JPWO2019059095A1 - Steel sheet and manufacturing method thereof - Google Patents

Steel sheet and manufacturing method thereof Download PDF

Info

Publication number
JPWO2019059095A1
JPWO2019059095A1 JP2019502271A JP2019502271A JPWO2019059095A1 JP WO2019059095 A1 JPWO2019059095 A1 JP WO2019059095A1 JP 2019502271 A JP2019502271 A JP 2019502271A JP 2019502271 A JP2019502271 A JP 2019502271A JP WO2019059095 A1 JPWO2019059095 A1 JP WO2019059095A1
Authority
JP
Japan
Prior art keywords
less
steel
steel sheet
amount
corrosion
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2019502271A
Other languages
Japanese (ja)
Other versions
JP6760476B2 (en
Inventor
茂樹 木津谷
博司 池田
圭治 植田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Steel Corp
Original Assignee
JFE Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by JFE Steel Corp filed Critical JFE Steel Corp
Publication of JPWO2019059095A1 publication Critical patent/JPWO2019059095A1/en
Application granted granted Critical
Publication of JP6760476B2 publication Critical patent/JP6760476B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/02Ferrous alloys, e.g. steel alloys containing silicon
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/02Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/02Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips
    • C21D8/0205Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips of ferrous alloys
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/02Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips
    • C21D8/0221Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips characterised by the working steps
    • C21D8/0226Hot rolling
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/02Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips
    • C21D8/0247Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips characterised by the heat treatment
    • C21D8/0263Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips characterised by the heat treatment following hot rolling
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/02Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips
    • C21D8/0247Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips characterised by the heat treatment
    • C21D8/0273Final recrystallisation annealing
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/001Ferrous alloys, e.g. steel alloys containing N
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/04Ferrous alloys, e.g. steel alloys containing manganese
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/06Ferrous alloys, e.g. steel alloys containing aluminium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/38Ferrous alloys, e.g. steel alloys containing chromium with more than 1.5% by weight of manganese
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/40Ferrous alloys, e.g. steel alloys containing chromium with nickel
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/60Ferrous alloys, e.g. steel alloys containing lead, selenium, tellurium, or antimony, or more than 0.04% by weight of sulfur

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Heat Treatment Of Steel (AREA)
  • Chemical Treatment Of Metals (AREA)
  • Heat Treatment Of Sheet Steel (AREA)

Abstract

耐食性、特に塩分腐食環境における耐食性に優れた高Mn鋼を提供する。C:0.20%以上0.70%以下、Si:0.05%以上1.00%以下、Mn:15.0%以上35.0%以下、P:0.030%以下、S:0.0200%以下、Al:0.010%以上0.100%以下、Cr:0.5%以上8.0%以下およびN:0.0010%以上0.0300%以下を含有し、残部Feおよび不可避的不純物の成分組成を有し、前記含有Crの60%以上が固溶Crであるものとする。Provided is a high Mn steel having excellent corrosion resistance, particularly corrosion resistance in a salt corrosion environment. C: 0.20% or more and 0.70% or less, Si: 0.05% or more and 1.00% or less, Mn: 15.0% or more and 35.0% or less, P: 0.030% or less, S: 0 0.0200% or less, Al: 0.010% or more and 0.100% or less, Cr: 0.5% or more and 8.0% or less, and N: 0.0010% or more and 0.0300% or less, and the balance Fe and It has a component composition of inevitable impurities, and 60% or more of the contained Cr is solid solution Cr.

Description

本発明は、液化ガス貯槽用タンク等、極低温環境で使用される構造用鋼に供して好適な、特に、塩水腐食環境での耐食性に優れる鋼板およびその製造方法に関する。   The present invention relates to a steel sheet suitable for structural steel used in a cryogenic environment such as a tank for a liquefied gas storage tank, and particularly to a steel sheet excellent in corrosion resistance in a salt water corrosive environment and a method for producing the same.

液化ガス貯槽用構造物に熱間圧延鋼板を供する際、使用環境が極低温となるため、熱間圧延鋼板には強度のみならず極低温での靱性が要求される。例えば、液化天然ガスの貯槽に使用される熱間圧延鋼板には、液化天然ガスの沸点である−164℃以下で優れた靱性を確保する必要がある。鋼材の低温靱性が劣ると、極低温貯槽用構造物としての安全性を維持できなくなる危険性があるため、適用される鋼材に対する低温靱性向上に対する要求は強い。この要求に対して、従来は、極低温で脆性を示さないオーステナイト組織を有するオーステナイト系ステンレス鋼や9%Ni鋼、もしくは5000系アルミニウム合金が使用されてきた。しかしながら、これらの金属材料は合金コストや製造コストが高いことから、安価で極低温靱性に優れる鋼板への需要がある。そこで、従来の極低温用鋼に代わる新たな鋼板として、比較的安価なオーステナイト安定化元素であるMnを多量に添加しオーステナイト組織とした、高Mn鋼を極低温環境の構造用鋼板として適用することが検討されている。   When a hot-rolled steel sheet is provided to a structure for a liquefied gas storage tank, the use environment is extremely low, so that the hot-rolled steel sheet is required to have not only strength but also toughness at a very low temperature. For example, it is necessary to ensure excellent toughness at −164 ° C. or lower, which is the boiling point of liquefied natural gas, in a hot-rolled steel sheet used in a liquefied natural gas storage tank. If the low-temperature toughness of the steel material is inferior, there is a risk that the safety as a cryogenic storage tank structure cannot be maintained. Therefore, there is a strong demand for improving the low-temperature toughness of the applied steel material. In response to this requirement, conventionally, austenitic stainless steel, 9% Ni steel, or 5000 series aluminum alloy having an austenitic structure that does not show brittleness at extremely low temperatures has been used. However, since these metal materials have high alloy costs and manufacturing costs, there is a demand for steel sheets that are inexpensive and excellent in cryogenic toughness. Therefore, as a new steel plate to replace conventional cryogenic steel, high Mn steel is applied as a structural steel plate in a cryogenic environment by adding a large amount of relatively inexpensive austenite stabilizing element Mn to austenite structure. It is being considered.

しかし、オーステナイト組織を有する鋼板が腐食環境に置かれる場合、オーステナイト結晶粒界が腐食により侵食され、引張応力が付加された際に、応力腐食割れが発生しやすいことが、高Mn鋼の課題になっていた。液化ガス貯槽用構造物などの製作段階には、鋼板の地鉄が表面に露出する場合があり、鋼材表面が塩分など腐食性の物質を含む水蒸気や、水分や油分などと接触すると、鋼材に腐食が発生する。この鋼板表面での腐食反応において、鉄がアノード反応により酸化物(さび)を生成する一方で、水分のカソード反応により水素が発生して、鋼中に水素が侵入することによる水素脆化が生じる。そこに、製作時の曲げ加工や溶接などでの残留応力、あるいは使用環境での負荷応力が作用すると、応力腐食割れが発生し、構造物が破壊に至る危険性がある。従来検討されている高Mn鋼では、オーステナイト系ステンレス鋼は勿論のこと、9%Ni鋼や通常の低合金鋼と比較しても、耐食性に劣る場合がある。そのため、安全性の観点から、使用される鋼材が高強度かつ極低温での靱性を有するのは勿論のこと、耐食性に優れることが重要になる。   However, when a steel sheet having an austenite structure is placed in a corrosive environment, stress corrosion cracking is likely to occur when austenite grain boundaries are eroded by corrosion and tensile stress is applied. It was. In the manufacturing stage of structures for liquefied gas storage tanks, etc., the steel plate may be exposed on the surface, and if the steel surface comes into contact with water vapor containing corrosive substances such as salt, moisture or oil, Corrosion occurs. In this corrosion reaction on the steel sheet surface, iron generates oxide (rust) by the anodic reaction, while hydrogen is generated by the cathode reaction of water, and hydrogen embrittlement occurs due to the penetration of hydrogen into the steel. . If residual stress in bending or welding at the time of manufacture or load stress in the environment of use acts there, there is a risk that stress corrosion cracking will occur and the structure will be destroyed. Conventionally studied high Mn steels may be inferior in corrosion resistance as compared to 9% Ni steel and ordinary low alloy steel as well as austenitic stainless steel. Therefore, from the viewpoint of safety, it is important that the steel material to be used has high strength and toughness at extremely low temperatures, as well as excellent corrosion resistance.

例えば、特許文献1には、Mnを15〜35%、Cuを5%以下、さらにCとCrを適量添加することにより、被削性および溶熱熱影響部の−196℃でのシャルピー衝撃特性を改善した鋼材が開示されている。   For example, in Patent Document 1, by adding Mn in an amount of 15 to 35%, Cu in an amount of 5% or less, and further adding appropriate amounts of C and Cr, the Charpy impact characteristics at −196 ° C. of the machinability and the heat and heat affected zone are described. A steel material with improved is disclosed.

また、特許文献2には、C:0.25〜0.75%、Si:0.05〜1.0%、Mn:20%超35%以下、Ni:0.1%以上7.0%未満、Cr:0.1%以上8.0%未満を添加して低温靱性を改善した、高Mn鋼材が開示されている。   In Patent Document 2, C: 0.25 to 0.75%, Si: 0.05 to 1.0%, Mn: more than 20% to 35% or less, Ni: 0.1% to 7.0% Or less, Cr: 0.1% or more and less than 8.0% is added to improve the low temperature toughness, and a high Mn steel material is disclosed.

さらに、特許文献3には、Cを0.001〜0.80%、Mnを15〜35%含有し、Cr、Ti、Si、Al、Mg、Ca、REMといった元素を添加することにより、母材および溶接部の極低温靱性およびを改善した、高Mn鋼材が開示されている。   Furthermore, Patent Document 3 contains 0.001 to 0.80% C and 15 to 35% Mn, and by adding elements such as Cr, Ti, Si, Al, Mg, Ca, and REM, A high Mn steel has been disclosed which has improved cryogenic toughness of the material and welds.

特表2015−508452号公報JP-T-2015-508452 特開2016−84529号公報JP-A-2006-84529 特開2016−196703号公報Japanese Patent Laid-Open No. 2006-196703

しかしながら、特許文献1、2および3に記載の鋼材については、強度と低温靱性を達成するための製造コストの観点並びに、上述したオーステナイト鋼材が塩分腐食環境におかれる場合の耐食性の観点からは、未だ検討の余地があった。   However, for the steel materials described in Patent Documents 1, 2, and 3, from the viewpoint of manufacturing cost to achieve strength and low temperature toughness, and from the viewpoint of corrosion resistance when the austenitic steel material described above is placed in a salt corrosion environment, There was still room for consideration.

本発明は係る問題に鑑み、耐食性、特に塩分腐食環境における耐食性に優れた高Mn鋼を提供することを目的とする。   The present invention has been made in view of such problems, and an object thereof is to provide a high Mn steel having excellent corrosion resistance, particularly corrosion resistance in a salt corrosion environment.

本発明者らは、上記課題を達成するために、高Mn鋼を対象にして、その成分組成や製造条件を決定する各種要因に関して鋭意研究を行ったところ、以下の知見を得るに到った。   In order to achieve the above-mentioned problems, the present inventors conducted extensive research on various factors that determine the composition of components and production conditions of high-Mn steel, and have obtained the following knowledge. .

a.高Mn鋼をベースにして、ここにCrを添加する際に、その添加量および固溶量を適正に制御することにより、塩水腐食環境における鋼板表面での初期の腐食反応を遅延させることができる。これにより、鋼中に侵入する水素量を低減することができ、上述したオーステナイト鋼の応力腐食割れを抑制することができる。 a. When Cr is added here based on a high Mn steel, the initial corrosion reaction on the steel sheet surface in a salt water corrosion environment can be delayed by appropriately controlling the amount of addition and solid solution. . Thereby, the amount of hydrogen entering the steel can be reduced, and the stress corrosion cracking of the austenitic steel described above can be suppressed.

b.さらに、オーステナイトの結晶粒界からの破壊を効果的に抑制するためには、結晶粒界強度を高める対策が有効である。特にPは、鋼片の凝固過程において、Mnとともに偏析しやすい元素であり、このような偏析部と交わる部分の結晶粒界強度を低下させる。そのため、Pなどの不純物元素を低減する必要がある。 b. Furthermore, in order to effectively suppress the destruction of austenite from the grain boundary, a measure for increasing the grain boundary strength is effective. In particular, P is an element that easily segregates together with Mn in the solidification process of the steel slab, and lowers the grain boundary strength of the portion that intersects with such a segregated portion. Therefore, it is necessary to reduce impurity elements such as P.

本発明は、以上の知見にさらに検討を加えてなされたものであり、その要旨は以下のとおりである。
1.質量%で、
C:0.20%以上0.70%以下、
Si:0.05%以上1.00%以下、
Mn:15.0%以上35.0%以下、
P:0.030%以下、
S:0.0200%以下、
Al:0.010%以上0.100%以下、
Cr:0.5%以上8.0%以下および
N:0.0010%以上0.0300%以下
を含有し、残部Feおよび不可避的不純物の成分組成を有し、前記含有Crの60%以上が固溶Crである鋼板。
The present invention has been made by further studying the above knowledge, and the gist thereof is as follows.
1. % By mass
C: 0.20% or more and 0.70% or less,
Si: 0.05% or more and 1.00% or less,
Mn: 15.0% to 35.0%,
P: 0.030% or less,
S: 0.0200% or less,
Al: 0.010% or more and 0.100% or less,
Cr: 0.5% or more and 8.0% or less and N: 0.0010% or more and 0.0300% or less, and has a component composition of balance Fe and inevitable impurities, and 60% or more of the contained Cr A steel plate made of solute Cr.

2.前記成分組成は、さらに、質量%で、
Nb:0.003%以上0.030%以下、
V:0.01%以上0.10%以下および
Ti:0.003%以上0.040%以下
から選択される1種または2種以上を含有する前記1に記載の鋼板。
2. The component composition is further mass%,
Nb: 0.003% to 0.030%,
2. The steel sheet according to 1 above, containing one or more selected from V: 0.01% to 0.10% and Ti: 0.003% to 0.040%.

3.前記成分組成は、さらに、質量%で、
Cu:0.01%以上0.50%以下、
Ni:0.01%以上0.50%以下、
Sn:0.01%以上0.30%以下、
Sb:0.01%以上0.30%以下、
Mo:0.01%以上2.0%以下および
W:0.01%以上2.0%以下
から選択される1種または2種以上を含有する前記1または2に記載の鋼板。
3. The component composition is further mass%,
Cu: 0.01% or more and 0.50% or less,
Ni: 0.01% or more and 0.50% or less,
Sn: 0.01% or more and 0.30% or less,
Sb: 0.01% or more and 0.30% or less,
The steel sheet according to 1 or 2 above, containing one or more selected from Mo: 0.01% to 2.0% and W: 0.01% to 2.0%.

4.前記成分組成は、さらに、質量%で、
Ca:0.0005%以上0.0050%以下、
Mg:0.0005%以上0.0100%以下および
REM:0.0010%以上0.0200%以下
から選択される1種または2種以上を含有する前記1、2または3に記載の鋼板。
4). The component composition is further mass%,
Ca: 0.0005% or more and 0.0050% or less,
The steel plate according to 1, 2 or 3, which contains one or more selected from Mg: 0.0005% to 0.0100% and REM: 0.0010% to 0.0200%.

5.前記1から4のいずれかに記載の成分組成を有する鋼素材を、1000℃以上1300℃以下に加熱後、圧下比:3以上30以下かつ圧延仕上げ温度:750℃以上の熱間圧延を、被圧延材の950℃以下600℃以上の温度範囲における滞在時間:30分以下にて施し、次いで700℃以下600℃以上の温度範囲における平均冷却速度が3℃/s以上の冷却を行う鋼板の製造方法。 5. After heating the steel material having the component composition according to any one of 1 to 4 to 1000 ° C. or more and 1300 ° C. or less, the steel is subjected to hot rolling at a reduction ratio of 3 to 30 and a rolling finish temperature of 750 ° C. or more. Residence time of rolled material in a temperature range of 950 ° C. or lower and 600 ° C. or higher: Production of a steel sheet that is performed in 30 minutes or shorter, and then the average cooling rate in the temperature range of 700 ° C. or lower and 600 ° C. or higher is 3 ° C./s or higher Method.

なお、本発明において、「耐食性に優れる」とは、NACE Standard TM0111−2011基準のSlow Strain Rate Test Methodに準拠した試験であって、温度23℃で人工海水(塩化物イオン濃度18000ppm)に浸漬し、ひずみ速度:4×10-7inch/sで等速引張試験を行った場合に、破断応力が400MPa以上であることをいう。   In the present invention, “excellent corrosion resistance” is a test in accordance with the SLOW Standard Rate Test Method of NACE Standard TM0111-2011, and is immersed in artificial seawater (chloride ion concentration 18000 ppm) at a temperature of 23 ° C. When the constant speed tensile test is performed at a strain rate of 4 × 10 −7 inch / s, the breaking stress is 400 MPa or more.

本発明によれば、耐食性、特に塩分腐食環境における耐食性に優れた鋼板を提供することができる。従って、本発明の鋼板を、例えば液化ガス貯槽用タンク等の、極低温環境で使用される鋼構造物に用いることによって、該鋼構造物の安全性や寿命が大きく向上する結果、産業上格段の効果をもたらすことになる。また、本発明の鋼板は、既存の材料に比べて安価であるため、経済性に優れる利点も有する。   ADVANTAGE OF THE INVENTION According to this invention, the steel plate excellent in corrosion resistance, especially the corrosion resistance in a salt corrosion environment can be provided. Therefore, by using the steel sheet of the present invention for a steel structure used in a cryogenic environment, such as a tank for a liquefied gas storage tank, the safety and life of the steel structure are greatly improved. Will bring about the effect. Moreover, since the steel plate of this invention is cheap compared with the existing material, it also has the advantage which is excellent in economical efficiency.

以下、本発明の鋼板について詳しく説明する。なお、本発明は以下の実施形態に限定されない。   Hereinafter, the steel sheet of the present invention will be described in detail. In addition, this invention is not limited to the following embodiment.

[成分組成]
まず、本発明の鋼板の成分組成と、その限定理由について説明する。本発明では、優れた耐食性を確保するため、以下のように鋼板の成分組成を規定する。なお、成分組成を表す「%」は、特に断らない限り「質量%」を意味するものとする。
[Ingredient composition]
First, the component composition of the steel plate of this invention and the reason for limitation are demonstrated. In this invention, in order to ensure the outstanding corrosion resistance, the component composition of a steel plate is prescribed | regulated as follows. “%” Representing the component composition means “% by mass” unless otherwise specified.

C:0.20%以上0.70%以下
Cは、高強度化に有効であり、さらに、安価なオーステナイト安定化元素でありオーステナイトを得るために重要な元素である。その効果を得るためには、Cは0.20%以上の含有を必要とする。一方、0.70%を超えて含有すると、Cr炭化物およびNb、V、Ti系炭化物の過度な析出を促すため、低温靱性が低下するとともに、腐食の発生起点となる。このため、Cは0.20%以上0.70%以下とする。好ましくは、0.25%以上0.60%以下とする。
C: 0.20% or more and 0.70% or less C is effective for increasing the strength, and is an inexpensive austenite stabilizing element and an important element for obtaining austenite. In order to acquire the effect, C needs to contain 0.20% or more. On the other hand, if the content exceeds 0.70%, excessive precipitation of Cr carbide and Nb, V, Ti-based carbides is promoted, so that low temperature toughness is lowered and corrosion starts. For this reason, C is made 0.20% or more and 0.70% or less. Preferably, the content is 0.25% or more and 0.60% or less.

Si:0.05%以上1.00%以下
Siは、脱酸材として作用し、製鋼上、必要であるだけでなく、鋼に固溶して固溶強化により鋼板を高強度化する効果を有する。このような効果を得るためには、Siは0.05%以上の含有を必要とする。一方、1.00%を超えて含有すると、溶接性および表面性状が劣化し耐応力腐食割れ性が低下する場合がある。このため、Siは0.05%以上1.00%以下とする。好ましくは、0.07%以上0.50%以下とする。
Si: 0.05% or more and 1.00% or less Si acts as a deoxidizing material and is not only necessary for steelmaking, but also has the effect of increasing the strength of the steel sheet by solid solution strengthening by solid solution strengthening in steel. Have. In order to acquire such an effect, Si needs to contain 0.05% or more. On the other hand, when it contains exceeding 1.00%, weldability and surface property may deteriorate and stress corrosion cracking resistance may fall. For this reason, Si is made 0.05% or more and 1.00% or less. Preferably, the content is 0.07% or more and 0.50% or less.

Mn:15.0%以上35.0%以下
Mnは、比較的安価なオーステナイト安定化元素である。本発明では、強度と極低温靱性を両立するために重要な元素である。その効果を得るためには、Mnは15.0%以上の含有を必要とする。一方、35.0%を超えて含有する場合、極低温靱性を改善する効果が飽和し、合金コストの上昇を招く。また、溶接性、切断性が劣化する。さらに、偏析を助長し、応力腐食割れの発生を助長する。このため、Mnは15.0%以上35.0%以下とする。好ましくは、18.0%以上28.0%の範囲とする。
Mn: 15.0% to 35.0% Mn is a relatively inexpensive austenite stabilizing element. In the present invention, it is an important element for achieving both strength and cryogenic toughness. In order to acquire the effect, Mn needs to contain 15.0% or more. On the other hand, when it contains exceeding 35.0%, the effect which improves cryogenic toughness will be saturated, and the cost of an alloy will be raised. In addition, the weldability and cutability are deteriorated. Furthermore, segregation is promoted and stress corrosion cracking is promoted. For this reason, Mn is made 15.0% or more and 35.0% or less. Preferably, the range is 18.0% or more and 28.0%.

P:0.030%以下
Pは、0.030%を超えて含有すると、粒界に偏析し粒界強度を低下させ、応力腐食割れの発生起点となる。このため、0.030%を上限とし、可能なかぎり低減することが望ましい。Pは含有量が低いほど特性が向上するため、好ましくは0.024%以下とし、より好ましくは0.020%以下とする。一方、0.001%未満とするには製鋼に多大なコストを要し経済性が損なわれるため、0.001%以上の含有は許容される。
P: 0.030% or less When P is contained in excess of 0.030%, it segregates at the grain boundary and lowers the grain boundary strength, and becomes the starting point of stress corrosion cracking. For this reason, it is desirable to make 0.030% an upper limit and to reduce as much as possible. The lower the P content, the better the characteristics. Therefore, the P content is preferably 0.024% or less, and more preferably 0.020% or less. On the other hand, in order to make it less than 0.001%, a great cost is required for steel making and the economic efficiency is impaired. Therefore, the content of 0.001% or more is allowed.

S:0.0200%以下
Sは、母材の低温靭性や延性を劣化させるため、0.0200%を上限とし、可能なかぎり低減することが望ましい。したがって、Sは0.0200%以下、好ましくは0.0180%以下とする。一方、0.0001%未満とするには製鋼に多大なコストを要し経済性が損なわれるため、0.0001%以上の含有は許容される。
S: 0.0200% or less Since S deteriorates the low temperature toughness and ductility of the base material, 0.0200% is the upper limit, and it is desirable to reduce it as much as possible. Therefore, S is 0.0200% or less, preferably 0.0180% or less. On the other hand, if the content is less than 0.0001%, steelmaking requires a large cost and the economic efficiency is impaired. Therefore, the content of 0.0001% or more is allowed.

Al:0.010%以上0.100%以下
Alは、脱酸剤として作用し、鋼板の溶鋼脱酸プロセスに於いて、もっとも汎用的に使われる。また、鋼中の固溶Nを固定してAlNを形成することにより、結晶粒の粗大化を抑制する効果を有する。これとともに、固溶N低減による靱性劣化を抑制する効果を有する。このような効果を得るためには、Alは0.010%以上の含有を必要とする。一方、0.100%を超えて含有すると、粗大な窒化物を形成し腐食や破壊の起点となって耐応力腐食割れ性が低下する場合がある。また、溶接時に溶接金属部に拡散して、溶接金属の靭性を劣化させるため、0.100%以下とする。好ましくは、0.020%以上0.070%以下とする。
Al: 0.010% or more and 0.100% or less Al acts as a deoxidizing agent, and is most commonly used in a molten steel deoxidizing process of a steel sheet. Moreover, it has the effect which suppresses the coarsening of a crystal grain by fixing the solid solution N in steel and forming AlN. At the same time, it has the effect of suppressing toughness deterioration due to the reduction of solute N. In order to acquire such an effect, Al needs to contain 0.010% or more. On the other hand, if the content exceeds 0.100%, coarse nitrides are formed, which may become a starting point for corrosion and destruction, and the stress corrosion cracking resistance may decrease. Moreover, in order to diffuse to a weld metal part at the time of welding and to deteriorate the toughness of a weld metal, it is made 0.100% or less. Preferably, the content is 0.020% or more and 0.070% or less.

Cr:0.5%以上8.0%以下かつ含有Crの60%以上が固溶Cr
Crは、適量の含有によって塩水腐食環境における鋼板表面での初期の腐食反応を遅延させる効果を有し、この効果により鋼板中への水素侵入量を低下させ、耐応力腐食割れ性を向上する重要な元素である。Cr量を増大させることで耐食性の向上を図ることが出来るが、一方でCrは圧延中に窒化物、炭化物、炭窒化物等の形態で析出することが避けられず、このような析出物は腐食や破壊の起点となって耐応力腐食割れ性が低下する場合がある。このため、Cr量は0.5%以上8.0%以下とする。
Cr: 0.5% or more and 8.0% or less and 60% or more of contained Cr is solid solution Cr
Cr has the effect of delaying the initial corrosion reaction on the steel sheet surface in a salt water corrosive environment when contained in an appropriate amount. This effect reduces the amount of hydrogen intrusion into the steel sheet and is important for improving stress corrosion cracking resistance. Element. Although the corrosion resistance can be improved by increasing the amount of Cr, on the other hand, Cr is unavoidably precipitated in the form of nitride, carbide, carbonitride, etc. during rolling. Stress corrosion cracking resistance may decrease as a starting point for corrosion and destruction. For this reason, the Cr content is 0.5% or more and 8.0% or less.

ここで、塩水腐食環境における鋼板表面での初期の腐食反応を遅延させる、Crの効果について詳細に検討したところ、この効果を確実に得るためにはCrの固溶量が重要であり、Crが固溶状態で0.3%以上存在しているときに確実に発揮されることが判明した。一方、Crを固溶状態にするためには製造条件を工夫する必要があり、製造条件の小変更によって安定的に確保可能なCrの固溶率の下限は60%であるから、固溶Cr量を0.3%以上にするには、最低0.5%のCr含有が必要となる。固溶Crの量としては、好ましくは1.0%以上6.0%以下、より好ましくは1.2%以上5.5%以下である。なお、固溶状態とは、溶質原子が析出物等を形成せずに原子として存在している状態のことである。   Here, when the effect of Cr, which delays the initial corrosion reaction on the steel sheet surface in a salt water corrosive environment, was examined in detail, the solid solution amount of Cr is important to obtain this effect reliably. It was proved that it is reliably exerted when 0.3% or more exists in a solid solution state. On the other hand, in order to make Cr into a solid solution state, it is necessary to devise manufacturing conditions, and since the lower limit of the solid solution rate of Cr that can be stably secured by small changes in the manufacturing conditions is 60%, In order to make the amount 0.3% or more, a Cr content of at least 0.5% is required. The amount of solute Cr is preferably 1.0% or more and 6.0% or less, more preferably 1.2% or more and 5.5% or less. The solid solution state is a state in which solute atoms exist as atoms without forming precipitates or the like.

N:0.0010%以上0.0300%以下
Nは、オーステナイト安定化元素であり、極低温靱性向上に有効な元素である。また、Nb、V、Tiと結合し、窒化物または炭窒化物として微細に析出して、拡散性水素のトラップサイトとして応力腐食割れを抑制する効果を有する。このような効果を得るためには、Nは0.0010%以上の含有を必要とする。一方、0.0300%を超えて含有すると、過剰な窒化物または炭窒化物の生成を促し、固溶元素量が低下し耐食性が低下するだけでなく、靭性も低下する。このため、Nは0.0010%以上0.0300%以下とする。好ましくは0.0020%以上0.0150%以下とする。
N: 0.0010% or more and 0.0300% or less N is an austenite stabilizing element and is an element effective in improving the cryogenic toughness. Moreover, it combines with Nb, V, Ti, and precipitates finely as nitride or carbonitride, and has the effect of suppressing stress corrosion cracking as a diffusible hydrogen trap site. In order to acquire such an effect, N needs to contain 0.0010% or more. On the other hand, when the content exceeds 0.0300%, the formation of excess nitride or carbonitride is promoted, and not only the amount of solid solution elements decreases and corrosion resistance decreases, but also toughness decreases. For this reason, N is made into 0.0010% or more and 0.0300% or less. Preferably it is 0.0020% or more and 0.0150% or less.

本発明では、耐食性をさらに向上させることを目的として、上記の必須元素に加えて、必要に応じて、
Nb:0.003%以上0.030%以下、V:0.01%以上0.10%以下およびTi:0.003%以上0.040%以下
を含有することができる。
In the present invention, for the purpose of further improving the corrosion resistance, in addition to the above essential elements, if necessary,
Nb: 0.003% to 0.030%, V: 0.01% to 0.10% and Ti: 0.003% to 0.040% can be contained.

Nb:0.003%以上0.030%以下
Nbは、炭窒化物として析出し、生成した炭窒化物が拡散性水素のトラップサイトとして機能するため、応力腐食割れ抑制の効果を有する元素である。このような効果を得るためには、Nbは0.003%以上で含有することが好ましい。一方、0.030%を超えて含有すると、粗大な炭窒化物が析出し、破壊の起点となることがある。また、析出物が粗大化し、母材靱性を劣化させることがある。このため、Nbを含有する場合は、0.003%以上0.030%以下とすることが好ましい。より好ましくは0.005%以上0.025%以下、さらには0.007%以上0.022%以下である。
Nb: 0.003% or more and 0.030% or less Nb precipitates as carbonitride, and the generated carbonitride functions as a trap site for diffusible hydrogen, and is therefore an element having an effect of suppressing stress corrosion cracking. . In order to obtain such an effect, Nb is preferably contained at 0.003% or more. On the other hand, if the content exceeds 0.030%, coarse carbonitride precipitates and may become a starting point of fracture. Further, the precipitates may become coarse and the base material toughness may be deteriorated. For this reason, when it contains Nb, it is preferable to set it as 0.003% or more and 0.030% or less. More preferably, it is 0.005% or more and 0.025% or less, and further 0.007% or more and 0.022% or less.

V:0.01%以上0.10%以下
Vは、炭窒化物として析出し、生成した炭窒化物が拡散性水素のトラップサイトとして機能するため、応力腐食割れ抑制の効果を有する元素である。このような効果を得るためには、Vは0.01%以上で含有することが好ましい。一方、0.10%を超えて含有すると、粗大な炭窒化物が析出し、破壊の起点となることがある。また、析出物が粗大化し、母材靱性を劣化させることがある。このため、Vを含有する場合は、0.01%以上0.10%以下とすることが好ましい。より好ましくは0.02%以上0.09%以下、さらには0.03%以上0.08%以下である。
V: 0.01% or more and 0.10% or less V is an element having an effect of suppressing stress corrosion cracking because the carbonitride deposited as carbonitride and functions as a diffusible hydrogen trap site. . In order to obtain such an effect, V is preferably contained at 0.01% or more. On the other hand, if the content exceeds 0.10%, coarse carbonitride precipitates and may become a starting point of fracture. Further, the precipitates may become coarse and the base material toughness may be deteriorated. For this reason, when it contains V, it is preferable to set it as 0.01% or more and 0.10% or less. More preferably, it is 0.02% or more and 0.09% or less, and further 0.03% or more and 0.08% or less.

Ti:0.003%以上0.040%以下
Tiは、窒化物もしくは炭窒化物として析出し、生成した窒化物もしくは炭窒化物が拡散性水素のトラップサイトとして機能するため、応力腐食割れ抑制の効果を有する元素である。このような効果を得るためには、Tiは0.003%以上で含有することが好ましい。一方、0.040%を超えて含有すると、析出物が粗大化し、母材靱性を劣化させることがある。また、粗大な炭窒化物が析出し、破壊の起点となることがある。このため、Tiを含有する場合は、0.003%以上0.040%以下とすることが好ましい。より好ましくは0.005%以上0.035%以下、さらには0.007%以上0.032%以下である。
Ti: 0.003% or more and 0.040% or less Ti precipitates as a nitride or carbonitride, and the generated nitride or carbonitride functions as a trap site for diffusible hydrogen. It is an element that has an effect. In order to obtain such an effect, Ti is preferably contained at 0.003% or more. On the other hand, if the content exceeds 0.040%, the precipitates become coarse and the base material toughness may be deteriorated. In addition, coarse carbonitrides may precipitate and become the starting point of fracture. For this reason, when it contains Ti, it is preferable to set it as 0.003% or more and 0.040% or less. More preferably, it is 0.005% or more and 0.035% or less, and further 0.007% or more and 0.032% or less.

さらに、本発明では、耐食性を一層向上させることを目的として、必要に応じて、
Cu:0.01%以上0.50%以下、Ni:0.01%以上0.50%以下、Sn:0.01%以上0.30%以下、Sb:0.01%以上0.30%以下、Mo:0.01%以上2.0%以下、W:0.01%以上2.0%以下の1種または2種以上
を含有することができる。
Furthermore, in the present invention, for the purpose of further improving the corrosion resistance, if necessary,
Cu: 0.01% to 0.50%, Ni: 0.01% to 0.50%, Sn: 0.01% to 0.30%, Sb: 0.01% to 0.30% Hereinafter, one or more of Mo: 0.01% to 2.0% and W: 0.01% to 2.0% can be contained.

Cu、Ni、Sn、Sb、MoおよびWは、Crと複合添加することによって、高Mn鋼の塩水腐食環境における耐食性を向上させる元素である。ここで、Cu、SnおよびSbは、鋼材の水素過電圧を増大することで、カソード反応である水素発生反応を抑制する効果を有する。Niは、鋼材表面に沈殿皮膜を形成し、Cl-等の腐食性アニオンの地鉄への透過を物理的に抑制する。また、Cu、Ni、Sn、Sb、MoおよびWは、腐食に際し、鋼材表面から金属イオンとして遊離し、腐食生成物を緻密にすることで、鋼界面(錆層と地鉄の界面)への腐食性アニオンの透過を抑制する。MoおよびWはそれぞれMo4 2-およびWO4 2-として遊離し、腐食生成物中または鋼板表面に吸着することで、カチオン選択透過性を付与し、腐食性アニオンの地鉄への透過を電気的に抑制する。Cu, Ni, Sn, Sb, Mo, and W are elements that improve the corrosion resistance of a high Mn steel in a salt corrosion environment by being added in combination with Cr. Here, Cu, Sn, and Sb have the effect of suppressing the hydrogen generation reaction, which is a cathode reaction, by increasing the hydrogen overvoltage of the steel material. Ni forms a precipitate coating on the steel material surface, Cl - physically inhibit the transmission of the corrosive anion such as base steel. In addition, Cu, Ni, Sn, Sb, Mo and W are liberated as metal ions from the steel material surface during the corrosion, and the corrosion product is made dense, so that the steel interface (the interface between the rust layer and the ground iron) is introduced. Suppresses permeation of corrosive anions. Mo and W are liberated as Mo 4 2- and WO 4 2- , respectively, and are adsorbed in the corrosion products or on the steel sheet surface to give selective permeation of the cations and electrically permeate the corrosive anions into the iron. Suppress it.

以上の効果は、高Mn鋼において、Crと共存した場合において顕在化し、それぞれ上記の下限値以上で発現する。しかし、いずれの元素も多く含有させると、溶接性や靱性を劣化させ、コストの観点からも不利になる。   The above effects are manifested in high-Mn steel when coexisting with Cr, and are manifested at the above lower limit values or more, respectively. However, if any element is contained in a large amount, the weldability and toughness are deteriorated, which is disadvantageous from the viewpoint of cost.

従って、Cu量は0.01%以上0.50%以下の範囲、Ni量は0.01%以上0.50%以下の範囲、Sn量は0.01%以上0.30%以下の範囲、Sb量は0.01%以上0.30%以下の範囲、Mo量は0.01%以上2.0%以下の範囲、W量は0.01%以上2.0%以下の範囲とすることが好ましい。   Accordingly, the Cu content is in the range of 0.01% to 0.50%, the Ni content is in the range of 0.01% to 0.50%, the Sn content is in the range of 0.01% to 0.30%, Sb amount is in the range of 0.01% to 0.30%, Mo amount is in the range of 0.01% to 2.0%, and W amount is in the range of 0.01% to 2.0%. Is preferred.

より好ましくは、Cu量は0.02%以上0.40%以下、Ni量は0.02%以上0.40%以下、Sn量は0.02%以上0.25%以下、Sb量は0.02%以上0.25%以下、Mo量は0.02%以上1.9%以下、W量は0.02%以上1.9%以下である。   More preferably, the amount of Cu is 0.02% to 0.40%, the amount of Ni is 0.02% to 0.40%, the amount of Sn is 0.02% to 0.25%, and the amount of Sb is 0. 0.02% to 0.25%, Mo amount is 0.02% to 1.9%, and W amount is 0.02% to 1.9%.

同様に、本発明では、耐食性を一層向上させることを目的として、必要に応じて、
Ca:0.0005%以上0.0050%以下、Mg:0.0005%以上0.0100%以下およびREM:0.0010%以上0.0200%以下
の1種または2種以上を含有することができる。
Ca、MgおよびREMは、介在物の形態制御に有用な元素であり、必要に応じて含有できる。ここで、介在物の形態制御とは、展伸した硫化物系介在物を粒状の介在物とすることをいう。この介在物の形態制御を介して、延性、靭性、耐硫化物応力腐食割れ性を向上させる。このような効果を得るためには、CaおよびMgは0.0005%以上、REMは0.0010%以上で含有することが好ましい。一方、いずれの元素も多く含有させると、非金属介在物量が増加し、かえって延性、靭性、耐硫化物応力腐食割れ性が低下する場合がある。また、経済的に不利になる場合がある。
Similarly, in the present invention, for the purpose of further improving the corrosion resistance, if necessary,
Ca: 0.0005% or more and 0.0050% or less, Mg: 0.0005% or more and 0.0100% or less, and REM: 0.0010% or more and 0.0200% or less. it can.
Ca, Mg and REM are elements useful for controlling the form of inclusions, and can be contained as necessary. Here, the form control of inclusions means that the expanded sulfide inclusions are made into granular inclusions. Ductility, toughness, and resistance to sulfide stress corrosion cracking are improved through shape control of the inclusions. In order to obtain such an effect, Ca and Mg are preferably contained in an amount of 0.0005% or more and REM in an amount of 0.0010% or more. On the other hand, when a large amount of any element is contained, the amount of non-metallic inclusions increases, and on the contrary, ductility, toughness, and resistance to sulfide stress corrosion cracking may decrease. Moreover, it may become economically disadvantageous.

このため、Caを含有する場合には0.0005%以上0.0050%以下、Mgを含有する場合には0.0005%以上0.0100%以下、REMを含有する場合には0.0010%以上0.0200%以下とすることが好ましい。より好ましくは、Ca量は0.0010%以上0.0040%以下、Mg量は0.0010%以上0.0040%以下、REM量は0.0020%以上0.0150%以下である。   Therefore, when Ca is contained, 0.0005% or more and 0.0050% or less, when Mg is contained, 0.0005% or more and 0.0100% or less, and when REM is contained, 0.0010% It is preferable that it is 0.0200% or less. More preferably, the Ca content is 0.0010% to 0.0040%, the Mg content is 0.0010% to 0.0040%, and the REM content is 0.0020% to 0.0150%.

次に、本発明の製造条件について説明する。なお、以下の説明において、温度(℃)は、鋼板の厚み中心部における温度を意味する。
[鋼素材の再加熱温度:1000℃以上1300℃以下]
鋼素材を1000℃以上に加熱するのは、組織中の炭窒化物を固溶させ、結晶粒径等を均一化するためである。すなわち、加熱温度が1000℃未満の場合、炭窒化物が十分に固溶しないため所望の特性が得られない。また、1300℃を超えての加熱は結晶粒径の粗大化による材質劣化に加えて、過剰なエネルギーが必要となり生産性が低下するため、加熱温度の上限は1300℃とする。好ましくは1050℃以上1250℃以下、より好
ましくは1070℃以上1250℃以下の範囲である。
Next, the manufacturing conditions of the present invention will be described. In the following description, the temperature (° C.) means the temperature at the thickness center of the steel sheet.
[Reheating temperature of steel material: 1000 ° C or higher and 1300 ° C or lower]
The reason why the steel material is heated to 1000 ° C. or higher is to make the carbonitride in the structure solid, and to make the crystal grain size uniform. That is, when the heating temperature is less than 1000 ° C., the carbonitride is not sufficiently dissolved, so that desired characteristics cannot be obtained. In addition, since heating exceeding 1300 ° C requires excessive energy in addition to material deterioration due to coarsening of the crystal grain size, the upper limit of the heating temperature is set to 1300 ° C. Preferably it is 1050 degreeC or more and 1250 degrees C or less, More preferably, it is the range of 1070 degreeC or more and 1250 degrees C or less.

[圧下比:3以上30以下]
圧下比が3未満の熱間圧延では、再結晶を促進し整粒化が図られる効果が得られず、粗大なオーステナイト粒が残存し、その部分が優先的に酸化することで耐食性が劣化することになる。したがって、熱間圧延における圧下比を3以上に限定する。一方、上限は、後述する理由から、30とする必要がある。ここで、圧下比とは、被圧延材の板厚/圧延後の鋼板の板厚で定義されるものである。
[Rolling ratio: 3 to 30]
In hot rolling with a reduction ratio of less than 3, the effect of promoting recrystallization and achieving grain size reduction cannot be obtained, and coarse austenite grains remain, and the portion is preferentially oxidized to deteriorate the corrosion resistance. It will be. Therefore, the reduction ratio in hot rolling is limited to 3 or more. On the other hand, the upper limit needs to be 30 for reasons described later. Here, the reduction ratio is defined by the thickness of the material to be rolled / the thickness of the steel sheet after rolling.

[圧延仕上げ温度:750℃以上]
圧延仕上げ温度が750℃未満の場合、圧延中の炭化物析出量が著しく増大し、600℃以上950℃以下における滞在時間が30分以下の場合でも固溶Cr量が確保できなくなる場合があり耐食性が低下する。また、750℃以下未満で圧延する場合、変形抵抗が大きくなり製造設備に過大な負荷がかかるため、圧延仕上げ温度は750℃以上とする。なお、上限は、結晶粒の著しい粗大化を抑制する観点から、1050℃以下とすることが好ましい。
[Rolling finishing temperature: 750 ° C or higher]
When the rolling finish temperature is less than 750 ° C., the amount of carbide precipitation during rolling is remarkably increased, and even when the residence time at 600 ° C. or more and 950 ° C. or less is 30 minutes or less, the amount of solid solution Cr may not be ensured and the corrosion resistance is reduced. descend. Moreover, when rolling below 750 degreeC or less, since a deformation resistance becomes large and an excessive load is applied to a manufacturing facility, rolling finishing temperature shall be 750 degreeC or more. The upper limit is preferably set to 1050 ° C. or lower from the viewpoint of suppressing marked coarsening of crystal grains.

[950℃以下600℃以上の温度域における滞在時間:30分以下]
熱間圧延において被圧延素材が950℃以下600℃以上の温度域に滞在する時間は、30分を超えると、圧延中から炭窒化物や炭化物が大量に析出し、必要な固溶Cr量が減少し耐食性の低下および極低温靭性の低下を引き起こすため、950℃以下600℃以上の温度域における滞在時間を30分以下に規制する。なお、滞在時間は短いほどよいため、滞在時間に下限を設ける必要はない。
[Dwelling time in a temperature range of 950 ° C. or lower and 600 ° C. or higher: 30 minutes or less]
If the material to be rolled stays in a temperature range of 950 ° C. or lower and 600 ° C. or higher in hot rolling, if the time exceeds 30 minutes, carbonitrides and carbides are precipitated in large quantities during rolling, and the necessary amount of solute Cr is reduced. In order to decrease and cause deterioration in corrosion resistance and cryogenic toughness, the residence time in a temperature range of 950 ° C. or lower and 600 ° C. or higher is regulated to 30 minutes or shorter. In addition, since it is better that the stay time is shorter, it is not necessary to set a lower limit for the stay time.

ここで、950℃以下600℃以上の温度域における滞在時間を30分以下とするには、被圧延材の長さを5000mm以下にし、かつ被圧延材からの圧下比を上述のとおり30以下に限定する。被圧延材の長さが5000mmを超える場合および圧下比が30を超える場合、圧延時間が長くなり、結果として950℃以下600℃以上の範囲における滞在時間が30分を超えるためである。   Here, in order to set the stay time in the temperature range of 950 ° C. or lower and 600 ° C. or higher to 30 minutes or less, the length of the material to be rolled is set to 5000 mm or less, and the reduction ratio from the material to be rolled is set to 30 or less as described above. limit. This is because when the length of the material to be rolled exceeds 5000 mm and the reduction ratio exceeds 30, the rolling time becomes long, and as a result, the residence time in the range of 950 ° C. or lower and 600 ° C. or higher exceeds 30 minutes.

[700℃以下600℃以上における平均冷却速度:3℃/s以上]
700℃以下600℃以上における平均冷却速度が3℃/s未満の場合、Cr炭化物などの析出物が大量に生成するため、平均冷却速度を3℃/s以上に限定する。なお、平均冷却速度は速いほど良いためその上限を設ける必要はない。
[Average cooling rate at 700 ° C or lower and 600 ° C or higher: 3 ° C / s or higher]
When the average cooling rate at 700 ° C. or lower and 600 ° C. or higher is less than 3 ° C./s, a large amount of precipitates such as Cr carbides are formed, so the average cooling rate is limited to 3 ° C./s or higher. Note that the higher the average cooling rate, the better.

表1に示したNo.1〜28の鋼を溶製し、スラブとした後、表2に示した製造条件により板厚が6mm〜50mmの鋼板とし試料No.1〜34の厚鋼板を製造し、下記の試験に供した。   After the steel No. 1 to 28 shown in Table 1 was melted to form a slab, the steel plate having a thickness of 6 mm to 50 mm was manufactured according to the manufacturing conditions shown in Table 2, and the steel plates No. 1 to 34 were manufactured. And subjected to the following test.

耐食性試験は、NACE Standard TM0111−2011基準のSlowStrain Rate Test Method(以下、SSRT試験)に準拠して実施した。試験片形状はTypeA丸棒切欠き付き試験片を用い、温度23℃で人工海水(塩化物イオン濃度18000ppm)に浸漬し、ひずみ速度:4×10-7inch/sで等速引張試験を実施した。ここでは、破断応力が400MPa以上を耐応力腐食割れ性に優れるものとした。
以上により得られた結果を、表2に示す。
The corrosion resistance test was carried out in accordance with the Narrow Standard TM0111-2011 standard Slow Strain Rate Test Method (hereinafter referred to as SSRT test). The shape of the test piece was a Type A round bar notched test piece, immersed in artificial seawater (chloride ion concentration 18000 ppm) at a temperature of 23 ° C., and subjected to a constant speed tensile test at a strain rate of 4 × 10 −7 inch / s. . Here, the fracture stress is 400 MPa or more and the stress corrosion cracking resistance is excellent.
The results obtained as described above are shown in Table 2.

Figure 2019059095
Figure 2019059095

Figure 2019059095
Figure 2019059095

本発明に従う発明例(試料No.1〜17)は、耐食性がSSRT試験の破断応力で400MPa以上を満足することを確認した。一方、本発明の範囲を外れる比較例(試料No.18〜34)は、耐応力腐食割れ性が、上述の目標性能を満足できていない。   The invention examples according to the present invention (Sample Nos. 1 to 17) confirmed that the corrosion resistance satisfies 400 MPa or more as the breaking stress in the SSRT test. On the other hand, the comparative examples (sample Nos. 18 to 34) outside the scope of the present invention do not satisfy the above target performance in terms of stress corrosion cracking resistance.

Claims (5)

質量%で、
C:0.20%以上0.70%以下、
Si:0.05%以上1.00%以下、
Mn:15.0%以上35.0%以下、
P:0.030%以下、
S:0.0200%以下、
Al:0.010%以上0.100%以下、
Cr:0.5%以上8.0%以下および
N:0.0010%以上0.0300%以下
を含有し、残部Feおよび不可避的不純物の成分組成を有し、前記含有Crの60%以上が固溶Crである鋼板。
% By mass
C: 0.20% or more and 0.70% or less,
Si: 0.05% or more and 1.00% or less,
Mn: 15.0% to 35.0%,
P: 0.030% or less,
S: 0.0200% or less,
Al: 0.010% or more and 0.100% or less,
Cr: 0.5% or more and 8.0% or less and N: 0.0010% or more and 0.0300% or less, and has a component composition of balance Fe and inevitable impurities, and 60% or more of the contained Cr A steel plate made of solute Cr.
前記成分組成は、さらに、質量%で、
Nb:0.003%以上0.030%以下、
V:0.01%以上0.10%以下および
Ti:0.003%以上0.040%以下
から選択される1種または2種以上を含有する請求項1に記載の鋼板。
The component composition is further mass%,
Nb: 0.003% to 0.030%,
The steel plate according to claim 1, comprising one or more selected from V: 0.01% to 0.10% and Ti: 0.003% to 0.040%.
前記成分組成は、さらに、質量%で、
Cu:0.01%以上0.50%以下、
Ni:0.01%以上0.50%以下、
Sn:0.01%以上0.30%以下、
Sb:0.01%以上0.30%以下、
Mo:0.01%以上2.0%以下および
W:0.01%以上2.0%以下
から選択される1種または2種以上を含有する請求項1または2に記載の鋼板。
The component composition is further mass%,
Cu: 0.01% or more and 0.50% or less,
Ni: 0.01% or more and 0.50% or less,
Sn: 0.01% or more and 0.30% or less,
Sb: 0.01% or more and 0.30% or less,
The steel plate according to claim 1 or 2, containing one or more selected from Mo: 0.01% to 2.0% and W: 0.01% to 2.0%.
前記成分組成は、さらに、質量%で、
Ca:0.0005%以上0.0050%以下、
Mg:0.0005%以上0.0100%以下および
REM:0.0010%以上0.0200%以下
から選択される1種または2種以上を含有する請求項1、2または3に記載の鋼板。
The component composition is further mass%,
Ca: 0.0005% or more and 0.0050% or less,
The steel plate according to claim 1, 2 or 3, which contains one or more selected from Mg: 0.0005% to 0.0100% and REM: 0.0010% to 0.0200%.
請求項1から4のいずれかに記載の成分組成を有する鋼素材を、1000℃以上1300℃以下に加熱後、圧下比:3以上30以下かつ圧延仕上げ温度:750℃以上の熱間圧延を、被圧延材の950℃以下600℃以上の温度範囲における滞在時間:30分以下にて施し、次いで700℃以下600℃以上の温度範囲における平均冷却速度が3℃/s以上の冷却を行う鋼板の製造方法。   After the steel material having the component composition according to any one of claims 1 to 4 is heated to 1000 ° C or higher and 1300 ° C or lower, hot rolling at a rolling reduction ratio of 3 to 30 and a rolling finish temperature: 750 ° C or higher, Residual time in a temperature range of 950 ° C. or lower and 600 ° C. or higher of the material to be rolled: Production method.
JP2019502271A 2017-09-20 2018-09-13 Steel plate and its manufacturing method Active JP6760476B2 (en)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2017180589 2017-09-20
JP2017180589 2017-09-20
PCT/JP2018/034011 WO2019059095A1 (en) 2017-09-20 2018-09-13 Steel plate and method for manufacturing same

Publications (2)

Publication Number Publication Date
JPWO2019059095A1 true JPWO2019059095A1 (en) 2019-11-14
JP6760476B2 JP6760476B2 (en) 2020-09-23

Family

ID=65809928

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2019502271A Active JP6760476B2 (en) 2017-09-20 2018-09-13 Steel plate and its manufacturing method

Country Status (8)

Country Link
EP (1) EP3686306B1 (en)
JP (1) JP6760476B2 (en)
KR (1) KR102363482B1 (en)
CN (1) CN111108225B (en)
MY (1) MY193070A (en)
PH (1) PH12020550108A1 (en)
SG (1) SG11202002379QA (en)
WO (1) WO2019059095A1 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2020035917A1 (en) * 2018-08-15 2020-02-20 Jfeスチール株式会社 Steel sheet and method for manufacturing same
WO2020085864A1 (en) * 2018-10-25 2020-04-30 주식회사 포스코 Cryogenic austenitic high-manganese steel having excellent corrosion resistance, and manufacturing method therefor

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016196703A (en) * 2015-04-02 2016-11-24 新日鐵住金株式会社 HIGH Mn STEEL MATERIAL FOR CRYOGENIC USE
JP2017071817A (en) * 2015-10-06 2017-04-13 新日鐵住金株式会社 Thick steel sheet for low temperature and manufacturing method therefor

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4529872B2 (en) * 2005-11-04 2010-08-25 住友金属工業株式会社 High Mn steel material and manufacturing method thereof
JP5041029B2 (en) * 2010-04-30 2012-10-03 住友金属工業株式会社 Method for producing high manganese steel
EP2799571B1 (en) 2011-12-27 2021-04-07 Posco Austenitic steel having excellent machinability and ultra-low temperature toughness in weld heat-affected zone, and method of manufacturing the same
US20140261918A1 (en) * 2013-03-15 2014-09-18 Exxonmobil Research And Engineering Company Enhanced wear resistant steel and methods of making the same
JP6645103B2 (en) 2014-10-22 2020-02-12 日本製鉄株式会社 High Mn steel material and method for producing the same
KR101758525B1 (en) * 2015-12-23 2017-07-27 주식회사 포스코 HEAT TREATMENT METHOD OF HIGH STRENGH AND HIGH ELONGATION HIGH-Mn STEEL
JP6728779B2 (en) * 2016-03-03 2020-07-22 日本製鉄株式会社 Low temperature thick steel plate and method of manufacturing the same

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016196703A (en) * 2015-04-02 2016-11-24 新日鐵住金株式会社 HIGH Mn STEEL MATERIAL FOR CRYOGENIC USE
JP2017071817A (en) * 2015-10-06 2017-04-13 新日鐵住金株式会社 Thick steel sheet for low temperature and manufacturing method therefor

Also Published As

Publication number Publication date
EP3686306A4 (en) 2020-07-29
WO2019059095A1 (en) 2019-03-28
SG11202002379QA (en) 2020-04-29
CN111108225B (en) 2021-09-24
KR20200041938A (en) 2020-04-22
EP3686306B1 (en) 2024-02-28
EP3686306A1 (en) 2020-07-29
PH12020550108A1 (en) 2020-12-07
CN111108225A (en) 2020-05-05
JP6760476B2 (en) 2020-09-23
KR102363482B1 (en) 2022-02-15
MY193070A (en) 2022-09-26

Similar Documents

Publication Publication Date Title
KR102309644B1 (en) High mn steel sheet and method for producing same
JP7059357B2 (en) Duplex stainless clad steel sheet and its manufacturing method
JP4718866B2 (en) High-strength refractory steel excellent in weldability and gas-cutting property and method for producing the same
JP2019537667A (en) Steel for pressure vessel excellent in resistance to hydrogen-induced cracking and method for producing the same
TW202037734A (en) High-Mn steel and method for manufacturing same
JP2010121191A (en) High-strength thick steel plate having superior delayed fracture resistance and weldability, and method for manufacturing the same
JP6311633B2 (en) Stainless steel and manufacturing method thereof
CA3094517C (en) A steel composition in accordance with api 5l psl-2 specification for x-65 grade having enhanced hydrogen induced cracking (hic) resistance, and method of manufacturing the steel thereof
JP6760476B2 (en) Steel plate and its manufacturing method
KR102497359B1 (en) Steel plate and method of producing same
JP4250113B2 (en) Steel plate manufacturing method with excellent earthquake resistance and weldability
JP5136174B2 (en) High strength steel for bolts with excellent weather resistance and delayed fracture resistance
RU61285U1 (en) STAINLESS STEEL HIGH STRENGTH STEEL BAR
JP6566166B1 (en) Steel sheet and manufacturing method thereof
JP2004339549A (en) 490 MPa CLASS HIGH-TENSILE STRENGTH FIRE RESISTANT STEEL FOR STRUCTURAL USE HAVING EXCELLENT WELDABILITY AND GAS CUTTABILITY, AND ITS PRODUCTION METHOD
JP4028815B2 (en) 780 MPa class high strength steel excellent in high temperature strength and manufacturing method thereof
WO2016156849A1 (en) Martensitic steel alloy with resistance to hydrogen embrittlement

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20190117

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20200218

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20200327

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20200804

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20200817

R150 Certificate of patent or registration of utility model

Ref document number: 6760476

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250