WO2021033694A1 - Steel and method for manufacturing same - Google Patents

Steel and method for manufacturing same Download PDF

Info

Publication number
WO2021033694A1
WO2021033694A1 PCT/JP2020/031165 JP2020031165W WO2021033694A1 WO 2021033694 A1 WO2021033694 A1 WO 2021033694A1 JP 2020031165 W JP2020031165 W JP 2020031165W WO 2021033694 A1 WO2021033694 A1 WO 2021033694A1
Authority
WO
WIPO (PCT)
Prior art keywords
less
steel
toughness
amount
austenite
Prior art date
Application number
PCT/JP2020/031165
Other languages
French (fr)
Japanese (ja)
Inventor
大地 泉
孝一 中島
植田 圭治
Original Assignee
Jfeスチール株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Jfeスチール株式会社 filed Critical Jfeスチール株式会社
Priority to EP20853747.2A priority Critical patent/EP4019656A4/en
Priority to CN202080058683.XA priority patent/CN114302977B/en
Priority to KR1020227004123A priority patent/KR20220030292A/en
Priority to JP2021510241A priority patent/JP6947330B2/en
Publication of WO2021033694A1 publication Critical patent/WO2021033694A1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/38Ferrous alloys, e.g. steel alloys containing chromium with more than 1.5% by weight of manganese
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D6/00Heat treatment of ferrous alloys
    • C21D6/005Heat treatment of ferrous alloys containing Mn
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/02Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/02Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips
    • C21D8/0205Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips of ferrous alloys
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/02Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips
    • C21D8/0221Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips characterised by the working steps
    • C21D8/0226Hot rolling
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/02Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips
    • C21D8/0247Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips characterised by the heat treatment
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/02Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips
    • C21D8/0247Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips characterised by the heat treatment
    • C21D8/0263Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips characterised by the heat treatment following hot rolling
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/02Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips
    • C21D8/0247Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips characterised by the heat treatment
    • C21D8/0273Final recrystallisation annealing
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D9/00Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor
    • C21D9/46Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor for sheet metals
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/001Ferrous alloys, e.g. steel alloys containing N
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/002Ferrous alloys, e.g. steel alloys containing In, Mg, or other elements not provided for in one single group C22C38/001 - C22C38/60
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/005Ferrous alloys, e.g. steel alloys containing rare earths, i.e. Sc, Y, Lanthanides
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/02Ferrous alloys, e.g. steel alloys containing silicon
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/06Ferrous alloys, e.g. steel alloys containing aluminium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/20Ferrous alloys, e.g. steel alloys containing chromium with copper
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/22Ferrous alloys, e.g. steel alloys containing chromium with molybdenum or tungsten
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/24Ferrous alloys, e.g. steel alloys containing chromium with vanadium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/26Ferrous alloys, e.g. steel alloys containing chromium with niobium or tantalum
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/28Ferrous alloys, e.g. steel alloys containing chromium with titanium or zirconium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/40Ferrous alloys, e.g. steel alloys containing chromium with nickel
    • C22C38/48Ferrous alloys, e.g. steel alloys containing chromium with nickel with niobium or tantalum
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/40Ferrous alloys, e.g. steel alloys containing chromium with nickel
    • C22C38/50Ferrous alloys, e.g. steel alloys containing chromium with nickel with titanium or zirconium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/40Ferrous alloys, e.g. steel alloys containing chromium with nickel
    • C22C38/58Ferrous alloys, e.g. steel alloys containing chromium with nickel with more than 1.5% by weight of manganese
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D2211/00Microstructure comprising significant phases
    • C21D2211/001Austenite

Definitions

  • the present invention is suitable for structural steels used in extremely low temperature environments, such as tanks for storing liquid hydrogen, liquid helium, liquefied gas, etc., and steels having excellent toughness particularly at extremely low temperatures. Regarding the manufacturing method.
  • austenite-based stainless steel having a steel plate structure of austenite that does not show brittleness at extremely low temperatures has been conventionally used.
  • alloy cost and the manufacturing cost are high, there is a demand for an inexpensive steel material having excellent cryogenic toughness.
  • Patent Document 1 As a new steel material to replace the conventional low-temperature steel, it is proposed in Patent Document 1, for example, to use a high Ni steel to which a large amount of Ni, which is an austenite stabilizing element, is added as a structural steel in an environment of -253 ° C. Has been done.
  • Patent Document 1 proposes a technique for ensuring cryogenic toughness by controlling the particle size and morphology of old austenite.
  • Patent Document 1 makes it possible to provide high Ni steel having excellent ultra-low temperature toughness, but the high Ni steel described here contains 12.5% or more of Ni from the viewpoint of ensuring extremely low temperature toughness. There was a need to reduce material costs. Further, in order to secure the austenite phase, it is necessary to perform heat treatment over a plurality of steps such as reheating quenching, intermediate heat treatment, and tempering, which is also a problem that the manufacturing cost is high.
  • an object of the present invention is to provide a steel having excellent ultra-low temperature toughness and tensile properties, which can suppress the material and the cost required for manufacturing. Furthermore, it is an object of the present invention to propose an advantageous method for producing such steel.
  • excellent in cryogenic toughness means that the absorbed energy of the Charpy impact test at -196 ° C. and further -269 ° C. is 150 J or more.
  • excellent in tensile properties means that the total elongation of the tensile test at -269 ° C. is 30% or more.
  • the inventors have conducted intensive research on various factors that determine the composition and structure of the steel sheet for steels having a relatively high Mn content of 20.0% or more, and the following a , B was obtained.
  • grain boundary fracture starting from grain boundaries can be mentioned. From this, it is effective to make the crystal grain size coarse in order to improve the extremely low temperature toughness of the steel.
  • cryogenic toughness and tensile properties can be improved with the minimum number of heat treatments, and the manufacturing cost can be suppressed.
  • the present invention has been made by further studying the above findings, and the gist thereof is as follows. 1.
  • C 0.100% or more and 0.700% or less
  • Si 1.00% or less
  • Mn 20.0% or more and 40.0% or less
  • P 0.030% or less
  • S 0.0070% or less
  • Al 0.01% or more and 5.00% or less
  • Cr 0.5% or more and 7.0% or less
  • N 0.0050% or more and 0.0500% or less
  • O 0.0050% or less
  • a steel having an average particle size of 80 ⁇ m or more, an absorption energy of Charpy impact test at -269 ° C. of 150 J or more, and a total elongation of tensile test at -269 ° C. of 30% or more.
  • the component composition is further increased by mass%.
  • Cu 1.0% or less
  • Ni 1.0% or less
  • Mo 2.0% or less
  • V 2.0% or less
  • W 2.0% or less
  • Ca 0.0005% or more and 0.0050% or less
  • each of the above temperatures is the surface temperature of the steel material or the steel plate, respectively.
  • the steel of the present invention greatly contributes to the improvement of safety and life of steel structures used in extremely low temperature environments such as liquid hydrogen, liquid helium, and tanks for liquefied gas storage tanks, and has a remarkable industrial effect. Play. Further, since the production method of the present invention does not cause a decrease in productivity and an increase in production cost, it is possible to provide a method having excellent economic efficiency.
  • C 0.100% or more and 0.700% or less C is an inexpensive austenite stabilizing element and is an important element for obtaining austenite. In order to obtain the effect, C needs to be contained in an amount of 0.100% or more. On the other hand, if it is contained in excess of 0.700%, Cr carbides are excessively generated and the cryogenic toughness is lowered. Therefore, the amount of C is set to 0.100% or more and 0.700% or less.
  • the amount of C is preferably 0.200% or more, preferably 0.600% or less, and more preferably 0.200% or more and 0.600% or less.
  • Si acts as an antacid and is an element necessary for steelmaking, so it is preferable to add 0.05% or more.
  • Si is set to 1.00% or less.
  • the amount of Si is preferably 0.80% or less.
  • Mn 20.0% or more and 40.0% or less
  • Mn is a relatively inexpensive austenite stabilizing element, and is an important element for ensuring low temperature toughness in the present invention.
  • Mn needs to be contained in an amount of 20.0% or more.
  • the amount of Mn is set to 20.0% or more and 40.0% or less.
  • the amount of Mn is preferably 23.0% or more, preferably 38.0% or less, and more preferably 23.0% or more and 38.0% or less.
  • the amount of Mn is more preferably 36.0% or less.
  • P 0.030% or less If P is contained in excess of 0.030%, it segregates excessively at the grain boundaries, resulting in a decrease in cryogenic toughness. Therefore, it is desirable to limit the amount to 0.030% as much as possible. Therefore, P is 0.030% or less. It should be noted that excessive P reduction raises the refining cost and is economically disadvantageous, so it is desirable to set it to 0.002% or more.
  • the amount of P is more preferably 0.005% or more, preferably 0.028% or less, further preferably 0.005% or more and 0.028% or less, still more preferably 0.024% or less.
  • S 0.0070% or less Since S deteriorates the cryogenic toughness of the steel sheet, it is desirable to limit it to 0.0070% and reduce it as much as possible. Therefore, S is set to 0.0070% or less. It should be noted that excessive reduction of S increases the refining cost and is economically disadvantageous, so it is desirable to set it to 0.0010% or more.
  • the amount of S is preferably 0.0050% or less.
  • Al acts as a deoxidizing agent and is most widely used in the molten steel deoxidizing process of steel sheets. In order to obtain such an effect, Al needs to be contained in an amount of 0.01% or more. On the other hand, if the content exceeds 5.00%, a large amount of inclusions are present and the cryogenic toughness is deteriorated, so the content is set to 5.00% or less. Therefore, the amount of Al is set to 0.01% or more and 5.00% or less.
  • the amount of Al is preferably 0.02% or more, preferably 4.00% or less, and more preferably 0.02% or more and 4.00% or less.
  • Cr 0.5% or more and 7.0% or less
  • Cr is an element effective for improving cryogenic toughness because it improves grain boundary strength. In order to obtain such an effect, Cr needs to be contained in an amount of 0.5% or more. On the other hand, if it is contained in excess of 7.0%, the cryogenic toughness is lowered due to the formation of Cr carbides. Therefore, the amount of Cr is set to 0.5% or more and 7.0% or less.
  • the amount of Cr is preferably 1.0% or more, more preferably 1.2% or more, preferably 6.7% or less, more preferably 6.5% or less, and more preferably 1.0% or more and 6.7%. Hereinafter, it is more preferably 1.2% or more and 6.5% or less.
  • N is an austenite stabilizing element and is an element effective for improving cryogenic toughness. In order to obtain such an effect, N needs to be contained in an amount of 0.0050% or more. On the other hand, if it is contained in excess of 0.0500%, the nitride or carbonitride becomes coarse and the toughness decreases. Therefore, the amount of N is set to 0.0050% or more and 0.0500% or less.
  • the amount of N is preferably 0.0060% or more, preferably 0.0400% or less, and more preferably 0.0060% or more and 0.0400% or less.
  • O 0.0050% or less O deteriorates the cryogenic toughness due to the formation of oxides. Therefore, O is set to 0.0050% or less.
  • the amount of O is preferably 0.0045% or less. It is desirable that the amount of O is 0.0010% or more because excessive reduction of O increases the refining cost and is economically disadvantageous.
  • Ti and Nb form high melting point carbonitrides in steel, so excessive content reduces cryogenic toughness.
  • Ti and Nb are components that are inevitably mixed from raw materials and the like, and in most cases, Ti: more than 0.005% and 0.010% or less and Nb: more than 0.005% and 0.010% or less. To do. Therefore, it is necessary to intentionally limit the amount of Ti and Nb mixed in according to the method described later, and suppress the content of Ti and Nb to 0.005% or less, respectively. By suppressing the contents of Ti and Nb to 0.005% or less, the adverse effects of the above-mentioned carbonitride can be eliminated and excellent cryogenic toughness can be ensured.
  • the contents of Ti and Nb are 0.003% or less, respectively.
  • the contents of Ti and Nb may each be 0%, but excessive reduction is not preferable from the viewpoint of steelmaking cost, so it is desirable to set each to 0.001% or more.
  • the following elements can be contained, if necessary, in addition to the above essential elements.
  • Cu and Ni 1.0% or less respectively
  • Cu and Ni are elements that improve low temperature toughness.
  • the content thereof is preferably 1.0% or less, more preferably 0.7% or less, still more preferably 0.5% or less.
  • Mo, V, W 2.0% or less, respectively Mo, V and W contribute to the stabilization of austenite.
  • Mo, V and W are each preferably contained in an amount of 0.001% or more, and more preferably 0.003% or more.
  • each content exceeds 2.0%, coarse carbonitride is generated, which may be a starting point of fracture and puts pressure on the manufacturing cost. Therefore, when these alloying elements are contained, the content thereof is preferably 2.0% or less, and more preferably 1.7% or less.
  • the amounts of Mo, V, and W are more preferably 0.003% or more and 1.7% or less, and even more preferably 1.5% or less, respectively.
  • Ca 0.0005% or more and 0.0050% or less
  • Mg 0.0005% or more and 0.0050% or less
  • REM 0.0010% or more and 0.0200% or less
  • the morphological control of inclusions means that the expanded sulfide-based inclusions (mainly MnS) are made into granular inclusions. Toughness is improved by reducing MnS, which is the starting point of fracture, through morphological control of the inclusions.
  • Ca and Mg are each contained in an amount of 0.0005% or more and REM is contained in an amount of 0.0010% or more.
  • Ca and Mg are contained, it is preferably 0.0005% or more and 0.0050% or less, respectively, and when REM is contained, it is preferably 0.0010% or more and 0.0200% or less.
  • the amount of Ca is more preferably 0.0010% or more, more preferably 0.0040% or less, still more preferably 0.0010% or more and 0.0040% or less.
  • the amount of Mg is more preferably 0.0010% or more, more preferably 0.0040% or less, still more preferably 0.0010% or more and 0.0040% or less.
  • the amount of REM is more preferably 0.0020% or more, more preferably 0.0150% or less, still more preferably 0.0020% or more and 0.0150% or less.
  • REM refers to a rare earth metal, and is a general term for 17 elements in which Y and Sc are combined with 15 elements of lanthanoid, and one or more of these elements can be contained.
  • the REM content means the total content of these elements.
  • the rest other than the above-mentioned components is a component composition containing iron and unavoidable impurities.
  • the unavoidable impurities include H and B, and a total of 0.01% or less is acceptable.
  • the steel material may cause brittle fracture in an extremely low temperature environment, so it is suitable for use in an extremely low temperature environment. Is not suitable.
  • the matrix phase of the steel material preferably has an austenite structure in which the crystal structure is a face-centered cubic structure (fcc).
  • "using austenite as a base phase” means that the austenite phase has an area ratio of 90% or more, and more preferably 95% or more. The rest other than the austenite phase is a ferrite phase or a martensite phase.
  • the average crystal grain size in the microstructure is 80 ⁇ m or more.
  • the absorbed energy can be 150 J or more.
  • the crystal grains in the present specification mainly refer to austenite grains, and the average crystal grain size is calculated by randomly selecting 100 crystal grains from an image taken at 200 times using an optical microscope and calculating the equivalent diameter of a circle. , Can be obtained from the average value.
  • the above average crystal grain size can be realized by performing hot rolling and heat treatment according to the conditions described later under the above component composition.
  • molten steel having the above-mentioned composition can be melted by a known melting method such as a converter or an electric furnace. Further, the secondary refining may be performed in a vacuum degassing furnace. At that time, in order to limit Ti and Nb, which hinder suitable tissue control, to the above-mentioned range, it is necessary to avoid inevitably mixing from raw materials and take measures to reduce their contents. .. For example, by lowering the basicity of the slag in the refining step, these alloys can be concentrated and discharged into the slag to reduce the concentrations of Ti and Nb in the final slab product.
  • a method such as blowing oxygen to oxidize the alloy and floating and separating the alloy of Ti and Nb at reflux may be used.
  • a known casting method such as a continuous casting method, an ingot-block rolling method, or the like to obtain a steel material such as a slab having a predetermined size.
  • Heating temperature of steel material 1100 ° C or higher and 1300 ° C or lower
  • the temperature control is based on the surface temperature of the steel material.
  • Mn In order to exert the above-mentioned effect of Mn, it is important to diffuse Mn in the steel. That is, in order to promote the diffusion of Mn in hot rolling, the heating temperature of the steel material before hot rolling is set to 1100 ° C. or higher.
  • the heating temperature of the steel material is preferably 1130 ° C. or higher, preferably 1270 ° C. or lower, and more preferably 1130 ° C. or higher and 1270 ° C. or lower.
  • Hot rolling is performed after heating the steel material.
  • the method of hot rolling is not particularly limited, but the lower the finishing temperature in finish rolling, the lower the rolling efficiency. Therefore, the temperature is preferably 700 ° C. or higher. Further, it is preferably 750 ° C. or higher.
  • the temperature range for reheating is set to 1100 ° C or higher and 1300 ° C or lower for the following reasons. That is, in order to diffuse Mn in the heat treatment, the heating temperature at the time of reheating in the heat treatment is set to 1100 ° C. or higher. On the other hand, if the temperature exceeds 1300 ° C., there is a concern that the steel will start melting, so the upper limit of the heating temperature at the time of reheating is set to 1300 ° C.
  • the product of the heating temperature (° C.) and the heating time (h) is defined because there is a correlation between grain growth and dislocation recovery. Further, the product of the heating temperature and the heating time is preferably an upper limit value of 650 ° C. ⁇ h for the reason of manufacturing cost, and a lower limit value of 208 ° C. ⁇ h is preferable for the reason of coarsening all crystal grains.
  • the heating temperature at the time of reheating in the heat treatment is preferably 1130 ° C. or higher, preferably 1270 ° C. or lower, and more preferably 1130 ° C. or higher and 1270 ° C. or lower.
  • the heating time is preferably 0.1 h or more in order to promote grain growth, preferably 0.5 h or less, and more preferably 0.1 h or more and 0.5 h or less in order to suppress a decrease in production efficiency. After the heat treatment, it is cooled.
  • Cooling treatments may be performed after hot rolling and / or after heat treatment. This is to suppress the precipitation of carbides.
  • the cooling temperature range is preferably 300 to 650 ° C and 300 to 900 ° C, respectively, and the average cooling rate is preferably 1.0 ° C / s or more, respectively.
  • a steel slab (steel material) having the composition shown in Table 1 was prepared by a converter-ladle refining-continuous casting method.
  • the obtained steel slab was hot-rolled to obtain a steel plate having a thickness of 6 to 30 mm.
  • the heating temperature at the time of reheating in the heat treatment was set to the same temperature as the heating temperature of the steel material for each sample.
  • the structure of the obtained steel sheet and the mechanical property evaluation of cryogenic toughness and tensile properties were carried out as follows.
  • “finishing temperature at the time of finish rolling” indicates the finish rolling end temperature.
  • the area ratio of each phase of the microstructure was determined from the Phase map of backscattered electron diffraction (EBSD) analysis.
  • EBSD analysis test pieces were collected from a cross section parallel to the rolling direction at a plate thickness of 1/2 of the obtained steel sheet, and EBSD analysis was performed in a measurement step of 0.3 ⁇ m in a field of view of 500 ⁇ m ⁇ 200 ⁇ m to perform Phase map.
  • the value described in 1 was taken as the area ratio.
  • the area ratio of the austenite phase was 90% or more in all of the invention examples and the comparative examples, and it was confirmed that the matrix phase was austenite.
  • the cross section in the rolling direction was polished, and 100 crystal grains were randomly selected from the images taken at the plate thickness 1/2 position at a magnification of 200 times using an optical microscope.
  • the average crystal grain size as the average grain size was determined from the equivalent circle diameter.
  • a 5 mm sub-sized Charpy V notch test piece is used in accordance with the provisions of JIS Z 2242 (2005) from the direction parallel to the rolling direction at the plate thickness 1/2 position.
  • the samples were sampled and three Charpy impact tests were performed on each steel sheet at -196 ° C and -269 ° C.
  • the average value of the absorbed energies of the three pieces is 100 J or more, which is excellent in the toughness of the base material.
  • the Charpy impact test at -269 ° C. was carried out by putting the test piece in a capsule and flowing liquid helium.
  • Reference 1 T. Ogata, K. Hiraga, K. Nagai, and K. Ishikawa: Tetsu-to-Hagane, 69 (1983), 641.
  • the steel according to the present invention satisfies the above-mentioned target performance (the average value of absorbed energy in the Charpy impact test is 150 J or more, and the total elongation in the tensile test is 30% or more).
  • the average value of absorbed energy in the Charpy impact test is 150 J or more
  • the total elongation in the tensile test is 30% or more.
  • any one or more of the absorbed energy and the total elongation does not satisfy the above-mentioned target performance.

Abstract

This steel has a component composition containing, in terms of mass%, 0.100-0.700% of C, 1.00% or less of Si, 20.0-40.0% of Mn, 0.030% or less of P, 0.0070% or less of S, 0.01-5.00% of Al, 0.5-7.0% of Cr, 0.0050-0.0500% of N, 0.0050% or less of O, 0.005% or less of Ti, and 0.005% or less of Nb, the balance being Fe and unavoidable impurities, the steel moreover having austenite as a base phase, having a micro structure that has an average grain diameter of 80 μm or greater, being such that the absroption energy in a Charpy impact test at -269°C is 150 J or higher, and the total elongation in a tension test at -269°C is 30% or higher.

Description

鋼およびその製造方法Steel and its manufacturing method
 本発明は、例えば液体水素を貯槽するタンクをはじめ、液体ヘリウム、液化ガス等の、極めて低温の環境で使用される構造用鋼に供して好適な、特に極低温での靭性に優れた鋼およびその製造方法に関する。 The present invention is suitable for structural steels used in extremely low temperature environments, such as tanks for storing liquid hydrogen, liquid helium, liquefied gas, etc., and steels having excellent toughness particularly at extremely low temperatures. Regarding the manufacturing method.
 液体水素、液体ヘリウム、液化ガス貯槽用構造物に熱間圧延鋼板を用いるには、使用環境が極めて低温となるため、極低温での靱性に優れることが要求される。例えば、液体ヘリウムの貯槽に熱間圧延鋼板を使用する場合は、ヘリウムの沸点である-269℃以下の温度において優れた靱性が確保されている必要がある。鋼材の極低温靱性が劣ると、極低温貯槽用構造物としての安全性を維持できなくなる可能性があるため、この用途に供する鋼材の極低温靱性の向上に対する要求は強い。 In order to use hot-rolled steel sheets for structures for liquid hydrogen, liquid helium, and liquefied gas storage tanks, the usage environment is extremely low, so excellent toughness at extremely low temperatures is required. For example, when a hot-rolled steel sheet is used in a liquid helium storage tank, it is necessary to ensure excellent toughness at a temperature of -269 ° C. or lower, which is the boiling point of helium. If the cryogenic toughness of the steel material is inferior, it may not be possible to maintain the safety of the structure for the cryogenic storage tank. Therefore, there is a strong demand for improving the cryogenic toughness of the steel material used for this application.
 この要求に対して、従来、極低温で脆性を示さないオーステナイトを鋼板の組織とするオーステナイト系ステンレス鋼が使用されてきた。しかしながら、合金コストや製造コストが高いことから、安価で極低温靱性に優れる鋼材に対する要望がある。 In response to this requirement, austenite-based stainless steel having a steel plate structure of austenite that does not show brittleness at extremely low temperatures has been conventionally used. However, since the alloy cost and the manufacturing cost are high, there is a demand for an inexpensive steel material having excellent cryogenic toughness.
 そこで、従来の低温用鋼に代わる新たな鋼材として、オーステナイト安定化元素であるNiを多量に添加した高Ni鋼を-253℃環境の構造用鋼として使用することが、例えば特許文献1に提案されている。 Therefore, as a new steel material to replace the conventional low-temperature steel, it is proposed in Patent Document 1, for example, to use a high Ni steel to which a large amount of Ni, which is an austenite stabilizing element, is added as a structural steel in an environment of -253 ° C. Has been done.
 特許文献1には、旧オーステナイトの粒径及び形態を制御する等で極低温靱性を確保する技術が提案されている。 Patent Document 1 proposes a technique for ensuring cryogenic toughness by controlling the particle size and morphology of old austenite.
特開2018-104792号公報JP-A-2018-104792
 特許文献1に記載の技術によって、極低温靭性に優れた高Ni鋼の提供が可能であるが、ここに記載の高Ni鋼は極低温靭性を確保する観点からNiを12.5%以上含有しなければならず、素材コストの低減が求められていた。さらに、オーステナイト相の確保等のため、再加熱焼入れ、中間熱処理、焼戻し等、複数工程にわたる熱処理を行う必要があるため、製造コストが高いことも問題であった。 The technique described in Patent Document 1 makes it possible to provide high Ni steel having excellent ultra-low temperature toughness, but the high Ni steel described here contains 12.5% or more of Ni from the viewpoint of ensuring extremely low temperature toughness. There was a need to reduce material costs. Further, in order to secure the austenite phase, it is necessary to perform heat treatment over a plurality of steps such as reheating quenching, intermediate heat treatment, and tempering, which is also a problem that the manufacturing cost is high.
 そこで、本発明は、素材や製造に要するコストを抑えることのできる、極低温靱性および引張特性に優れた鋼を提供することを目的とする。さらに、本発明は、かような鋼を製造するための有利な方法について提案することを目的とする。ここで、前記「極低温靭性に優れた」とは、-196℃、さらには、-269℃におけるシャルピー衝撃試験の吸収エネルギーが150J以上であることをいう。また、前記「引張特性に優れた」とは、-269℃における引張試験の全伸び30%以上であることをいう。 Therefore, an object of the present invention is to provide a steel having excellent ultra-low temperature toughness and tensile properties, which can suppress the material and the cost required for manufacturing. Furthermore, it is an object of the present invention to propose an advantageous method for producing such steel. Here, the above-mentioned "excellent in cryogenic toughness" means that the absorbed energy of the Charpy impact test at -196 ° C. and further -269 ° C. is 150 J or more. Further, the above-mentioned "excellent in tensile properties" means that the total elongation of the tensile test at -269 ° C. is 30% or more.
 発明者らは、上記課題を達成するため、20.0%以上とMn含有量が比較的多い鋼を対象に、鋼板の成分組成および組織を決定する各種要因に関して鋭意研究を行い、以下のa、bの知見を得た。 In order to achieve the above problems, the inventors have conducted intensive research on various factors that determine the composition and structure of the steel sheet for steels having a relatively high Mn content of 20.0% or more, and the following a , B was obtained.
a.上記のオーステナイト鋼における脆性破壊の主形態として、結晶粒界を起点とした粒界破壊が挙げられる。このことから、上記の鋼の極低温靱性向上には、結晶粒径を粗大にすることが有効である。 a. As the main form of brittle fracture in the above-mentioned austenitic steel, grain boundary fracture starting from grain boundaries can be mentioned. From this, it is effective to make the crystal grain size coarse in order to improve the extremely low temperature toughness of the steel.
b.適切な成分組成のもと、適切な条件で熱間圧延および熱処理を行えば、最小限の熱処理回数で極低温靭性および引張特性の向上を実現でき、製造コストを抑えることができる。 b. If hot rolling and heat treatment are performed under appropriate conditions under an appropriate composition, the cryogenic toughness and tensile properties can be improved with the minimum number of heat treatments, and the manufacturing cost can be suppressed.
 本発明は、以上の知見にさらに検討を加えてなされたものであり、その要旨は次のとおりである。
1.質量%で、
 C:0.100%以上0.700%以下、
 Si:1.00%以下、
 Mn:20.0%以上40.0%以下、
 P:0.030%以下、
 S:0.0070%以下、
 Al:0.01%以上5.00%以下、
 Cr:0.5%以上7.0%以下、
 N:0.0050%以上0.0500%以下、
 O:0.0050%以下、
 Ti:0.005%以下および
 Nb:0.005%以下
 を含み、残部がFeおよび不可避的不純物の成分組成を有し、
 オーステナイトを基地相とするミクロ組織を有し、
 該ミクロ組織の平均粒径が80μm以上であり、-269℃でのシャルピー衝撃試験の吸収エネルギーが150J以上であり、-269℃での引張試験の全伸びが30%以上である、鋼。
The present invention has been made by further studying the above findings, and the gist thereof is as follows.
1. 1. By mass%
C: 0.100% or more and 0.700% or less,
Si: 1.00% or less,
Mn: 20.0% or more and 40.0% or less,
P: 0.030% or less,
S: 0.0070% or less,
Al: 0.01% or more and 5.00% or less,
Cr: 0.5% or more and 7.0% or less,
N: 0.0050% or more and 0.0500% or less,
O: 0.0050% or less,
It contains Ti: 0.005% or less and Nb: 0.005% or less, and the balance has a component composition of Fe and unavoidable impurities.
It has a microstructure with austenite as the base phase,
A steel having an average particle size of 80 μm or more, an absorption energy of Charpy impact test at -269 ° C. of 150 J or more, and a total elongation of tensile test at -269 ° C. of 30% or more.
2.前記成分組成は、さらに、質量%で、
 Cu:1.0%以下、
 Ni:1.0%以下、
 Mo:2.0%以下、
 V:2.0%以下、
 W:2.0%以下、
 Ca:0.0005%以上0.0050%以下、
 Mg:0.0005%以上0.0050%以下および
 REM:0.0010%以上0.0200%以下
のうちから選ばれる1種以上を含有する前記1に記載の鋼。
2. 2. The component composition is further increased by mass%.
Cu: 1.0% or less,
Ni: 1.0% or less,
Mo: 2.0% or less,
V: 2.0% or less,
W: 2.0% or less,
Ca: 0.0005% or more and 0.0050% or less,
The steel according to 1 above, which contains at least one selected from Mg: 0.0005% or more and 0.0050% or less and REM: 0.0010% or more and 0.0200% or less.
3.前記1または2に記載の成分組成を有する鋼素材を、
 1100℃以上1300℃以下の温度域に加熱し、
 熱間圧延を行い、
 1100℃以上1300℃以下の温度域まで再度加熱して、
 加熱温度(℃)と加熱時間(h)との積が100℃・h以上となる熱処理を施す、鋼の製造方法。
3. 3. A steel material having the component composition according to 1 or 2 above.
Heat to a temperature range of 1100 ° C or higher and 1300 ° C or lower,
Hot rolling,
Reheat to a temperature range of 1100 ° C or higher and 1300 ° C or lower,
A method for producing steel, which comprises performing a heat treatment in which the product of a heating temperature (° C.) and a heating time (h) is 100 ° C. · h or more.
 ここで、前記の各温度は、それぞれ鋼素材または鋼板の表面温度である。 Here, each of the above temperatures is the surface temperature of the steel material or the steel plate, respectively.
 本発明によれば、極低温靭性および引張特性に優れた鋼を提供できる。したがって、本発明の鋼は、液体水素、液体ヘリウム、液化ガス貯槽用タンク等の、極低温環境で使用される鋼構造物の安全性や寿命の向上に大きく寄与し、産業上格段の効果を奏する。また、本発明の製造方法では、生産性の低下および製造コストの増大を引き起こすことがないため、経済性に優れた方法を提供することができる。 According to the present invention, it is possible to provide a steel having excellent cryogenic toughness and tensile properties. Therefore, the steel of the present invention greatly contributes to the improvement of safety and life of steel structures used in extremely low temperature environments such as liquid hydrogen, liquid helium, and tanks for liquefied gas storage tanks, and has a remarkable industrial effect. Play. Further, since the production method of the present invention does not cause a decrease in productivity and an increase in production cost, it is possible to provide a method having excellent economic efficiency.
本発明の成分組成を満たす鋼の平均結晶粒径(平均粒径)と-269℃での吸収エネルギーとの関係を示すグラフである。It is a graph which shows the relationship between the average crystal grain size (average particle size) of the steel satisfying the component composition of this invention, and the absorbed energy at -269 ° C.
以下、本発明の鋼について詳しく説明する。
[成分組成]
 まず、本発明の鋼の成分組成とその限定理由について説明する。なお、成分組成における「%」表示は、特に断らない限り「質量%」を意味するものとする。
Hereinafter, the steel of the present invention will be described in detail.
[Ingredient composition]
First, the component composition of the steel of the present invention and the reason for its limitation will be described. The "%" indication in the component composition shall mean "mass%" unless otherwise specified.
C:0.100%以上0.700%以下
 Cは、安価なオーステナイト安定化元素であり、オーステナイトを得るために重要な元素である。その効果を得るために、Cは0.100%以上の含有を必要とする。一方、0.700%を超えて含有すると、Cr炭化物が過度に生成され、極低温靱性が低下する。このため、C量は0.100%以上0.700%以下とする。C量は、0.200%以上が好ましく、0.600%以下が好ましく、より好ましくは、0.200%以上0.600%以下とする。
C: 0.100% or more and 0.700% or less C is an inexpensive austenite stabilizing element and is an important element for obtaining austenite. In order to obtain the effect, C needs to be contained in an amount of 0.100% or more. On the other hand, if it is contained in excess of 0.700%, Cr carbides are excessively generated and the cryogenic toughness is lowered. Therefore, the amount of C is set to 0.100% or more and 0.700% or less. The amount of C is preferably 0.200% or more, preferably 0.600% or less, and more preferably 0.200% or more and 0.600% or less.
Si:1.00%以下
 Siは、脱酸剤として作用し、製鋼上必要な元素であるため、0.05%以上添加することが好ましい。一方、1.00%を超えて含有すると、非熱的応力(内部応力)が過度に上昇するため、極低温靱性が劣化する。このため、Siは1.00%以下とする。Si量は、好ましくは0.80%以下とする。
Si: 1.00% or less Si acts as an antacid and is an element necessary for steelmaking, so it is preferable to add 0.05% or more. On the other hand, if it is contained in excess of 1.00%, the non-thermal stress (internal stress) increases excessively, so that the cryogenic toughness deteriorates. Therefore, Si is set to 1.00% or less. The amount of Si is preferably 0.80% or less.
Mn:20.0%以上40.0%以下
 Mnは、比較的安価なオーステナイト安定化元素であり、本発明では、低温靱性を確保するために重要な元素である。その効果を得るために、Mnは20.0%以上の含有を必要とする。一方、40.0%を超えて含有した場合、極低温靱性が劣化する。このため、Mn量は20.0%以上40.0%以下とする。Mn量は、23.0%以上が好ましく、38.0%以下が好ましく、より好ましくは、23.0%以上38.0%以下とする。Mn量は、36.0%以下が更に好ましい。
Mn: 20.0% or more and 40.0% or less Mn is a relatively inexpensive austenite stabilizing element, and is an important element for ensuring low temperature toughness in the present invention. In order to obtain the effect, Mn needs to be contained in an amount of 20.0% or more. On the other hand, if it is contained in excess of 40.0%, the cryogenic toughness deteriorates. Therefore, the amount of Mn is set to 20.0% or more and 40.0% or less. The amount of Mn is preferably 23.0% or more, preferably 38.0% or less, and more preferably 23.0% or more and 38.0% or less. The amount of Mn is more preferably 36.0% or less.
P:0.030%以下
 Pは、0.030%を超えて含有すると、過度に粒界に偏析するため、極低温靱性が低下する。このため、0.030%を上限とし、可能なかぎり低減することが望ましい。したがって、Pは0.030%以下とする。尚、過度のP低減は精錬コストを高騰させ経済的に不利となるため、0.002%以上とすることが望ましい。P量は、0.005%以上がより好ましく、0.028%以下が好ましく、更に好ましくは、0.005%以上0.028%以下、一層好ましくは0.024%以下とする。
P: 0.030% or less If P is contained in excess of 0.030%, it segregates excessively at the grain boundaries, resulting in a decrease in cryogenic toughness. Therefore, it is desirable to limit the amount to 0.030% as much as possible. Therefore, P is 0.030% or less. It should be noted that excessive P reduction raises the refining cost and is economically disadvantageous, so it is desirable to set it to 0.002% or more. The amount of P is more preferably 0.005% or more, preferably 0.028% or less, further preferably 0.005% or more and 0.028% or less, still more preferably 0.024% or less.
S:0.0070%以下
 Sは、鋼板の極低温靭性を劣化させるため、0.0070%を上限とし、可能なかぎり低減することが望ましい。したがって、Sは0.0070%以下とする。尚、過度のSの低減は精錬コストを高騰させ経済的に不利となるため、0.0010%以上とすることが望ましい。S量は、好ましくは、0.0050%以下とする。
S: 0.0070% or less Since S deteriorates the cryogenic toughness of the steel sheet, it is desirable to limit it to 0.0070% and reduce it as much as possible. Therefore, S is set to 0.0070% or less. It should be noted that excessive reduction of S increases the refining cost and is economically disadvantageous, so it is desirable to set it to 0.0010% or more. The amount of S is preferably 0.0050% or less.
Al:0.01%以上5.00%以下
 Alは、脱酸剤として作用し、鋼板の溶鋼脱酸プロセスに於いて、もっとも汎用的に使われる。このような効果を得るためには、Alは0.01%以上の含有を必要とする。一方、5.00%を超えて含有すると、介在物が多量に存在し、極低温靭性を劣化させるため、5.00%以下とする。このため、Al量は0.01%以上5.00%以下とする。Al量は、0.02%以上が好ましく、4.00%以下が好ましく、より好ましくは0.02%以上4.00%以下とする。
Al: 0.01% or more and 5.00% or less Al acts as a deoxidizing agent and is most widely used in the molten steel deoxidizing process of steel sheets. In order to obtain such an effect, Al needs to be contained in an amount of 0.01% or more. On the other hand, if the content exceeds 5.00%, a large amount of inclusions are present and the cryogenic toughness is deteriorated, so the content is set to 5.00% or less. Therefore, the amount of Al is set to 0.01% or more and 5.00% or less. The amount of Al is preferably 0.02% or more, preferably 4.00% or less, and more preferably 0.02% or more and 4.00% or less.
Cr:0.5%以上7.0%以下
 Crは、粒界強度を向上させるため、極低温靱性の向上に有効な元素である。このような効果を得るためには、Crは0.5%以上の含有を必要とする。一方、7.0%を超えて含有すると、Cr炭化物の生成により、極低温靭性が低下する。このため、Cr量は0.5%以上7.0%以下とする。Cr量は、1.0%以上が好ましく、1.2%以上がより好ましく、6.7%以下が好ましく、6.5%以下がより好ましく、より好ましくは1.0%以上6.7%以下、更に好ましくは1.2%以上6.5%以下とする。
Cr: 0.5% or more and 7.0% or less Cr is an element effective for improving cryogenic toughness because it improves grain boundary strength. In order to obtain such an effect, Cr needs to be contained in an amount of 0.5% or more. On the other hand, if it is contained in excess of 7.0%, the cryogenic toughness is lowered due to the formation of Cr carbides. Therefore, the amount of Cr is set to 0.5% or more and 7.0% or less. The amount of Cr is preferably 1.0% or more, more preferably 1.2% or more, preferably 6.7% or less, more preferably 6.5% or less, and more preferably 1.0% or more and 6.7%. Hereinafter, it is more preferably 1.2% or more and 6.5% or less.
N:0.0050%以上0.0500%以下
 Nは、オーステナイト安定化元素であり、極低温靱性向上に有効な元素である。このような効果を得るためには、Nは0.0050%以上の含有を必要とする。一方、0.0500%を超えて含有すると、窒化物または炭窒化物が粗大化し、靭性が低下する。このため、N量は0.0050%以上0.0500%以下とする。N量は、0.0060%以上が好ましく、0.0400%以下が好ましく、より好ましくは0.0060%以上0.0400%以下とする。
N: 0.0050% or more and 0.0500% or less N is an austenite stabilizing element and is an element effective for improving cryogenic toughness. In order to obtain such an effect, N needs to be contained in an amount of 0.0050% or more. On the other hand, if it is contained in excess of 0.0500%, the nitride or carbonitride becomes coarse and the toughness decreases. Therefore, the amount of N is set to 0.0050% or more and 0.0500% or less. The amount of N is preferably 0.0060% or more, preferably 0.0400% or less, and more preferably 0.0060% or more and 0.0400% or less.
O:0.0050%以下
 Oは、酸化物の形成により極低温靱性を劣化させる。このため、Oは0.0050%以下とする。O量は、好ましくは0.0045%以下である。尚、過度のOの低減は精錬コストを高騰させ経済的に不利となるため、O量を0.0010%以上とすることが望ましい。
O: 0.0050% or less O deteriorates the cryogenic toughness due to the formation of oxides. Therefore, O is set to 0.0050% or less. The amount of O is preferably 0.0045% or less. It is desirable that the amount of O is 0.0010% or more because excessive reduction of O increases the refining cost and is economically disadvantageous.
TiおよびNbの含有量を各々0.005%以下に抑制
 TiおよびNbは、鋼中で高融点の炭窒化物を形成するため、過度の含有は極低温靭性を低下させる。TiおよびNbは、原材料などから不可避的に混入する成分であり、ほとんどの場合、Ti:0.005%超0.010%以下およびNb:0.005%超0.010%以下の範囲で混入する。そこで、後述する手法に従って、TiおよびNbの混入量を意図的に制限し、TiおよびNbの含有量を各々0.005%以下に抑制する必要がある。TiおよびNbの含有量を各々0.005%以下に抑制することによって、上記した炭窒化物の悪影響を排除し、優れた極低温靭性を確保することができる。好ましくは、TiおよびNbの含有量を各々0.003%以下とする。勿論、TiおよびNbの含有量は各々0%であってもよいが、過度の低減は製鋼コストの観点から好ましくないため、それぞれ0.001%以上とすることが望ましい。
Suppressing Ti and Nb content to 0.005% or less, respectively Ti and Nb form high melting point carbonitrides in steel, so excessive content reduces cryogenic toughness. Ti and Nb are components that are inevitably mixed from raw materials and the like, and in most cases, Ti: more than 0.005% and 0.010% or less and Nb: more than 0.005% and 0.010% or less. To do. Therefore, it is necessary to intentionally limit the amount of Ti and Nb mixed in according to the method described later, and suppress the content of Ti and Nb to 0.005% or less, respectively. By suppressing the contents of Ti and Nb to 0.005% or less, the adverse effects of the above-mentioned carbonitride can be eliminated and excellent cryogenic toughness can be ensured. Preferably, the contents of Ti and Nb are 0.003% or less, respectively. Of course, the contents of Ti and Nb may each be 0%, but excessive reduction is not preferable from the viewpoint of steelmaking cost, so it is desirable to set each to 0.001% or more.
 本発明では、低温靱性をさらに向上させることを目的として、上記の必須元素に加えて、必要に応じて下記の元素を含有することができる。
Cu:1.0%以下、Ni:1.0%以下、Mo:2.0%以下、V:2.0%以下、W:2.0%以下、Ca:0.0005%以上0.0050%以下、Mg:0.0005%以上0.0050%以下、REM:0.0010%以上0.0200%以下のうちから選ばれる1種以上
In the present invention, for the purpose of further improving low temperature toughness, the following elements can be contained, if necessary, in addition to the above essential elements.
Cu: 1.0% or less, Ni: 1.0% or less, Mo: 2.0% or less, V: 2.0% or less, W: 2.0% or less, Ca: 0.0005% or more 0.0050 % Or less, Mg: 0.0005% or more and 0.0050% or less, REM: 0.0010% or more and 0.0200% or less.
Cu、Ni:各々1.0%以下
 CuおよびNiは、低温靱性を向上させる元素である。このような効果を得るためには、CuおよびNiは各々0.01%以上で含有することが好まししく、0.03%以上で含有することがより好ましい。一方、各々1.0%を超えて含有すると、圧延時に表面性状が劣化する他、製造コストを圧迫する。このため、これらの合金元素を含有する場合は、その含有量は各々1.0%以下とすることが好ましく、0.7%以下がより好ましく、0.5%以下が更に好ましい。
Cu and Ni: 1.0% or less respectively Cu and Ni are elements that improve low temperature toughness. In order to obtain such an effect, it is preferable that Cu and Ni are each contained in an amount of 0.01% or more, and more preferably 0.03% or more. On the other hand, if each content exceeds 1.0%, the surface texture deteriorates during rolling and the manufacturing cost is reduced. Therefore, when these alloying elements are contained, the content thereof is preferably 1.0% or less, more preferably 0.7% or less, still more preferably 0.5% or less.
Mo、V、W:各々2.0%以下
 Mo、VおよびWは、オーステナイトの安定化に寄与する。このような効果を得るためには、Mo、VおよびWは各々0.001%以上で含有することが好ましく、0.003%以上で含有することがより好ましい。一方、各々2.0%を超えて含有すると、粗大な炭窒化物が生成し、破壊の起点となることがある他、製造コストを圧迫する。このため、これらの合金元素を含有する場合は、その含有量は各々2.0%以下とすることが好ましく、1.7%以下とすることがより好ましい。Mo、V、Wの量は、更に好ましくは各々0.003%以上1.7%以下、一層好ましくは各々1.5%以下とする。
Mo, V, W: 2.0% or less, respectively Mo, V and W contribute to the stabilization of austenite. In order to obtain such an effect, Mo, V and W are each preferably contained in an amount of 0.001% or more, and more preferably 0.003% or more. On the other hand, if each content exceeds 2.0%, coarse carbonitride is generated, which may be a starting point of fracture and puts pressure on the manufacturing cost. Therefore, when these alloying elements are contained, the content thereof is preferably 2.0% or less, and more preferably 1.7% or less. The amounts of Mo, V, and W are more preferably 0.003% or more and 1.7% or less, and even more preferably 1.5% or less, respectively.
Ca:0.0005%以上0.0050%以下、Mg:0.0005%以上0.0050%以下、REM:0.0010%以上0.0200%以下
 Ca、MgおよびREMは、介在物の形態制御に有用な元素であり、必要に応じて含有できる。介在物の形態制御とは、展伸した硫化物系介在物(主にMnS)を粒状の介在物とすることをいう。この介在物の形態制御を介して、破壊の起点となるMnSを減らすことにより、靭性を向上させる。このような効果を得るためには、Ca、Mgは各々0.0005%以上、REMは0.0010%以上含有することが好ましい。一方、いずれの元素も多く含有させると、非金属介在物量が増加し、かえって靭性が低下する場合がある。また、経済的に不利になる場合がある。
 このため、CaおよびMgを含有する場合には、それぞれ0.0005%以上0.0050%以下、REMを含有する場合には、0.0010%以上0.0200%以下とすることが好ましい。Ca量は、0.0010%以上がより好ましく、0.0040%以下がより好ましく、更に好ましくは0.0010%以上0.0040%以下とする。Mg量は、0.0010%以上がより好ましく、0.0040%以下がより好ましく、更に好ましくは0.0010%以上0.0040%以下とする。REM量は、0.0020%以上がより好ましく、0.0150%以下がより好ましく、更に好ましくは0.0020%以上0.0150%以下とする。
 なお、REMとは、希土類金属のことを指し、ランタノイドの15元素にYおよびScを合わせた17元素の総称であり、これらの元素のうちの1種または2種以上を含有させることができる。なお、REMの含有量はこれらの元素の合計含有量を意味する。
Ca: 0.0005% or more and 0.0050% or less, Mg: 0.0005% or more and 0.0050% or less, REM: 0.0010% or more and 0.0200% or less Ca, Mg and REM control the morphology of inclusions. It is a useful element and can be contained as needed. The morphological control of inclusions means that the expanded sulfide-based inclusions (mainly MnS) are made into granular inclusions. Toughness is improved by reducing MnS, which is the starting point of fracture, through morphological control of the inclusions. In order to obtain such an effect, it is preferable that Ca and Mg are each contained in an amount of 0.0005% or more and REM is contained in an amount of 0.0010% or more. On the other hand, if a large amount of any of the elements is contained, the amount of non-metal inclusions may increase and the toughness may decrease. It may also be economically disadvantageous.
Therefore, when Ca and Mg are contained, it is preferably 0.0005% or more and 0.0050% or less, respectively, and when REM is contained, it is preferably 0.0010% or more and 0.0200% or less. The amount of Ca is more preferably 0.0010% or more, more preferably 0.0040% or less, still more preferably 0.0010% or more and 0.0040% or less. The amount of Mg is more preferably 0.0010% or more, more preferably 0.0040% or less, still more preferably 0.0010% or more and 0.0040% or less. The amount of REM is more preferably 0.0020% or more, more preferably 0.0150% or less, still more preferably 0.0020% or more and 0.0150% or less.
In addition, REM refers to a rare earth metal, and is a general term for 17 elements in which Y and Sc are combined with 15 elements of lanthanoid, and one or more of these elements can be contained. The REM content means the total content of these elements.
 上記した成分以外の残部は鉄および不可避的不純物を有する成分組成である。ここでの不可避的不純物としては、H、Bなどが挙げられ、合計で0.01%以下であれば許容できる。 The rest other than the above-mentioned components is a component composition containing iron and unavoidable impurities. Examples of the unavoidable impurities here include H and B, and a total of 0.01% or less is acceptable.
[組織]
オーステナイトを基地相とするミクロ組織
 鋼材の結晶構造が体心立方構造(bcc)である場合、該鋼材は極低温環境下で脆性破壊を起こす可能性があるため、極低温環境下での使用には適していない。ここに、極低温環境下での使用を想定したとき、鋼材の基地相は、結晶構造が面心立方構造(fcc)であるオーステナイト組織であることが好ましい。なお、「オーステナイトを基地相とする」とは、オーステナイト相が面積率で90%以上であることを意味し、さらに好ましくは95%以上である。オーステナイト相以外の残部は、フェライト相またはマルテンサイト相である。
[Organization]
Microstructure with austenite as the base phase When the crystal structure of the steel material is a body-centered cubic structure (bcc), the steel material may cause brittle fracture in an extremely low temperature environment, so it is suitable for use in an extremely low temperature environment. Is not suitable. Here, assuming use in an extremely low temperature environment, the matrix phase of the steel material preferably has an austenite structure in which the crystal structure is a face-centered cubic structure (fcc). In addition, "using austenite as a base phase" means that the austenite phase has an area ratio of 90% or more, and more preferably 95% or more. The rest other than the austenite phase is a ferrite phase or a martensite phase.
ミクロ組織における平均結晶粒径が80μm以上
 平均結晶粒径とシャルピー衝撃試験の吸収エネルギーとの関係を検証した結果、図1に示すように、本発明の他の条件を満たし、さらに平均結晶粒径を80μm以上とすれば、前記吸収エネルギーを150J以上とすることができる。ここで、本明細書における結晶粒は主としてオーステナイト粒を指し、平均結晶粒径は光学顕微鏡を用いて200倍で撮影した画像から無作為に100個の結晶粒を選び、円相当径で算出し、その平均値により求めることができる。
The average crystal grain size in the microstructure is 80 μm or more. As a result of verifying the relationship between the average crystal grain size and the absorbed energy of the Charpy impact test, as shown in FIG. 1, other conditions of the present invention are satisfied, and the average crystal grain size is further satisfied. If the value is 80 μm or more, the absorbed energy can be 150 J or more. Here, the crystal grains in the present specification mainly refer to austenite grains, and the average crystal grain size is calculated by randomly selecting 100 crystal grains from an image taken at 200 times using an optical microscope and calculating the equivalent diameter of a circle. , Can be obtained from the average value.
 上記の平均結晶粒径は、上記した成分組成の下、後述する条件に従う熱間圧延および熱処理を行うことによって実現することができる。 The above average crystal grain size can be realized by performing hot rolling and heat treatment according to the conditions described later under the above component composition.
 本発明に係る鋼は、上記した成分組成を有する溶鋼を、転炉、電気炉等、公知の溶製方法で溶製することができる。また、真空脱ガス炉にて2次精錬を行ってもよい。その際、好適な組織制御の妨げとなるTiおよびNbを上述の範囲に制限するために、原料などから不可避的に混入することを回避し、これらの含有量を低減する措置を取る必要がある。例えば、精錬段階におけるスラグの塩基度を下げることによって、これらの合金をスラグへ濃化させて排出し最終的なスラブ製品におけるTiおよびNbの濃度を低減することができる。また、酸素を吹き込んで酸化させ、還流時にTiおよびNbの合金を浮上分離させるなどの方法でもよい。その後、連続鋳造法、造塊-分塊圧延法等、公知の鋳造方法により、所定寸法のスラブ等の鋼素材とすることが好ましい。 As the steel according to the present invention, molten steel having the above-mentioned composition can be melted by a known melting method such as a converter or an electric furnace. Further, the secondary refining may be performed in a vacuum degassing furnace. At that time, in order to limit Ti and Nb, which hinder suitable tissue control, to the above-mentioned range, it is necessary to avoid inevitably mixing from raw materials and take measures to reduce their contents. .. For example, by lowering the basicity of the slag in the refining step, these alloys can be concentrated and discharged into the slag to reduce the concentrations of Ti and Nb in the final slab product. Alternatively, a method such as blowing oxygen to oxidize the alloy and floating and separating the alloy of Ti and Nb at reflux may be used. After that, it is preferable to use a known casting method such as a continuous casting method, an ingot-block rolling method, or the like to obtain a steel material such as a slab having a predetermined size.
 さらに、上記鋼素材を極低温靭性に優れた鋼材へと造りこむための製造条件について規定する。 Furthermore, the manufacturing conditions for incorporating the above steel material into a steel material with excellent cryogenic toughness are specified.
[鋼素材の加熱温度:1100℃以上1300℃以下]
 上記した組織を有する鋼を得るためには、1100℃以上1300℃以下の温度域に加熱したのち、熱間圧延を行うことが重要である。ここでの温度制御は、鋼素材の表面温度を基準とする。上述したMnの効能を発現させるには、鋼中にMnを拡散させることが重要である。すなわち、熱間圧延にてMnの拡散を促進するために、熱間圧延前の鋼素材の加熱温度は1100℃以上とする。一方、1300℃を超えると鋼の溶解が始まってしまう懸念があるため、加熱温度の上限は1300℃とする。鋼素材の加熱温度は1130℃以上が好ましく、1270℃以下が好ましく、より好ましくは、1130℃以上1270℃以下である。
[Heating temperature of steel material: 1100 ° C or higher and 1300 ° C or lower]
In order to obtain a steel having the above-mentioned structure, it is important to heat it in a temperature range of 1100 ° C. or higher and 1300 ° C. or lower, and then perform hot rolling. The temperature control here is based on the surface temperature of the steel material. In order to exert the above-mentioned effect of Mn, it is important to diffuse Mn in the steel. That is, in order to promote the diffusion of Mn in hot rolling, the heating temperature of the steel material before hot rolling is set to 1100 ° C. or higher. On the other hand, if the temperature exceeds 1300 ° C., there is a concern that the steel will start melting, so the upper limit of the heating temperature is set to 1300 ° C. The heating temperature of the steel material is preferably 1130 ° C. or higher, preferably 1270 ° C. or lower, and more preferably 1130 ° C. or higher and 1270 ° C. or lower.
[熱間圧延]
 鋼素材の加熱後に熱間圧延を行う。熱間圧延の方法は特に限定されないが、仕上圧延における仕上温度が低いほど圧延能率が低下するため、700℃以上とすることが好ましい。さらに、750℃以上であることが好ましい。
[Hot rolling]
Hot rolling is performed after heating the steel material. The method of hot rolling is not particularly limited, but the lower the finishing temperature in finish rolling, the lower the rolling efficiency. Therefore, the temperature is preferably 700 ° C. or higher. Further, it is preferably 750 ° C. or higher.
[1100℃以上1300℃以下の温度域まで再度加熱し、加熱温度(℃)と加熱時間(h)との積が100℃・h以上となる熱処理を施す]
 熱間圧延後、またはその後の冷却処理を行った後、所定の熱処理を施す。熱処理では、1100℃以上1300℃以下の温度域まで再度加熱し、加熱温度(℃)と加熱時間(h:hour)との積が100℃・h以上の熱処理を施すことで、結晶粒が粗大になり極低温靱性が向上することに加え、熱間圧延時に導入された転位が回復するため、引張特性、中でも全伸びが向上する。再加熱の温度域を1100℃以上1300℃以下とするのは、以下の理由による。すなわち、熱処理にてMnを拡散させるために、熱処理における再加熱時の加熱温度を1100℃以上とする。一方、1300℃を超えると鋼の溶解が始まってしまう懸念があるため、再加熱時の加熱温度の上限は1300℃とする。そして、加熱温度(℃)と加熱時間(h)との積を規定するのは、結晶粒成長と転位の回復とに相関があるからである。また、加熱温度と加熱時間との積は、製造コストの理由から、上限値は650℃・hが好ましく、全ての結晶粒を粗大にする理由から、下限値は208℃・hが好ましい。熱処理における再加熱時の加熱温度は1130℃以上が好ましく、1270℃以下が好ましく、1130℃以上1270℃以下がより好ましい。加熱時間は、粒成長を促進させるためには0.1h以上が好ましく、製造能率の低下を抑制するためには0.5h以下が好ましく、0.1h以上0.5h以下がより好ましい。熱処理後には冷却を行う。
[Reheat to a temperature range of 1100 ° C. or higher and 1300 ° C. or lower, and perform heat treatment so that the product of the heating temperature (° C.) and the heating time (h) is 100 ° C. · h or higher]
After hot rolling or subsequent cooling treatment, a predetermined heat treatment is performed. In the heat treatment, the crystals are coarsened by heating again to a temperature range of 1100 ° C. or higher and 1300 ° C. or lower, and performing the heat treatment in which the product of the heating temperature (° C.) and the heating time (h: hour) is 100 ° C. · h or higher. In addition to improving the ultra-low temperature toughness, the dislocations introduced during hot rolling are restored, so the tensile properties, especially the total elongation, are improved. The temperature range for reheating is set to 1100 ° C or higher and 1300 ° C or lower for the following reasons. That is, in order to diffuse Mn in the heat treatment, the heating temperature at the time of reheating in the heat treatment is set to 1100 ° C. or higher. On the other hand, if the temperature exceeds 1300 ° C., there is a concern that the steel will start melting, so the upper limit of the heating temperature at the time of reheating is set to 1300 ° C. The product of the heating temperature (° C.) and the heating time (h) is defined because there is a correlation between grain growth and dislocation recovery. Further, the product of the heating temperature and the heating time is preferably an upper limit value of 650 ° C. · h for the reason of manufacturing cost, and a lower limit value of 208 ° C. · h is preferable for the reason of coarsening all crystal grains. The heating temperature at the time of reheating in the heat treatment is preferably 1130 ° C. or higher, preferably 1270 ° C. or lower, and more preferably 1130 ° C. or higher and 1270 ° C. or lower. The heating time is preferably 0.1 h or more in order to promote grain growth, preferably 0.5 h or less, and more preferably 0.1 h or more and 0.5 h or less in order to suppress a decrease in production efficiency. After the heat treatment, it is cooled.
 熱間圧延後および/またはその後の熱処理後に、それぞれ冷却処理を行ってもよい。
炭化物の析出を抑制するためである。冷却温度の範囲はそれぞれ300~650℃、300~900℃が好ましく、平均冷却速度はそれぞれ1.0℃/s以上が好ましい。
Cooling treatments may be performed after hot rolling and / or after heat treatment.
This is to suppress the precipitation of carbides. The cooling temperature range is preferably 300 to 650 ° C and 300 to 900 ° C, respectively, and the average cooling rate is preferably 1.0 ° C / s or more, respectively.
 以下、本発明を実施例により詳細に説明する。なお、本発明は以下の実施例に限定されない。
 転炉-取鍋精錬-連続鋳造法にて、表1に示す成分組成の鋼スラブ(鋼素材)を作製した。次いで、表2に示す条件で、得られた鋼スラブを熱間圧延により6~30mm厚の鋼板とした。ここで、熱処理における再加熱時の加熱温度は、各サンプルについて、鋼素材の加熱温度と同じ温度とした。
 得られた鋼板について、組織評価と、極低温靭性および引張特性の機械特性評価とを下記の要領で実施した。
 表2において、「仕上圧延時の仕上温度」は、仕上圧延終了温度を示す。
Hereinafter, the present invention will be described in detail with reference to Examples. The present invention is not limited to the following examples.
A steel slab (steel material) having the composition shown in Table 1 was prepared by a converter-ladle refining-continuous casting method. Next, under the conditions shown in Table 2, the obtained steel slab was hot-rolled to obtain a steel plate having a thickness of 6 to 30 mm. Here, the heating temperature at the time of reheating in the heat treatment was set to the same temperature as the heating temperature of the steel material for each sample.
The structure of the obtained steel sheet and the mechanical property evaluation of cryogenic toughness and tensile properties were carried out as follows.
In Table 2, "finishing temperature at the time of finish rolling" indicates the finish rolling end temperature.
(1)組織評価
・オーステナイト相の面積率
 ミクロ組織の各相の面積率は、後方散乱電子回折(EBSD)解析のPhase mapから求めた。得られた鋼板の板厚1/2位置で、圧延方向に平行な断面から、EBSD解析用試験片を採取し、500μm×200μmの視野において、測定ステップ0.3μmでEBSD解析を行い、Phase mapに記載の値を面積率とした。
 オーステナイト相の面積率は発明例および比較例を通じて全て90%以上であり、基地相がオーステナイトであることを確認した。
(1) Structure evaluation-Austenite phase area ratio The area ratio of each phase of the microstructure was determined from the Phase map of backscattered electron diffraction (EBSD) analysis. EBSD analysis test pieces were collected from a cross section parallel to the rolling direction at a plate thickness of 1/2 of the obtained steel sheet, and EBSD analysis was performed in a measurement step of 0.3 μm in a field of view of 500 μm × 200 μm to perform Phase map. The value described in 1 was taken as the area ratio.
The area ratio of the austenite phase was 90% or more in all of the invention examples and the comparative examples, and it was confirmed that the matrix phase was austenite.
・平均粒径
 熱処理後の鋼板について、圧延方向断面を研磨し、板厚1/2位置を、光学顕微鏡を用いて200倍の倍率で撮影した画像から無作為に100個の結晶粒を選び、円相当径により平均粒径としての平均結晶粒径を求めた。
-Average particle size For the heat-treated steel sheet, the cross section in the rolling direction was polished, and 100 crystal grains were randomly selected from the images taken at the plate thickness 1/2 position at a magnification of 200 times using an optical microscope. The average crystal grain size as the average grain size was determined from the equivalent circle diameter.
(2)極低温靭性
 板厚10mmを超える各鋼板の板厚1/2位置の圧延方向と平行な方向から、JIS Z 2242(2005年)の規定に準拠してシャルピーVノッチ試験片を採取し、各鋼板について3本のシャルピー衝撃試験を-196℃および-269℃で実施し、吸収エネルギーを求め、母材靭性を評価した。本発明では、3本の吸収エネルギーの平均値が150J以上を母材靭性に優れるものとした。
 なお、板厚10mm未満の各鋼板については、板厚1/2位置の圧延方向と平行な方向から、JIS Z 2242(2005年)の規定に準拠して5mmサブサイズのシャルピーVノッチ試験片を採取し、各鋼板について3本のシャルピー衝撃試験を-196℃および-269℃で実施した。ここでは、3本の吸収エネルギーの平均値が、100J以上を母材靭性に優れるものとした。なお、-269℃でのシャルピー衝撃試験は、試験片をカプセルに入れ、液体ヘリウムを流しながら実施した。
 参考文献1:T. Ogata, K. Hiraga, K. Nagai, and K.Ishikawa: Tetsu-to-Hagane, 69(1983), 641.
(2) Ultra-low temperature toughness A Charpy V notch test piece is collected in accordance with the regulations of JIS Z 2242 (2005) from a direction parallel to the rolling direction at the plate thickness 1/2 position of each steel plate having a plate thickness exceeding 10 mm. , Three Charpy impact tests were carried out for each steel sheet at -196 ° C and -269 ° C to determine the absorbed energy and evaluate the toughness of the base metal. In the present invention, the average value of the absorbed energies of the three pieces is 150 J or more, and the toughness of the base material is excellent.
For each steel plate with a plate thickness of less than 10 mm, a 5 mm sub-sized Charpy V notch test piece is used in accordance with the provisions of JIS Z 2242 (2005) from the direction parallel to the rolling direction at the plate thickness 1/2 position. The samples were sampled and three Charpy impact tests were performed on each steel sheet at -196 ° C and -269 ° C. Here, it is assumed that the average value of the absorbed energies of the three pieces is 100 J or more, which is excellent in the toughness of the base material. The Charpy impact test at -269 ° C. was carried out by putting the test piece in a capsule and flowing liquid helium.
Reference 1: T. Ogata, K. Hiraga, K. Nagai, and K. Ishikawa: Tetsu-to-Hagane, 69 (1983), 641.
(3)引張特性
 得られた各鋼板より、平行部直径6mm、標点間距離25mmの丸棒引張試験片を採取して-269℃で引張試験を実施し、全伸びを調査した。本発明では、全伸び30%以上を引張特性に優れるものと判定した。
 以上により得られた結果を、表2に示す。
(3) Tensile characteristics From each of the obtained steel sheets, a round bar tensile test piece having a parallel portion diameter of 6 mm and a distance between gauge points of 25 mm was collected and subjected to a tensile test at -269 ° C. to investigate the total elongation. In the present invention, it was determined that the total elongation of 30% or more is excellent in tensile properties.
The results obtained as described above are shown in Table 2.
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000002
 本発明に従う鋼は、上述の目標性能(シャルピー衝撃試験の吸収エネルギーの平均値が150J以上、引張試験の全伸びが30%以上)を満足することが確認された。一方、本発明の範囲を外れる比較例は、吸収エネルギーおよび全伸びのいずれか1つ以上が、上述の目標性能を満足できていない。 It was confirmed that the steel according to the present invention satisfies the above-mentioned target performance (the average value of absorbed energy in the Charpy impact test is 150 J or more, and the total elongation in the tensile test is 30% or more). On the other hand, in the comparative example outside the scope of the present invention, any one or more of the absorbed energy and the total elongation does not satisfy the above-mentioned target performance.

Claims (3)

  1.  質量%で、
     C:0.100%以上0.700%以下、
     Si:1.00%以下、
     Mn:20.0%以上40.0%以下、
     P:0.030%以下、
     S:0.0070%以下、
     Al:0.01%以上5.00%以下、
     Cr:0.5%以上7.0%以下、
     N:0.0050%以上0.0500%以下、
     O:0.0050%以下、
     Ti:0.005%以下および
     Nb:0.005%以下
    を含み、残部がFeおよび不可避的不純物の成分組成を有し、
     オーステナイトを基地相とするミクロ組織を有し、
     該ミクロ組織の平均粒径が80μm以上であり、-269℃でのシャルピー衝撃試験の吸収エネルギーが150J以上であり、-269℃での引張試験の全伸びが30%以上である、鋼。
    By mass%
    C: 0.100% or more and 0.700% or less,
    Si: 1.00% or less,
    Mn: 20.0% or more and 40.0% or less,
    P: 0.030% or less,
    S: 0.0070% or less,
    Al: 0.01% or more and 5.00% or less,
    Cr: 0.5% or more and 7.0% or less,
    N: 0.0050% or more and 0.0500% or less,
    O: 0.0050% or less,
    It contains Ti: 0.005% or less and Nb: 0.005% or less, and the balance has a component composition of Fe and unavoidable impurities.
    It has a microstructure with austenite as the base phase,
    A steel having an average particle size of 80 μm or more, an absorption energy of Charpy impact test at -269 ° C. of 150 J or more, and a total elongation of tensile test at -269 ° C. of 30% or more.
  2.  前記成分組成は、さらに、質量%で、
     Cu:1.0%以下、
     Ni:1.0%以下、
     Mo:2.0%以下、
     V:2.0%以下、
     W:2.0%以下、
     Ca:0.0005%以上0.0050%以下、
     Mg:0.0005%以上0.0050%以下および
     REM:0.0010%以上0.0200%以下
    のうちから選ばれる1種以上を含有する請求項1に記載の鋼。
    The component composition is further increased by mass%.
    Cu: 1.0% or less,
    Ni: 1.0% or less,
    Mo: 2.0% or less,
    V: 2.0% or less,
    W: 2.0% or less,
    Ca: 0.0005% or more and 0.0050% or less,
    The steel according to claim 1, which contains at least one selected from Mg: 0.0005% or more and 0.0050% or less and REM: 0.0010% or more and 0.0200% or less.
  3.  請求項1または2に記載の成分組成を有する鋼素材を、
     1100℃以上1300℃以下の温度域に加熱し、
     熱間圧延を行い、
     1100℃以上1300℃以下の温度域まで再度加熱して、加熱温度と加熱時間との積が100℃・h以上となる熱処理を施す、鋼の製造方法。
    A steel material having the component composition according to claim 1 or 2.
    Heat to a temperature range of 1100 ° C or higher and 1300 ° C or lower,
    Hot rolling,
    A method for producing steel, which comprises heating again to a temperature range of 1100 ° C. or higher and 1300 ° C. or lower, and performing a heat treatment in which the product of the heating temperature and the heating time is 100 ° C. · h or higher.
PCT/JP2020/031165 2019-08-21 2020-08-18 Steel and method for manufacturing same WO2021033694A1 (en)

Priority Applications (4)

Application Number Priority Date Filing Date Title
EP20853747.2A EP4019656A4 (en) 2019-08-21 2020-08-18 Steel and method for manufacturing same
CN202080058683.XA CN114302977B (en) 2019-08-21 2020-08-18 Steel and method for producing same
KR1020227004123A KR20220030292A (en) 2019-08-21 2020-08-18 Steel and its manufacturing method
JP2021510241A JP6947330B2 (en) 2019-08-21 2020-08-18 Steel and its manufacturing method

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2019-151345 2019-08-21
JP2019151345 2019-08-21

Publications (1)

Publication Number Publication Date
WO2021033694A1 true WO2021033694A1 (en) 2021-02-25

Family

ID=74661107

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2020/031165 WO2021033694A1 (en) 2019-08-21 2020-08-18 Steel and method for manufacturing same

Country Status (6)

Country Link
EP (1) EP4019656A4 (en)
JP (1) JP6947330B2 (en)
KR (1) KR20220030292A (en)
CN (1) CN114302977B (en)
TW (1) TWI726798B (en)
WO (1) WO2021033694A1 (en)

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS58197256A (en) * 1982-05-12 1983-11-16 Kawasaki Steel Corp High toughness high-mn steel with superior weather and rust resistance
KR19980058369A (en) 1996-12-30 1998-09-25 서춘화 High manganese steel with excellent cryogenic impact properties and its manufacturing method
JP2016196703A (en) * 2015-04-02 2016-11-24 新日鐵住金株式会社 HIGH Mn STEEL MATERIAL FOR CRYOGENIC USE
JP2017071817A (en) * 2015-10-06 2017-04-13 新日鐵住金株式会社 Thick steel sheet for low temperature and manufacturing method therefor
JP2018104792A (en) 2016-12-28 2018-07-05 新日鐵住金株式会社 Ni steel for liquid hydrogen
WO2018199145A1 (en) * 2017-04-26 2018-11-01 Jfeスチール株式会社 HIGH-Mn STEEL AND PRODUCTION METHOD THEREFOR
WO2019044928A1 (en) * 2017-09-01 2019-03-07 Jfeスチール株式会社 High-mn steel and production method therefor
WO2019112012A1 (en) * 2017-12-07 2019-06-13 Jfeスチール株式会社 High-mn steel and method for manufacturing same
KR20190077470A (en) 2016-12-08 2019-07-03 제이에프이 스틸 가부시키가이샤 High Mn steel sheet and manufacturing method thereof

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5896853A (en) * 1981-11-17 1983-06-09 Sumitomo Metal Ind Ltd High mn steel for extra-low temperature use with superior corrosion resistance and machinability
JP5003785B2 (en) * 2010-03-30 2012-08-15 Jfeスチール株式会社 High tensile steel plate with excellent ductility and method for producing the same
JP6645103B2 (en) * 2014-10-22 2020-02-12 日本製鉄株式会社 High Mn steel material and method for producing the same
JP6728779B2 (en) * 2016-03-03 2020-07-22 日本製鉄株式会社 Low temperature thick steel plate and method of manufacturing the same
WO2019078538A1 (en) * 2017-10-18 2019-04-25 주식회사 포스코 High manganese steel for low temperature, having excellent surface quality, and manufacturing method therefor

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS58197256A (en) * 1982-05-12 1983-11-16 Kawasaki Steel Corp High toughness high-mn steel with superior weather and rust resistance
KR19980058369A (en) 1996-12-30 1998-09-25 서춘화 High manganese steel with excellent cryogenic impact properties and its manufacturing method
JP2016196703A (en) * 2015-04-02 2016-11-24 新日鐵住金株式会社 HIGH Mn STEEL MATERIAL FOR CRYOGENIC USE
JP2017071817A (en) * 2015-10-06 2017-04-13 新日鐵住金株式会社 Thick steel sheet for low temperature and manufacturing method therefor
KR20190077470A (en) 2016-12-08 2019-07-03 제이에프이 스틸 가부시키가이샤 High Mn steel sheet and manufacturing method thereof
JP2018104792A (en) 2016-12-28 2018-07-05 新日鐵住金株式会社 Ni steel for liquid hydrogen
WO2018199145A1 (en) * 2017-04-26 2018-11-01 Jfeスチール株式会社 HIGH-Mn STEEL AND PRODUCTION METHOD THEREFOR
WO2019044928A1 (en) * 2017-09-01 2019-03-07 Jfeスチール株式会社 High-mn steel and production method therefor
WO2019112012A1 (en) * 2017-12-07 2019-06-13 Jfeスチール株式会社 High-mn steel and method for manufacturing same

Also Published As

Publication number Publication date
KR20220030292A (en) 2022-03-10
TWI726798B (en) 2021-05-01
JP6947330B2 (en) 2021-10-13
EP4019656A1 (en) 2022-06-29
EP4019656A4 (en) 2022-06-29
JPWO2021033694A1 (en) 2021-09-13
CN114302977B (en) 2022-12-06
TW202113100A (en) 2021-04-01
CN114302977A (en) 2022-04-08

Similar Documents

Publication Publication Date Title
JP7063364B2 (en) High Mn steel
JP6954475B2 (en) High Mn steel and its manufacturing method
WO2021106368A1 (en) Steel sheet and method for producing same
JP6492862B2 (en) Low temperature thick steel plate and method for producing the same
JP6590117B1 (en) High Mn steel and manufacturing method thereof
JP6750747B2 (en) High Mn steel and manufacturing method thereof
JP6947330B2 (en) Steel and its manufacturing method
KR102387364B1 (en) High Mn steel and manufacturing method thereof
CN111788325B (en) High Mn steel and method for producing same
WO2021117382A1 (en) Steel sheet and method for manufacturing same
JP6947331B2 (en) Steel and its manufacturing method

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 2021510241

Country of ref document: JP

Kind code of ref document: A

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20853747

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 20227004123

Country of ref document: KR

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2020853747

Country of ref document: EP

Effective date: 20220321