WO2017111510A1 - Non-magnetic steel material having excellent hot workability and manufacturing method therefor - Google Patents

Non-magnetic steel material having excellent hot workability and manufacturing method therefor Download PDF

Info

Publication number
WO2017111510A1
WO2017111510A1 PCT/KR2016/015121 KR2016015121W WO2017111510A1 WO 2017111510 A1 WO2017111510 A1 WO 2017111510A1 KR 2016015121 W KR2016015121 W KR 2016015121W WO 2017111510 A1 WO2017111510 A1 WO 2017111510A1
Authority
WO
WIPO (PCT)
Prior art keywords
less
weight
steel
excluding
hot
Prior art date
Application number
PCT/KR2016/015121
Other languages
French (fr)
Korean (ko)
Inventor
이운해
김성규
이순기
김용진
오홍열
Original Assignee
주식회사 포스코
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from KR1020160176294A external-priority patent/KR101889187B1/en
Application filed by 주식회사 포스코 filed Critical 주식회사 포스코
Priority to US16/061,196 priority Critical patent/US10961610B2/en
Priority to JP2018532026A priority patent/JP6793199B2/en
Priority to EP16879377.6A priority patent/EP3395980B1/en
Priority to CN201680075986.6A priority patent/CN108474083A/en
Publication of WO2017111510A1 publication Critical patent/WO2017111510A1/en
Priority to US17/195,850 priority patent/US11873546B2/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/02Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/04Ferrous alloys, e.g. steel alloys containing manganese

Definitions

  • the present invention relates to a nonmagnetic steel having excellent hot workability and a method of manufacturing the same.
  • Transformer structures include enclosures, lock plates, and the like, and the steel used therein requires excellent nonmagnetic properties.
  • non-magnetic steels such as chromium (Cr) and nickel (Ni) are completely excluded.
  • austenite is stabilized by adding a large amount of nonmagnetic properties.
  • the austenitic phase is paramagnetic and has a low permeability and superior nonmagnetic properties to ferrite.
  • a high manganese (Mn) steel having austenite containing a large amount of carbon is characterized by high austenite phase stability, and thus is suitable for use as a nonmagnetic steel.
  • One preferred aspect of the present invention is to provide a non-magnetic steel having excellent hot workability with low hot crack sensitivity and excellent surface quality.
  • Another preferred aspect of the present invention is to provide a method for producing a non-magnetic steel having excellent hot workability with low hot crack sensitivity and excellent surface quality.
  • manganese (Mn) 15-27% by weight
  • carbon (C) 0.1-1.1% by weight
  • phosphorus (P) 0.03% by weight (Excluding 0%)
  • nitrogen (N) 0.1% by weight or less (excluding 0%)
  • the balance Fe and other unavoidable impurities is represented by the following relation (1)
  • the sensitivity component index value is 3.4 or less
  • non-magnetic steel having excellent hot workability in which the microstructure comprises 95% or more of austenite in an area fraction.
  • the average grain size of the austenite may be 10 ⁇ m or more.
  • manganese (Mn) 15 to 27% by weight
  • carbon (C) 0.1 to 1.1% by weight
  • silicon (Si) 0.05 to 0.50% by weight
  • phosphorus (P) 0.03 weight % Or less (excluding 0%)
  • aluminum (Al) 0.050% or less (excluding 0%)
  • chromium (Cr) 5% or less (0%)
  • nitrogen (N) 0.1 wt% or less (excluding 0%)
  • balance Fe and other unavoidable impurities are represented by the following relational formula (1) Preparing a slab having a sensitivity component index value of 3.4 or less;
  • a method of manufacturing a non-magnetic steel having excellent hot workability including a cooling step of cooling a hot rolled steel.
  • a nonmagnetic steel having a uniform austenite phase, excellent nonmagnetic properties, low crack sensitivity, and good surface quality, and a method of manufacturing the same.
  • Figure 1 shows the degree of surface quality for measuring the crack sensitivity as a score
  • the rating 1 is a crack does not occur on the surface
  • the rating 1.5 is a state with a fine flaw
  • the rating 2 is a crack propagation caused a large crack Status is displayed.
  • FIG. 2 is an example of a schematic diagram for explaining a crack sensitivity measurement site for crack sensitivity evaluation.
  • 3 is a graph showing the relationship between crack sensitivity and sensitivity component index values.
  • Non-magnetic steel having excellent hot workability is manganese (Mn): 15 to 27% by weight, carbon (C): 0.1 to 1.1% by weight, silicon (Si): 0.05 to 0.50% by weight, phosphorus (P): 0.03% or less (excluding 0%), Sulfur (S): 0.01% or less (excluding 0%), Aluminum (Al): 0.050% or less (excluding 0%), Chromium (Cr): 5 Below 0% by weight (including 0%), boron (B): below 0.01% by weight (including 0%), nitrogen (N): below 0.1% by weight (excluding 0%), balance Fe and other unavoidable impurities,
  • the sensitivity component index value expressed by the relation (1) is 3.4 or less, and has a microstructure containing 95% or more of austenite as an area fraction.
  • the content of the manganese is preferably limited to 15 to 27% by weight.
  • the manganese is an element that serves to stabilize austenite.
  • the manganese may be included in an amount of 15 wt% or more to stabilize the austenite phase at cryogenic temperatures.
  • the economical efficiency of the steel may be reduced due to the increase in manufacturing cost.
  • More preferred manganese content is 15-25% by weight, even more preferred manganese content is 17-25% by weight.
  • the content of the carbon is preferably limited to 0.1 to 1.1% by weight.
  • the carbon is an element that stabilizes austenite and increases the strength of steel.
  • the carbon may serve to lower Ms and Md which are transformation points of austenite, epsilon ( ⁇ ) -martensite or alpha prime ( ⁇ ′)-martensite by a cooling process or processing.
  • the stability of austenite is insufficient to obtain austenite that is stable at cryogenic temperatures, and is easily absorbed by external stress such as epsilon ( ⁇ ) -martensite or alpha prime ( ⁇ ')-martensine. Machining organic transformation to the site can reduce the toughness and strength of the steel.
  • the content of the carbon exceeds 1.1% by weight, the toughness of the steel can be rapidly deteriorated due to carbide precipitation, the strength of the steel is too high, the workability of the steel can be reduced.
  • More preferred carbon content is 0.1 to 1.0% by weight, even more preferred carbon content is 0.1 to 0.8% by weight.
  • Si is an element which is indispensably added as a deoxidizer like Al.
  • the lower limit thereof is preferably limited to 0.05%. Since the oxidizing property is higher than Al, when it is added in excess of 0.5%, the oxide is formed to form cracks, so the surface quality is lowered. Therefore, the Si content is preferably limited to 0.05 to 0.5%.
  • chrome( Cr ) 5% or less (including 0%)
  • Chromium stabilizes austenite up to the range of an appropriate amount of addition, thereby improving impact toughness at low temperatures, and solid-solution in austenite increases the strength of steel. Chromium is also an element that improves the corrosion resistance of steels. However, chromium is a carbide element, in particular, an element that reduces carbide impact by forming carbide at the austenite grain boundary. Therefore, the content of chromium is preferably determined in consideration of the relationship with carbon and other elements added together, and in view of being an expensive element, the content is preferably limited to 5% by weight or less.
  • More preferred chromium content is 0 to 4% by weight and even more preferred chromium content is 0.001 to 4% by weight.
  • the content of boron is preferably limited to 0.01% by weight or less.
  • Boron is a grain boundary strengthening element for strengthening austenite grain boundaries.
  • the boron may lower the cracking sensitivity of the steel at high temperature by strengthening the austenite grain boundary even when a small amount of boron is added.
  • the content of aluminum is preferably limited to 0.05% by weight or less (excluding 0%).
  • the aluminum is added as a deoxidizer.
  • the aluminum may react with C or N to generate a precipitate, and the hot workability may be reduced by the precipitate. Therefore, the aluminum content is preferably limited to 0.05% by weight or less (excluding 0%). The more preferable content of aluminum is 0.005 to 0.05% by weight.
  • S needs to be controlled to 0.01% or less for inclusion control. If the amount of S exceeds 0.01%, the problem of hot brittleness occurs.
  • P is an element that easily generates segregation and promotes cracking during casting. To prevent this, it should be controlled below 0.03%. If the amount of P exceeds 0.03%, castability may deteriorate, so the upper limit is made 0.03%.
  • nitrogen is an element that stabilizes austenite to improve toughness, and is very advantageous for enhancing strength through solid solution strengthening or precipitate formation such as carbon.
  • the upper limit is preferably limited to 0.1% by weight because deterioration of physical properties or surface quality occurs due to coarsening of carbonitrides. More preferred nitrogen content is 0.001 to 0.06% by weight, even more preferred nitrogen content is 0.005 to 0.03% by weight.
  • the steel of the present invention contains residual iron (Fe) and other unavoidable impurities.
  • Unintentional impurities from the raw materials or the surrounding environment can be inevitably incorporated in a conventional steel manufacturing process and cannot be excluded.
  • the austenitic nonmagnetic steel having excellent hot workability has a sensitivity component index value of 3.4 or less represented by the following relational formula (1).
  • the austenite-based nonmagnetic steel having excellent hot workability includes at least 95% of austenite in an area fraction.
  • Austenite which has a low permeability as a paramagnetic material and has superior nonmagnetic properties to ferrite, is an essential microstructure for securing nonmagnetic properties.
  • the area fraction of the austenite is less than 95%, it may be difficult to secure nonmagnetic properties.
  • the average grain size of the austenite may be 10 ⁇ m or more.
  • the grain size of austenite that can be implemented in the manufacturing process of the present invention is 10 ⁇ m or more, and when the grain size is greatly increased, the strength of the steel may be lowered, so that the more preferred austenite grain size is 60 ⁇ m or less.
  • Nonmagnetic steel having excellent hot workability may include one or two of precipitates and epsilon ( ⁇ ) -martensite in an area fraction of 5% or less.
  • a method for producing a non-magnetic steel having excellent hot workability includes manganese (Mn): 15 to 27 wt%, carbon (C): 0.1 to 1.1 wt%, and silicon (Si): 0.05 to 0.50 Weight%, Phosphorus (P): 0.03% or less (excluding 0%), Sulfur (S): 0.01% or less (excluding 0%), Aluminum (Al): 0.050% or less (excluding 0%), Chromium ( Cr): 5% or less (including 0%), Boron (B): 0.01% or less (including 0%), Nitrogen (N): 0.1% or less (excluding 0%), balance Fe and other unavoidable impurities Preparing a slab including and comprising a sensitivity component index value of 3.4 or less represented by the following relation (1);
  • the slab is reheated in a furnace at a temperature of 1050-1250 ° C.
  • the reheating temperature is too low, less than 1050 °C, there is a problem that the load is largely applied during rolling, alloy components are not sufficiently dissolved.
  • the reheating temperature is too high, there is a problem that the grains grow excessively and the strength is lowered, and since the reheating exceeds the solidus temperature of the steel, there is a risk of damaging the hot rollability of the steel, so the upper limit of the reheating temperature is 1250 ° C. It is preferable to limit to.
  • the reheated slab is hot rolled to obtain a hot rolled steel.
  • the hot rolling step may include a rough rolling process and a finish rolling process.
  • the hot finish rolling temperature is preferably limited to 800 ⁇ 1050 °C.
  • the hot finish rolling temperature is less than 800 ° C., the rolling load is largely applied. If the hot finish rolling temperature is more than 1050 ° C., the crystal grains grow coarse and the target strength cannot be obtained, so the upper limit is preferably limited to 1050 ° C.
  • Cooling of the hot rolled steel after hot finishing rolling is preferably carried out at a cooling rate sufficient to suppress grain boundary carbide formation. If the cooling rate is less than 10 °C / s it is not enough to avoid the formation of carbides, carbides precipitate at the grain boundaries during cooling, causing ductility reduction due to premature fracture of the steel and deterioration of wear resistance is a problem, so the faster the cooling rate is advantageous If it is in the range of accelerated cooling, the upper limit of the cooling rate does not need to be particularly limited. However, in the case of normal accelerated cooling, the upper limit is preferably limited to 100 ° C / s in consideration of the fact that the cooling rate is difficult to exceed 100 ° C / s.
  • Cooling stop temperature is preferably limited to 600 °C or less. Even at a high rate of cooling, carbides may form and grow when cooling is stopped at high temperatures.
  • the crack sensitivity is an element that can confirm the hot workability of the steel, as shown in Figure 2, was measured for the surface quality of the side edge, the front edge and the upper surface of the steel.
  • the degree of sensitivity was scored for each measurement site according to the criteria of FIG. 1, and the value obtained by multiplying the scores of the three scored points as shown in Table 2 below.
  • Table 2 has a good surface quality when the sensitivity is 3 or less.
  • Table 2 shows the sensitivity component index values expressed as -0.451 + 34.131 * P + 111.152 * Al-799.483 * B + 0.526 * Cr.
  • Example 1 Table 1 division Component system (wt%) Finish rolling temperature (°C) C Mn Si P S N Al B Cr
  • Example 1 0.42 20.3 0.21 0.016 0.004 0.015 0.028 - - 870
  • Example 2 0.46 25.0 0.29 0.016 0.004 0.020 0.026 0.0042 3.93 891
  • Example 3 0.40 19.9 0.17 0.016 0.003 0.018 0.025 0.0023 2.05 930
  • Example 4 0.39 21.6 0.19 0.017 0.007 0.019 0.025 0.0045 2.06 905
  • Example 5 0.40 25.0 0.22 0.016 0.004 0.021 0.026 - - 885
  • Example 6 0.40 22.1 0.21 0.016 0.004 0.016 0.021 0.0030 - 940
  • Example 7 0.39 19.6 0.18 0.018 0.009 0.018 0.022 0.0038 2.03 938
  • Example 8 1.10 17.9 0.21 0.018 0.004 0.018 0.028 0.00
  • Examples 1 to 8 have good surface quality with a sensitivity of 3 or less of the present invention.
  • Comparative Example 1 has a relatively high crack sensitivity with a high P content of 3.43.
  • Comparative Example 3 is outside the scope of the present invention, the Al content, it can be seen that the crack sensitivity is 8.00 with a component index of 5.62.

Abstract

Provided according to one embodiment of the present invention are a non-magnetic steel material and a method for manufacturing the same. The steel material comprises 15-27 wt% of manganese (Mn), 0.1-1.1 wt% of carbon (C), 0.05-0.50 wt% of silicon(Si),0.03 wt% or less (0% exclusive) of phosphorus (P),0.01 wt% or less (0% exclusive) of sulfur (S), 0.050 wt% or less (0% exclusive) of aluminum (Al), 5 wt% or less (0% inclusive) of chromium (Cr), 0.01 wt% or less (0% inclusive) of boron (B), 0.1 wt% or less (0% exclusive) of nitrogen (N), and a balance amount of Fe and inevitable impurities, has an index of sensitivity of 3.4 or less, the index of sensitivity being represented by the following relational expression (1): [Relational expression 1] -0.451+34.131*P+111.152*Al-799.483*B+0.526*Cr≤3.4 (wherein [P], [Al], [B] and [Cr] each mean a wt % of corresponding elements), and contains a microstructure with austenite at an area fraction of 95 % or greater therein.

Description

열간 가공성이 우수한 비자성 강재 및 그 제조방법Non-magnetic steel with excellent hot workability and manufacturing method
본 발명은 열간 가공성이 우수한 비자성 강재 및 그 제조방법에 관한 것이다.The present invention relates to a nonmagnetic steel having excellent hot workability and a method of manufacturing the same.
변압기 구조물에는 외함, 록 플레이트(lock plate) 등이 있으며, 이에 사용되는 강재는 우수한 비자성 특성이 요구된다. Transformer structures include enclosures, lock plates, and the like, and the steel used therein requires excellent nonmagnetic properties.
최근 상기와 같은 비자성 강재는 크롬(Cr), 니켈(Ni)을 완전히 배제한 대신 다량의 망간(Mn) 및 탄소(C) 첨가로 오스테나이트의 안정화를 시킨, 비자성 특성이 우수한 강재가 개발되고 있다. 오스테나이트 상은 상자성체로서 투자율이 낮으며 페라이트 대비 비자성 특성이 우수하다. Recently, non-magnetic steels such as chromium (Cr) and nickel (Ni) are completely excluded. Instead of a large amount of manganese (Mn) and carbon (C), austenite is stabilized by adding a large amount of nonmagnetic properties. have. The austenitic phase is paramagnetic and has a low permeability and superior nonmagnetic properties to ferrite.
다량의 탄소를 함유한 오스테나이트를 가진 고 망간(Mn) 강재의 경우, 오스테나이트 상 안정도가 높은 것이 특징이므로, 비자성용 강재로 사용되기 적절하다.A high manganese (Mn) steel having austenite containing a large amount of carbon is characterized by high austenite phase stability, and thus is suitable for use as a nonmagnetic steel.
그러나, 고 망간 강재의 제조 시 발생하는 잔류 원소 중 알루미늄(Al), 인(P) 등이 오스테나이트에 다량 함유되는 경우, 고온에서 강재의 균열 민감도를 향상시킨다. 이는 낮은 열간 연성 및 고온에서의 내부 입계 산화에 의한 것으로, 상기 강재의 높은 균열 민감도는 상온에서 강재의 표면 품질에 지대한 영향을 미치게 된다.However, when aluminum (Al), phosphorus (P) and the like are contained in austenite in a large amount of residual elements generated in manufacturing high manganese steel, the crack sensitivity of the steel is improved at high temperatures. This is due to the low hot ductility and internal grain boundary oxidation at high temperatures, and the high crack sensitivity of the steel has a great influence on the surface quality of the steel at room temperature.
따라서, 강재의 균열 민감도를 낮춤과 동시에 표면 품질이 우수한 비자성 강재의 개발이 필요한 실정이다. Therefore, it is necessary to develop a nonmagnetic steel having excellent surface quality while reducing cracking sensitivity of the steel.
본 발명의 바람직한 일 측면은 열간 균열 민감도가 낮으며 우수한 표면 품질을 갖는 열간 가공성이 우수한 비자성 강재를 제공하는 것이다.One preferred aspect of the present invention is to provide a non-magnetic steel having excellent hot workability with low hot crack sensitivity and excellent surface quality.
본 발명의 바람직한 다른 일 측면은 열간 균열 민감도가 낮으며 우수한 표면 품질을 갖는 열간 가공성이 우수한 비자성 강재의 제조방법을 제공하는 것이다.Another preferred aspect of the present invention is to provide a method for producing a non-magnetic steel having excellent hot workability with low hot crack sensitivity and excellent surface quality.
본 발명의 바람직한 일 측면에 의하면, 망간(Mn): 15~27중량%, 탄소(C): 0.1~1.1중량%, 규소(Si): 0.05~0.50중량%, 인(P): 0.03중량% 이하 (0% 제외), 황 (S): 0.01중량%이하 (0% 제외), 알루미늄(Al): 0.050중량%이하(0% 제외), 크롬(Cr): 5중량%이하(0%포함), 붕소(B): 0.01중량%이하(0%포함), 질소(N): 0.1 중량%이하(0% 제외), 잔부 Fe 및 기타 불가피한 불순물을 포함하고, 하기 관계식(1)로 표시되는 민감도 성분지수 값이 3.4 이하이고,According to a preferred aspect of the present invention, manganese (Mn): 15-27% by weight, carbon (C): 0.1-1.1% by weight, silicon (Si): 0.05-0.50% by weight, phosphorus (P): 0.03% by weight (Excluding 0%), sulfur (S): 0.01% by weight (excluding 0%), aluminum (Al): 0.050% by weight (excluding 0%), chromium (Cr): 5% by weight (including 0%) ), Boron (B): 0.01% by weight or less (including 0%), nitrogen (N): 0.1% by weight or less (excluding 0%), the balance Fe and other unavoidable impurities, and is represented by the following relation (1) The sensitivity component index value is 3.4 or less,
[관계식 1][Relationship 1]
-0.451+34.131*P+111.152*Al-799.483*B+0.526*Cr≤3.4-0.451 + 34.131 * P + 111.152 * Al-799.483 * B + 0.526 * Cr≤3.4
(상기 [P], [Al], [B] 및 [Cr]은 각각 해당 원소의 중량%를 의미함)(The above [P], [Al], [B] and [Cr] mean each weight percent of the corresponding element)
미세조직이 면적분율로 95% 이상의 오스테나이트를 포함하는 열간 가공성이 우수한 비자성 강재가 제공된다. There is provided a non-magnetic steel having excellent hot workability in which the microstructure comprises 95% or more of austenite in an area fraction.
상기 오스테나이트의 평균 결정립도는 10μm 이상일 수 있다The average grain size of the austenite may be 10 μm or more.
본 발명의 바람직한 다른 일 측면에 의하면, 망간(Mn): 15~27중량%, 탄소(C): 0.1~1.1중량%, 규소(Si): 0.05~0.50중량%, 인(P): 0.03중량%이하(0% 제외), 황(S): 0.01중량%이하 (0% 제외), 알루미늄(Al): 0.050중량%이하(0% 제외), 크롬(Cr): 5중량%이하(0%포함), 붕소(B): 0.01중량%이하(0%포함), 질소(N): 0.1 중량% 이하(0% 제외), 잔부 Fe 및 기타 불가피한 불순물을 포함하고, 하기 관계식(1)로 표시되는 민감도 성분지수 값이 3.4 이하인 슬라브를 준비하는 단계;According to another preferred aspect of the present invention, manganese (Mn): 15 to 27% by weight, carbon (C): 0.1 to 1.1% by weight, silicon (Si): 0.05 to 0.50% by weight, phosphorus (P): 0.03 weight % Or less (excluding 0%), sulfur (S): 0.01% or less (excluding 0%), aluminum (Al): 0.050% or less (excluding 0%), chromium (Cr): 5% or less (0%) Boron (B): 0.01 wt% or less (including 0%), nitrogen (N): 0.1 wt% or less (excluding 0%), balance Fe and other unavoidable impurities, and are represented by the following relational formula (1) Preparing a slab having a sensitivity component index value of 3.4 or less;
[관계식 1][Relationship 1]
-0.451+34.131*P+111.152*Al-799.483*B+0.526*Cr≤3.4-0.451 + 34.131 * P + 111.152 * Al-799.483 * B + 0.526 * Cr≤3.4
(상기 [P], [Al], [B] 및 [Cr]은 각각 해당 원소의 중량%를 의미함)(The above [P], [Al], [B] and [Cr] mean each weight percent of the corresponding element)
상기 슬라브를 1050~1250℃의 온도에서 재가열하는 슬라브 재가열 단계; A slab reheating step of reheating the slab at a temperature of 1050-1250 ° C .;
상기 재가열된 슬라브를 열간압연하여 열연 강재를 얻는 열간압연단계; 및 A hot rolling step of hot rolling the reheated slab to obtain a hot rolled steel; And
열연강재를 냉각하는 냉각단계를 포함하는 열간 가공성이 우수한 비자성 강재의 제조방법이 제공된다. Provided is a method of manufacturing a non-magnetic steel having excellent hot workability, including a cooling step of cooling a hot rolled steel.
본 발명의 일 실시 형태에 따르면, 균일한 오스테나이트 상을 가지면서 비자성 특성이 우수하며, 낮은 균열 민감도를 가질 수 있어 표면 품질이 양호한 비자성 강재 및 그 제조방법을 제공할 수 있다.According to one embodiment of the present invention, it is possible to provide a nonmagnetic steel having a uniform austenite phase, excellent nonmagnetic properties, low crack sensitivity, and good surface quality, and a method of manufacturing the same.
도 1은 균열 민감도를 측정하기 위한 표면품질 정도를 점수로 나타낸 것으로, 평점 1은 표면에 균열이 발생하지 않은 상태, 평점1.5는 미세한 흠이 있는 상태, 평점2는 균열이 전파하여 큰 크랙이 발생된 상태를 나타낸다. Figure 1 shows the degree of surface quality for measuring the crack sensitivity as a score, the rating 1 is a crack does not occur on the surface, the rating 1.5 is a state with a fine flaw, the rating 2 is a crack propagation caused a large crack Status is displayed.
도 2는 균열 민감도 평가를 위한 균열 민감도 측정 부위를 설명하기 위한 모식도의 일례이다.2 is an example of a schematic diagram for explaining a crack sensitivity measurement site for crack sensitivity evaluation.
도 3은 균열 민감도와 민감도 성분지수 값과의 관계를 나타내는 그래프이다.3 is a graph showing the relationship between crack sensitivity and sensitivity component index values.
이하, 본 발명의 바람직한 실시 형태들을 설명한다.Hereinafter, preferred embodiments of the present invention will be described.
그러나, 본 발명의 실시 형태는 당해 기술 분야에서 평균적인 지식을 가진 자에게 본 발명을 더욱 완전하게 설명하기 위해서 제공되는 것이다.However, embodiments of the present invention are provided to more completely explain the present invention to those skilled in the art.
또한, 본 발명의 실시 형태는 여러 가지 다른 형태로 변형될 수 있으며, 본 발명의 범위가 이하 설명하는 실시 형태로 한정되는 것은 아니다.In addition, embodiment of this invention can be modified in various other forms, The range of this invention is not limited to embodiment described below.
덧붙여, 명세서 전체에서 어떤 구성요소를 '포함'한다는 것은 특별히 반대되는 기재가 없는 한 다른 구성요소를 제외하는 것이 아니라 다른 구성요소를 더 포함할 수 있다는 것을 의미한다.In addition, the inclusion of any component throughout the specification means that it may further include other components, except to exclude other components unless specifically stated otherwise.
이하, 본 발명에 의한 열간 가공성이 우수한 비자성 강재에 대하여 상세히 설명한다.EMBODIMENT OF THE INVENTION Hereinafter, the nonmagnetic steel material excellent in hot workability by this invention is demonstrated in detail.
본 발명의 바람직한 일 측면에 따르는 열간 가공성이 우수한 비자성 강재는 망간(Mn): 15~27중량%, 탄소(C): 0.1~1.1중량%, 규소(Si): 0.05~0.50중량%, 인(P): 0.03중량% 이하(0% 제외), 황(S): 0.01중량%이하(0% 제외), 알루미늄(Al): 0.050중량%이하(0% 제외), 크롬(Cr): 5중량%이하(0%포함), 붕소(B): 0.01중량%이하(0%포함), 질소(N): 0.1 중량% 이하(0% 제외), 잔부 Fe 및 기타 불가피한 불순물을 포함하고, 하기 관계식(1)로 표시되는 민감도 성분지수 값이 3.4 이하이고, 면적분율로 95% 이상의 오스테나이트를 포함하는 미세조직을 갖는다.Non-magnetic steel having excellent hot workability according to a preferred aspect of the present invention is manganese (Mn): 15 to 27% by weight, carbon (C): 0.1 to 1.1% by weight, silicon (Si): 0.05 to 0.50% by weight, phosphorus (P): 0.03% or less (excluding 0%), Sulfur (S): 0.01% or less (excluding 0%), Aluminum (Al): 0.050% or less (excluding 0%), Chromium (Cr): 5 Below 0% by weight (including 0%), boron (B): below 0.01% by weight (including 0%), nitrogen (N): below 0.1% by weight (excluding 0%), balance Fe and other unavoidable impurities, The sensitivity component index value expressed by the relation (1) is 3.4 or less, and has a microstructure containing 95% or more of austenite as an area fraction.
[관계식 1][Relationship 1]
-0.451+34.131*P+111.152*Al-799.483*B+0.526*Cr≤3.4-0.451 + 34.131 * P + 111.152 * Al-799.483 * B + 0.526 * Cr≤3.4
(상기 [P], [Al], [B] 및 [Cr]은 각각 해당 원소의 중량%를 의미함)(The above [P], [Al], [B] and [Cr] mean each weight percent of the corresponding element)
먼저, 강재의 성분 및 성분범위에 대하여 설명한다. First, the component and component range of steel materials are demonstrated.
망간(manganese( MnMn ): 15~27중량%): 15-27 wt%
상기 망간의 함량은 15~27 중량%로 한정하는 것이 바람직하다.The content of the manganese is preferably limited to 15 to 27% by weight.
상기 망간은 오스테나이트를 안정화시키는 역할을 하는 원소이다.The manganese is an element that serves to stabilize austenite.
상기 망간은 극저온에서의 오스테나이트 상을 안정화시키기 위하여 15 중량% 이상 포함될 수 있다.The manganese may be included in an amount of 15 wt% or more to stabilize the austenite phase at cryogenic temperatures.
상기 망간의 함량이 15% 미만이면, 탄소 함량이 작은 강재의 경우 준안정상인 입실론(ε)-마르텐사이트가 형성되어 극저온에서의 가공유기변태에 의해 쉽게 알파 프라임(α′)-마르텐사이트로 변태할 수 있어, 강재의 인성이 낮아질 수 있다.When the content of manganese is less than 15%, in the case of steel having a low carbon content, metastable epsilon (ε) -martensite is formed and is easily transformed into alpha prime (α ′)-martensite by processing organic transformation at cryogenic temperatures. The toughness of the steel can be lowered.
또한, 강재의 인성을 확보하기 위하여 탄소의 함량을 증가시킨 강재의 경우, 탄화물 석출로 인하여 강재의 물성이 급격히 감소할 수 있다.In addition, in the case of steels in which the carbon content is increased in order to secure the toughness of the steel, physical properties of the steel may be drastically reduced due to carbide precipitation.
상기 망간의 함량이 27 중량%를 초과하면, 제조원가 상승으로 인하여 강재의 경제성이 감소할 수 있다.When the content of the manganese exceeds 27% by weight, the economical efficiency of the steel may be reduced due to the increase in manufacturing cost.
보다 바람직한 망간 함량은 15 ~ 25중량%이고, 보다 더 바람직한 망간 함량은 17 ~ 25중량%이다.More preferred manganese content is 15-25% by weight, even more preferred manganese content is 17-25% by weight.
탄소(C): 0.1~1.1 중량%Carbon (C): 0.1-1.1 wt%
상기 탄소의 함량은 0.1~1.1 중량%로 한정하는 것이 바람직하다.The content of the carbon is preferably limited to 0.1 to 1.1% by weight.
상기 탄소는 오스테나이트를 안정화시키며,강재의 강도를 증가시키는 원소이다.The carbon is an element that stabilizes austenite and increases the strength of steel.
상기 탄소는 냉각공정 혹은 가공에 의한 오스테나이트, 입실론(ε)-마르텐사이트 또는 알파 프라임(α′)-마르텐사이트의 변태점인 Ms 및 Md 를 낮추는 역할을 할 수 있다.The carbon may serve to lower Ms and Md which are transformation points of austenite, epsilon (ε) -martensite or alpha prime (α ′)-martensite by a cooling process or processing.
상기 탄소의 함량이 0.1 중량% 미만이면, 오스텐나이트의 안정도가 부족하여 극저온에서 안정한 오스테나이트를 얻을 수 없으며, 외부 응력에 의해 쉽게 입실론(ε)-마르텐사이트 또는 알파 프라임(α′)-마르텐사이트로 가공유기변태를 일으켜 강재의 인성 및 강도를 감소시킬 수 있다. If the carbon content is less than 0.1% by weight, the stability of austenite is insufficient to obtain austenite that is stable at cryogenic temperatures, and is easily absorbed by external stress such as epsilon (ε) -martensite or alpha prime (α ')-martensine. Machining organic transformation to the site can reduce the toughness and strength of the steel.
상기 탄소의 함량이 1.1 중량%를 초과하면, 탄화물 석출로 인하여 강재의 인성이 급격히 열화될 수 있으며, 강재의 강도가 지나치게 높아져 강재의 가공성이 감소할 수 있다.When the content of the carbon exceeds 1.1% by weight, the toughness of the steel can be rapidly deteriorated due to carbide precipitation, the strength of the steel is too high, the workability of the steel can be reduced.
보다 바람직한 탄소 함량은 0.1 ~ 1.0중량%이고, 보다 더 바람직한 탄소 함량은 0.1 ~ 0.8 중량%이다.More preferred carbon content is 0.1 to 1.0% by weight, even more preferred carbon content is 0.1 to 0.8% by weight.
SiSi : 0.05~0.5 중량%: 0.05 ~ 0.5 wt%
Si은 Al과 같이 탈산제로 필수불가결하게 미량 첨가되는 원소이다. Si이 과도하게 첨가되는 경우 입계에 산화물을 형성하여 고온연성을 감소시키고, 크랙 등을 유발하여 표면품질을 저하시킬 우려가 있다. 그러나 강 중에서 Si 첨가량을 줄이기 위해서는 과도한 비용이 소요되므로, 그 하한은 0.05%로 제한하는 것이 바람직하다. Al과 비교하여 산화성이 높으므로 0.5%를 초과하여 첨가되는 경우에는 산화물을 형성하여 크랙 등을 형성하므로 표면품질이 저하되므로 Si 함량은 0.05~0.5%로 제한하는 것이 바람직하다. Si is an element which is indispensably added as a deoxidizer like Al. When Si is excessively added, oxides are formed at grain boundaries to reduce high-temperature ductility, causing cracks and the like, which may lower the surface quality. However, since excessive cost is required to reduce the amount of Si added in the steel, the lower limit thereof is preferably limited to 0.05%. Since the oxidizing property is higher than Al, when it is added in excess of 0.5%, the oxide is formed to form cracks, so the surface quality is lowered. Therefore, the Si content is preferably limited to 0.05 to 0.5%.
크롬(chrome( CrCr ): 5중량%이하(0%포함)): 5% or less (including 0%)
크롬은 적정한 첨가량의 범위까지는 오스테나이트를 안정화시켜 저온에서의 충격 인성을 향상시키고 오스테나이트내에 고용되어 강재의 강도를 증가시키는 역할을 한다. 또한 크롬은 강재의 내식성을 향상시키는 원소이기도 하다. 다만 크롬은 탄화물 원소로써 특히, 오스테나이트 입계에 탄화물을 형성하여 저온 충격을 감소시키는 원소이기도 하다. 따라서, 크롬의 함량은 탄소 및 기타 함께 첨가되는 원소들과의 관계를 고려하여 결정하는 것이 바람직하며, 고가의 원소임을 감안하여, 그 함량은 5중량% 이하로 한정하는 것이 바람직하다.Chromium stabilizes austenite up to the range of an appropriate amount of addition, thereby improving impact toughness at low temperatures, and solid-solution in austenite increases the strength of steel. Chromium is also an element that improves the corrosion resistance of steels. However, chromium is a carbide element, in particular, an element that reduces carbide impact by forming carbide at the austenite grain boundary. Therefore, the content of chromium is preferably determined in consideration of the relationship with carbon and other elements added together, and in view of being an expensive element, the content is preferably limited to 5% by weight or less.
보다 바람직한 크롬 함량은 0 ~ 4 중량%이고, 보다 더 바람직한 크롬 함량은 0.001 ~ 4 중량%이다.More preferred chromium content is 0 to 4% by weight and even more preferred chromium content is 0.001 to 4% by weight.
붕소(B): 0.01중량%이하(0%포함)Boron (B): 0.01% by weight or less (including 0%)
상기 붕소의 함량은 0.01중량%이하로 한정하는 것이 바람직하다.The content of boron is preferably limited to 0.01% by weight or less.
상기 붕소는 오스테나이트 입계를 강화하는 입계 강화 원소이다.Boron is a grain boundary strengthening element for strengthening austenite grain boundaries.
상기 붕소는 소량만 첨가하여도 오스테나이트 입계를 강화하여 고온에서의 강재의 균열 민감도를 낮출 수 있다. 오스테나이트 입계 강화 효과를 통한 표면 품질 향상을 위해서는 0.0005중량%이상 함유하는 것이 바람직하다.The boron may lower the cracking sensitivity of the steel at high temperature by strengthening the austenite grain boundary even when a small amount of boron is added. In order to improve the surface quality through the austenite grain boundary strengthening effect, it is preferable to contain 0.0005% by weight or more.
상기 붕소의 함량이 0.01%를 초과하면, 오스테나이트의 입계에 입계 편석이 발생하며, 이로 인해 고온에서의 강재의 균열 민감도를 증가시킬 수 있어 강재의 표면 품질이 저하될 수 있다.When the content of boron exceeds 0.01%, grain boundary segregation occurs at the grain boundaries of austenite, which may increase the crack sensitivity of the steel at high temperatures, thereby reducing the surface quality of the steel.
알루미늄(Al): 0.050중량%이하(0% 제외)Aluminum (Al): 0.050% by weight or less (excluding 0%)
상기 알루미늄의 함량은 0.05중량% 이하(0% 제외)로 한정하는 것이 바람직하다.The content of aluminum is preferably limited to 0.05% by weight or less (excluding 0%).
상기 알루미늄은 탈산제로서 첨가된다. 상기 알루미늄은 C나 N과 반응하여 석출물을 생성할 수 있으며, 상기 석출물에 의해 열간 가공성이 저하될 수 있으므로, 상기 알루미늄의 함량은 0.05중량% 이하(0% 제외)로 한정하는 것이 바람직하다. 보다 바람직한 알루미늄의 함량은 0.005 ~ 0.05중량%이다.The aluminum is added as a deoxidizer. The aluminum may react with C or N to generate a precipitate, and the hot workability may be reduced by the precipitate. Therefore, the aluminum content is preferably limited to 0.05% by weight or less (excluding 0%). The more preferable content of aluminum is 0.005 to 0.05% by weight.
S: 0.01 중량% 이하(0% 제외)S: 0.01 wt% or less (excluding 0%)
S는 개재물의 제어를 위하여 0.01% 이하로 제어될 필요성이 있다. S의 양이 0.01%를 초과하면 열간취성의 문제점이 발생한다.S needs to be controlled to 0.01% or less for inclusion control. If the amount of S exceeds 0.01%, the problem of hot brittleness occurs.
P: 0.03 중량% 이하(0% 제외)P: 0.03% by weight or less (except 0%)
P는 편석이 쉽게 발생되는 원소로 주조시 균열발생을 조장한다. 이를 방지하기 위하여 0.03% 이하로 제어되어야 한다. P의 양이 0.03%를 초과하면 주조성이 악화될 수 있으므로 그 상한은 0.03%로 한다.P is an element that easily generates segregation and promotes cracking during casting. To prevent this, it should be controlled below 0.03%. If the amount of P exceeds 0.03%, castability may deteriorate, so the upper limit is made 0.03%.
질소 (N): 0.1 중량% 이하(0% 제외) Nitrogen (N): 0.1 wt% or less (excluding 0%)
질소는 탄소와 더불어 오스테나이트를 안정화시켜 인성을 향상시키는 원소이며, 탄소와 같이 고용 강화 또는 석출물 형성을 통해 강도를 향상시키는데 매우 유리한 원소이다. 다만, 0.1%를 초과하여 첨가되는 경우 탄질화물의 조대화로 인해 물성이나 표면 품질의 열화가 발생하므로 상한은 0.1중량%로 제한하는 것이 바람직하다. 보다 바람직한 질소 함량은 0.001~0.06중량%이고, 보다 더 바람직한 질소 함량은 0.005 ~ 0.03 중량%이다. In addition to carbon, nitrogen is an element that stabilizes austenite to improve toughness, and is very advantageous for enhancing strength through solid solution strengthening or precipitate formation such as carbon. However, when added in excess of 0.1%, the upper limit is preferably limited to 0.1% by weight because deterioration of physical properties or surface quality occurs due to coarsening of carbonitrides. More preferred nitrogen content is 0.001 to 0.06% by weight, even more preferred nitrogen content is 0.005 to 0.03% by weight.
본 발명의 강재는 잔부 철(Fe) 및 기타 불가피한 불순물을 포함한다.The steel of the present invention contains residual iron (Fe) and other unavoidable impurities.
통상의 철강 제조과정에서 원료 또는 주위 환경으로부터 의도되지 않은 불순물들이 불가피하게 혼입될 수 있어, 이를 배제할 수는 없다. Unintentional impurities from the raw materials or the surrounding environment can be inevitably incorporated in a conventional steel manufacturing process and cannot be excluded.
이들 불순물은 통상의 철강제조과정의 기술자라면 누구라도 알 수 있는 것이기 때문에 그 모든 내용을 특별히 본 발명에서는 언급하지는 않는다.Since these impurities are known to those skilled in the art of ordinary steel manufacturing, not all of them are specifically mentioned in the present invention.
본 발명의 바람직한 일 측면에 따르는 열간 가공성이 우수한 오스테나이트계 비자성 강재는 하기 관계식(1)로 표시되는 민감도 성분지수 값이 3.4 이하이다.The austenitic nonmagnetic steel having excellent hot workability according to a preferred aspect of the present invention has a sensitivity component index value of 3.4 or less represented by the following relational formula (1).
[관계식 1][Relationship 1]
-0.451+34.131*P+111.152*Al-799.483*B+0.526*Cr≤3.4-0.451 + 34.131 * P + 111.152 * Al-799.483 * B + 0.526 * Cr≤3.4
(상기 [P], [Al], [B] 및 [Cr]은 각각 해당 원소의 중량%를 의미함)(The above [P], [Al], [B] and [Cr] mean each weight percent of the corresponding element)
상기 관계식(1)로 표시되는 민감도 성분지수 값이 3.4를 초과하는 경우에는 Crack의 발생 및 전파가 용이하여 제품의 표면결함을 가중시킬 우려가 있다.If the sensitivity component index value represented by the above relation (1) exceeds 3.4, there is a possibility that cracks are easily generated and propagated, thereby increasing the surface defects of the product.
본 발명의 바람직한 일 측면에 따르는 열간 가공성이 우수한 오스테나이트계 비자성 강재는 면적분율로 95% 이상의 오스테나이트를 포함한다.The austenite-based nonmagnetic steel having excellent hot workability according to a preferred aspect of the present invention includes at least 95% of austenite in an area fraction.
상자성체로서 투자율이 낮으며, 페라이트 대비 비자성 특성이 우수한 오스테나이트는 비자성 특성을 확보하기 위한 필수 미세조직이다.Austenite, which has a low permeability as a paramagnetic material and has superior nonmagnetic properties to ferrite, is an essential microstructure for securing nonmagnetic properties.
상기 오스테나이트의 면적분율이 95% 미만이면, 비자성 특성의 확보가 어려울 수 있다.If the area fraction of the austenite is less than 95%, it may be difficult to secure nonmagnetic properties.
상기 오스테나이트의 평균 결정립도는 10μm 이상일 수 있다. The average grain size of the austenite may be 10 μm or more.
본 발명의 제조 공정에서 구현 가능한 오스테나이트의 결정립도는 10μm 이상이며, 결정립도가 크게 증가하면 강재의 강도가 낮아질 수 있으므로, 보다 바람직한 오스테나이트의 결정립도는 60μm 이하이다.The grain size of austenite that can be implemented in the manufacturing process of the present invention is 10 μm or more, and when the grain size is greatly increased, the strength of the steel may be lowered, so that the more preferred austenite grain size is 60 μm or less.
본 발명의 바람직한 일 측면에 따르는 열간 가공성이 우수한 비자성 강재는 석출물 및 입실론(ε)- 마르텐사이트 중 1종 또는 2종을 면적분율로 5% 이하 포함할 수 있다.Nonmagnetic steel having excellent hot workability according to a preferred aspect of the present invention may include one or two of precipitates and epsilon (ε) -martensite in an area fraction of 5% or less.
석출물 및 입실론(ε)- 마르텐사이트 중 1종 또는 2종을 면적분율로 5% 초과하여 포함하는 경우에는 강재의 인성 및 연성이 감소될 수 있다.If one or two of precipitates and epsilon (ε) -martensite are contained in an area fraction of more than 5%, the toughness and ductility of the steel may be reduced.
이하, 본 발명에 의한 열간 가공성이 우수한 비자성 강재의 제조방법에 대하여 설명한다.EMBODIMENT OF THE INVENTION Hereinafter, the manufacturing method of the nonmagnetic steel material excellent in hot workability by this invention is demonstrated.
본 발명의 바람직한 다른 일 측면에 따르는 열간 가공성이 우수한 비자성 강재의 제조방법은 망간(Mn): 15~27중량%, 탄소(C): 0.1~1.1중량%, 규소(Si): 0.05~0.50중량%, 인(P): 0.03중량% 이하 (0% 제외), 황 (S):0.01중량%이하(0% 제외), 알루미늄(Al): 0.050중량%이하(0% 제외), 크롬(Cr): 5중량%이하(0%포함), 붕소(B): 0.01중량%이하(0%포함), 질소(N): 0.1 중량% 이하(0% 제외), 잔부 Fe 및 기타 불가피한 불순물을 포함하고, 하기 관계식(1)로 표시되는 민감도 성분지수 값이 3.4 이하인 슬라브를 준비하는 단계;According to another preferred aspect of the present invention, a method for producing a non-magnetic steel having excellent hot workability includes manganese (Mn): 15 to 27 wt%, carbon (C): 0.1 to 1.1 wt%, and silicon (Si): 0.05 to 0.50 Weight%, Phosphorus (P): 0.03% or less (excluding 0%), Sulfur (S): 0.01% or less (excluding 0%), Aluminum (Al): 0.050% or less (excluding 0%), Chromium ( Cr): 5% or less (including 0%), Boron (B): 0.01% or less (including 0%), Nitrogen (N): 0.1% or less (excluding 0%), balance Fe and other unavoidable impurities Preparing a slab including and comprising a sensitivity component index value of 3.4 or less represented by the following relation (1);
[관계식 1][Relationship 1]
-0.451+34.131*P+111.152*Al-799.483*B+0.526*Cr≤3.4-0.451 + 34.131 * P + 111.152 * Al-799.483 * B + 0.526 * Cr≤3.4
(상기 [P], [Al], [B] 및 [Cr]은 각각 해당 원소의 중량%를 의미함)(The above [P], [Al], [B] and [Cr] mean each weight percent of the corresponding element)
상기 슬라브를 1050~1250℃의 온도에서 재가열하는 슬라브 재가열 단계;A slab reheating step of reheating the slab at a temperature of 1050-1250 ° C .;
상기 재가열된 슬라브를 열간압연하여 열연 강재를 얻는 열간압연단계; 및 A hot rolling step of hot rolling the reheated slab to obtain a hot rolled steel; And
열연강재를 냉각하는 냉각단계를 포함한다.And a cooling step of cooling the hot rolled steel.
슬라브 재가열 단계Slab reheating stage
열간압연을 위해 슬라브를 가열로에서 1050~1250℃의 온도에서 재가열하는 공정이 필요하다. For hot rolling, the slab is reheated in a furnace at a temperature of 1050-1250 ° C.
이때 재가열 온도가 1050℃ 미만으로 너무 낮을 경우에는 압연 중에 하중이 크게 걸리는 문제가 있으며, 합금성분도 충분히 고용되지 않는다. 반면, 재가열 온도가 너무 높을 경우에는 결정립이 과도하게 성장하여 강도가 낮아지는 문제가 있고 강재의 고상선 온도를 초과하여 재가열 됨으로써 강재의 열간압연성을 해칠 우려가 있기 때문에 재가열 온도의 상한은 1250℃로 제한하는 것이 바람직하다.At this time, if the reheating temperature is too low, less than 1050 ℃, there is a problem that the load is largely applied during rolling, alloy components are not sufficiently dissolved. On the other hand, if the reheating temperature is too high, there is a problem that the grains grow excessively and the strength is lowered, and since the reheating exceeds the solidus temperature of the steel, there is a risk of damaging the hot rollability of the steel, so the upper limit of the reheating temperature is 1250 ° C. It is preferable to limit to.
열간압연단계Hot rolling stage
상기 재가열된 슬라브를 열간압연하여 열연 강재를 얻는다.The reheated slab is hot rolled to obtain a hot rolled steel.
열간압연단계는 조압연공정 및 마무리압연공정을 포함할 수 있다. The hot rolling step may include a rough rolling process and a finish rolling process.
이 때 열간 마무리압연 온도는 800 ~ 1050℃로 한정하는 것이 바람직하다. 열간 마무리압연 온도가 800℃ 미만인 경우에는 압연 하중이 크게 걸리고, 1050℃를 초과하는 경우에는 결정립이 조대하게 성장하여 목표로 하는 강도를 얻을 수 없으므로 그 상한은 1050℃로 한정하는 것이 바람직하다. At this time, the hot finish rolling temperature is preferably limited to 800 ~ 1050 ℃. When the hot finish rolling temperature is less than 800 ° C., the rolling load is largely applied. If the hot finish rolling temperature is more than 1050 ° C., the crystal grains grow coarse and the target strength cannot be obtained, so the upper limit is preferably limited to 1050 ° C.
냉각단계Cooling stage
열간압연단계에서 얻어진 열연강재를 냉각한다.Cool the hot rolled steel obtained in the hot rolling step.
열간 마무리 압연 후 열연강재의 냉각은 입계 탄화물 형성을 억제하기에 충분한 냉각속도로 실시되는 것이 바람직하다. 냉각속도가 10℃/s미만인 경우 탄화물 형성을 피하기에 충분하지 않아 냉각 도중 입계에 탄화물이 석출되어 강재의 조기 파단에 따른 연성 감소 및 이로 인한 내마모성의 열화가 문제가 되므로 냉각 속도는 빠를수록 유리하며 가속냉각의 범위내라면 상기 냉각속도의 상한은 특별히 제한할 필요가 없다. 다만, 통상의 가속냉각시에는 냉각속도는 100℃/s를 초과하기 어려운 점을 고려하여 그 상한은 100℃/s로 한정하는 것이 바람직하다.Cooling of the hot rolled steel after hot finishing rolling is preferably carried out at a cooling rate sufficient to suppress grain boundary carbide formation. If the cooling rate is less than 10 ℃ / s it is not enough to avoid the formation of carbides, carbides precipitate at the grain boundaries during cooling, causing ductility reduction due to premature fracture of the steel and deterioration of wear resistance is a problem, so the faster the cooling rate is advantageous If it is in the range of accelerated cooling, the upper limit of the cooling rate does not need to be particularly limited. However, in the case of normal accelerated cooling, the upper limit is preferably limited to 100 ° C / s in consideration of the fact that the cooling rate is difficult to exceed 100 ° C / s.
열연강재의 냉각 시. 냉각정지온도는 600℃ 이하로 한정하는 것이 바람직하다. 빠른 속도로 냉각하더라도, 높은 온도에서 냉각이 정지될 경우에는 탄화물이 생성 및 성장될 수도 있다. When cooling hot rolled steel. Cooling stop temperature is preferably limited to 600 ℃ or less. Even at a high rate of cooling, carbides may form and grow when cooling is stopped at high temperatures.
이하, 실시예를 통하여 본 발명을 보다 상세히 설명한다. 다만, 후술하는 실시예는 본 발명을 예시하여 구체화하기 위한 것일 뿐 본 발명의 권리범위를 제한하기 위한 것이 아니라는 점에 유의할 필요가 있다. 본 발명의 권리범위는 특허청구범위에 기재된 사항과 이로부터 합리적으로 유추되는 사항에 의하여 결정되는 것이기 때문이다. Hereinafter, the present invention will be described in more detail with reference to Examples. However, it should be noted that the following embodiments are only intended to illustrate the present invention and are not intended to limit the scope of the present invention. This is because the scope of the present invention is determined by the matters described in the claims and the matters reasonably inferred therefrom.
(실시예)(Example)
하기 표 1의 성분계를 만족하는 슬라브를 1200 ℃의 온도에서 재가열한 후, 표 1의 열간 마무리 압연조건으로 열간압연하여 12mm 두께의 열연 강재를 제조한 후, 20 ℃/s 의 냉각속도로 300 ℃의 온도까지 냉각하였다.After reheating the slab satisfying the component system of Table 1 at a temperature of 1200 ℃, and hot rolled under the hot finish rolling conditions of Table 1 to produce a 12 mm thick hot rolled steel, 300 ℃ at a cooling rate of 20 ℃ / s It cooled to the temperature of.
상기와 같이 제조된 열연강판(강재)의 결정립도, 항복강도, 인장강도, 연신율 및 균열 민감도를 측정하고, 그 결과를 하기 표 1에 나타내었다.The grain size, yield strength, tensile strength, elongation and crack sensitivity of the hot rolled steel sheet (steel) prepared as described above were measured, and the results are shown in Table 1 below.
상기 균열 민감도는 강재의 열간 가공성을 확인할 수 있는 요소이며, 여기서는 도 2에서와 같이, 강재의 측면 모서리, 선단부 모서리 및 상면의 표면품질에 대하여 측정하였다. 민감도 정도는 도 1의 기준에 따라 각각의 측정 부위에 대하여 점수화 하였으며, 이렇게 점수화된 3 부분의 점수를 곱한 값을, 하기 표 2에 민감도로 나타내었다. 하기 표 2에서 민감도가 3 이하인 경우 양호한 표면품질을 가진다The crack sensitivity is an element that can confirm the hot workability of the steel, as shown in Figure 2, was measured for the surface quality of the side edge, the front edge and the upper surface of the steel. The degree of sensitivity was scored for each measurement site according to the criteria of FIG. 1, and the value obtained by multiplying the scores of the three scored points as shown in Table 2 below. Table 2 has a good surface quality when the sensitivity is 3 or less.
한편, 하기 표 2에는 -0.451+34.131*P+111.152*Al-799.483*B+0.526*Cr으로 표시되는 민감도 성분지수 값을 나타내었다.Meanwhile, Table 2 shows the sensitivity component index values expressed as -0.451 + 34.131 * P + 111.152 * Al-799.483 * B + 0.526 * Cr.
또한, 하기 표 2의 민감도 값과 -0.451+34.131*P+111.152*Al-799.483*B+0.526*Cr으로 표시되는 민감도 성분지수 값의 관계를 도 3에 나타내었다.In addition, the relationship between the sensitivity value of Table 2 and the sensitivity component index value expressed as -0.451 + 34.131 * P + 111.152 * Al-799.483 * B + 0.526 * Cr is shown in FIG.
표 1
구분 성분계 (중량%) 마무리 압연 온도(℃)
C Mn Si P S N Al B Cr
실시예1 0.42 20.3 0.21 0.016 0.004 0.015 0.028 - -  870
실시예2 0.46 25.0 0.29 0.016 0.004 0.020 0.026 0.0042 3.93 891
실시예3 0.40 19.9 0.17 0.016 0.003 0.018 0.025 0.0023 2.05 930
실시예4 0.39 21.6 0.19 0.017 0.007 0.019 0.025 0.0045 2.06 905
실시예5 0.40 25.0 0.22 0.016 0.004 0.021 0.026 - -  885
실시예6 0.40 22.1 0.21 0.016 0.004 0.016 0.021 0.0030 - 940
실시예7 0.39 19.6 0.18 0.018 0.009 0.018 0.022 0.0038 2.03 938
실시예8 1.10 17.9 0.21 0.018 0.004 0.018 0.028 0.0040 2.70 937
비교예1 0.40 22.0 0.19 0.029 0.004 0.018 0.026 - - 922
비교예2 0.40 22.1 0.18 0.027 0.003 0.017 0.072 0.0037 - 938
비교예3 0.40 22.2 0.20 0.015 0.004 0.017 0.051 - - 894
비교예4 0.40 22.2 0.20 0.030 0.003 0.017 0.060 - - 933
비교예5 0.40 22.1 0.22 0.030 0.003 0.018 0.059 - - 885
Table 1
division Component system (wt%) Finish rolling temperature (℃)
C Mn Si P S N Al B Cr
Example 1 0.42 20.3 0.21 0.016 0.004 0.015 0.028 - - 870
Example 2 0.46 25.0 0.29 0.016 0.004 0.020 0.026 0.0042 3.93 891
Example 3 0.40 19.9 0.17 0.016 0.003 0.018 0.025 0.0023 2.05 930
Example 4 0.39 21.6 0.19 0.017 0.007 0.019 0.025 0.0045 2.06 905
Example 5 0.40 25.0 0.22 0.016 0.004 0.021 0.026 - - 885
Example 6 0.40 22.1 0.21 0.016 0.004 0.016 0.021 0.0030 - 940
Example 7 0.39 19.6 0.18 0.018 0.009 0.018 0.022 0.0038 2.03 938
Example 8 1.10 17.9 0.21 0.018 0.004 0.018 0.028 0.0040 2.70 937
Comparative Example 1 0.40 22.0 0.19 0.029 0.004 0.018 0.026 - - 922
Comparative Example 2 0.40 22.1 0.18 0.027 0.003 0.017 0.072 0.0037 - 938
Comparative Example 3 0.40 22.2 0.20 0.015 0.004 0.017 0.051 - - 894
Comparative Example 4 0.40 22.2 0.20 0.030 0.003 0.017 0.060 - - 933
Comparative Example 5 0.40 22.1 0.22 0.030 0.003 0.018 0.059 - - 885
표 2
구분 표면품질 물성
성분지수 값 민감도 결정립도 (μm) 항복강도 (MPa) 인장강도 (MPa) 연신율 (%)
실시예1 3.21 1.00 28  371.4 977.4 50.9
실시예2 1.70 1.00 37  427.1 871.5 59.3
실시예3 2.11 1.00 32  350.6 946.0 55.9
실시예4 0.39 1.00  33 358.9 905.3 57.1
실시예5 2.98 1.50 26  360.5 918.0 27.0
실시예6 0.03 1.50 43  329.9 896.6 56.0
실시예7 0.64 1.50 29  344.1 933.7 45.9
실시예8 1.50 2.25 31  508.3 1003.9 29.5
비교예1 3.43 3.38 30  342.5 925.9 61.9
비교예2 5.52 3.38 40  325.5 887.0 53.1
비교예3 5.73 8.00 28  356.2 928.7 52.7
비교예4 7.24 8.00 35  339.0 920.0 61.4
비교예5 7.13 8.00 33  352.5 899.9 39.2
TABLE 2
division Surface quality Properties
Component Index Value responsiveness Grain size (μm) Yield strength (MPa) Tensile Strength (MPa) Elongation (%)
Example 1 3.21 1.00 28 371.4 977.4 50.9
Example 2 1.70 1.00 37 427.1 871.5 59.3
Example 3 2.11 1.00 32 350.6 946.0 55.9
Example 4 0.39 1.00 33 358.9 905.3 57.1
Example 5 2.98 1.50 26 360.5 918.0 27.0
Example 6 0.03 1.50 43 329.9 896.6 56.0
Example 7 0.64 1.50 29 344.1 933.7 45.9
Example 8 1.50 2.25 31 508.3 1003.9 29.5
Comparative Example 1 3.43 3.38 30 342.5 925.9 61.9
Comparative Example 2 5.52 3.38 40 325.5 887.0 53.1
Comparative Example 3 5.73 8.00 28 356.2 928.7 52.7
Comparative Example 4 7.24 8.00 35 339.0 920.0 61.4
Comparative Example 5 7.13 8.00 33 352.5 899.9 39.2
상기 표 1 및 표 2에 나타난 바와 같이, 실시예 1 내지 8은 본 발명의 민감도 3 이하로 양호한 표면품질을 가진다. As shown in Table 1 and Table 2, Examples 1 to 8 have good surface quality with a sensitivity of 3 or less of the present invention.
비교예 1 은 P의 함량이 높아 성분지수 3.43으로 비교적 높은 균열 민감도를 가진다. Comparative Example 1 has a relatively high crack sensitivity with a high P content of 3.43.
비교예 2의 경우에는 B이 첨가되었지만, Al 함량이 높으므로 성분지수가 감소하고 이에 따라 균열 민감도 또한 감소하였지만, 본 발명 범위를 벗어남을 알 수 있다.In the case of Comparative Example 2, B was added, but since the Al content is high, the component index is decreased and thus the crack sensitivity is also reduced, but it can be seen that it is outside the scope of the present invention.
비교예 3 은 Al함량이 본 발명 범위를 벗어나는 것으로, 성분지수 5.62로 균열 민감도가 8.00임을 알 수 있다.Comparative Example 3 is outside the scope of the present invention, the Al content, it can be seen that the crack sensitivity is 8.00 with a component index of 5.62.
비교예 4 내지 5에서 P와 Al 첨가에 의해 성분지수가 높아 졌으며 균열 민감도도 높아짐을 알 수 있다.In Comparative Examples 4 to 5, the component index was increased by the addition of P and Al, and the crack sensitivity was also increased.
한편, 도 3에 나타난 바와 같이, -0.451+34.131*P+111.152*Al-799.483*B+0.526*Cr으로 표시되는 민감도 성분지수 값이 3,4이하인 경우, 민감도가 3 이하로 양호한 표면품질을 가짐을 알 수 있다. On the other hand, as shown in Figure 3, when the sensitivity component index value represented by -0.451 + 34.131 * P + 111.152 * Al-799.483 * B + 0.526 * Cr is 3, 4 or less, the sensitivity is 3 or less, good surface quality It can be seen that.
이상 실시예를 참조하여 설명하였지만, 해당 기술 분야의 숙련된 자에게 있어서는 본 발명의 기본적인 사상의 범주 내에서 본 발명을 다양하게 수정 및 변경이 가능하며, 또한, 본 발명의 권리범위는 특허청구 범위에 기초하여 해석되어야 함을 명시한다.Although described with reference to the embodiments above, those skilled in the art can be variously modified and changed the present invention within the scope of the basic idea of the present invention, and the scope of the invention claims It should be interpreted based on

Claims (8)

  1. 망간(Mn): 15~27중량%, 탄소(C): 0.1~1.1중량%, 규소(Si): 0.05~0.50중량%, 인(P): 0.03중량% 이하(0% 제외), 황(S): 0.01중량%이하(0% 제외), 알루미늄(Al): 0.050중량%이하(0% 제외), 크롬(Cr): 5중량%이하(0%포함), 붕소(B): 0.01중량%이하(0%포함), 질소(N): 0.1중량%이하(0% 제외), 잔부 Fe 및 기타 불가피한 불순물을 포함하고, 하기 관계식(1)로 표시되는 민감도 성분지수 값이 3.4 이하이고,Manganese (Mn): 15-27 wt%, Carbon (C): 0.1-1.1 wt%, Silicon (Si): 0.05-0.50 wt%, Phosphorus (P): 0.03 wt% or less (excluding 0%), Sulfur ( S): 0.01% or less (excluding 0%), Aluminum (Al): 0.050% or less (excluding 0%), Chromium (Cr): 5% or less (including 0%), Boron (B): 0.01% % Or less (including 0%), nitrogen (N): 0.1% or less (excluding 0%), balance Fe and other unavoidable impurities, and the sensitivity component index value represented by the following relation (1) is 3.4 or less,
    [관계식 1][Relationship 1]
    -0.451+34.131*P+111.152*Al-799.483*B+0.526*Cr≤3.4-0.451 + 34.131 * P + 111.152 * Al-799.483 * B + 0.526 * Cr≤3.4
    (상기 [P], [Al], [B] 및 [Cr]은 각각 해당 원소의 중량%를 의미함)(The above [P], [Al], [B] and [Cr] mean each weight percent of the corresponding element)
    미세조직이 면적분율로 95% 이상의 오스테나이트를 포함하는 열간 가공성이 우수한 비자성 강재.Non-magnetic steel with excellent hot workability, in which the microstructure contains more than 95% of austenite in an area fraction.
  2. 제1항에 있어서, 상기 오스테나이트의 평균 결정립도는 10μm 이상인 것을 특징으로 하는 열간 가공성이 우수한 비자성 강재.The nonmagnetic steel having excellent hot workability according to claim 1, wherein the average grain size of the austenite is 10 µm or more.
  3. 망간(Mn): 15~27중량%, 탄소(C): 0.1~1.1중량%, 규소(Si): 0.05~0.50중량%, 인(P): 0.03중량%이하 (0% 제외), 황(S): 0.01중량%이하 (0% 제외), 알루미늄(Al): 0.050중량%이하(0% 제외), 크롬(Cr): 5중량%이하(0%포함), 붕소(B): 0.01중량%이하(0%포함), 질소 (N): 0.1 중량% 이하(0% 제외), 잔부 Fe 및 기타 불가피한 불순물을 포함하고, 하기 관계식(1)로 표시되는 민감도 성분지수 값이 3.4 이하인 슬라브를 준비하는 단계;Manganese (Mn): 15-27 wt%, Carbon (C): 0.1-1.1 wt%, Silicon (Si): 0.05-0.50 wt%, Phosphorus (P): 0.03 wt% or less (excluding 0%), Sulfur ( S): 0.01% by weight or less (excluding 0%), aluminum (Al): 0.050% by weight (excluding 0%), chromium (Cr): 5% by weight (including 0%), boron (B): 0.01% by weight Slabs containing less than or equal to 0% (including 0%), nitrogen (N): 0.1% by weight or less (excluding 0%), residual Fe and other unavoidable impurities, and having a sensitivity component index value of 3.4 or less represented by the following relation (1): Preparing;
    [관계식 1][Relationship 1]
    -0.451+34.131*P+111.152*Al-799.483*B+0.526*Cr≤3.4-0.451 + 34.131 * P + 111.152 * Al-799.483 * B + 0.526 * Cr≤3.4
    (상기 [P], [Al], [B] 및 [Cr]은 각각 해당 원소의 중량%를 의미함)(The above [P], [Al], [B] and [Cr] mean each weight percent of the corresponding element)
    상기 슬라브를 1050~1250℃의 온도에서 재가열하는 슬라브 재가열 단계; A slab reheating step of reheating the slab at a temperature of 1050-1250 ° C .;
    상기 재가열된 슬라브를 열간압연하여 열연 강재를 얻는 열간압연단계; 및 A hot rolling step of hot rolling the reheated slab to obtain a hot rolled steel; And
    열연강재를 냉각하는 냉각단계를 포함하는 열간 가공성이 우수한 비자성 강재의 제조방법.A method for producing a non-magnetic steel having excellent hot workability, including a cooling step of cooling a hot rolled steel.
  4. 제3항에 있어서, 상기 열간압연단계에서 열간압연 시 열간 마무리압연 온도가 800 ~ 1050℃인 것을 특징으로 하는 열간 가공성이 우수한 비자성 강재의 제조방법.The method of claim 3, wherein the hot finish rolling temperature during hot rolling in the hot rolling step is 800 to 1050 ° C.
  5. 제3항에 있어서, 상기 냉각단계에서 냉각 시 냉각속도는 10 ~ 100℃/s인 것을 특징으로 하는 열간 가공성이 우수한 비자성 강재의 제조방법.The method of claim 3, wherein the cooling rate in the cooling step is 10 ~ 100 ℃ / s, characterized in that the hot workability is excellent.
  6. 제3항에 있어서, 상기 냉각단계에서 냉각 시 냉각정지온도는 600℃ 이하인 것을 특징으로 하는 열간 가공성이 우수한 비자성 강재의 제조방법.The method of claim 3, wherein the cooling stop temperature during cooling in the cooling step is 600 ° C. or less. 5.
  7. 제3항에 있어서, 상기 강재는 면적분율로 95% 이상의 오스테나이트를 포함하는 미세조직을 갖는 것을 특징으로 하는 열간 가공성이 우수한 비자성 강재의 제조방법.The method of claim 3, wherein the steel material has a microstructure including austenitic 95% or more of austenite in an area fraction.
  8. 제7항에 있어서, 상기 오스테나이트의 평균 결정립도는 10μm 이상인 것을 특징으로 하는 열간 가공성이 우수한 비자성 강재의 제조방법.The method of manufacturing a nonmagnetic steel having excellent hot workability according to claim 7, wherein the average grain size of the austenite is 10 µm or more.
PCT/KR2016/015121 2015-12-23 2016-12-23 Non-magnetic steel material having excellent hot workability and manufacturing method therefor WO2017111510A1 (en)

Priority Applications (5)

Application Number Priority Date Filing Date Title
US16/061,196 US10961610B2 (en) 2015-12-23 2016-12-23 Non-magnetic steel material having excellent hot workability and manufacturing method therefor
JP2018532026A JP6793199B2 (en) 2015-12-23 2016-12-23 Non-magnetic steel with excellent hot workability and its manufacturing method
EP16879377.6A EP3395980B1 (en) 2015-12-23 2016-12-23 Non-magnetic steel material having excellent hot workability and manufacturing method therefor
CN201680075986.6A CN108474083A (en) 2015-12-23 2016-12-23 The non magnetic steel and its manufacturing method having superior hot workability
US17/195,850 US11873546B2 (en) 2015-12-23 2021-03-09 Austenitic steel material having excellent hot workability and manufacturing method therefor

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
KR10-2015-0184757 2015-12-23
KR20150184757 2015-12-23
KR10-2016-0176294 2016-12-22
KR1020160176294A KR101889187B1 (en) 2015-12-23 2016-12-22 Nonmagnetic steel having superior hot workability and method for manufacturing the same

Related Child Applications (2)

Application Number Title Priority Date Filing Date
US16/061,196 A-371-Of-International US10961610B2 (en) 2015-12-23 2016-12-23 Non-magnetic steel material having excellent hot workability and manufacturing method therefor
US17/195,850 Continuation US11873546B2 (en) 2015-12-23 2021-03-09 Austenitic steel material having excellent hot workability and manufacturing method therefor

Publications (1)

Publication Number Publication Date
WO2017111510A1 true WO2017111510A1 (en) 2017-06-29

Family

ID=59089864

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2016/015121 WO2017111510A1 (en) 2015-12-23 2016-12-23 Non-magnetic steel material having excellent hot workability and manufacturing method therefor

Country Status (1)

Country Link
WO (1) WO2017111510A1 (en)

Cited By (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111542637A (en) * 2017-12-24 2020-08-14 株式会社Posco High-strength austenite-based high-manganese steel material and manufacturing method thereof
EP3699313A4 (en) * 2017-10-18 2020-08-26 Posco High manganese steel for low temperature, having excellent surface quality, and manufacturing method therefor
EP3730649A4 (en) * 2017-12-22 2020-10-28 Posco Steel material having excellent wear resistance and manufacturing method for same
EP3733908A4 (en) * 2017-12-26 2021-03-03 Posco Hot-rolled steel sheet with excellent low-temperature toughness, steel pipe, and manufacturing method therefor
EP3825436A4 (en) * 2018-08-15 2021-05-26 JFE Steel Corporation Steel sheet and method for manufacturing same
EP3872213A4 (en) * 2018-10-25 2021-09-01 Posco Austenitic high manganese steel for cryogenic applications having excellent surface quality and resistance to stress corrosion cracking, and manufacturing method for same
EP3872217A4 (en) * 2018-10-25 2021-09-01 Posco Cryogenic austenitic high manganese steel having excellent surface quality and manufacturing method therefor
EP3872211A4 (en) * 2018-10-25 2021-09-01 Posco Cryogenic austenitic high-manganese steel having excellent scale peeling properties, and manufacturing method therefor
EP3872212A4 (en) * 2018-10-25 2021-09-01 Posco Cryogenic austenitic high-manganese steel having excellent corrosion resistance, and manufacturing method therefor
EP3872214A4 (en) * 2018-10-25 2021-09-01 Posco High manganese steel having excellent oxygen cutting properties, and manufacturing method therefor
EP3872210A4 (en) * 2018-10-25 2021-09-01 Posco Cryogenic austenitic high-manganese steel having excellent shape, and manufacturing method therefor
EP3872215A4 (en) * 2018-10-25 2021-09-01 Posco High manganese austenitic steel having high yield strength and manufacturing method for same
JP2022505582A (en) * 2018-10-25 2022-01-14 ポスコ Cryogenic austenitic high manganese steel with excellent corrosion resistance and its manufacturing method
CN114502763A (en) * 2019-10-08 2022-05-13 株式会社Posco High-strength wire rod having nonmagnetic property and method for manufacturing same

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013023743A (en) * 2011-07-22 2013-02-04 Kobe Steel Ltd Nonmagnetic steel wire or bar steel, and method for producing the same
KR20140103107A (en) * 2011-12-20 2014-08-25 에이티아이 프로퍼티즈, 인코퍼레이티드 High strength, corrosion resistant austenitic alloys
JP2014205907A (en) * 2013-03-21 2014-10-30 株式会社神戸製鋼所 Non-magnetic steel excellent in low temperature bendability and method of producing the same
KR20150075331A (en) * 2013-12-25 2015-07-03 주식회사 포스코 Austenitic steel for expandable pipe having excellent expandability of welded zone and method for manufacturing the same
JP2015196837A (en) * 2014-03-31 2015-11-09 新日鐵住金ステンレス株式会社 Austenitic stainless steel wire material and wire for nonmagnetic game ball

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013023743A (en) * 2011-07-22 2013-02-04 Kobe Steel Ltd Nonmagnetic steel wire or bar steel, and method for producing the same
KR20140103107A (en) * 2011-12-20 2014-08-25 에이티아이 프로퍼티즈, 인코퍼레이티드 High strength, corrosion resistant austenitic alloys
JP2014205907A (en) * 2013-03-21 2014-10-30 株式会社神戸製鋼所 Non-magnetic steel excellent in low temperature bendability and method of producing the same
KR20150075331A (en) * 2013-12-25 2015-07-03 주식회사 포스코 Austenitic steel for expandable pipe having excellent expandability of welded zone and method for manufacturing the same
JP2015196837A (en) * 2014-03-31 2015-11-09 新日鐵住金ステンレス株式会社 Austenitic stainless steel wire material and wire for nonmagnetic game ball

Cited By (24)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11584970B2 (en) 2017-10-18 2023-02-21 Posco Co., Ltd High manganese steel for low temperature applications having excellent surface quality and a manufacturing method thereof
EP3699313A4 (en) * 2017-10-18 2020-08-26 Posco High manganese steel for low temperature, having excellent surface quality, and manufacturing method therefor
EP3974556A1 (en) * 2017-10-18 2022-03-30 Posco High manganese steel for low temperature, having excellent surface quality
EP3730649A4 (en) * 2017-12-22 2020-10-28 Posco Steel material having excellent wear resistance and manufacturing method for same
JP2021508006A (en) * 2017-12-24 2021-02-25 ポスコPosco High-strength austenitic high-manganese steel and its manufacturing method
EP3730650A4 (en) * 2017-12-24 2021-03-03 Posco High-strength austenite-based high-manganese steel material and manufacturing method for same
JP7438967B2 (en) 2017-12-24 2024-02-27 ポスコ カンパニー リミテッド High strength austenitic high manganese steel and manufacturing method thereof
US11634800B2 (en) 2017-12-24 2023-04-25 Posco Co., Ltd High-strength austenite-based high-manganese steel material and manufacturing method for same
CN111542637B (en) * 2017-12-24 2022-05-10 株式会社Posco High-strength austenite-based high-manganese steel material and manufacturing method thereof
CN111542637A (en) * 2017-12-24 2020-08-14 株式会社Posco High-strength austenite-based high-manganese steel material and manufacturing method thereof
EP3733908A4 (en) * 2017-12-26 2021-03-03 Posco Hot-rolled steel sheet with excellent low-temperature toughness, steel pipe, and manufacturing method therefor
US11519060B2 (en) 2017-12-26 2022-12-06 Posco Holdings Inc. Hot-rolled steel sheet with excellent low-temperature toughness, steel pipe, and manufacturing method therefor
EP3825436A4 (en) * 2018-08-15 2021-05-26 JFE Steel Corporation Steel sheet and method for manufacturing same
EP3872210A4 (en) * 2018-10-25 2021-09-01 Posco Cryogenic austenitic high-manganese steel having excellent shape, and manufacturing method therefor
EP3872216A4 (en) * 2018-10-25 2021-09-01 Posco Cryogenic austenitic high-manganese steel having excellent shape, and manufacturing method therefor
JP2022505582A (en) * 2018-10-25 2022-01-14 ポスコ Cryogenic austenitic high manganese steel with excellent corrosion resistance and its manufacturing method
EP3872215A4 (en) * 2018-10-25 2021-09-01 Posco High manganese austenitic steel having high yield strength and manufacturing method for same
EP3872214A4 (en) * 2018-10-25 2021-09-01 Posco High manganese steel having excellent oxygen cutting properties, and manufacturing method therefor
JP7177924B2 (en) 2018-10-25 2022-11-24 ポスコ Austenitic high-manganese steel material for cryogenic use with excellent corrosion resistance and its manufacturing method
EP3872212A4 (en) * 2018-10-25 2021-09-01 Posco Cryogenic austenitic high-manganese steel having excellent corrosion resistance, and manufacturing method therefor
EP3872211A4 (en) * 2018-10-25 2021-09-01 Posco Cryogenic austenitic high-manganese steel having excellent scale peeling properties, and manufacturing method therefor
EP3872217A4 (en) * 2018-10-25 2021-09-01 Posco Cryogenic austenitic high manganese steel having excellent surface quality and manufacturing method therefor
EP3872213A4 (en) * 2018-10-25 2021-09-01 Posco Austenitic high manganese steel for cryogenic applications having excellent surface quality and resistance to stress corrosion cracking, and manufacturing method for same
CN114502763A (en) * 2019-10-08 2022-05-13 株式会社Posco High-strength wire rod having nonmagnetic property and method for manufacturing same

Similar Documents

Publication Publication Date Title
WO2017111510A1 (en) Non-magnetic steel material having excellent hot workability and manufacturing method therefor
WO2016104975A1 (en) High-strength steel material for pressure container having outstanding toughness after pwht, and production method therefor
WO2018117646A1 (en) Thick steel sheet having excellent cryogenic impact toughness and manufacturing method therefor
WO2018074887A1 (en) High-strength reinforcing steel and method for manufacturing same
WO2021091138A1 (en) Steel plate having high strength and excellent low-temperature impact toughness and method for manufacturing thereof
WO2019132098A1 (en) Steel reinforcing bar and production method therefor
WO2018117676A1 (en) Austenite steel material having superb abrasion resistance and toughness, and method for producing same
WO2018110853A1 (en) High strength dual phase steel having excellent low temperature range burring properties, and method for producing same
WO2017082687A1 (en) Microalloyed wire having excellent cold workability and manufacturing method therefor
WO2018117700A1 (en) High-strength high-toughness thick steel sheet and manufacturing method therefor
WO2018117614A1 (en) Ultra-thick steel material having excellent surface part nrl-dwt properties and method for manufacturing same
WO2012043984A2 (en) Steel plate for line pipe, having excellent hydrogen induced crack resistance, and preparation method thereof
WO2018030737A1 (en) Ultra-thick steel material having excellent resistance to brittle crack propagation and preparing method therefor
WO2020111856A2 (en) High-strength steel sheet having excellent ductility and low-temperature toughness and method for manufacturing thereof
WO2018080108A1 (en) High-strength and high-manganese steel having excellent low-temperature toughness and manufacturing method therefor
WO2021125858A2 (en) Enamel steel sheet and manufacturing method therefor
WO2018110906A1 (en) High-carbon hot-rolled steel sheet having excellent surface quality and manufacturing method therefor
WO2017111443A1 (en) High-strength structural steel sheet excellent in hot resistance and manufacturing method thereof
WO2013154254A1 (en) High carbon hot rolled steel sheet having excellent uniformity and method for manufacturing same
WO2020111857A1 (en) Chromium-molybdenum steel plate having excellent creep strength and method for manufacturing same
WO2016105003A1 (en) Structural ultra-thick steel having excellent resistance to brittle crack propagation, and production method therefor
WO2016072679A1 (en) Wire rod having enhanced strength and impact toughness and preparation method for same
WO2018110850A1 (en) High-strength wire rod having superior impact toughness and manufacturing method therefor
WO2021261884A1 (en) High-strength austenitic stainless steel with excellent productivity and cost reduction effect and method for producing same
WO2020080602A1 (en) Method for producing high manganese steel material having excellent anti-vibration characteristics and formability, and high manganese steel produced thereby

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16879377

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2018532026

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 2016879377

Country of ref document: EP

ENP Entry into the national phase

Ref document number: 2016879377

Country of ref document: EP

Effective date: 20180723