JP2020509211A - Austenitic steel with excellent surface properties and method for producing the same - Google Patents

Austenitic steel with excellent surface properties and method for producing the same Download PDF

Info

Publication number
JP2020509211A
JP2020509211A JP2019534166A JP2019534166A JP2020509211A JP 2020509211 A JP2020509211 A JP 2020509211A JP 2019534166 A JP2019534166 A JP 2019534166A JP 2019534166 A JP2019534166 A JP 2019534166A JP 2020509211 A JP2020509211 A JP 2020509211A
Authority
JP
Japan
Prior art keywords
less
excluding
steel material
steel
austenitic
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2019534166A
Other languages
Japanese (ja)
Inventor
ジン キム,ヨン
ジン キム,ヨン
ヨル オー,ホン
ヨル オー,ホン
ドク カン,サン
ドク カン,サン
ヘ リ,ウン
ヘ リ,ウン
ミ ハ,ユ
ミ ハ,ユ
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Posco Holdings Inc
Original Assignee
Posco Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Posco Co Ltd filed Critical Posco Co Ltd
Publication of JP2020509211A publication Critical patent/JP2020509211A/en
Pending legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D6/00Heat treatment of ferrous alloys
    • C21D6/002Heat treatment of ferrous alloys containing Cr
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D6/00Heat treatment of ferrous alloys
    • C21D6/005Heat treatment of ferrous alloys containing Mn
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D6/00Heat treatment of ferrous alloys
    • C21D6/008Heat treatment of ferrous alloys containing Si
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/02Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/02Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips
    • C21D8/0205Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips of ferrous alloys
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/02Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips
    • C21D8/0221Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips characterised by the working steps
    • C21D8/0226Hot rolling
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/02Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips
    • C21D8/0247Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips characterised by the heat treatment
    • C21D8/0263Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips characterised by the heat treatment following hot rolling
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D9/00Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor
    • C21D9/46Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor for sheet metals
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/002Ferrous alloys, e.g. steel alloys containing In, Mg, or other elements not provided for in one single group C22C38/001 - C22C38/60
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/02Ferrous alloys, e.g. steel alloys containing silicon
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/06Ferrous alloys, e.g. steel alloys containing aluminium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/20Ferrous alloys, e.g. steel alloys containing chromium with copper
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/34Ferrous alloys, e.g. steel alloys containing chromium with more than 1.5% by weight of silicon
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/38Ferrous alloys, e.g. steel alloys containing chromium with more than 1.5% by weight of manganese
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D2211/00Microstructure comprising significant phases
    • C21D2211/001Austenite
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D2211/00Microstructure comprising significant phases
    • C21D2211/004Dispersions; Precipitations

Abstract

本発明は、表面特性に優れたオーステナイト系耐摩耗鋼材及びこれを製造する方法に関する。本発明によると、重量%で、炭素(C):0.6〜1.3%、マンガン(Mn):14〜22%、銅(Cu):5%以下(0%を除く)、クロム(Cr):5%以下(0%を除く)、ケイ素(Si):1.0%以下(0%を除く)、アルミニウム(Al):0.5%以下(0%を除く)、リン(P):0.1%以下(0%を含む)、硫黄(S):0.02%以下(0%を含む)、残部が鉄(Fe)とその他の不可避不純物からなり、微細組織が、面積%で、5%以下の炭化物及び残部オーステナイト組織からなり、表面欠陥の大きさが0.3mm以下である表面特性に優れたオーステナイト系鋼材及びその製造方法が提供される。【選択図】図1The present invention relates to an austenitic wear-resistant steel material having excellent surface properties and a method for producing the same. According to the present invention, carbon (C): 0.6 to 1.3%, manganese (Mn): 14 to 22%, copper (Cu): 5% or less (excluding 0%), chromium (% by weight) Cr): 5% or less (excluding 0%), silicon (Si): 1.0% or less (excluding 0%), aluminum (Al): 0.5% or less (excluding 0%), phosphorus (P ): 0.1% or less (including 0%), sulfur (S): 0.02% or less (including 0%), and the balance consists of iron (Fe) and other unavoidable impurities. In addition, the present invention provides an austenitic steel material comprising 5% or less of a carbide and a residual austenite structure in which the size of a surface defect is 0.3 mm or less and excellent in surface characteristics, and a method for producing the same. [Selection diagram] Fig. 1

Description

本発明は、産業機械、構造材料、そして、スラリーパイプ用鋼材、耐サワー(sour)鋼材などといった石油・ガス産業(Oil and Gas Industries)において採掘、輸送、貯蔵分野などで用いられる耐摩耗性に優れたオーステナイト系鋼材及びその製造方法に関し、より詳細には、延性に加えて、優れた耐摩耗性、靭性、及び耐食性などを有する表面特性に優れたオーステナイト系鋼材及びその製造方法に関する。   The present invention relates to abrasion resistance used in mining, transportation, and storage fields in the oil and gas industry (oil and gas industries) such as industrial machines, structural materials, and steel materials for slurry pipes and sour steel materials. The present invention relates to an excellent austenitic steel material and a method for producing the same, and more particularly, to an austenitic steel material having excellent surface properties such as excellent wear resistance, toughness, and corrosion resistance in addition to ductility, and a method for producing the same.

オーステナイト系鋼材は、それ自体が有している加工硬化能や非磁性などの性質により、様々な用途で用いられている。特に、従来主に用いられていたフェライト或いはマルテンサイトを主組織とする炭素鋼がその特性に限界を示すことにより、それらの欠点を克服する代替材としてその適用が増加する傾向にある。   Austenitic steel materials are used in various applications due to their properties such as work hardening ability and non-magnetism. In particular, carbon steels having a main structure of ferrite or martensite, which have been mainly used in the past, show a limit in their properties, and their application as a substitute material for overcoming those disadvantages tends to increase.

特に、鉱業及び石油・ガス産業(Oil and Gas Industries)の成長に伴い、採掘、輸送、精製、及び貯蔵過程で使用鋼材の摩耗が大きい問題として浮上している。特に最近、石油を代替する化石燃料としてオイルサンド(Oil Sands)に対する開発が本格化している影響を受けて、オイル、砂利、砂などが含まれるスラリーによる鋼材の摩耗は、生産コストの増加をもたらす重要な原因として指摘されている。これにより、耐摩耗性及び靭性に優れた鋼材の開発及び適用に対するニーズが大幅に増加している。   In particular, with the growth of the mining and oil and gas industries (Oil and Gas Industries), wear of steel materials used in mining, transportation, refining, and storage processes has emerged as a major problem. In particular, due to the recent development of oil sands as a fossil fuel that replaces oil, the wear of steel materials due to slurries containing oil, gravel, sand, etc. increases production costs. It is pointed out as an important cause. As a result, the need for the development and application of steel materials having excellent wear resistance and toughness has greatly increased.

そこで、ハッドフィールド(Hadfield)鋼は、優れた耐摩耗性を有することから、様々な産業で耐摩耗部品として広く使用されており、鋼材の耐摩耗性を高めるために、高含有量の炭素を含有させたり、またはマンガンを大量に含ませたりすることで、オーステナイト組織及び耐摩耗性を増加させるための努力が着実に進められてきた。   Therefore, since Hadfield steel has excellent wear resistance, it is widely used as wear-resistant parts in various industries. In order to enhance the wear resistance of steel materials, a high content of carbon is required. Efforts have been steadily made to increase the austenitic structure and wear resistance by including or by including manganese in large amounts.

しかし、ハッドフィールド鋼の高い炭素含有量は、オーステナイト粒界に沿ってネットワーク状の炭化物を高温で生成させて、鋼材の物性、特に延性を急激に低下させる。かかるネットワーク状の炭化物析出を抑制するために、熱処理をするか、または高温で溶体化処理をして熱間加工後に常温に急冷させることで高マンガン鋼を製造する方法が提示された。   However, the high carbon content of Hadfield steel causes the formation of network-like carbides at high temperatures along the austenite grain boundaries, which sharply reduces the properties of the steel, especially the ductility. In order to suppress such network-like carbide precipitation, there has been proposed a method of producing a high manganese steel by heat treatment or solution treatment at a high temperature and quenching to a room temperature after hot working.

しかし、ハッドフィールド鋼は、一般の機械的摩耗環境では優れた耐摩耗性を有するが、腐食摩耗を伴う環境では、優れた耐摩耗性を発揮することが難しく、複合的な摩耗が発生する過酷な環境に適用するには無理がある。   However, Hadfield steel has excellent wear resistance in general mechanical wear environments, but it is difficult to exhibit excellent wear resistance in environments with corrosive wear, and severe harshness in which complex wear occurs There is no way to apply it to an unusual environment.

最近では、かかる点を考慮して、耐食性も確保するオーステナイト系耐摩耗鋼が開発された。しかし、炭素含有量が非常に高いオーステナイト系耐摩耗鋼では炭化物析出による靭性劣化が常に問題となっている。尚、高マンガン鋼のインゴットまたは鋳片には、凝固中にマンガンや炭素などの合金元素による偏析が必然的に発生する。これが、熱間圧延などの後加工時にさらに悪化して、結果として最終製品において、偏析帯に沿って炭化物の部分析出がネットワーク状に発生し、最終的に微細組織の不均一性を助長して物性を劣化させる結果をもたらす。したがって、オーステナイト系耐摩耗鋼では、主に炭化物析出による物性劣化を防止するための研究が行われてきた。   Recently, austenitic wear-resistant steels that also ensure corrosion resistance have been developed in consideration of such points. However, in austenitic wear-resistant steels having a very high carbon content, toughness degradation due to carbide precipitation has always been a problem. Incidentally, segregation due to alloy elements such as manganese and carbon is inevitably generated in the ingot or slab of high manganese steel during solidification. This worsens during post-processing such as hot rolling, and as a result, in the final product, partial precipitation of carbides occurs in a network along the segregation zone, eventually promoting non-uniform microstructure. Results in deterioration of physical properties. Therefore, studies have been conducted on austenitic wear-resistant steels mainly to prevent physical property deterioration due to carbide precipitation.

もう一つの問題として表面に発生する不均一酸化が挙げられる。かかる不均一酸化は、特に粒界に沿って発生し、スラブ再加熱過程でクラックを誘発させ、応力が発生する圧延過程でクラックを成長させて、最終製品の表面特性を劣化させる。表面に発生するクラックは、製品曲げや引張加工時の早期破断を発生させる原因として作用する可能性があり、耐摩耗性能を低下させることがありうる。   Another problem is uneven oxidation occurring on the surface. Such non-uniform oxidation particularly occurs along grain boundaries, induces cracks in a slab reheating process, causes cracks to grow in a rolling process in which stress is generated, and deteriorates surface properties of a final product. Cracks generated on the surface may act as a cause of premature fracture during product bending or tensile processing, and may reduce wear resistance performance.

韓国公開特許第2010−0106649号公報Korean Published Patent Application No. 2010-0106649

本発明の目的は、不均一酸化を抑制し、表面品質を向上させた表面特性に優れたオーステナイト系鋼材を提供することである。   An object of the present invention is to provide an austenitic steel material which suppresses non-uniform oxidation and has improved surface quality and excellent surface characteristics.

本発明の他の目的は、不均一酸化を抑制し、表面品質を向上させた表面特性に優れたオーステナイト系鋼材の製造方法を提供することである。   Another object of the present invention is to provide a method for producing an austenitic steel material having excellent surface characteristics, which suppresses uneven oxidation and improves surface quality.

本発明の好ましい一側面によると、重量%で、炭素(C):0.6〜1.3%、マンガン(Mn):14〜22%、銅(Cu):5%以下(0%を除く)、クロム(Cr):5%以下(0%を除く)、ケイ素(Si):1.0%以下(0%を除く)、アルミニウム(Al):0.5%以下(0%を除く)、リン(P):0.1%以下(0%を含む)、硫黄(S):0.02%以下(0%を含む)、残部が鉄(Fe)とその他の不可避不純物からなり、微細組織が、面積%で、5%以下の炭化物及び残部オーステナイト組織からなり、表面欠陥の大きさが0.3mm以下である表面特性に優れたオーステナイト系鋼材が提供される。   According to a preferred aspect of the present invention, by weight%, carbon (C): 0.6 to 1.3%, manganese (Mn): 14 to 22%, copper (Cu): 5% or less (excluding 0%) ), Chromium (Cr): 5% or less (excluding 0%), silicon (Si): 1.0% or less (excluding 0%), aluminum (Al): 0.5% or less (excluding 0%) , Phosphorus (P): 0.1% or less (including 0%), Sulfur (S): 0.02% or less (including 0%), the balance being iron (Fe) and other unavoidable impurities. Provided is an austenitic steel material having a surface area of 5% or less of carbide and a residual austenite structure, and having a surface defect size of 0.3 mm or less and excellent in surface properties.

本発明の好ましい他の一側面によると、重量%で、炭素(C):0.6〜1.3%、マンガン(Mn):14〜22%、銅(Cu):5%以下(0%を除く)、クロム(Cr):5%以下(0%を除く)、ケイ素(Si):1.0%以下(0%を除く)、アルミニウム(Al):0.5%以下(0%を除く)、リン(P):0.1%以下(0%を含む)、硫黄(S):0.02%以下(0%を含む)、残部が鉄(Fe)とその他の不可避不純物からなる鋼スラブを1000℃以上1150℃以下で再加熱するスラブ再加熱段階と、上記再加熱されたスラブを850〜950℃の仕上げ圧延温度条件で熱間圧延して熱延鋼材を得る熱間圧延段階と、上記熱延鋼材を5℃/s以上の冷却速度で600℃以下まで冷却する冷却段階と、を含む表面特性に優れたオーステナイト系鋼材の製造方法が提供される。   According to another preferable aspect of the present invention, carbon (C): 0.6 to 1.3%, manganese (Mn): 14 to 22%, and copper (Cu): 5% or less (0%) ), Chromium (Cr): 5% or less (excluding 0%), silicon (Si): 1.0% or less (excluding 0%), aluminum (Al): 0.5% or less (0% Excluding), phosphorus (P): 0.1% or less (including 0%), sulfur (S): 0.02% or less (including 0%), and the balance consists of iron (Fe) and other unavoidable impurities A slab reheating step of reheating the steel slab at 1000 ° C. or more and 1150 ° C. or less, and a hot rolling step of hot rolling the reheated slab at 850 to 950 ° C. to obtain a hot rolled steel material And a cooling step of cooling the hot-rolled steel material to 600 ° C. or less at a cooling rate of 5 ° C./s or more. Excellent production method for austenitic steel material is provided.

本発明によると、表面特性に優れたオーステナイト系鋼材を提供することができるようになる。   According to the present invention, it is possible to provide an austenitic steel material having excellent surface properties.

これにより、優れた耐摩耗性を有するようになるため、摩耗が大量に発生する石油・ガス産業での採掘、輸送、貯蔵分野または産業機械分野全般において耐摩耗性が要求される分野に適用可能であり、特に美麗な表面品質が要求される分野にその適用範囲を拡大するとともに、鋼材生産の面でも製品表面の補修必要性が減少して生産性及び効率の向上が期待される。   As a result, it has excellent abrasion resistance, so it can be applied to areas where abrasion resistance is required in the mining, transport, storage or industrial machinery fields where a large amount of abrasion occurs in the oil and gas industry. In particular, the application range is expanded to fields requiring beautiful surface quality, and the need for repairing the product surface is reduced in terms of steel material production, so that productivity and efficiency are expected to be improved.

発明鋼3及び比較鋼5の組織を撮影した写真である。It is the photograph which image | photographed the structure of invention steel 3 and comparative steel 5.

本発明者らは、耐摩耗性が要求される技術分野で用いられていた従来の鋼材に比べて優れた強度及び耐摩耗性を有する鋼材について研究して、高マンガン鋼の場合に、オーステナイト系鋼材特有の優れた強度及び伸びを確保することができるだけでなく、加工硬化率を向上させると、耐摩耗環境で素材自体の加工硬化により、硬度が逆に高くなり、優れた耐摩耗性を確保することができることを見出し、これを基に本発明を完成するに至った。   The present inventors have studied steel materials having superior strength and wear resistance as compared with conventional steel materials used in the technical field where wear resistance is required. In addition to ensuring excellent strength and elongation peculiar to steel materials, when the work hardening rate is improved, the hardness of the material itself becomes higher due to work hardening of the material itself in a wear resistant environment, ensuring excellent wear resistance And found that the present invention was completed based on this.

また、従来のオーステナイト系耐摩耗鋼材の問題である劣る表面特性を向上するために、不均一酸化を抑制するための熱間圧延前のスラブの再加熱条件を導出することにより、耐摩耗性に加えて、優れた表面特性を有する耐摩耗鋼を製造することができることが確認できた。   In addition, in order to improve the inferior surface characteristics, which is a problem of conventional austenitic wear-resistant steel materials, by deriving conditions for reheating the slab before hot rolling to suppress non-uniform oxidation, wear resistance is improved. In addition, it was confirmed that a wear-resistant steel having excellent surface characteristics can be manufactured.

以下、本発明の好ましい一側面による表面特性に優れたオーステナイト系鋼材について説明する。   Hereinafter, an austenitic steel material having excellent surface characteristics according to a preferred aspect of the present invention will be described.

本発明の好ましい一側面による表面特性に優れたオーステナイト系鋼材は、重量%で、炭素(C):0.6〜1.3%、マンガン(Mn):14〜22%、銅(Cu):5%以下(0%を除く)、クロム(Cr):5%以下(0%を除く)、ケイ素(Si):1.0%以下(0%を除く)、アルミニウム(Al):0.5%以下(0%を除く)、リン(P):0.1%以下(0%を含む)、硫黄(S):0.02%以下(0%を含む)、残部が鉄(Fe)とその他の不可避不純物からなり、微細組織が、面積%で、5%以下の炭化物と残部がオーステナイト組織からなり、表面欠陥の大きさが0.3mm以下である。   An austenitic steel material having excellent surface properties according to a preferred aspect of the present invention is, by weight%, carbon (C): 0.6 to 1.3%, manganese (Mn): 14 to 22%, and copper (Cu): 5% or less (except 0%), chromium (Cr): 5% or less (except 0%), silicon (Si): 1.0% or less (except 0%), aluminum (Al): 0.5 % (Excluding 0%), phosphorus (P): 0.1% or less (including 0%), sulfur (S): 0.02% or less (including 0%), and the balance is iron (Fe). It consists of other unavoidable impurities, the fine structure is 5% or less in area% of carbides and the rest is an austenitic structure, and the size of surface defects is 0.3 mm or less.

まず、鋼成分及び成分範囲について説明する。   First, steel components and component ranges will be described.

C:0.6〜1.3重量%(以下、「%」とする)
炭素(C)は、オーステナイト安定化元素でありながら、均一伸びを向上させる役割を果たすだけでなく、強度を向上するとともに加工硬化率を高めるのに非常に有利な元素である。かかる炭素の含有量が0.6%未満である場合には、常温で安定したオーステナイトを形成することが難しく、十分な強度及び加工硬化率を確保することが困難である。これに対し、Cの含有量が1.3%を超えると、炭化物が大量に析出して均一伸びを低減させ、優れた伸びを確保することが難しくなる可能性があり、耐摩耗性の低下及び早期破断をもたらす。耐摩耗性を向上するためには、できる限り炭素含有量を高めることが有利であるが、炭素固溶に限界があり、物性が劣ってくるおそれがあるため、Cの上限を1.3%に制限することが好ましい。したがって、Cの含有量を0.6〜1.3%に制限することが好ましい。より好ましいCの含有量は0.6〜1.25%である。
C: 0.6 to 1.3% by weight (hereinafter referred to as "%")
Carbon (C), while being an austenite stabilizing element, not only plays a role of improving uniform elongation, but is also an extremely advantageous element for improving strength and increasing the work hardening rate. When the carbon content is less than 0.6%, it is difficult to form stable austenite at room temperature, and it is difficult to secure sufficient strength and work hardening rate. On the other hand, if the content of C exceeds 1.3%, a large amount of carbides precipitate and reduce uniform elongation, which may make it difficult to secure excellent elongation, resulting in a decrease in wear resistance. And premature rupture. In order to improve the wear resistance, it is advantageous to increase the carbon content as much as possible. However, since there is a limit in the solid solution of carbon and the physical properties may be deteriorated, the upper limit of C is set to 1.3%. It is preferred to limit to Therefore, it is preferable to limit the content of C to 0.6 to 1.3%. A more preferred C content is 0.6 to 1.25%.

Mn:14〜22%
マンガン(Mn)は、オーステナイトを安定化させる役割を果たす非常に重要な元素であって、均一伸びを向上させる。本発明において、主組織としてオーステナイトを得るためには、Mnが14%以上含まれることが好ましい。Mnの含有量が14%未満であると、オーステナイト安定度が低下してマルテンサイト組織が形成されることがある。そのため、オーステナイト組織を十分に確保できない場合には、十分な均一伸びを確保することが難しい。これに対し、Mnの含有量が22%を超えると、製造コストが上昇するだけでなく、マンガン添加による耐食性の低下や製造工程上の難しさなどという問題が生じてくる。したがって、Mnの含有量を14〜22%に制限することが好ましい。
Mn: 14-22%
Manganese (Mn) is a very important element that plays a role in stabilizing austenite, and improves uniform elongation. In the present invention, in order to obtain austenite as a main structure, it is preferable that Mn is contained by 14% or more. If the Mn content is less than 14%, the austenite stability may decrease, and a martensite structure may be formed. Therefore, when the austenite structure cannot be sufficiently secured, it is difficult to secure sufficient uniform elongation. On the other hand, if the Mn content exceeds 22%, not only does the production cost rise, but also problems such as a decrease in corrosion resistance due to the addition of manganese and difficulty in the production process arise. Therefore, it is preferable to limit the content of Mn to 14 to 22%.

Cu:5%以下(0%を除く)
銅(Cu)は、炭化物内の固溶度が非常に低く、オーステナイト内での拡散が遅いことから、オーステナイトと核生成された炭化物界面に濃縮され、結果として炭素の拡散を抑制することにより、炭化物の成長を効果的に遅らせる。その結果、炭化物の生成を抑制するという効果を奏する。また、銅は、耐食性の向上にも役立つ。但し、Cuの含有量が5%を超えると、鋼材の熱間加工性を低下させるという問題があるため、Cの上限を5%に制限することが好ましい。上述した炭化物の抑制効果を得るための銅の含有量は0.05%以上であることがより好ましい。より好ましいCuの含有量は、0.05〜3.0%である。
Cu: 5% or less (excluding 0%)
Since copper (Cu) has a very low solid solubility in carbides and a slow diffusion in austenite, it is concentrated at the interface between austenite and nucleated carbides, thereby suppressing the diffusion of carbon. Effectively retards carbide growth. As a result, an effect of suppressing generation of carbides is exerted. Copper also helps improve corrosion resistance. However, if the content of Cu exceeds 5%, there is a problem that the hot workability of the steel material is reduced. Therefore, it is preferable to limit the upper limit of C to 5%. The content of copper for obtaining the above-described effect of suppressing carbide is more preferably 0.05% or more. A more preferred Cu content is 0.05 to 3.0%.

Cr:5%以下(0%を除く)
クロムは、適正な添加量範囲まではオーステナイト内に固溶されて鋼材の強度を増加させる役割を果たす。また、クロムは、鋼材の耐食性を向上させる元素でもある。但し、クロムは、炭化物元素であり、特に、オーステナイト粒界に炭化物を形成して靭性を低下させる元素でもある。したがって、本発明で添加されるクロムの含有量は、炭素及び一緒に添加されるその他の元素との関係に注意して決定することが好ましく、炭化物の形成を防止するためには、Crの含有量の上限を5%に制限することが好ましい。Crの含有量が5%を超えると、オーステナイト粒界におけるクロム系炭化物の生成を効果的に抑制することが難しく、その結果、衝撃靭性が低下するという問題がある。したがって、クロムの含有量を5%以下に制限することが好ましい。
Cr: 5% or less (excluding 0%)
Chromium plays a role of increasing the strength of the steel material by being solid-dissolved in austenite up to a proper addition amount range. Chromium is also an element that improves the corrosion resistance of steel materials. However, chromium is a carbide element, and in particular, is an element that forms carbide at the austenite grain boundary to lower the toughness. Therefore, the content of chromium added in the present invention is preferably determined by paying attention to the relationship between carbon and other elements added together, and in order to prevent the formation of carbides, the content of Cr is preferably determined. Preferably, the upper limit of the amount is limited to 5%. If the Cr content exceeds 5%, it is difficult to effectively suppress the formation of chromium carbides at austenite grain boundaries, and as a result, there is a problem that impact toughness is reduced. Therefore, it is preferable to limit the chromium content to 5% or less.

ケイ素(Si):1.0%以下(0%は除く)及びアルミニウム(Al):0.5%以下(0%を除く)
アルミニウム(Al)及びケイ素(Si)は、製鋼工程での脱酸剤として含まれる成分である。本発明において、鋼材は、上記限定された成分範囲内でアルミニウム(Al)及びケイ素(Si)を含むことができる。
Silicon (Si): 1.0% or less (excluding 0%) and Aluminum (Al): 0.5% or less (excluding 0%)
Aluminum (Al) and silicon (Si) are components included as a deoxidizing agent in a steelmaking process. In the present invention, the steel material may include aluminum (Al) and silicon (Si) within the above-mentioned limited component range.

リン(P):0.1%以下(0%を含む)及び硫黄(S):0.02%以下(0%を含む)
リン(P)及び硫黄(S)は、代表的な不純物であり、大量添加時には品質劣化をもたらす可能性があるため、リン(P)及び硫黄(S)をそれぞれ0.1%以下及び0.02%以下に制限することが好ましい。
Phosphorus (P): 0.1% or less (including 0%) and Sulfur (S): 0.02% or less (including 0%)
Phosphorus (P) and sulfur (S) are typical impurities, and may cause quality deterioration when added in a large amount. Therefore, phosphorus (P) and sulfur (S) are 0.1% or less and 0.1%, respectively. Preferably, it is limited to 02% or less.

本発明の残りの成分は鉄(Fe)である。但し、通常の製造工程では原料又は周囲環境から意図しない不純物が不可避に混入するため、これを排除することはできない。これらの不純物は、当該技術分野における通常の知識を有する技術者であれば容易に理解されるものであるため、本明細書ではそのすべての内容について特に言及しない。   The remaining component of the present invention is iron (Fe). However, in a normal manufacturing process, unintended impurities are unavoidably mixed from the raw material or the surrounding environment, and thus cannot be excluded. Since these impurities are easily understood by those skilled in the art, those contents are not specifically mentioned in this specification.

本発明の好ましい一側面によるオーステナイト系鋼材は、面積%で、5%以下の炭化物及び残部がオーステナイト組織からなる微細組織を有する。表面欠陥の大きさは0.3mm以下である。より好ましくは、表面欠陥の大きさが0.2mm以下である。
上記炭化物の含有量が5%を超えると、炭化物が結晶粒界を取り囲むようになる。その結果、伸び及び衝撃靭性が急激に低下するおそれがある。
上記表面欠陥の大きさが0.3mmを超えると、生成された表面クラックが追加加工時に伝播して早期破断を起こしたり、または目標とする最終製品の厚さを保証するのに支障をきたすという問題がある。
ここで表面欠陥の大きさとは、例えば、クラックが発生し始めた時点から停止した地点までの長さと定義することができる。
The austenitic steel material according to a preferred aspect of the present invention has a microstructure of 5% or less in area% of carbide and a balance of austenite structure. The size of the surface defect is 0.3 mm or less. More preferably, the size of the surface defect is 0.2 mm or less.
If the content of the carbide exceeds 5%, the carbide will surround the crystal grain boundaries. As a result, the elongation and the impact toughness may be rapidly reduced.
If the size of the surface defects exceeds 0.3 mm, the generated surface cracks propagate during additional processing, causing early fracture, or hindering guaranteeing the target thickness of the final product. There's a problem.
Here, the size of the surface defect can be defined as, for example, a length from a point when cracks start to occur to a point where the crack stops.

以下、本発明の好ましい他の一側面による表面特性に優れたオーステナイト系鋼材の製造方法について説明する。   Hereinafter, a method for producing an austenitic steel material having excellent surface properties according to another preferred aspect of the present invention will be described.

本発明の好ましい他の一側面による表面特性に優れたオーステナイト系鋼材の製造方法は、重量%で、炭素(C):0.6〜1.3%、マンガン(Mn):14〜22%、銅(Cu):5%以下(0%を除く)、クロム(Cr):5%以下(0%を除く)、ケイ素(Si):1.0%以下(0%を除く)、アルミニウム(Al):0.5%以下(0%を除く)、リン(P):0.1%以下(0%を含む)、硫黄(S):0.02%以下(0%を含む)、残部が鉄(Fe)とその他の不可避不純物からなる鋼スラブを、1000℃以上で1150℃以下の温度で再加熱するスラブ再加熱段階と、上記再加熱されたスラブを仕上げ圧延温度が850〜950℃になるように熱間圧延して熱延鋼材を得る熱間圧延段階と、上記熱延鋼材を5℃/s以上の冷却速度で600℃以下まで冷却する冷却段階と、を含む。   According to another preferred aspect of the present invention, a method for producing an austenitic steel material having excellent surface properties is as follows: carbon (C): 0.6 to 1.3%, manganese (Mn): 14 to 22% by weight. Copper (Cu): 5% or less (excluding 0%), Chromium (Cr): 5% or less (excluding 0%), Silicon (Si): 1.0% or less (excluding 0%), Aluminum (Al ): 0.5% or less (excluding 0%), phosphorus (P): 0.1% or less (including 0%), sulfur (S): 0.02% or less (including 0%), with the balance being A slab reheating step of reheating a steel slab composed of iron (Fe) and other unavoidable impurities at a temperature of 1000 ° C. or more and 1150 ° C. or less, and a finishing rolling temperature of the reheated slab of 850 to 950 ° C. Hot rolling to obtain a hot rolled steel by hot rolling so that the hot rolled steel is 5 ° C./s or less. In a cooling rate up to 600 ° C. or less; and a cooling step of cooling.

スラブ再加熱段階
熱間圧延を行う前に、スラブを1000℃以上で1150℃以下の温度で再加熱する。熱間圧延時には、十分な温度を確保するために1000℃以上での再加熱が必要となり、高Mn鋼スラブの表面不均一酸化を抑制するために1150℃以下で再加熱することが必須である。
Slab Reheating Step Before performing hot rolling, the slab is reheated at a temperature of 1000 ° C. or more and 1150 ° C. or less. At the time of hot rolling, reheating at 1000 ° C. or higher is required to secure a sufficient temperature, and it is essential to reheat at 1150 ° C. or lower to suppress uneven surface oxidation of the high Mn steel slab. .

熱間圧延段階
上記のように再加熱されたスラブを仕上げ圧延温度が850〜950℃になるように熱間圧延して熱延鋼材を得る。
仕上げ圧延温度が850℃未満であると、カーバイドが析出して均一伸びが低下する可能性があり、微細組織がパンケーキ化して組織異方性による不均一延伸が発生することがある。これに対し、仕上げ圧延温度が950℃を超えると、圧延仕上げ温度が高すぎるため、実際工程上の目標温度を正確に決定することが難しくなるという問題がある。
Hot Rolling Step The slab reheated as described above is hot rolled so that the finish rolling temperature is 850 to 950 ° C. to obtain a hot rolled steel material.
If the finish rolling temperature is lower than 850 ° C., carbides may precipitate and uniform elongation may be reduced, and the microstructure may be pancaked to cause non-uniform stretching due to structural anisotropy. On the other hand, when the finish rolling temperature exceeds 950 ° C., there is a problem that it is difficult to accurately determine the target temperature in the actual process because the rolling finish temperature is too high.

冷却段階
上記熱間圧延を介して得られる熱延鋼材を5℃/s以上で600℃以下まで冷却する。
上記冷却速度が5℃/s未満であるか、または冷却停止温度が600℃を超えると、カーバイドが析出し、伸びが低下するという問題が発生することがある。また、急速な冷却工程は、基地組織内のC及びNの元素の高い固溶度を確保するためにも役立つ。したがって、上記冷却は、5℃/s以上で600℃以下まで行われることが好ましい。上記冷却速度は、10℃/s以上の速度を有することがより好ましく、15℃/s以上の速度を有することがさらに好ましい。
Cooling Step The hot-rolled steel material obtained through the hot rolling is cooled at a rate of 5 ° C./s or more to 600 ° C. or less.
If the above cooling rate is less than 5 ° C./s or if the cooling stop temperature exceeds 600 ° C., a problem may occur that carbide is precipitated and elongation is reduced. The rapid cooling step also helps to ensure high solid solubility of the C and N elements in the matrix. Therefore, the cooling is preferably performed at a temperature of 5 ° C./s or more and 600 ° C. or less. The cooling rate preferably has a rate of 10 ° C./s or more, and more preferably has a rate of 15 ° C./s or more.

以下、実施例を通じて本発明をより具体的に説明する。但し、下記実施例は本発明を例示してより詳細に説明するためのもので、本発明の権利範囲を限定するためのものではないことに留意する必要がある。本発明の権利範囲は、特許請求の範囲に記載された事項及びこれから合理的に類推される事項によって決定されるためである。   Hereinafter, the present invention will be described more specifically with reference to examples. However, it should be noted that the following examples are for illustrating the present invention in more detail and not for limiting the scope of the present invention. This is because the scope of rights of the present invention is determined by the matters described in the claims and matters reasonably inferred therefrom.

(実施例)
下記表1に示すような成分系及び組成範囲を満たすスラブを下記表2に示す再加熱及び圧延条件を用いて厚さ12mmの熱延鋼板を製造した。
その後、上記それぞれの製造された熱延鋼板の微細組織、降伏強度、均一伸び、衝撃靭性を測定し、その結果を下記表3に示した。また、上記熱延鋼板に対する表面欠陥の大きさを測定して下記表3にともに示した。
尚、発明鋼3及び比較鋼5の組織を観察し、その結果を図1に示した。
(Example)
A slab satisfying the component system and composition range as shown in Table 1 below was used to produce a hot-rolled steel sheet having a thickness of 12 mm under the reheating and rolling conditions shown in Table 2 below.
Then, the microstructure, yield strength, uniform elongation, and impact toughness of each of the manufactured hot-rolled steel sheets were measured, and the results are shown in Table 3 below. In addition, the size of the surface defect on the hot-rolled steel sheet was measured and is shown in Table 3 below.
The structures of Inventive Steel 3 and Comparative Steel 5 were observed, and the results are shown in FIG.

上記表1から表3に示すように、発明鋼(1−4)の場合は、成分範囲及び製造条件をすべて満たし、すべて良好な表面特性を示している。
これに対し、比較鋼(1)では、Cが非常に低いため、十分な強度を確保することができず、比較鋼(2)では、大量のCの添加により、炭化物が増加して伸び及び衝撃靭性が急激に低下し、比較鋼(3)では、Mnの含有量が足りないことが原因で安定したオーステナイト相が形成されず、マルテンサイトが形成されて衝撃靭性が急激に低下し、比較鋼(4)では、Crの含有量を越えると、炭化物が過度に形成されて、伸び及び衝撃靭性が急激に低下し、比較鋼(5)では、再加熱温度が基準値を超えて製品表面に大型クラックが発生しており、比較鋼(6−8)では、圧延仕上げ温度、冷却速度、冷却停止温度などの条件が本発明の範囲を外れることが原因で、炭化物が過度に析出したため衝撃靭性が急激に低下することを示している。
一方、図1に示すように、再加熱温度が高い比較鋼(5)の場合は、表面に大きいクラックが形成されたが、低温再加熱温度を適用した発明鋼(3)の場合は、表層が均一で、大型クラックが発生しないことが確認できる。

As shown in Tables 1 to 3, in the case of the invention steel (1-4), all the component ranges and production conditions were satisfied, and all exhibited good surface characteristics.
On the other hand, in the comparative steel (1), since C was very low, sufficient strength could not be ensured. In the comparative steel (2), carbide was increased due to the addition of a large amount of C to increase elongation and In the comparative steel (3), a stable austenite phase was not formed due to insufficient Mn content, martensite was formed, and the impact toughness was rapidly reduced. In steel (4), if the content of Cr is exceeded, carbides are excessively formed, and the elongation and impact toughness are sharply reduced. In comparative steel (5), the reheating temperature exceeds the reference value and the product surface In the comparative steel (6-8), carbides were excessively precipitated due to the conditions such as the rolling finish temperature, cooling rate, and cooling stop temperature falling outside the range of the present invention. Indicates a sharp drop in toughness
On the other hand, as shown in FIG. 1, in the case of the comparative steel (5) having a high reheating temperature, large cracks were formed on the surface, whereas in the case of the invention steel (3) to which the low reheating temperature was applied, the surface layer was large. Is uniform and no large cracks are generated.

Claims (5)

重量%で、炭素(C):0.6〜1.3%、マンガン(Mn):14〜22%、銅(Cu):5%以下(0%を除く)、クロム(Cr):5%以下(0%を除く)、ケイ素(Si):1.0%以下(0%を除く)、アルミニウム(Al):0.5%以下(0%を除く)、リン(P):0.1%以下(0%を含む)、硫黄(S):0.02%以下(0%を含む)、残部が鉄(Fe)とその他の不可避不純物からなり、微細組織が、面積%で、5%以下の炭化物及び残部オーステナイト組織からなり、表面欠陥の大きさが0.3mm以下であることを特徴とする表面特性に優れたオーステナイト系鋼材。   By weight%, carbon (C): 0.6 to 1.3%, manganese (Mn): 14 to 22%, copper (Cu): 5% or less (excluding 0%), chromium (Cr): 5% Or less (excluding 0%), silicon (Si): 1.0% or less (excluding 0%), aluminum (Al): 0.5% or less (excluding 0%), phosphorus (P): 0.1 % (Including 0%), sulfur (S): 0.02% or less (including 0%), and the balance is composed of iron (Fe) and other unavoidable impurities, and the fine structure is 5% in area%. An austenitic steel material comprising the following carbides and a balance of austenite and having a surface defect size of 0.3 mm or less, and having excellent surface characteristics. 表面欠陥の大きさが0.2mm以下であることを特徴とする請求項1に記載の表面特性に優れたオーステナイト系鋼材。   The austenitic steel material having excellent surface characteristics according to claim 1, wherein the size of the surface defect is 0.2 mm or less. 重量%で、炭素(C):0.6〜1.3%、マンガン(Mn):14〜22%、銅(Cu):5%以下(0%を除く)、クロム(Cr):5%以下(0%を除く)、ケイ素(Si):1.0%以下(0%を除く)、アルミニウム(Al):0.5%以下(0%を除く)、リン(P):0.1%以下(0%を含む)、硫黄(S):0.02%以下(0%を含む)、残部が鉄(Fe)とその他の不可避不純物からなる鋼スラブを1000℃以上1150℃以下で再加熱するスラブ再加熱段階と、
前記再加熱されたスラブを850〜950℃の仕上げ圧延温度条件で熱間圧延して熱延鋼材を得る熱間圧延段階と、
前記熱延鋼材を5℃/s以上の冷却速度で600℃以下まで冷却する冷却段階と、を含むことを特徴とする表面特性に優れたオーステナイト系鋼材の製造方法。
By weight%, carbon (C): 0.6 to 1.3%, manganese (Mn): 14 to 22%, copper (Cu): 5% or less (excluding 0%), chromium (Cr): 5% Or less (excluding 0%), silicon (Si): 1.0% or less (excluding 0%), aluminum (Al): 0.5% or less (excluding 0%), phosphorus (P): 0.1 % (Including 0%), sulfur (S): 0.02% or less (including 0%), and a balance of iron (Fe) and other unavoidable impurities. A slab reheating stage for heating;
A hot rolling step of hot rolling the reheated slab at a finish rolling temperature of 850 to 950 ° C. to obtain a hot rolled steel;
A cooling step of cooling the hot-rolled steel material to 600 ° C. or less at a cooling rate of 5 ° C./s or more, a method for producing an austenitic steel material having excellent surface characteristics.
前記冷却段階において、冷却時の冷却速度が15℃/s以上であることを特徴とする請求項3に記載の表面特性に優れたオーステナイト系鋼材の製造方法。   4. The method of claim 3, wherein a cooling rate at the time of cooling is 15 ° C./s or more in the cooling step. 5. 前記鋼材は、微細組織が、面積%で、5%以下の炭化物及び残部オーステナイト組織からなり、表面欠陥の大きさが0.3mm以下であることを特徴とする請求項3に記載の表面特性に優れたオーステナイト系鋼材の製造方法。

4. The surface characteristic according to claim 3, wherein the steel material has a microstructure of 5% or less in area% of a carbide and a residual austenite structure, and a size of a surface defect is 0.3 mm or less. 5. Excellent austenitic steel manufacturing method.

JP2019534166A 2016-12-23 2017-12-21 Austenitic steel with excellent surface properties and method for producing the same Pending JP2020509211A (en)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
KR10-2016-0178238 2016-12-23
KR1020160178238A KR101920973B1 (en) 2016-12-23 2016-12-23 Austenitic steel having excellent surface properties and method for manufacturing thereof
PCT/KR2017/015215 WO2018117678A1 (en) 2016-12-23 2017-12-21 Austenite steel material having superb surface characteristic, and method for producing same

Publications (1)

Publication Number Publication Date
JP2020509211A true JP2020509211A (en) 2020-03-26

Family

ID=62626822

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2019534166A Pending JP2020509211A (en) 2016-12-23 2017-12-21 Austenitic steel with excellent surface properties and method for producing the same

Country Status (7)

Country Link
US (1) US20200087751A1 (en)
EP (1) EP3561122A4 (en)
JP (1) JP2020509211A (en)
KR (1) KR101920973B1 (en)
CN (1) CN110088343A (en)
CA (1) CA3047237A1 (en)
WO (1) WO2018117678A1 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP4108799A4 (en) * 2020-02-18 2023-08-02 Posco Steel sheet with excellent surface quality, and manufacturing method therefor
CN114015942B (en) * 2021-11-04 2022-07-29 广东美芝制冷设备有限公司 Nonmagnetic balance block, preparation method thereof and compressor
WO2023233186A1 (en) * 2022-06-02 2023-12-07 Arcelormittal High manganese hot rolled steel and a method of production thereof

Family Cites Families (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6572713B2 (en) * 2000-10-19 2003-06-03 The Frog Switch And Manufacturing Company Grain-refined austenitic manganese steel casting having microadditions of vanadium and titanium and method of manufacturing
FR2857980B1 (en) * 2003-07-22 2006-01-13 Usinor PROCESS FOR MANUFACTURING HIGH-STRENGTH FERRO-CARBON-MANGANESE AUSTENITIC STEEL SHEET, EXCELLENT TENACITY AND COLD SHAPINGABILITY, AND SHEETS THUS PRODUCED
FR2878257B1 (en) * 2004-11-24 2007-01-12 Usinor Sa PROCESS FOR MANUFACTURING AUSTENITIC STEEL SHEET, FER-CARBON-MANGANIZED WITH VERY HIGH RESISTANCE AND ELONGATION CHARACTERISTICS, AND EXCELLENT HOMOGENEITY
DE102008056844A1 (en) * 2008-11-12 2010-06-02 Voestalpine Stahl Gmbh Manganese steel strip and method of making the same
KR101080727B1 (en) 2009-03-24 2011-11-07 기아자동차주식회사 Ultra-high strength twip steel sheets and the manufacturing method thereof
JP5406686B2 (en) * 2009-11-30 2014-02-05 株式会社神戸製鋼所 Non-magnetic steel
JP5287770B2 (en) * 2010-03-09 2013-09-11 Jfeスチール株式会社 High strength steel plate and manufacturing method thereof
CN102220545B (en) * 2010-04-16 2013-02-27 攀钢集团有限公司 High-carbon and high-strength heat-treated steel rail with high wear resistance and plasticity and manufacturing method thereof
JP5041029B2 (en) * 2010-04-30 2012-10-03 住友金属工業株式会社 Method for producing high manganese steel
EP2799582B1 (en) * 2011-12-28 2019-06-19 Posco Wear resistant austenitic steel having superior ductility and method for producing same
WO2013100612A1 (en) * 2011-12-28 2013-07-04 주식회사 포스코 Wear resistant austenitic steel having superior machinability and toughness in weld heat affected zones thereof and method for producing same
US20160017463A1 (en) * 2013-02-15 2016-01-21 Scoperta, Inc. Hard weld overlays resistant to re-heat cracking
US20140261918A1 (en) * 2013-03-15 2014-09-18 Exxonmobil Research And Engineering Company Enhanced wear resistant steel and methods of making the same
EP2789701A1 (en) * 2013-04-08 2014-10-15 DALMINE S.p.A. High strength medium wall quenched and tempered seamless steel pipes and related method for manufacturing said steel pipes
KR20150075305A (en) * 2013-12-25 2015-07-03 주식회사 포스코 Steels for low temperature services having superior yield strength and method for production thereof
KR20160075927A (en) * 2014-12-19 2016-06-30 주식회사 포스코 The steel sheet having excellent strength and toughness at the center of thickness and method for manufacturing the same
JP6693217B2 (en) 2015-04-02 2020-05-13 日本製鉄株式会社 High Mn steel for cryogenic temperatures

Also Published As

Publication number Publication date
EP3561122A1 (en) 2019-10-30
WO2018117678A1 (en) 2018-06-28
KR101920973B1 (en) 2018-11-21
CA3047237A1 (en) 2018-06-28
US20200087751A1 (en) 2020-03-19
CN110088343A (en) 2019-08-02
EP3561122A4 (en) 2019-12-25
KR20180074294A (en) 2018-07-03

Similar Documents

Publication Publication Date Title
JP6194951B2 (en) Hot rolled steel sheet
JP6980788B2 (en) Austenitic steel with excellent wear resistance and its manufacturing method
JP5879448B2 (en) Abrasion-resistant austenitic steel with excellent toughness of weld heat-affected zone and method for producing the same
JP6803987B2 (en) High hardness wear resistant steel and its manufacturing method
JP7368461B2 (en) Wear-resistant steel with excellent hardness and impact toughness and its manufacturing method
JP6817303B2 (en) Wear-resistant steel with excellent toughness and internal quality and its manufacturing method
JP2020509211A (en) Austenitic steel with excellent surface properties and method for producing the same
JP5272759B2 (en) Thick steel plate manufacturing method
AU2019200246A1 (en) Steel material and expandable oil country tubular goods
JP7438967B2 (en) High strength austenitic high manganese steel and manufacturing method thereof
JP2005240135A (en) Method for manufacturing wear-resistant steel having excellent bendability, and wear-resistant steel
KR101714929B1 (en) Austenitic steel having excellent wear resistance and method for manufacturing the same
JP6575473B2 (en) Abrasion-resistant steel plate and method for producing the same
JP2007302977A (en) Method for manufacturing high-strength steel of tensile strength of 570 mpa class having excellent toughness of weld heat affected zone
KR20150124811A (en) Steel sheet for line pipe and method of manufacturing the same
CN111492082B (en) Steel material having excellent wear resistance and method for producing same
KR101443445B1 (en) Non-heated type high strength hot-rolled steel sheet and method of manufacturing the same
KR20230072727A (en) Hot rolled steel plate and steel tube having excellent abrasion resistance and manufacturing method thereof
KR20140042107A (en) Hot-rolled steel sheet and method of manufacturing the same
KR20140042108A (en) Hot-rolled steel sheet and method of manufacturing the same
KR101443446B1 (en) Non-heated type hot-rolled steel sheet and method of manufacturing the same

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20190621

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20200804

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20210316