method of a kind of not cupric
WO2018104984A1 (en) * 2016-12-08 2018-06-14 Jfeスチール株式会社 HIGH Mn STEEL SHEET AND PRODUCTION METHOD THEREFOR
WO2018199145A1 (en) * 2017-04-26 2018-11-01 Jfeスチール株式会社 HIGH-Mn STEEL AND PRODUCTION METHOD THEREFOR
WO2019059095A1 (en) 2017-09-20 2019-03-28 Jfeスチール株式会社 Steel plate and method for manufacturing same
WO2019112012A1 (en) 2017-12-07 2019-06-13 Jfeスチール株式会社 High-mn steel and method for manufacturing same
WO2019168172A1 (en) * 2018-03-02 2019-09-06 Jfeスチール株式会社 HIGH Mn STEEL AND METHOD FOR PRODUCING SAME
JP2019151920A (en) * 2018-03-02 2019-09-12 Jfeスチール株式会社 HIGH Mn STEEL AND MANUFACTURING METHOD THEREFOR
JP6621572B1 (en) * 2018-08-23 2019-12-18 Jfeスチール株式会社 Solid wire for gas metal arc welding
WO2020036090A1 (en) 2018-08-15 2020-02-20 Jfeスチール株式会社 Steel sheet and method for manufacturing same
WO2020039643A1 (en) * 2018-08-23 2020-02-27 Jfeスチール株式会社 Solid wire for gas metal arc welding
WO2020044421A1 (en) 2018-08-28 2020-03-05 Jfeスチール株式会社 Steel sheet and method for producing same
JP2020509207A (en) * 2016-12-22 2020-03-26 ポスコPosco High manganese steel excellent in low temperature toughness and yield strength and method for producing the same
KR20200033901A (en) * 2017-09-01 2020-03-30 제이에프이 스틸 가부시키가이샤 High Mn steel and its manufacturing method
WO2020166538A1 (en) 2019-02-12 2020-08-20 Jfeスチール株式会社 High-mn steel and method for manufacturing same
CN111684093A (en) * 2018-02-07 2020-09-18 杰富意钢铁株式会社 High Mn steel and method for producing same
WO2020189762A1 (en) * 2019-03-19 2020-09-24 Jfeスチール株式会社 Method for producing cast slabs of high manganese steel and method for producing high manganese steel billets and high manganese steel sheets
CN112281054A (en) * 2020-09-21 2021-01-29 中国石油天然气集团有限公司 SiMnNiMoV system medium carbon alloy steel, drilling machine hoisting ring and manufacturing method thereof
CN114107844A (en) * 2021-10-12 2022-03-01 广西富川正辉机械有限公司 High-purity manganese 25 high-manganese steel
EP4019656A4 (en) * 2019-08-21 2022-06-29 JFE Steel Corporation Steel and method for manufacturing same
EP4019657A4 (en) * 2019-08-21 2022-06-29 JFE Steel Corporation Steel, and method for producing same

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5118916A (en) * 1974-08-09 1976-02-14 Nippon Steel Corp TEIONJINSEINOSUGURETA OOSUTENAITOKONO SEIZOHO
JPS56263A (en) * 1979-06-12 1981-01-06 Sumitomo Metal Ind Ltd High-manganese-content steel for low temperature
JPS5623260A (en) * 1979-08-03 1981-03-05 Sumitomo Metal Ind Ltd High manganese cast steel for low temperature use
JPH0215148A (en) * 1988-07-02 1990-01-18 Sumitomo Metal Ind Ltd High mn nonmagnetic steel having excellent corrosion resistance
JP2016196703A (en) * 2015-04-02 2016-11-24 新日鐵住金株式会社 HIGH Mn STEEL MATERIAL FOR CRYOGENIC USE
JP2017507249A (en) * 2013-12-25 2017-03-16 ポスコPosco Low temperature steel with excellent surface processing quality

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5118916A (en) * 1974-08-09 1976-02-14 Nippon Steel Corp TEIONJINSEINOSUGURETA OOSUTENAITOKONO SEIZOHO
JPS56263A (en) * 1979-06-12 1981-01-06 Sumitomo Metal Ind Ltd High-manganese-content steel for low temperature
JPS5623260A (en) * 1979-08-03 1981-03-05 Sumitomo Metal Ind Ltd High manganese cast steel for low temperature use
JPH0215148A (en) * 1988-07-02 1990-01-18 Sumitomo Metal Ind Ltd High mn nonmagnetic steel having excellent corrosion resistance
JP2017507249A (en) * 2013-12-25 2017-03-16 ポスコPosco Low temperature steel with excellent surface processing quality
JP2016196703A (en) * 2015-04-02 2016-11-24 新日鐵住金株式会社 HIGH Mn STEEL MATERIAL FOR CRYOGENIC USE

Cited By (59)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016196703A (en) * 2015-04-02 2016-11-24 新日鐵住金株式会社 HIGH Mn STEEL MATERIAL FOR CRYOGENIC USE
WO2017213781A1 (en) * 2016-06-06 2017-12-14 Exxonmobil Research And Engineering Company High strength cryogenic high manganese steels and methods of making the same
CN106435380A (en) * 2016-10-26 2017-02-22 昆明理工大学 Microalloyed high-aluminum high-ductility steel plate and manufacturing method thereof
KR20190077470A (en) 2016-12-08 2019-07-03 제이에프이 스틸 가부시키가이샤 High Mn steel sheet and manufacturing method thereof
WO2018104984A1 (en) * 2016-12-08 2018-06-14 Jfeスチール株式会社 HIGH Mn STEEL SHEET AND PRODUCTION METHOD THEREFOR
WO2018105510A1 (en) 2016-12-08 2018-06-14 Jfeスチール株式会社 High mn steel sheet and method for producing same
EP3553195B1 (en) 2016-12-08 2021-05-19 JFE Steel Corporation High mn steel sheet and method for producing same
KR20210072140A (en) 2016-12-08 2021-06-16 제이에프이 스틸 가부시키가이샤 High mn steel sheet and method for producing same
EP3553195A4 (en) * 2016-12-08 2019-10-16 JFE Steel Corporation High mn steel sheet and method for producing same
JP2020509207A (en) * 2016-12-22 2020-03-26 ポスコPosco High manganese steel excellent in low temperature toughness and yield strength and method for producing the same
US11505853B2 (en) 2016-12-22 2022-11-22 Posco High manganese steel having superior low-temperature toughness and yield strength and manufacturing method thereof
WO2018199145A1 (en) * 2017-04-26 2018-11-01 Jfeスチール株式会社 HIGH-Mn STEEL AND PRODUCTION METHOD THEREFOR
JP6460292B1 (en) * 2017-04-26 2019-01-30 Jfeスチール株式会社 High Mn steel and manufacturing method thereof
EP3617337A4 (en) * 2017-04-26 2020-03-25 JFE Steel Corporation HIGH-Mn STEEL AND PRODUCTION METHOD THEREFOR
TWI641706B (en) * 2017-04-26 2018-11-21 日商杰富意鋼鐵股份有限公司 High manganese steel and manufacturing method thereof
KR20190134704A (en) * 2017-04-26 2019-12-04 제이에프이 스틸 가부시키가이샤 High Mn steel and its manufacturing method
CN110573642A (en) * 2017-04-26 2019-12-13 杰富意钢铁株式会社 High Mn steel and method for producing same
KR102331032B1 (en) * 2017-04-26 2021-11-24 제이에프이 스틸 가부시키가이샤 High Mn steel and manufacturing method thereof
KR102355570B1 (en) 2017-09-01 2022-01-25 제이에프이 스틸 가부시키가이샤 High Mn steel and its manufacturing method
KR20200033901A (en) * 2017-09-01 2020-03-30 제이에프이 스틸 가부시키가이샤 High Mn steel and its manufacturing method
EP3677700A4 (en) * 2017-09-01 2020-07-08 JFE Steel Corporation High-mn steel and production method therefor
KR102363482B1 (en) 2017-09-20 2022-02-15 제이에프이 스틸 가부시키가이샤 Steel plate and its manufacturing method
WO2019059095A1 (en) 2017-09-20 2019-03-28 Jfeスチール株式会社 Steel plate and method for manufacturing same
EP3686306A4 (en) * 2017-09-20 2020-07-29 JFE Steel Corporation Steel plate and method for manufacturing same
KR20200041938A (en) 2017-09-20 2020-04-22 제이에프이 스틸 가부시키가이샤 Steel sheet and its manufacturing method
CN111108225A (en) * 2017-09-20 2020-05-05 杰富意钢铁株式会社 Steel sheet and method for producing same
CN107739991A (en) * 2017-09-22 2018-02-27 河钢股份有限公司 The high tough ultra-low temperature surroundings high manganese steel sheet and its production method of a kind of not cupric
CN111433381A (en) * 2017-12-07 2020-07-17 杰富意钢铁株式会社 High Mn steel and method for producing same
WO2019112012A1 (en) 2017-12-07 2019-06-13 Jfeスチール株式会社 High-mn steel and method for manufacturing same
KR102405388B1 (en) 2017-12-07 2022-06-03 제이에프이 스틸 가부시키가이샤 High Mn steel and its manufacturing method
CN111433381B (en) * 2017-12-07 2021-09-03 杰富意钢铁株式会社 High Mn steel and method for producing same
EP3722448A4 (en) * 2017-12-07 2020-10-14 JFE Steel Corporation High-mn steel and method for manufacturing same
KR20200088469A (en) 2017-12-07 2020-07-22 제이에프이 스틸 가부시키가이샤 High Mn steel and its manufacturing method
CN111684093A (en) * 2018-02-07 2020-09-18 杰富意钢铁株式会社 High Mn steel and method for producing same
JP2019151920A (en) * 2018-03-02 2019-09-12 Jfeスチール株式会社 HIGH Mn STEEL AND MANUFACTURING METHOD THEREFOR
KR20200123831A (en) 2018-03-02 2020-10-30 제이에프이 스틸 가부시키가이샤 High Mn steel and manufacturing method thereof
WO2019168172A1 (en) * 2018-03-02 2019-09-06 Jfeスチール株式会社 HIGH Mn STEEL AND METHOD FOR PRODUCING SAME
CN112513309B (en) * 2018-08-15 2022-04-26 杰富意钢铁株式会社 Steel sheet and method for producing same
KR20210035867A (en) 2018-08-15 2021-04-01 제이에프이 스틸 가부시키가이샤 Steel plate and its manufacturing method
CN112513309A (en) * 2018-08-15 2021-03-16 杰富意钢铁株式会社 Steel sheet and method for producing same
KR102497359B1 (en) 2018-08-15 2023-02-08 제이에프이 스틸 가부시키가이샤 Steel plate and method of producing same
WO2020036090A1 (en) 2018-08-15 2020-02-20 Jfeスチール株式会社 Steel sheet and method for manufacturing same
EP3825436A4 (en) * 2018-08-15 2021-05-26 JFE Steel Corporation Steel sheet and method for manufacturing same
CN112566750A (en) * 2018-08-23 2021-03-26 杰富意钢铁株式会社 Solid wire for gas metal arc welding
WO2020039643A1 (en) * 2018-08-23 2020-02-27 Jfeスチール株式会社 Solid wire for gas metal arc welding
JP6621572B1 (en) * 2018-08-23 2019-12-18 Jfeスチール株式会社 Solid wire for gas metal arc welding
WO2020044421A1 (en) 2018-08-28 2020-03-05 Jfeスチール株式会社 Steel sheet and method for producing same
KR20210113682A (en) 2019-02-12 2021-09-16 제이에프이 스틸 가부시키가이샤 High Mn steel and manufacturing method thereof
JPWO2020166538A1 (en) * 2019-02-12 2021-03-11 Jfeスチール株式会社 High Mn steel and its manufacturing method
KR102628769B1 (en) 2019-02-12 2024-01-23 제이에프이 스틸 가부시키가이샤 HIGH-Mn STEEL AND MANUFACTURING METHOD THEREFOR
EP3926057A4 (en) * 2019-02-12 2022-05-18 JFE Steel Corporation High-mn steel and method for manufacturing same
WO2020166538A1 (en) 2019-02-12 2020-08-20 Jfeスチール株式会社 High-mn steel and method for manufacturing same
WO2020189762A1 (en) * 2019-03-19 2020-09-24 Jfeスチール株式会社 Method for producing cast slabs of high manganese steel and method for producing high manganese steel billets and high manganese steel sheets
JP7126077B2 (en) 2019-03-19 2022-08-26 Jfeスチール株式会社 Method for producing high-manganese steel billet, method for producing high-manganese steel billet and high-manganese steel plate
JPWO2020189762A1 (en) * 2019-03-19 2021-05-20 Jfeスチール株式会社 Manufacturing method of high manganese steel slab, manufacturing method of high manganese steel slab and high manganese steel sheet
EP4019656A4 (en) * 2019-08-21 2022-06-29 JFE Steel Corporation Steel and method for manufacturing same
EP4019657A4 (en) * 2019-08-21 2022-06-29 JFE Steel Corporation Steel, and method for producing same
CN112281054A (en) * 2020-09-21 2021-01-29 中国石油天然气集团有限公司 SiMnNiMoV system medium carbon alloy steel, drilling machine hoisting ring and manufacturing method thereof
CN114107844A (en) * 2021-10-12 2022-03-01 广西富川正辉机械有限公司 High-purity manganese 25 high-manganese steel

Also Published As

Publication number Publication date
JP6645103B2 (en) 2020-02-12

Similar Documents

Publication Publication Date Title
JP6645103B2 (en) High Mn steel material and method for producing the same
JP6589535B2 (en) Low temperature thick steel plate and method for producing the same
JP4529872B2 (en) High Mn steel material and manufacturing method thereof
JP6728779B2 (en) Low temperature thick steel plate and method of manufacturing the same
JP6693217B2 (en) High Mn steel for cryogenic temperatures
US9394579B2 (en) High-strength steel material having outstanding ultra-low-temperature toughness and a production method therefor
JP5494167B2 (en) Cryogenic steel plate and manufacturing method thereof
KR101543916B1 (en) Steels for low temperature services having superior deformed surface quality and method for production thereof
JP5880788B2 (en) High strength oil well steel and oil well pipe
JP5494166B2 (en) Cryogenic steel plate and manufacturing method thereof
JP5833991B2 (en) Thick steel plate with excellent cryogenic toughness
JPWO2018199145A1 (en) High Mn steel and method of manufacturing the same
JP6018453B2 (en) High strength thick steel plate with excellent cryogenic toughness
JP5842537B2 (en) High-strength steel for high-pressure hydrogen storage containers
JP6492862B2 (en) Low temperature thick steel plate and method for producing the same
JP2020509207A (en) High manganese steel excellent in low temperature toughness and yield strength and method for producing the same
JP6018454B2 (en) High strength thick steel plate with excellent cryogenic toughness
JPWO2020166538A1 (en) High Mn steel and its manufacturing method
JP5874664B2 (en) High strength steel plate with excellent drop weight characteristics and method for producing the same
JP2019151920A (en) HIGH Mn STEEL AND MANUFACTURING METHOD THEREFOR
JP6947922B2 (en) High-temperature manganese steel with excellent surface quality and its manufacturing method
JP5176847B2 (en) Low yield ratio low temperature steel and method for producing the same
KR102387364B1 (en) High Mn steel and manufacturing method thereof
JP6947330B2 (en) Steel and its manufacturing method
KR102683673B1 (en) Steel and method of producing same

Legal Events

Date Code Title Description
A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20151014

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20180606

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20190417

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20190507

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20190617

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20190813

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20191008

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20191210

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20191223

R151 Written notification of patent or utility model registration

Ref document number: 6645103

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151