WO2018117678A1 - Austenite steel material having superb surface characteristic, and method for producing same - Google Patents

Austenite steel material having superb surface characteristic, and method for producing same Download PDF

Info

Publication number
WO2018117678A1
WO2018117678A1 PCT/KR2017/015215 KR2017015215W WO2018117678A1 WO 2018117678 A1 WO2018117678 A1 WO 2018117678A1 KR 2017015215 W KR2017015215 W KR 2017015215W WO 2018117678 A1 WO2018117678 A1 WO 2018117678A1
Authority
WO
WIPO (PCT)
Prior art keywords
less
steel
excluding
carbide
cooling
Prior art date
Application number
PCT/KR2017/015215
Other languages
French (fr)
Korean (ko)
Inventor
김용진
오홍열
강상덕
이운해
하유미
Original Assignee
주식회사 포스코
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 주식회사 포스코 filed Critical 주식회사 포스코
Priority to US16/471,777 priority Critical patent/US20200087751A1/en
Priority to CA3047237A priority patent/CA3047237A1/en
Priority to EP17884959.2A priority patent/EP3561122A4/en
Priority to JP2019534166A priority patent/JP2020509211A/en
Priority to CN201780079005.XA priority patent/CN110088343A/en
Publication of WO2018117678A1 publication Critical patent/WO2018117678A1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D9/00Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor
    • C21D9/46Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor for sheet metals
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D6/00Heat treatment of ferrous alloys
    • C21D6/002Heat treatment of ferrous alloys containing Cr
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D6/00Heat treatment of ferrous alloys
    • C21D6/005Heat treatment of ferrous alloys containing Mn
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D6/00Heat treatment of ferrous alloys
    • C21D6/008Heat treatment of ferrous alloys containing Si
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/02Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/02Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips
    • C21D8/0205Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips of ferrous alloys
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/02Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips
    • C21D8/0221Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips characterised by the working steps
    • C21D8/0226Hot rolling
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/02Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips
    • C21D8/0247Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips characterised by the heat treatment
    • C21D8/0263Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips characterised by the heat treatment following hot rolling
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/002Ferrous alloys, e.g. steel alloys containing In, Mg, or other elements not provided for in one single group C22C38/001 - C22C38/60
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/02Ferrous alloys, e.g. steel alloys containing silicon
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/06Ferrous alloys, e.g. steel alloys containing aluminium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/20Ferrous alloys, e.g. steel alloys containing chromium with copper
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/34Ferrous alloys, e.g. steel alloys containing chromium with more than 1.5% by weight of silicon
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/38Ferrous alloys, e.g. steel alloys containing chromium with more than 1.5% by weight of manganese
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D2211/00Microstructure comprising significant phases
    • C21D2211/001Austenite
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D2211/00Microstructure comprising significant phases
    • C21D2211/004Dispersions; Precipitations

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Heat Treatment Of Steel (AREA)

Abstract

The present invention relates to abrasion-resistant austenite steel material having superb surface characteristic, and a method for producing the abrasion-resistant austenite steel material. Provided are austenite steel material having superb surface characteristic, and a method for producing same, the austenite steel material according to the present invention comprising, in weight %: 0.6-1.3% carbon (C); 14-22% manganese (Mn); 5% or lower (excluding 0%) copper (Cu); 5% or lower (excluding 0%) chromium (Cr); 1.0% or lower (excluding 0%) silicon (Si); 0.5% or lower (excluding 0%) aluminum (Al); 0.1% or lower (including 0%) phosphorous (P); 0.02% or lower (including 0%) sulfur (S); and remainder in iron (Fe) and other unavoidable impurities, and having the microstructure comprising, by surface area %, 5% or lower carbide and the rest in austenite structure, and surface flaw size of 0.3mm or lower.

Description

표면 특성이 우수한 오스테나이트계 강재 및 그 제조방법Austenitic steels with excellent surface properties and manufacturing method
본 발명은 산업기계, 구조재료, 그리고 슬러리 파이프용 강재, 내sour 강재 등 오일 및 가스 산업 (Oil and Gas Industries)에서 채굴, 수송, 저장 분야 등에 사용되는 내마모성이 우수한 오스테나이트계 강재 및 그 제조방법에 관한 것으로서, 보다 상세하게는 연성과 더불어 우수한 내마모성, 인성 및 내식성 등을 갖는 표면 특성이 우수한 오스테나이트계 강재 및 그 제조방법에 관한 것이다.INDUSTRIAL APPLICABILITY The present invention provides an austenitic steel having excellent abrasion resistance for use in mining, transportation, and storage in oil and gas industries, such as industrial machinery, structural materials, steel for slurry pipes, and sour steels. In more detail, the present invention relates to an austenitic steel having excellent surface properties having excellent wear resistance, toughness, corrosion resistance, and the like, and a manufacturing method thereof.
오스테나이트계 강재는 그 자체가 가지고 있는 가공경화능, 비자성 등의 성질로 인하여 다양한 용도로 사용되고 있다. 특히, 기존에 주로 사용되던 페라이트 혹은 마르텐사이트를 주조직으로 하는 탄소강이 그 특성에 한계를 나타냄에 따라 이들의 단점을 극복하는 대체재로 그 적용이 증가하고 있는 추세이다.Austenitic steels are used for various purposes due to their properties such as work hardening and nonmagnetic properties. Particularly, as carbon steel mainly composed of ferrite or martensite, which is mainly used, exhibits limitations in its characteristics, its application is increasing as an alternative material to overcome these disadvantages.
특히, 광산 산업, 오일 및 가스 산업 (Oil and Gas Industries)의 성장에 따라 채굴, 수송, 정제 및 저장 과정에서 사용 강재의 마모가 큰 문제점으로 대두되고 있다. 특히, 최근 석유를 대체할 화석 연료로 오일 샌드 (Oil Sands)에 대한 개발이 본격화 됨에 따라 오일, 자갈, 모래 등이 포함된 슬러리에 의한 강재 마모는 생산 비용의 증가를 일으키는 중요한 원인으로 지적되고 있으며 이에 따라 내마모성 및 인성이 우수한 강재의 개발 및 적용에 대한 수요가 크게 증가하고 있다. In particular, with the growth of the mining industry, oil and gas industries (Oil and Gas Industries), wear of the steel used in the mining, transportation, refining and storage process is a major problem. In particular, with the recent development of oil sands as a fossil fuel to replace petroleum, steel wear caused by slurries containing oil, gravel, sand, etc. has been pointed out as an important cause of an increase in production costs. Accordingly, the demand for the development and application of steel with excellent wear resistance and toughness is greatly increased.
해드필드강 (Hadfield)은 뛰어난 내마모성으로 각종 산업의 내마모 부품으로 널리 사용되어 왔으며 강재의 내마모성을 높이기 위해 높은 함량의 탄소를 함유시키고 망간을 다량 포함시켜 오스테나이트 조직 및 마모 저항성을 증가시키려는 노력이 꾸준히 진행되어 왔다. Hadfield steel has been widely used as a wear-resistant component in various industries for its excellent wear resistance, and efforts to increase austenite structure and abrasion resistance by containing a high amount of carbon and containing a large amount of manganese have been made to increase wear resistance of steel materials. It has been a steady progress.
그러나, 해드필드강의 높은 탄소 함량은 오스테나이트 입계를 따라 네트웍 형태의 탄화물을 고온에서 생성시켜 강재의 물성, 특히 연성을 급격히 저하시킨다. 이러한 네트웍 형태의 탄화물 석출을 억제하기 위해 수인화 열처리를 하거나, 고온에서 용체화 처리를 하여 열간가공 후 상온으로 급냉시켜 고망간강을 제조하는 방법이 제시되었다. However, the high carbon content of the headfield steel produces network-shaped carbides along the austenite grain boundaries at high temperatures, which drastically lowers the properties, particularly ductility, of the steels. In order to suppress such precipitation of carbides in the network type, a method of manufacturing high manganese steel by quenching heat treatment or solution treatment at high temperature and quenching to room temperature after hot working has been proposed.
하지만, 해드필드강은 일반적인 기계적 마모환경에서는 우수한 내마모성을 가지나, 부식마모가 동반되는 환경에서는 뛰어난 내마모성 발휘는 어려워 복합적인 마모가 발생하는 가혹한 환경에 적용하기에는 무리가 따른다.However, the hard field steel has excellent wear resistance in general mechanical wear environments, but it is difficult to show excellent wear resistance in environments accompanied with corrosion wear, and thus it is difficult to apply to harsh environments where complex wear occurs.
최근에는 이러한 점을 고려하여 내식성까지 확보하는 오스테나이트계 내마모강이 개발되었다. 하지만, 탄소함량이 매우 높은 오스테나이트계 내마모강에서는 탄화물 석출에 의한 인성열화가 항상 문제가 되고 있으며, 또한, 고망간강의 잉곳 또는 주편은 응고 중 망간 및 탄소 등의 합금원소에 의한 편석이 필연적으로 발생하고 이는 열간압연 등의 후 가공시 더욱 악화되어 결국 최종제품에서 심화된 편석대를 따라 탄화물의 부분적 석출이 네트웍 형태로 발생하여 결국 미세조직의 불균일성을 조장하고 물성을 열화시키는 결과를 가져온다. 따라서, 오스테나이트계 내마모강에서는 주로 탄화물 석출에 의한 물성 열화 방지를 위한 연구가 주로 이루어져왔다. Recently, in view of this point, austenitic wear resistant steels have been developed to secure corrosion resistance. However, toughness deterioration due to carbide precipitation is always a problem in austenitic wear resistant steels having a very high carbon content, and ingot or cast steel of high manganese steel inevitably segregates due to alloying elements such as manganese and carbon during solidification. This is further worsened during post-processing such as hot rolling, which eventually results in partial precipitation of carbides along the segregation zone in the final product in the form of a network, which in turn promotes non-uniformity of microstructure and deteriorates physical properties. Therefore, in the austenitic wear-resistant steel, research has been mainly made to prevent physical deterioration due to carbide precipitation.
또 다른 문제로 표면에서 발생하는 불균일 산화가 있으며, 이러한 불균일 산화는 특히 입계를 따라 발생하며, 슬라브 재가열 과정에서 크랙을 유발시키고, 응력이 발생하는 압연과정에서 크랙을 성장시켜 최종 제품의 표면특성을 열위하게 만든다. 표면에서 발생하는 크랙은 제품 굽힘이나 인장 가공시 조기 파단을 발생시키는 원인으로 작용할 수 있으며, 내마모 성능을 감소시킬 수 있다.Another problem is the non-uniform oxidation that occurs on the surface, and this non-uniform oxidation occurs especially along the grain boundaries, causing cracks in the slab reheating process, growing cracks in the stress rolling process, and improving the surface characteristics of the final product. Makes you inferior Cracks on the surface can cause premature fractures during product bending or tensioning, and can reduce wear resistance.
(선행기술문헌)(Prior art document)
(특허문헌 1) 한국공개특허공보 제2010-0106649호 (Patent Document 1) Korean Patent Publication No. 2010-0106649
본 발명의 바람직한 일 측면은 불균일 산화를 억제하여 표면품질을 개선시킨 표면 특성이 우수한 오스테나이트계 강재를 제공하고자 하는 것이다.One preferred aspect of the present invention is to provide an austenitic steel having excellent surface properties by suppressing heterogeneous oxidation to improve surface quality.
본 발명의 바람직한 다른 일 측면은 불균일 산화를 억제하여 표면품질을 개선시킨 표면 특성이 우수한 오스테나이트계 강재의 제조방법을 제공하고자 하는 것이다.Another preferred aspect of the present invention is to provide a method for producing an austenitic steel having excellent surface properties by improving the surface quality by inhibiting heterogeneous oxidation.
본 발명의 바람직한 일 측면에 의하면, 중량%로, 탄소(C): 0.6~1.3%, 망간(Mn): 14~22%, 구리(Cu): 5% 이하(0% 제외), 크롬(Cr): 5% 이하(0% 제외), 실리콘(Si): 1.0%이하(0% 제외), 알루미늄(Al): 0.5%이하(0% 제외), 인(P): 0.1%이하(0% 포함), 황(S): 0.02%이하(0% 포함), 나머지 철(Fe)과 기타 불가피한 불순물을 포함하고, 미세조직이 면적%로, 5%이하의 탄화물과 잔부 오스테나이트 조직으로 이루어지고, 표면결함의 크기가 0.3mm이하인 표면 특성이 우수한 오스테나이트계 강재가 제공된다.According to a preferred aspect of the present invention, in weight%, carbon (C): 0.6-1.3%, manganese (Mn): 14-22%, copper (Cu): 5% or less (excluding 0%), chromium (Cr ): 5% or less (excluding 0%), silicon (Si): 1.0% or less (excluding 0%), aluminum (Al): 0.5% or less (excluding 0%), phosphorus (P): 0.1% or less (0% ), Sulfur (S): less than 0.02% (including 0%), containing the remaining iron (Fe) and other unavoidable impurities; the microstructure consists of% by area, less than 5% of carbide and residual austenite tissue Austenitic steels having excellent surface properties having a surface defect size of 0.3 mm or less are provided.
본 발명의 바람직한 다른 일 측면에 의하면, 중량%로, 탄소(C): 0.6~1.3%, 망간(Mn): 14~22%, 구리(Cu): 5% 이하(0% 제외), 크롬(Cr): 5% 이하(0% 제외), 실리콘(Si): 1.0%이하(0% 제외), 알루미늄(Al): 0.5%이하(0% 제외), 인(P): 0.1%이하(0% 포함), 황(S): 0.02%이하(0% 포함), 나머지 철(Fe)과 기타 불가피한 불순물을 포함하는 강 슬라브를 1000℃ 이상 1150℃ 이하에서 재가열하는 슬라브 재가열단계;According to another preferred aspect of the present invention, in weight%, carbon (C): 0.6-1.3%, manganese (Mn): 14-22%, copper (Cu): 5% or less (excluding 0%), chromium ( Cr): 5% or less (excluding 0%), Silicon (Si): 1.0% or less (excluding 0%), Aluminum (Al): 0.5% or less (excluding 0%), Phosphorus (P): 0.1% or less (0 %), Sulfur (S): 0.02% or less (including 0%), the slab reheating step of reheating the steel slab containing the remaining iron (Fe) and other unavoidable impurities at 1000 ℃ to 1150 ℃;
가열된 슬라브를 850~950℃의 마무리 압연온도 조건으로 열간압연하여 열연강재를 얻는 열간압연단계; 및 A hot rolling step of hot rolling the heated slab under a finish rolling temperature of 850 to 950 ° C. to obtain a hot rolled steel; And
상기 열연강재를 5℃/s이상의 냉각속도로 600℃이하까지 냉각하는 냉각단계를 포함하는 표면 특성이 우수한 오스테나이트계 강재의 제조방법이 제공된다.Provided is a method for producing an austenitic steel having excellent surface properties including a cooling step of cooling the hot rolled steel to 600 ° C or lower at a cooling rate of 5 ° C / s or more.
본 발명에 의하면, 표면 특성이 우수한 오스테나이트계 강재를 제공할 수 있다.According to the present invention, it is possible to provide an austenitic steel having excellent surface properties.
이를 통해 내마모성이 우수하여 마모가 다량 발생하는 오일 및 가스 산업에서 채굴, 수송, 저장 분야 또는 산업기계 분야 전반의 내마모성이 요구되는 분야에 적용 가능하며, 특히 미려한 표면품질이 요구되는 분야로 적용 범위를 확대할 수 있고, 또한 강재 생산 측면에서도 제품 표면 보수 감소로 생산성 및 효율 증대가 기대된다.Through this, it can be applied to the fields where mining, transportation, storage, or general industrial machinery needs abrasion resistance in the oil and gas industry where abrasion occurs due to its excellent abrasion resistance. In terms of steel production, it is expected to increase productivity and efficiency by reducing product surface maintenance.
도 1은 발명강 3 및 비교강 5의 조직을 촬영한 사진이다. 1 is a photograph of the tissue of invention steel 3 and comparative steel 5 .
본 발명자들은 내마모성이 요구되는 기술분야에 사용되던 기존 강재 대비 우수한 강도와 내마모성을 갖는 강재에 대해 연구하던 중, 고망간강의 경우 오스테나이트계 강재 특유의 우수한 강도 및 연신율을 확보할 수 있을 뿐만 아니라, 가공경화율을 향상시키는 경우, 마모환경에서 소재자체의 가공경화로 인해 오히려 경도가 높아져 우수한 내마모성을 확보할 수 있다는 것을 인식하고 이를 토대로 본 발명을 완성하게 되었다. The inventors of the present invention while studying the steel having excellent strength and wear resistance compared to the existing steel used in the technical field requiring wear resistance, in the case of high manganese steel can not only secure the excellent strength and elongation peculiar to the austenitic steel, In the case of improving the work hardening rate, the work hardening of the material itself in the abrasion environment, the hardness is rather high, thereby recognizing that excellent wear resistance can be obtained, and thus, the present invention has been completed.
또한, 기존의 오스테나이트계 내마모 강재의 문제점인 열위한 표면 특성을 개선하기 위하여, 불균일 산화를 억제하기 위한 열간압연 전의 슬라브의 재가열 조건을 도출함으로써, 내마모성과 더불어 우수한 표면 특성을 가지는 내마모강을 제조할 수 있음을 인지하게 되었다.In addition, in order to improve the thermal surface properties, which is a problem of the conventional austenitic wear-resistant steels, the wear-resistant steel having excellent surface properties as well as wear resistance by deriving the reheating conditions of the slab before hot rolling to suppress heterogeneous oxidation. It has been recognized that can be prepared.
이하, 본 발명의 바람직한 일 측면에 따르는 표면 특성이 우수한 오스테나이트계 강재에 대하여 설명한다.Hereinafter, an austenitic steel having excellent surface properties according to one preferred aspect of the present invention will be described.
본 발명의 바람직한 일 측면에 따르는 표면 특성이 우수한 오스테나이트계 강재는, 중량%로, 탄소(C): 0.6~1.3%, 망간(Mn): 14~22%, 구리(Cu): 5% 이하(0% 제외), 크롬(Cr): 5% 이하(0% 제외), 실리콘(Si): 1.0%이하(0% 제외), 알루미늄(Al): 0.5%이하(0% 제외), 인(P): 0.1%이하(0% 포함), 황(S): 0.02%이하(0% 포함), 나머지 철(Fe)과 기타 불가피한 불순물을 포함하고, 미세조직이 면적%로, 5%이하의 탄화물과 잔부 오스테나이트 조직으로 이루어지고, 표면결함의 크기가 0.3mm이하이다.Austenitic steels having excellent surface properties according to a preferred aspect of the present invention, in weight%, carbon (C): 0.6-1.3%, manganese (Mn): 14-22%, copper (Cu): 5% or less (Excluding 0%), chromium (Cr): 5% or less (excluding 0%), silicon (Si): 1.0% or less (excluding 0%), aluminum (Al): 0.5% or less (excluding 0%), phosphorus ( P): less than 0.1% (including 0%), sulfur (S): less than 0.02% (including 0%), containing the remaining iron (Fe) and other unavoidable impurities; It is composed of carbide and residual austenite structure, and the surface defect size is less than 0.3mm.
먼저, 강 성분 및 성분범위에 대하여 설명한다.First, the steel component and the component range will be described.
C: 0.6~1.3중량%(이하, "%"라 칭함)C: 0.6 to 1.3% by weight (hereinafter referred to as "%")
탄소(C)는 오스테나이트 안정화 원소로서 균일 연신율을 향상시키는 역할을 할 뿐만 아니라 강도 향상 및 가공경화율을 높이는데 매우 유리한 원소이다. 이러한 탄소의 함량이 0.6% 미만이면 상온에서 안정한 오스테나이트를 형성하기 어렵고, 충분한 강도 및 가공경화율을 확보하기 어려울 수 있다. 반면, 그 함량이 1.3%를 초과하게 되면 탄화물이 다량 석출되어 균일 연신율을 저감시켜 우수한 연신율을 확보하기 곤란할 수 있으며, 내마모성 하락 및 조기 파단을 야기한다. 내마모성 증대를 위해서는 최대한 탄소 함량을 높이는 것이 유리하나, 탄소 고용에 한계가 있어, 물성열화에 대한 우려가 있으므로 그 상한을 1.3%로 제한하는 것이 바람직하다.Carbon (C) is an austenite stabilizing element that not only plays a role of improving the uniform elongation, but is also an element that is very advantageous for improving the strength and the work hardening rate. If the carbon content is less than 0.6%, it may be difficult to form stable austenite at room temperature, and it may be difficult to secure sufficient strength and work hardening rate. On the other hand, when the content exceeds 1.3%, carbides are precipitated in large quantities, thereby reducing the uniform elongation, which may make it difficult to obtain excellent elongation, leading to abrasion resistance decline and premature fracture. In order to increase the wear resistance, it is advantageous to increase the carbon content as much as possible, but there is a limit to the solid solution of carbon, and there is a concern about deterioration of the physical properties, so it is preferable to limit the upper limit to 1.3%.
따라서, C 함량은 0.6~1.3%로 제한하는 것이 바람직하다. Therefore, the C content is preferably limited to 0.6 to 1.3%.
보다 바람직한 C 의 함량은 0.6~1.25%일 수 있다.More preferred content of C may be 0.6 to 1.25%.
Mn: 14~22%Mn: 14-22%
망간(Mn)은 오스테나이트를 안정화시키는 역할을 하는 매우 중요한 원소로서, 균일 연신율을 향상시킨다. 본 발명에서 주 조직으로 오스테나이트를 얻기 위해서는 Mn이 14% 이상으로 포함되는 것이 바람직하다.Manganese (Mn) is a very important element that plays a role of stabilizing austenite, and improves uniform elongation. In the present invention, in order to obtain austenite as the main tissue, it is preferable that Mn is included in 14% or more.
만일, Mn의 함량이 14% 미만일 경우에는 오스테나이트 안정도가 저하되어 마르텐사이트 조직이 형성될 수 있고, 이로 인해 오스테나이트 조직을 충분히 확보하지 못하면 충분한 균일연신율 확보가 어렵다. 반면에, 그 함량이 22%를 초과하게 되면 제조비용이 상승할 뿐만 아니라, 망간첨가로 인한 내식성 저하, 제조 공정상의 어려움 등의 문제점이 있다If the Mn content is less than 14%, the austenite stability may be lowered to form martensite structure, which may make it difficult to secure sufficient uniform elongation if the austenite structure is not sufficiently secured. On the other hand, if the content exceeds 22%, not only the manufacturing cost increases, but also there are problems such as deterioration of corrosion resistance due to manganese addition and difficulty in manufacturing process.
따라서, Mn 함량은 14~22%로 제한하는 것이 바람직하다.Therefore, the Mn content is preferably limited to 14-22%.
Cu: 5% 이하(0%는 제외)Cu: 5% or less (except 0%)
Cu(구리)는 탄화물 내 고용도가 매우 낮고 오스테나이트 내 확산이 느려서 오스테나이트와 핵생성된 탄화물 계면에 농축되는데, 이에 따라 탄소의 확산을 방해함으로써 탄화물 성장을 효과적으로 늦추게 되고, 결국 탄화물 생성을 억제하는 효과가 있다. 또한, 구리는 내식성 향상에도 도움이 된다. 다만, Cu의 함량이 5%를 초과하는 경우에는 강재의 열간가공성을 저하시키는 문제점이 있으므로, 그 상한은 5%로 제한하는 것이 바람직하다. 상술한 탄화물 억제 효과를 얻기 위한 구리의 함량은 0.05% 이상인 것이 보다 바람직하다. Cu (copper) is concentrated in the austenite and nucleated carbide interface due to its very low solubility in carbides and slow diffusion in austenite, which effectively slows the growth of carbides by impeding the diffusion of carbon, eventually leading to carbide production. It has a suppressing effect. In addition, copper also helps to improve corrosion resistance. However, when the content of Cu exceeds 5%, there is a problem of lowering the hot workability of the steel, the upper limit is preferably limited to 5%. As for the content of copper for obtaining the above-mentioned carbide suppression effect, it is more preferable that it is 0.05% or more.
보다 더 바람직한 Cu의 함량은 0.05~3.0%일 수 있다.Even more preferred content of Cu may be 0.05-3.0%.
Cr: 5% 이하(0%는 제외) Cr: 5% or less (except 0%)
크롬은 적정한 첨가량의 범위까지는 오스테나이트 내에 고용되어 강재의 강도를 증가시키는 역할을 한다. 또한 크롬은 강재의 내식성을 향상시키는 원소이기도 하다. 다만 크롬은 탄화물 원소로써 특히, 오스테나이트 입계에 탄화물을 형성하여 인성을 감소시키는 원소이기도 하다. 따라서, 본 발명에서 첨가되는 크롬의 함량은 탄소 및 기타 함께 첨가되는 원소들과의 관계에 주의하며 결정하는 것이 바람직한데, 탄화물 형성을 방지하기 위해서는 Cr함량의 상한은 5%로 제한하는 것이 바람직하다. Cr함량이 5%를 초과하는 경우에는 오스테나이트 입계에서의 크롬계 탄화물 생성을 효과적으로 억제하기 힘들며 따라서 충격인성이 감소하는 문제점이 있다. 따라서, 크롬 함량은 5% 이하로 제한하는 것이 바람직하다.Chromium is dissolved in austenite up to the range of the proper amount of addition, and serves to increase the strength of the steel. Chromium is also an element that improves the corrosion resistance of steels. However, chromium is a carbide element, in particular, an element that reduces the toughness by forming carbide at the austenite grain boundary. Therefore, it is preferable to determine the content of chromium added in the present invention paying attention to the relationship between carbon and other elements added together, and in order to prevent carbide formation, the upper limit of the Cr content is preferably limited to 5%. . When the Cr content exceeds 5%, it is difficult to effectively suppress the formation of chromium carbide at the austenite grain boundary, and thus there is a problem that the impact toughness is reduced. Therefore, the chromium content is preferably limited to 5% or less.
실리콘(Si): 1.0%이하(0%는 제외), 알루미늄(Al): 0.5%이하(0%는 제외)Silicon (Si): 1.0% or less (excluding 0%), Aluminum (Al): 0.5% or less (excluding 0%)
알루미늄(Al), 실리콘(Si)은 제강공정 중 탈산제로 포함되는 성분으로, 본 발명 강재는 상기 한정된 성분 범위 이내에서 알루미늄(Al), 실리콘(Si)을 포함할 수 있다.Aluminum (Al), silicon (Si) is a component included as a deoxidizer during the steelmaking process, the steel material of the present invention may include aluminum (Al), silicon (Si) within the above limited component range.
인(P): 0.1%이하(0% 포함), 황(S): 0.02%이하(0% 포함)Phosphorus (P): 0.1% or less (including 0%), Sulfur (S): 0.02% or less (including 0%)
인(P) 및 황(S)은 대표적인 불순물로, 과다 첨가시 품질 열화를 유발할 수 있으므로 인(P): 0.1%이하, 황(S): 0.02%이하로 제한함이 바람직하다.Phosphorus (P) and sulfur (S) are representative impurities, and it is preferable to limit the phosphorus (P) to 0.1% or less and sulfur (S) to 0.02% or less because they may cause quality deterioration when excessively added.
본 발명의 나머지 성분은 철(Fe) 및 기타 불가피한 불순물이다. 다만, 통상의 철강 제조과정에서는 원료 또는 주위 환경으로부터 의도되지 않는 불순물들이 불가피하게 혼입될 수 있으므로, 이를 배제할 수는 없다. The remaining components of the present invention are iron (Fe) and other unavoidable impurities. However, in the conventional steel manufacturing process, impurities that are not intended from the raw material or the surrounding environment may be inevitably mixed, and thus cannot be excluded.
이들 불순물들은 통상의 철강제조과정의 기술자라면 누구라도 알 수 있는 것이기 때문에 그 모든 내용을 특별히 본 명세서에서 언급하지는 않는다.Since these impurities are known to those skilled in the art of ordinary steel manufacturing, not all of them are specifically mentioned herein.
본 발명의 바람직한 일 측면에 따르는 오스테나이트계 강재는 면적%로, 5%이하의 탄화물과 잔부 오스테나이트 조직으로 이루어지는 미세조직을 갖고, 표면결함의 크기가 0.3mm 이하이다. 보다 바람직하게는 표면결함의 크기는 0.2mm 이하이다.The austenitic steel according to one preferred aspect of the present invention has a microstructure consisting of carbide and residual austenite structure of 5% or less in area%, and the size of surface defects is 0.3 mm or less. More preferably, the size of the surface defects is 0.2 mm or less.
상기 탄화물의 함량이 5%를 초과하는 경우에는 탄화물이 결정립계를 둘러싸게 되며, 이로 인하여 연신율 및 충격인성이 급락할 우려가 있다.When the content of the carbide exceeds 5%, the carbide surrounds the grain boundary, which may cause the elongation and impact toughness to drop sharply.
상기 표면결함의 크기가 0.3mm 를 초과하는 경우에는 생성된 표면 크랙이 추가 가공시 전파하여 조기파단을 일으키거나, 목표하는 최종 제품 두께를 보증하는데 문제가 있다. If the size of the surface defects exceeds 0.3mm, there is a problem in that the generated surface cracks propagate during further processing to cause premature failure or to guarantee a target final product thickness.
제시한 표면 결함의 크기는 예를 들면, 크랙이 개시한 지점부터 정지한 지점까지의 길이로 정의할 수 있다. The size of the surface defects presented can be defined as, for example, the length from the point where the crack starts to the point where it stops.
이하, 본 발명의 바람직한 다른 일 측면에 따르는 표면 특성이 우수한 오스테나이트계 강재의 제조방법에 대하여 설명한다.Hereinafter, a method for producing an austenitic steel having excellent surface properties according to another preferred aspect of the present invention will be described.
본 발명의 바람직한 다른 일 측면에 따르는 표면 특성이 우수한 오스테나이트계 강재의 제조방법은 중량%로, 탄소(C): 0.6~1.3%, 망간(Mn): 14~22%, 구리(Cu): 5% 이하(0% 제외), 크롬(Cr): 5% 이하(0% 제외), 실리콘(Si): 1.0%이하(0% 제외), 알루미늄(Al): 0.5%이하(0% 제외), 인(P): 0.1%이하(0% 포함), 황(S): 0.02%이하(0% 포함), 나머지 철(Fe)과 기타 불가피한 불순물을 포함하는 강 슬라브를 1000℃ 이상 1150℃ 이하에서 재가열하는 슬라브 재가열단계;According to another preferred aspect of the present invention, a method for producing an austenitic steel having excellent surface properties is% by weight, carbon (C): 0.6 to 1.3%, manganese (Mn): 14 to 22%, and copper (Cu): 5% or less (except 0%), chromium (Cr): 5% or less (except 0%), silicon (Si): 1.0% or less (except 0%), aluminum (Al): 0.5% or less (except 0%) Phosphorus (P): 0.1% or less (including 0%), Sulfur (S): 0.02% or less (including 0%), steel slab containing the remaining iron (Fe) and other unavoidable impurities Reheating slab in the reheating step;
가열된 슬라브를 마무리 압연온도가 850~950℃가 되도록 열간압연하여 열연강재를 얻는 열간압연단계; 및 Hot rolling to obtain a hot rolled steel by hot rolling the heated slab to a finish rolling temperature of 850 to 950 ° C .; And
상기 열연강재를 5℃/s이상의 냉각속도로 600℃이하까지 냉각하는 냉각단계를 포함한다.It comprises a cooling step of cooling the hot rolled steel to 600 ° C or less at a cooling rate of 5 ° C / s or more.
슬라브 재가열단계Slab reheating stage
열간압연하기 전에, 슬라브를 1000℃이상 1150℃이하에서 재가열한다. 열간압연시 충분한 온도확보를 위해 1000℃이상 재가열이 필요하며, 고Mn강 슬라브의 표면 불균일 산화 억제를 위해 1150℃ 이하에서 재가열하는 것이 필수적이다. Prior to hot rolling, the slabs are reheated at 1000 ° C. to 1150 ° C. It is necessary to reheat above 1000 ℃ to secure sufficient temperature during hot rolling, and to reheat below 1150 ℃ to suppress the surface uneven oxidation of high Mn steel slab.
열간압연단계Hot rolling stage
상기와 같이 재가열된 슬라브를 마무리 압연온도가 850~950℃가 되도록 열간압연하여 열연강재를 얻는다.The slab reheated as above is hot rolled to obtain a finish rolling temperature of 850 to 950 ° C. to obtain a hot rolled steel.
마무리 압연온도가 850℃미만일 경우에는 카바이드가 석출되어 균일 연신율이 저하될 수 있으며, 미세조직이 팬케이크화 되어 조직이방성으로 인한 불균일 연신이 발생할 수 있다. 한편, 마무리 압연온도가 950℃를 초과할 경우에는 압연마무리 온도가 너무 높아, 실제 공정상 목표 온도를 적중시키기 어려운 문제가 있다.When the finish rolling temperature is less than 850 ℃ the carbide may be precipitated to reduce the uniform elongation, the microstructure is pancake may cause uneven stretching due to the anisotropy of the tissue. Meanwhile, When the finish rolling temperature exceeds 950 ° C., the rolling finish temperature is too high, and it is difficult to hit the target temperature in actual process.
냉각단계Cooling stage
상기 열간압연을 통해 얻어지는 열연강재를 5℃/s이상으로 600℃이하까지 냉각한다.The hot rolled steel obtained through the hot rolling is cooled to 600 ° C. or less at 5 ° C./s or more.
상기 냉각속도가 5℃/s미만이거나, 냉각정지온도가 600℃를 초과하는 경우에는 카바이드가 석출되어 연신율이 저하되는 문제가 발생할 수 있다. 또한 급속한 냉각 공정은 기지조직 내의 C 및 N 원소들의 높은 고용도를 확보하는데 도움이 된다. 따라서, 상기 냉각은 5℃/s이상으로 600℃이하까지 실시되는 것이 바람직하다. 상기 냉각 속도는 10℃/s이상의 속도를 갖는 보다 바람직하며, 15℃/s이상의 속도를 갖는 것이 보다 더 바람직하다.If the cooling rate is less than 5 ℃ / s, or the cooling stop temperature exceeds 600 ℃ may cause a problem that the carbide is precipitated elongation is lowered. Rapid cooling also helps to ensure high solubility of the C and N elements in the matrix. Therefore, the cooling is preferably carried out to 5 ℃ / s or more to 600 ℃ or less. The cooling rate is more preferably at a rate of 10 ° C / s or more, and even more preferably at a rate of 15 ° C / s or more.
이하, 실시예를 통하여 본 발명을 보다 상세히 설명한다. 다만, 후술하는 실시예는 본 발명을 예시하여 구체화하기 위한 것일 뿐 본 발명의 권리범위를 제한하기 위한 것이 아니라는 점에 유의할 필요가 있다. 본 발명의 권리범위는 특허청구범위에 기재된 사항과 이로부터 합리적으로 유추되는 사항에 의하여 결정되는 것이기 때문이다.Hereinafter, the present invention will be described in more detail with reference to Examples. However, it should be noted that the following embodiments are only intended to illustrate the present invention and are not intended to limit the scope of the present invention. This is because the scope of the present invention is determined by the matters described in the claims and the matters reasonably inferred therefrom.
(실시예)(Example)
하기 표 1에 나타낸 바와 같은 성분계 및 조성범위를 만족하는 슬라브를 하기 표 2에 나타낸 재가열 및 압연조건을 통해 두께 12mm의 열연강판으로 제조하였다. The slab satisfying the component system and composition range as shown in Table 1 was prepared as a hot rolled steel sheet having a thickness of 12mm through the reheating and rolling conditions shown in Table 2.
이후, 상기 각각의 제조된 열연강판의 미세조직, 항복강도, 균일 연신율, 충격인성을 측정하고, 그 결과를 하기 표 3에 나타내었다. 또한, 상기 열연강판에 대한 표면결함의 크기를 측정하여 하기 표 3에 함께 나타내었다. Then, the microstructure, yield strength, uniform elongation, impact toughness of each of the prepared hot-rolled steel sheet was measured, and the results are shown in Table 3 below. In addition, by measuring the size of the surface defects for the hot-rolled steel sheet is shown in Table 3 together.
발명강 3 및 비교강 5에 대하여 조직을 관찰하고, 그 결과를 도 1에 나타내었다.Tissues were observed for Inventive Steel 3 and Comparative Steel 5, and the results are shown in FIG. 1.
구분division 성분조성(중량%)Ingredient composition (% by weight)
CC MnMn SiSi AlAl CrCr CuCu PP SS
발명강 1Inventive Steel 1 0.640.64 16.916.9 0.080.08 0.0570.057 4.74.7 1.51.5 0.0220.022 0.0090.009
발명강 2Inventive Steel 2 0.810.81 18.118.1 0.0140.014 0.1190.119 2.52.5 1.31.3 0.0230.023 0.0060.006
발명강 3Inventive Steel 3 1.091.09 21.521.5 0.310.31 0.0410.041 3.33.3 0.060.06 0.0160.016 0.0040.004
발명강 4Inventive Steel 4 1.221.22 14.714.7 0.0910.091 0.2620.262 0.090.09 0.350.35 0.0120.012 0.0160.016
비교강 1Comparative Steel 1 0.330.33 15.215.2 0.0170.017 0.080.08 0.0230.023 0.0250.025 0.0130.013 0.0070.007
비교강 2Comparative Steel 2 1.351.35 15.815.8 0.0980.098 0.0440.044 0.110.11 0.10.1 0.0170.017 0.0050.005
비교강 3Comparative Steel 3 0.650.65 12.212.2 0.0460.046 0.0410.041 0.220.22 0.150.15 0.0130.013 0.0030.003
비교강 4Comparative Steel 4 1.111.11 18.618.6 0.160.16 0.0760.076 5.85.8 0.090.09 0.0180.018 0.0090.009
비교강 5Comparative Steel 5 1.231.23 19.119.1 0.150.15 0.080.08 1.11.1 0.090.09 0.0150.015 0.0060.006
비교강 6Comparative Steel 6 0.640.64 16.416.4 0.110.11 0.0410.041 1.81.8 0.90.9 0.0170.017 0.0080.008
비교강 7Comparative Steel 7 0.610.61 18.318.3 0.110.11 0.0450.045 1.81.8 0.90.9 0.0140.014 0.0050.005
비교강 8Comparative Steel 8 0.750.75 17.617.6 0.110.11 0.0410.041 1.81.8 0.90.9 0.0170.017 0.0080.008
구분division  재가열 및 압연 조건Reheating and Rolling Conditions
가열로온도(℃)Furnace temperature (℃) 마무리 압연온도(℃)Finish rolling temperature (℃) 냉각속도(℃/s)Cooling rate (℃ / s) 냉각정지온도(℃)Cooling stop temperature (℃)
발명강 1Inventive Steel 1 1145 1145 940940 2626 385385
발명강 2Inventive Steel 2 1108 1108 915915 1616 200200
발명강 3Inventive Steel 3 1056 1056 901901 3232 475475
발명강 4Inventive Steel 4 1023 1023 869869 4141 275275
비교강 1Comparative Steel 1 1110 1110 876876 2222 495495
비교강 2Comparative Steel 2 1125 1125 899899 1919 425425
비교강 3Comparative Steel 3 1130 1130 920920 2727 355355
비교강 4Comparative Steel 4 11341134 925925 1919 375375
비교강 5Comparative Steel 5 12311231 925925 1919 375375
비교강 6Comparative Steel 6 1105 1105 825825 2525 390390
비교강 7Comparative Steel 7 1140 1140 912912 3.53.5 435435
비교강 8Comparative Steel 8 1125 1125 947947 2323 670670
구분division 미세조직(γ:오스테나이트)Microstructure (γ: austenite) 표면결함의 크기(mm)Size of surface defects (mm) 항복강도(MPa)Yield strength (MPa) 연신율(%)Elongation (%) 충격인성(J@-40℃)Impact Toughness (J @ -40 ℃)
발명강 1Inventive Steel 1 γ+탄화물5%이하γ + Carbide 5% or less 0.24mm이하0.24mm or less 453453 5050 199199
발명강 2Inventive Steel 2 γ+탄화물5%이하γ + Carbide 5% or less 0.11mm이하0.11mm or less 411411 6060 227227
발명강 3Inventive Steel 3 γ+탄화물5%이하γ + Carbide 5% or less 0.05mm이하0.05mm or less 500500 5353 208208
발명강 4Inventive Steel 4 γ+탄화물5%이하γ + Carbide 5% or less 0.13mm이하0.13mm or less 523523 4747 116116
비교강 1Comparative Steel 1 γ+탄화물5%이하γ + Carbide 5% or less -- 270270 4848 8787
비교강 2Comparative Steel 2 γ+탄화물9.1%γ + carbide 9.1% -- 581581 1919 2727
비교강 3Comparative Steel 3 γ+ 마르텐사이트γ + martensite -- 380380 3333 1919
비교강 4Comparative Steel 4 γ+탄화물11.8%γ + carbides 11.8% -- 607607 1717 2222
비교강 5Comparative Steel 5 γ+탄화물5%이하γ + Carbide 5% or less 0.3mm초과More than 0.3mm 564564 3131 121121
비교강 6Comparative Steel 6 γ+탄화물6.1%γ + carbide 6.1% -- 420420 3636 4242
비교강 7Comparative Steel 7 γ+탄화물6.9%γ + carbide 6.9% -- 431431 5353 3333
비교강 8Comparative Steel 8 γ+탄화물7.2%γ + carbide 7.2% -- 520520 4343 2929
상기 표 1 내지 3에 나타난 바와 같이, 발명강 (1-4)의 경우 성분범위 및 제조조건을 모두 만족시키며, 발명강(1-4)은 모두 양호한 표면 특성을 보여준다.As shown in Tables 1 to 3, the invention steel (1-4) satisfies both the component range and the manufacturing conditions, the invention steel (1-4) all show good surface properties.
한편, 비교강(1)은 C이 매우 낮기 때문에 충분한 강도를 확보하지 못함을 보여준다.On the other hand, the comparative steel (1) shows that C is very low and thus does not secure sufficient strength.
비교강(2)는 과도한 C 첨가로 인해 탄화물이 증가하고, 연신율 및 충격인성이 급락함을 보여준다. Comparative steel (2) shows that carbides increase due to excessive C addition, and elongation and impact toughness drop sharply.
비교강(3)의 경우 Mn 함량의 부족으로 인해 안정적인 오스테나이트 상이 형성되지 못하고 마르텐사이트가 형성되어 충격인성이 급락함을 보여준다.In the case of the comparative steel (3), due to the lack of Mn content, a stable austenite phase is not formed, and martensite is formed, indicating that the impact toughness drops sharply.
비교강(4)는 Cr 함량 초과시 과다한 탄화물 형성으로 연신율 및 충격인성이 급락함을 보여준다.Comparative steel (4) shows that the elongation and impact toughness plummet due to excessive carbide formation when the Cr content is exceeded.
비교강(5)는 재가열온도가 기준치를 초과하여 제품 표면에 대형 결함이 발생한 것을 보여준다.Comparative steel 5 shows that a large defect occurred on the surface of the product because the reheating temperature exceeded the reference value.
비교강(6-8)은 압연마무리온도, 냉각속도, 냉각정지온도 등의 조건이 본 발명 범위를 벗어나는 것으로 탄화물의 과다 석출로 인해 충격인성이 급락함을 보여준다. Comparative steel 6-8 shows that the toughness of the rolling finish temperature, cooling rate, cooling stop temperature, etc. falls outside the scope of the present invention and the impact toughness drops sharply due to excessive precipitation of carbides.
한편, 도 1에 나타난 바와 같이, 재가열 온도가 높은 비교강(5)는 표면에 대형 크랙이 형성되어 있으나, 저온 재가열 온도를 적용한 발명강(3)의 경우 표층이 균일하고, 대형 크랙 발생이 없음을 확인할 수 있다.On the other hand, as shown in Figure 1, the comparative steel (5) having a high reheating temperature has a large crack formed on the surface, in the case of the invention steel (3) to which the low temperature reheating temperature is applied, the surface layer is uniform, there is no large crack can confirm.

Claims (5)

  1. 중량%로, 탄소(C): 0.6~1.3%, 망간(Mn): 14~22%, 구리(Cu): 5%이하(0% 제외), 크롬(Cr): 5%이하(0% 제외), 실리콘(Si): 1.0%이하(0% 제외), 알루미늄(Al): 0.5%이하(0% 제외), 인(P): 0.1%이하(0% 포함), 황(S): 0.02%이하(0% 포함), 나머지 철(Fe)과 기타 불가피한 불순물을 포함하고, 미세조직이 면적%로, 5%이하의 탄화물과 잔부 오스테나이트 조직으로 이루어지고, 표면결함의 크기가 0.3mm이하인 표면 특성이 우수한 오스테나이트계 강재.By weight, carbon (C): 0.6-1.3%, manganese (Mn): 14-22%, copper (Cu): 5% or less (excluding 0%), chromium (Cr): 5% or less (excluding 0%) ), Silicon (Si): 1.0% or less (excluding 0%), aluminum (Al): 0.5% or less (excluding 0%), phosphorus (P): 0.1% or less (including 0%), sulfur (S): 0.02 It contains less than% (including 0%), the remaining iron (Fe) and other unavoidable impurities, the microstructure consists of% by area, less than 5% of carbide and residual austenite structure, and the surface defect size is 0.3 mm or less. Austenitic steel with excellent surface properties.
  2. 제1항에 있어서, 표면결함의 크기가 0.2mm이하인 표면 특성이 우수한 오스테나이트계 강재.The austenitic steel according to claim 1, wherein the austenitic steel having excellent surface properties having a surface defect size of 0.2 mm or less.
  3. 중량%로, 탄소(C): 0.6~1.3%, 망간(Mn): 14~22%, 구리(Cu): 5%이하(0% 제외), 크롬(Cr): 5%이하(0% 제외), 실리콘(Si): 1.0%이하(0% 제외), 알루미늄(Al): 0.5%이하(0% 제외), 인(P): 0.1%이하(0% 포함), 황(S): 0.02%이하(0% 포함), 나머지 철(Fe)과 기타 불가피한 불순물을 포함하는 강 슬라브를 1000℃ 이상 1150℃ 이하에서 재가열하는 슬라브 재가열단계;By weight, carbon (C): 0.6-1.3%, manganese (Mn): 14-22%, copper (Cu): 5% or less (excluding 0%), chromium (Cr): 5% or less (excluding 0%) ), Silicon (Si): 1.0% or less (excluding 0%), aluminum (Al): 0.5% or less (excluding 0%), phosphorus (P): 0.1% or less (including 0%), sulfur (S): 0.02 A slab reheating step of reheating the steel slab containing% or less (including 0%) and the remaining iron (Fe) and other unavoidable impurities at 1000 ° C or more and 1150 ° C or less;
    가열된 슬라브를 850~950℃의 마무리 압연온도 조건으로 열간압연하여 열연강재를 얻는 열간압연단계; 및 A hot rolling step of hot rolling the heated slab under a finish rolling temperature of 850 to 950 ° C. to obtain a hot rolled steel; And
    상기 열연강재를 5℃/s이상의 냉각속도로 600℃이하까지 냉각하는 냉각단계를 포함하는 표면 특성이 우수한 오스테나이트계 강재의 제조방법.A method for producing an austenitic steel having excellent surface properties including a cooling step of cooling the hot rolled steel to 600 ° C or lower at a cooling rate of 5 ° C / s or more.
  4. 제3항에 있어서, 상기 냉각단계에서 냉각 시, 냉각속도가 15℃/s이상인 것을 특징으로 하는 표면 특성이 우수한 오스테나이트계 강재의 제조방법.The method of claim 3, wherein the cooling rate is 15 ° C./s or more during cooling in the cooling step. 5.
  5. 제3항에 있어서, 상기 강재의 미세조직은 면적%로, 5%이하의 탄화물과 잔부 오스테나이트 조직으로 이루어지고, 표면결함의 크기가 0.3mm이하인 표면 특성이 우수한 오스테나이트계 강재의 제조방법.The method according to claim 3, wherein the microstructure of the steel is an area%, including 5% or less of carbide and residual austenite structure, and having excellent surface properties with a surface defect size of 0.3 mm or less.
PCT/KR2017/015215 2016-12-23 2017-12-21 Austenite steel material having superb surface characteristic, and method for producing same WO2018117678A1 (en)

Priority Applications (5)

Application Number Priority Date Filing Date Title
US16/471,777 US20200087751A1 (en) 2016-12-23 2017-12-21 Austenitic steel having excellent surface characteristics, and method of manufacturing the same
CA3047237A CA3047237A1 (en) 2016-12-23 2017-12-21 Austenitic steel material having superb surface characteristic, and method for producing same
EP17884959.2A EP3561122A4 (en) 2016-12-23 2017-12-21 Austenite steel material having superb surface characteristic, and method for producing same
JP2019534166A JP2020509211A (en) 2016-12-23 2017-12-21 Austenitic steel with excellent surface properties and method for producing the same
CN201780079005.XA CN110088343A (en) 2016-12-23 2017-12-21 Austenitic steel and its manufacturing method with excellent surface characteristic

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR10-2016-0178238 2016-12-23
KR1020160178238A KR101920973B1 (en) 2016-12-23 2016-12-23 Austenitic steel having excellent surface properties and method for manufacturing thereof

Publications (1)

Publication Number Publication Date
WO2018117678A1 true WO2018117678A1 (en) 2018-06-28

Family

ID=62626822

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2017/015215 WO2018117678A1 (en) 2016-12-23 2017-12-21 Austenite steel material having superb surface characteristic, and method for producing same

Country Status (7)

Country Link
US (1) US20200087751A1 (en)
EP (1) EP3561122A4 (en)
JP (1) JP2020509211A (en)
KR (1) KR101920973B1 (en)
CN (1) CN110088343A (en)
CA (1) CA3047237A1 (en)
WO (1) WO2018117678A1 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20230087092A1 (en) * 2020-02-18 2023-03-23 Posco Steel sheet with excellent surface quality, and manufacturing method therefor
CN114015942B (en) * 2021-11-04 2022-07-29 广东美芝制冷设备有限公司 Nonmagnetic balance block, preparation method thereof and compressor
WO2023233186A1 (en) * 2022-06-02 2023-12-07 Arcelormittal High manganese hot rolled steel and a method of production thereof

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20020048529A1 (en) * 2000-10-19 2002-04-25 The Frog Switch And Manufacturing Company Grain-refined austenitic manganese steel casting having microadditions of vanandium and titanium and method of manufacturing
KR20070091300A (en) * 2004-11-24 2007-09-10 아르셀러 프랑스 Method of producing austenitic iron/carbon/manganese steel sheets having very high strength and elongation characteristics and excellent homogeneity
KR20100106649A (en) 2009-03-24 2010-10-04 현대자동차주식회사 Ultra-high strength twip steel sheets and the manufacturing method thereof
US20140261918A1 (en) * 2013-03-15 2014-09-18 Exxonmobil Research And Engineering Company Enhanced wear resistant steel and methods of making the same
KR20150075305A (en) * 2013-12-25 2015-07-03 주식회사 포스코 Steels for low temperature services having superior yield strength and method for production thereof
JP2016196703A (en) * 2015-04-02 2016-11-24 新日鐵住金株式会社 HIGH Mn STEEL MATERIAL FOR CRYOGENIC USE

Family Cites Families (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2857980B1 (en) * 2003-07-22 2006-01-13 Usinor PROCESS FOR MANUFACTURING HIGH-STRENGTH FERRO-CARBON-MANGANESE AUSTENITIC STEEL SHEET, EXCELLENT TENACITY AND COLD SHAPINGABILITY, AND SHEETS THUS PRODUCED
DE102008056844A1 (en) * 2008-11-12 2010-06-02 Voestalpine Stahl Gmbh Manganese steel strip and method of making the same
JP5406686B2 (en) * 2009-11-30 2014-02-05 株式会社神戸製鋼所 Non-magnetic steel
JP5287770B2 (en) * 2010-03-09 2013-09-11 Jfeスチール株式会社 High strength steel plate and manufacturing method thereof
CN102220545B (en) * 2010-04-16 2013-02-27 攀钢集团有限公司 High-carbon and high-strength heat-treated steel rail with high wear resistance and plasticity and manufacturing method thereof
JP5041029B2 (en) * 2010-04-30 2012-10-03 住友金属工業株式会社 Method for producing high manganese steel
WO2013100612A1 (en) * 2011-12-28 2013-07-04 주식회사 포스코 Wear resistant austenitic steel having superior machinability and toughness in weld heat affected zones thereof and method for producing same
CN104204262B (en) * 2011-12-28 2018-02-02 Posco公司 Abrasive austenic steel and its production method with excellent machining property and ductility
WO2014127062A2 (en) * 2013-02-15 2014-08-21 Scoperta, Inc. Hard weld overlays resistant to re-heat cracking
EP2789701A1 (en) * 2013-04-08 2014-10-15 DALMINE S.p.A. High strength medium wall quenched and tempered seamless steel pipes and related method for manufacturing said steel pipes
KR20160075927A (en) * 2014-12-19 2016-06-30 주식회사 포스코 The steel sheet having excellent strength and toughness at the center of thickness and method for manufacturing the same

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20020048529A1 (en) * 2000-10-19 2002-04-25 The Frog Switch And Manufacturing Company Grain-refined austenitic manganese steel casting having microadditions of vanandium and titanium and method of manufacturing
KR20070091300A (en) * 2004-11-24 2007-09-10 아르셀러 프랑스 Method of producing austenitic iron/carbon/manganese steel sheets having very high strength and elongation characteristics and excellent homogeneity
KR20100106649A (en) 2009-03-24 2010-10-04 현대자동차주식회사 Ultra-high strength twip steel sheets and the manufacturing method thereof
US20140261918A1 (en) * 2013-03-15 2014-09-18 Exxonmobil Research And Engineering Company Enhanced wear resistant steel and methods of making the same
KR20150075305A (en) * 2013-12-25 2015-07-03 주식회사 포스코 Steels for low temperature services having superior yield strength and method for production thereof
JP2016196703A (en) * 2015-04-02 2016-11-24 新日鐵住金株式会社 HIGH Mn STEEL MATERIAL FOR CRYOGENIC USE

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3561122A4 *

Also Published As

Publication number Publication date
US20200087751A1 (en) 2020-03-19
CN110088343A (en) 2019-08-02
EP3561122A4 (en) 2019-12-25
JP2020509211A (en) 2020-03-26
KR20180074294A (en) 2018-07-03
CA3047237A1 (en) 2018-06-28
EP3561122A1 (en) 2019-10-30
KR101920973B1 (en) 2018-11-21

Similar Documents

Publication Publication Date Title
KR20210018414A (en) Seek hot-rolled H-beam having a yield strength of 500 megapascal and its manufacturing method
WO2017111510A1 (en) Non-magnetic steel material having excellent hot workability and manufacturing method therefor
WO2014104706A1 (en) High strength austenitic-based steel with remarkable toughness of welding heat-affected zone and preparation method therefor
WO2020067685A1 (en) Wear resistant steel having excellent hardness and impact toughness and method of manufacturing the same
WO2018074887A1 (en) High-strength reinforcing steel and method for manufacturing same
WO2021091138A1 (en) Steel plate having high strength and excellent low-temperature impact toughness and method for manufacturing thereof
WO2018117676A1 (en) Austenite steel material having superb abrasion resistance and toughness, and method for producing same
WO2018117712A1 (en) High manganese steel having superior low-temperature toughness and yield strength and manufacturing method
WO2019125083A1 (en) Wear-resistant steel having excellent hardness and impact toughness, and method for producing same
WO2017111290A1 (en) Steel sheet having excellent pwht resistance for low-temperature pressure vessel and method for manufacturing same
WO2018117678A1 (en) Austenite steel material having superb surface characteristic, and method for producing same
WO2017034216A1 (en) High-hardness steel sheet, and manufacturing method therefor
WO2020067686A1 (en) Abrasion resistant steel having excellent hardness and impact toughness, and manufacturing method therefor
WO2017105134A1 (en) Wear resistant steel material excellent in toughness and internal quality, and method for manufacturing same
WO2020111863A1 (en) Ultrahigh-strength steel having excellent cold workability and ssc resistance, and manufacturing method therefor
WO2018117477A1 (en) Duplex stainless steel having excellent corrosion resistance and moldability, and manufacturing method therefor
WO2018117650A1 (en) Ultra-thick steel material having excellent surface part nrl-dwt properties and method for manufacturing same
WO2019125025A1 (en) High-strength austenite-based high-manganese steel material and manufacturing method for same
WO2019124729A1 (en) Utility ferritic stainless steel having excellent hot workability, and manufacturing method therefor
WO2019125076A1 (en) Wear-resistant steel having excellent hardness and impact toughness, and method for producing same
WO2019117432A1 (en) Ferrite-based stainless steel having excellent impact toughness, and method for producing same
WO2019132179A1 (en) High-strength high-toughness hot-rolled steel sheet and manufacturing method therefor
WO2017222122A1 (en) Reinforcing bar and manufacturing method therefor
WO2013100625A1 (en) Abrasion resistant steel with excellent toughness and weldability
WO2019093689A1 (en) High-strength, low-toughness cold-rolled steel sheet having excellent fracture properties, and method for producing same

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17884959

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 3047237

Country of ref document: CA

ENP Entry into the national phase

Ref document number: 2019534166

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2017884959

Country of ref document: EP

Effective date: 20190723