JP2016192763A - 耐故障性用途のための動的フェイルセーフバイアス回路 - Google Patents
耐故障性用途のための動的フェイルセーフバイアス回路 Download PDFInfo
- Publication number
- JP2016192763A JP2016192763A JP2016009616A JP2016009616A JP2016192763A JP 2016192763 A JP2016192763 A JP 2016192763A JP 2016009616 A JP2016009616 A JP 2016009616A JP 2016009616 A JP2016009616 A JP 2016009616A JP 2016192763 A JP2016192763 A JP 2016192763A
- Authority
- JP
- Japan
- Prior art keywords
- current source
- signal line
- current
- bias
- bias circuit
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
Images
Classifications
-
- H—ELECTRICITY
- H03—ELECTRONIC CIRCUITRY
- H03K—PULSE TECHNIQUE
- H03K19/00—Logic circuits, i.e. having at least two inputs acting on one output; Inverting circuits
- H03K19/007—Fail-safe circuits
-
- H—ELECTRICITY
- H03—ELECTRONIC CIRCUITRY
- H03K—PULSE TECHNIQUE
- H03K3/00—Circuits for generating electric pulses; Monostable, bistable or multistable circuits
- H03K3/01—Details
- H03K3/011—Modifications of generator to compensate for variations in physical values, e.g. voltage, temperature
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04L—TRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
- H04L25/00—Baseband systems
- H04L25/02—Details ; arrangements for supplying electrical power along data transmission lines
- H04L25/0264—Arrangements for coupling to transmission lines
- H04L25/0272—Arrangements for coupling to multiple lines, e.g. for differential transmission
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04L—TRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
- H04L25/00—Baseband systems
- H04L25/02—Details ; arrangements for supplying electrical power along data transmission lines
- H04L25/0264—Arrangements for coupling to transmission lines
- H04L25/028—Arrangements specific to the transmitter end
Landscapes
- Engineering & Computer Science (AREA)
- Power Engineering (AREA)
- Computer Networks & Wireless Communication (AREA)
- Signal Processing (AREA)
- Physics & Mathematics (AREA)
- Computer Hardware Design (AREA)
- Computing Systems (AREA)
- General Engineering & Computer Science (AREA)
- Mathematical Physics (AREA)
- Dc Digital Transmission (AREA)
- Amplifiers (AREA)
Abstract
【課題】耐故障性用途のための動的フェイルセーフバイアス回路のための改良されたシステム及び方法を提供する。【解決手段】バイアス回路は、第1の信号線及び第2の信号線を備えた差動通信線を含む。バイアス回路は、電源と第1の信号線との間に接続された第1の電流源をさらに含む。バイアス回路は、第1の電流源に接続され、第1の電流源によって生成される電流を駆動する基準電圧を出力する、第1の高精度電圧基準をさらに含む。バイアス回路は、第2の信号線及びシステムグランドに接続され、電源によって供給される電圧によって駆動される、第2の電流源をさらに含む。【選択図】図1
Description
本発明は、耐故障性用途のための動的フェイルセーフバイアス回路に関する。
連邦政府支援の研究又は開発に関する陳述
[1]本発明は政府の支援によりなされた。政府は本発明において一定の権利を有する。
[1]本発明は政府の支援によりなされた。政府は本発明において一定の権利を有する。
[2]電子ハードウェア間で長いケーブルを介して送信をするシグナリングインターフェース(例えば、低電圧差動シグナリング(LVDS))は、活発に駆動されていないときに雑音の影響を受けやすい。いくつかの状況では、シグナリングインターフェースが非アクティブである(すなわち、駆動されていない)とき、非アクティブなインターフェースのケーブルに雑音やクロストークが結合し、非アクティブなインターフェースがアクティブであるかのように見せることがある。これが発生すると、受信機は、自律的に切り替えを行って、望ましくない結果を引き起こし得る。この問題は、特に、一次及び冗長ドライバインターフェースが同時に給電されないが一次及び冗長受信機が給電される、信頼性の高い交差ストラップ(cross−strapped)システムに存在している。
[3]受信機の入力を1つのレベルに維持し、雑音によるフローティングを防止するために、フェイルセーフバイアス抵抗が信号線に追加されていた。通常、これらの抵抗は、受信機の入力に含まれており、電源とグランドに接続される。差動信号については、ハイサイドは電源のレベルにプルアップされ、ローサイドはプルダウンされる。いくつかの用途、特に交差ストラップのシステムでは、バイアス抵抗は、長いケーブルに結合し得る大きな雑音を克服するには弱すぎる。抵抗がこれを補償するためにより強力になると、多くの場合、ドライバは、バイアスが必要とされないときにインターフェースの正常動作に影響を与え得るバイアス電流を克服することができない。
[4]上述の理由、及び明細書を読んで理解することで当業者にとって明らかになるであろう以下に述べる他の理由により、耐故障性用途のための動的フェイルセーフバイアス回路のための改良されたシステム及び方法が当技術分野において必要とされる。
[5]本発明の実施形態は、動的フェイルセーフバイアス回路のための方法及びシステムを提供し、以下の明細書を読んで検討することによって理解される。
[6]一実施形態では、バイアス回路は、第1の信号線及び第2の信号線を含む差動通信線と、電源と第1の信号線との間に接続された第1の電流源と、第1の電流源に接続された第1の高精度電圧基準であって、第1の電流源によって生成される電流を駆動する基準電圧を出力する、第1の高精度電圧基準と、第2の信号線及びシステムグランド(system ground)に接続された第2の電流源であって、電源によって供給される電圧によって駆動される、第2の電流源とを備える。
[7]図面が例示的な実施形態のみを示し、したがって範囲を限定するものと考えるべきではないとの理解のもとで、例示的な実施形態が添付の図面の使用を通じてさらに具体的かつ詳細に説明される。
[13]一般的な慣行に従って、様々な説明される特徴は、一定の縮尺で描かれず、例示的な実施形態に関連する特定の特徴を強調するように描かれている。
[14]以下の詳細な説明では、本明細書の一部を形成する添付の図面が参照され、例として特定の例示的な実施形態が示される。しかし、他の実施形態を利用してもよく、論理的、機械的及び電気的変更がなされ得ることを理解すべきである。さらに、図面及び明細書に提示される方法は、個々のステップが実行され得る順序を限定するものとして解釈されるべきではない。したがって、以下の詳細な説明は限定的な意味で解釈されるべきではない。
[15]好ましくは、差動通信システムのためのフェイルセーフバイアス回路は、ドライバが非アクティブのときに有効にされるべきであり、ドライバがアクティブであるときに無効にされるべきである。これらの特性は、あまりにも強力なバイアス抵抗を使用することで問題となるような、フェイルセーフバイアス回路がドライバの性能を妨げることを防ぐ。さらに、ケーブルに結合するいかなる雑音やクロストークも受信機における自律切り替えや他の望ましくない結果につながらないように、フェイルセーフバイアス回路は、十分な雑音マージンを提供すべきである。従来のフェイルセーフバイアス回路はこれらの最適な品質を実現していなかった。
[16]以下に説明する実施形態は、耐故障性用途のための動的フェイルセーフバイアス回路のためのシステム及び方法を提供する。以下に説明する実施形態は、非アクティブな差動通信線に一貫した電流及び電圧を供給するために、電源及び信号線に接続された電流源を含む。さらに、以下に説明する実施形態は、バイアス回路が差動通信システムの通常動作を妨げないことを確実にするための機構を含む。
[17]図1は、本開示の一実施形態による例示的な差動通信システム100を示すブロック図である。システム100は、オプションのコネクタ104に接続されたドライバ102(例えば、差動信号ドライバ)、バイアス回路105、第1の電源(PS1)126、第2の電源(PS2)128を含む。図1の構成において、第1の電源126及び第2の電源128は冗長電源として実装される。例えば、第1の電源126が主電源として実装され得る一方、第2の電源128が、第1の電源126の損失時にアクティブになるバックアップ/冗長電源として機能する。したがって、電源126、128は、その両方が同時にアクティブになることを防止するように制御される。例示的な実施形態では、電源126、128は、インターフェース、フィールドプログラマブルゲートアレイ、プロセッサ、パワーオンリセット回路、又は当業者に知られているいくつかの他の外部コントローラからの制御信号によって制御される。したがって、第1の電源126が無効であるとき、制御信号は第2の電源128をオンにする。
[18]ドライバ102は、第2の電源128によって電力供給される電子デバイスを備え、ハイサイド信号線122及びローサイド信号線124を介してオプションのコネクタ104に接続される。図1に示す実施形態では、ドライバ102は、信号線122及び124を介して送信される差動信号を用いて、通信ケーブル132を介して別のデバイス130と通信する、通信電子機器を含む。コネクタ104は、信号線122及び124を通信ケーブル132内の信号線に物理的及び電気的に結合するインターフェース(プラグ又は他の終端デバイスなど)を含む。一実施形態では、ドライバ102は、通信ケーブル132を介して差動信号を送る送信機を含む。他の実施形態では、ドライバ102は、通信ケーブル132から差動信号を受信する受信機を含む。代替的な実施形態では、システム100は、LVDS、RS−422、RS−485、又は当業者に知られた他の差動信号標準などの差動信号標準を使用して実施することができる。
[19]図1に示すように、バイアス回路105は、ハイサイド信号線122に接続された第1の電流源106及びローサイド信号線124に接続された第2の電流源108を含む。第2の電流源108はまた、グランドに接続される。第1の電流源106と第2の電流源108の両方は第1の電源126によって給電される。これは、電流源106、108が同時にアクティブであることを保証し、信号線122、124にバイアス電圧及び電流を提供するための完全な回路を形成する。例示的な実施形態では、第1の電流源106及び第2の電流源108はスイッチとして動作する。電流源106及び108は、様々な手段を用いて実装することができる。例えば、いくつかの実施形態では、電流源106及び108のうちの一方又は両方は、バイポーラ接合トランジスタを含む。他の実施形態では、電流源は、電界効果トランジスタ、機械式スイッチ、機械式リレー、又は抵抗ネットワークを使用して実装される。他の実施形態では、電流源は、当業者に知られている別の種類の電流源を使用して実装される。
[20]第1の電流源106はまた、電流源106によって供給される電流を制御するために正確な電圧を提供することによって第1の電流源106を駆動する、高精度電圧基準110に接続される。いくつかの例示的な実施形態では、高精度電圧基準110はツェナーダイオードである。他の実施形態では、高精度電圧基準110は抵抗分割回路である。他の実施形態では、高精度電圧基準110は、当業者に知られた別の種類の高精度電圧基準であってもよい。図1に示されるように、いくつかの実施形態では、高精度電圧基準110はグランドに接続されてもよい。
[21]バイアス回路105はまた、抵抗112、114、116、118及び120で示されるような1つ又は複数のバイアス及び/又は電流制限抵抗を含んでもよい。例えば、高精度電圧基準110及び電流源106は、それぞれ抵抗112及び114を介して第1の電源126に接続される。電流源106は抵抗116によってハイサイド信号線122に接続される。電流源108は、抵抗器120を介して第1の電源126に接続され、抵抗118を介してローサイド信号線124に接続される。抵抗のペアが抵抗116、118、120について示されるが、各ペアを単一の抵抗で置き換えることができることを理解すべきである。
[22]動作において、通信システム100は、第1の電源126による給電又は第2の電源128による給電の一方で動作するが、その両方では動作しない。第1の電源126が活性化されると、バイアス回路105は第1の電源126によって電源投入され、第1の電流源106に供給される電圧は高精度電圧基準110により制御される。したがって、第1の電源126が電源投球されると、高精度電圧基準110は第1の電流源106をオンにする。ドライバ102は第2の電源128によって電力供給されるので、ドライバ102は、バイアス回路105がアクティブであるときに電力供給されず又はアクティブにならない。ドライバ102からオプションのコネクタ104に延びるハイサイド信号線122は、電流源106に接続される。電流源106は、オプションのコネクタ104を介してハイサイド信号線122に一定の電圧及び電流を供給し、オプションのコネクタ104は、(例えば受信機であってもよい)デバイス130へ、ケーブル132を介して電圧及び電流を送る。例示的な実施形態では、電圧及び電流の範囲はシステム要件に応じて変わる。電圧及び電流は、デバイス130内の終端素子(例えば抵抗であってもよい)を通り、ケーブル132を介してオプションのコネクタ104に、そしてローサイド信号線124に戻る。電圧及び電流は電流源108を通って回路を完成する。電流源108は、ローサイド信号線124に電圧や電流を供給するために動作される必要がないことに留意すべきである。その代わりに、電流源108は、ローサイド信号線124(及び、したがって、電流源106によって信号線122に押し出された電流)を(例えばシステムグランドなどの)電流シンクに結合するスイッチとして機能する。
[23]例示的な実施形態では、図1に示すシステム100は、一次側及び冗長側の両方を含む交差ストラップ差動通信システムに組み込まれる。このような実施形態では、一次側は第1の電源126によって電力供給することができ、冗長側は第2の電源128によって電力供給することができる。図1のドライバ102は第2の電源128によって電力供給されるので、システム100は、図1に示すように、そのような実施形態において、交差ストラップ差動通信システムの冗長側の送信機を表す。一次側の送信機は、図1に示すシステム100のものと実質的に同一の概略図を含み、1つの相違点を有する。第1の電源126は一次側においてドライバ102に電力を供給し、第2の電源128は一次側においてバイアス回路105に電力を供給する。上述したように、電源126、128は、同時にアクティブではない。冗長側において、バイアス回路105は第1の電源126に接続されるので、バイアス回路105は、一次ドライバが電源投入されたときにアクティブになるにすぎない。同様に、一次側におけるバイアス回路は、冗長側のドライバ102が電源投入されたときにアクティブになるにすぎない。この設計は、交差ストラップ差動通信システムのそれぞれの側におけるバイアス回路がドライバの正常な動作を妨げないことを保証する。
[24]図2は、本開示の一実施形態による例示的な差動通信システム200を示すブロック図である。システム200は、ドライバ102、オプションのコネクタ104、バイアス回路205、第1の電源(PS1)及び第2の電源(PS2)を含む。例示的な実施形態では、バイアス回路205は、4つの電流源106、108、206、208及び2つの高精度電圧基準110、210を含む。バイアス回路205はまた、図示される抵抗112、114、116、118、120、212、214、216、218、220などの1つ又は複数のバイアス及び/又は電流制限抵抗を含んでいてもよい。図1に示されるデバイス130及び接続ケーブル132は図を明瞭にするために図2に示されていないが、これらのコンポーネントがシステム200の一部であってもよいことが理解されるべきである。システム100と同様に、いくつかの実施形態では、システム200は、交差ストラップ差動通信システムにおいて実施することができる。
[25]システム200はシステム100と同様であるので、相違点のみを説明する。しかし、図1において説明された、同様に名付けられて符号が付された要素が、同じオプション及び代替例を用いて図2に関して同じように動作し、その逆でもあることを理解すべきである。システム200は、ハイサイド信号線122に接続された第2の電流源206を含む。電流源106と同様に、電流源206は、抵抗214、216を介して、第1の電源126及びハイサイド信号線122に接続される。電流源206はまた、高精度電圧基準210に接続される。電流源206は、電流源106と並列に、第1の電源126及びハイサイド信号線122に接続される。電流源206及び高精度電圧基準210は、図1に関して上述した電流源106及び高精度電圧基準110と同様の特性を有する。
[26]システム200はまた、ローサイド信号線124に接続された第2の電流源208を含む。電流源108と同様に、電流源208はまた、第1の電源126及びローサイド信号線124に接続される。電流源208はまた、システムグランドに接続される。電流源208は、電流源108と並列に、第1の電源126及びシステムグランドに接続される。電流源208は、図1に関して上述した電流源108と同様の特性を有する。
[27]各電流源106、108、206、208は第1の電源126によって給電されるので、電流源106、108、206、208は同時にアクティブになる。電流源106、108、206、208がアクティブであるとき、これは、信号線にバイアス電圧及び電流を提供するための完全な回路を形成する。両方の電流源106、206が動作可能であるとき、電流源106、206は、ハイサイドの信号線122に供給される電流及び電圧を共有する。電流源106、206のうちの1つに故障がある場合、システム200は、まだ動作可能である電流源を使用した動作が可能である。したがって、電流源106、206及び高精度電圧基準110、210の仕様は、ハイサイド信号線122に接続される単一の電流で動作するシステム200に基づいて決定される。
[28]同様に、電流源108、208の両方が動作可能であるとき、電流源108、208は、ローサイド信号線124から受け取る電流及び電圧を共有する。電流源108、208のいずれかに障害がある場合、システム200は、まだ動作可能である電流源を使用して動作することが可能である。したがって、電流源108、208の仕様は、ハイサイド信号線122上の単一の電流源で動作するシステムに基づいて決定される。
[29]図3は、本開示の一実施形態による例示的な差動通信システム300を示すブロック図である。システム300は、ドライバ102、オプションのコネクタ104、バイアス回路305、第1の電源(PS1)及び第2の電源(PS2)を含む。バイアス回路305は、電流源がトランジスタを用いて実施することができ、電圧基準がツェナーダイオードを用いて実施することができる、バイアス回路205の例の1つの例示的な実施形態を含む。例示的な実施形態では、バイアス回路305は、4つのトランジスタ306、308、310、312及び2つのツェナーダイオード314、316を含む。バイアス回路305はまた、図示される抵抗318、320、322、324、326、328、330、332、334、336のような1つ又は複数のバイアス及び/又は電流制限抵抗を含んでもよい。図1に示されるデバイス130及び接続ケーブル132は、図を明瞭にする目的で、図3に示されていないが、それらのコンポーネントがシステム300の一部であり得ることが理解されるべきである。システム100と同様に、いくつかの実施形態において、システム300は、交差ストラップ差動通信システムにおいて実施することができる。
[30]バイアス回路305内のトランジスタ306、308、310、312は、ペアへと編成される。第1のペアのトランジスタはトランジスタ306、308を含み、第2のペアのトランジスタはトランジスタ310、312を含む。第1のペアのトランジスタ306、308は、第1の電源126及びハイサイド信号線122に並列に接続される。第2のペアのトランジスタ310、312は、ローサイド信号線124及びシステムグランドに並列に接続される。例示的な実施形態では、トランジスタ306、308、310、312は、NPNバイポーラ接合トランジスタである。他の実施形態では、トランジスタ306、308、310、312は、PNPバイポーラ接合トランジスタである。トランジスタ306、308、310、312は、図3のバイポーラ接合トランジスタとして示されているが、異なる種類のトランジスタをバイアス回路305において使用することができることが理解されるべきである。例えば、トランジスタ306、308、310、312は、金属酸化膜半導体電界効果トランジスタであってもよい。
[31]例示的な実施形態では、トランジスタ306、308、310、312の最小閾値は、システム300が、各ペアにおける単一のアクティブなトランジスタによっても動作範囲内で動作を維持し続けることができるように決定される。したがって、バイアス回路305は4つのトランジスタ306、308、310、312を有するように示されるが、いくつかの実施形態では、バイアス回路305は、各ペアの一方のトランジスタのみによってシステム300のためのフェイルセーフバイアスを行うことができる。トランジスタ306、308、310、312を並列のペアに組織し、適切な最小閾値を選択することによって、バイアス回路305は、トランジスタ306、308、310、312のうちのいずれかに障害が発生した場合に、耐故障性を提供する。例示的な実施形態では、バイアス回路305はまた、4つより多くのトランジスタを含むように構成することができる。
[32]第1のペアの各トランジスタ306、308のベースは、それぞれ、ツェナーダイオード314、316のカソードに接続される。第1のペアの各トランジスタ306、308のコレクタは、抵抗320、326を介して第1の電源126に接続される。第1のペアの各トランジスタ306、308のエミッタは、直列に接続された抵抗322、328のペアを介してハイサイド信号線122に接続される。例示的な実施形態では、トランジスタ306、308はスイッチとして動作するようにバイアスされる。
[33]第2のペアの各トランジスタ310、312のベースは、直列に接続される抵抗332、336のペアを介して、第1の電源126に接続される。第2のペアの各トランジスタ310、312のコレクタは、直列に接続される抵抗330、334のペアを介して、ローサイド信号線124に接続される。第2のペアの各トランジスタ310、312のエミッタは接地される。第2のペアのトランジスタ310、312は、信号線122、124を介して回路を完成するために、ローサイド信号線124に接続される。例示的な実施形態では、トランジスタ310、312はスイッチとして動作するようにバイアスされる。
[34]抵抗322、328、330、332、334、336のうちのいくつかは、システムの耐故障性を高めるために、ペアへとグループ化される。例示的な実施形態では、耐故障性は必要ではなく、抵抗のペアは単一の抵抗によって置き換えられる。抵抗322、328、330、332、334、336をペアへと組織化することにより、単一の短絡抵抗は、バイアス回路305の継続的な動作を妨げない。抵抗318、320、322、324、326、328、330、332、334、336の値は、信号線122、124に供給される電圧及び電流を変更するために調整することができる。例示的な実施形態では、抵抗322、328、330、334の値は324オームである。例示的な実施形態では、抵抗器320、326の値は1キロオームである。例示的な実施形態では、抵抗318、324の値は4.99キロオームである。例示的な実施形態では、抵抗332、336の値は1.5キロオームである。
[35]ツェナーダイオード314、316は、トランジスタ306、308のための高精度電圧基準/レギュレータとして動作する。各ツェナーダイオード314、316のアノードはシステムグランドに接続される。各ツェナーダイオード314、316のカソードは、ツェナーダイオード314、316と直列に接続された抵抗318、324を介して、第1の電源126に接続される。単一の抵抗318、324は、ツェナーダイオード314、316を流れる電流を制限する。
[36]バイアス回路305は第1の電源126によって電源投入される。第1のペアのトランジスタ306、308のベースに供給される電圧は、ツェナーダイオード314、316によって制御される。したがって、第1の電源126が電源投入されると、ツェナーダイオード314、316をバイアスし、トランジスタ306、308をオンにする。ツェナーダイオードは時間及び変化する負荷にわたって安定化された電圧出力を提供するので、ツェナーダイオードは、差動線に対する電圧を正確に知ることを保証する管理可能な方法を提供する。例示的な実施形態では、ツェナーダイオード314、316は、トランジスタ306、308のベースに2.4ボルトを供給するように設定され、トランジスタ306、308のベース−エミッタ電圧降下は約0.7ボルトである。第1の電源126が電源投入されると、これはまた、トランジスタ310、312をオンにする。
[37]全てのトランジスタが動作可能であるとき、トランジスタ306、308は電流を共有し、トランジスタ310、312は電流を共有する。バイアス回路305がアクティブであるとき、トランジスタ306、308は、ドライバ102からオプションのコネクタ104へ延びるハイサイド信号線122に、一定の電圧及び電流を供給する。一定の電圧及び電流は、オプションのコネクタ104を介して供給され、それはケーブル132を介してデバイス130に電圧及び電流を送る。電圧及び電流はデバイス130内の終端抵抗を通過し、ケーブル134を介してオプションのコネクタ104に戻る。電圧及び電流は、第2のペアのトランジスタ310、312を介してシステムのグランドを通過し、回路を完成する。
[38]図4は、本開示の一実施形態による例示的な差動通信システム400を示すブロック図である。システム400は、ドライバ102、オプションのコネクタ104、バイアス回路405及び第1の電源(PS1)126を含む。例示的な実施形態では、バイアス回路405は、4つのトランジスタ406、408、410、412、2つのツェナーダイオード414、416、及び複数の抵抗418、420、422、424、426、428、430、432、434、436を含む。デバイス130及び接続ケーブル132は、図を明瞭にするために図4に示されていないが、それらのコンポーネントがシステム400の一部となり得ることが理解されるべきである。いくつかの実施形態では、システム400は、高信頼性の、単一ストリームの差動通信システムにおいて実施される。
[39]システム400は、システム300と同様に機能し、1つの大きな相違点を有する。システム300が2つの異なる(及び冗長な)電源を使用して実施される一方、システム400は単一の電源を含むにすぎない。ドライバ102及びバイアス回路405は、両方が、第1の電源126によって電力供給されるので、システム400は、ドライバ102及びバイアス回路405が同時にアクティブでないことを保証するために、バイアス回路405を係合するための別の機構を含む。上述したように、バイアス回路はドライバの通常の動作を妨げるので、ドライバと同時にバイアス回路をアクティブにすることは望ましくない。
[40]システム400のコンポーネントの動作はシステム300内のコンポーネントと同様であるので、システム間の相違点のみを説明する。したがって、システム300に関連して上述した変形例がシステム400にも適用されることが理解されるべきである。
[41]ドライバ102及びトランジスタ406、408は第1の電源126に接続される。バイアス回路405がドライバ102の通常の動作に干渉することを防止するために、システム400は、バイアス回路405及びドライバ102を有効又は無効にするバイアス回路コントローラ450を含む。例示的な実施形態では、バイアス回路コントローラ450は、例えば、フィールドプログラマブルゲートアレイ、プロセッサ、パワーオンリセット回路、又は当技術分野の当業者に知られているいくつかの他の外部コントローラを含んでもよい。
[42]バイアス回路コントローラ450は、トランジスタ406、408、410、412を有効/無効にする論理レベル信号438を提供する。トランジスタ406、408、410、412がバイアス回路コントローラ450によって有効にされるとき、バイアス回路405が活性化される。バイアス回路405がアクティブであるとき、ツェナーダイオード416、418は、図3を参照して上述したのと同様の方法でバイアスされる。バイアス回路405は、ドライバ102が動作していないときにアクティブであるにすぎないので、ドライバ102に提供される論理レベル信号440は、トランジスタ406、408、410、412に提供される論理レベル信号438とは反対である。したがって、システム400の適切な動作は、トランジスタ406、408、410、412がドライバ102と比較して反対の状態にあることをバイアス回路コントローラ450が補償することを必要とする。
[43]例示的な実施形態では、システム400を参照して上述したバイアス回路コントローラ450は、同様にシステム100、200及び300のいずれかの実施形態において利用することができる。このようなコントローラの使用は、バイアス回路104、205、305に対するより高いレベルの制御が望ましい状況において有益であり得る。
[44]図1〜図4を参照して上述したバイアス回路105、205、305、405は、雑音を経験する単一ストリームの差動通信システムに対して十分な雑音マージンを提供するためには必ずしも有効でないフェイルセーフバイアス抵抗を置換するのに使用することができる。バイアス回路105、205、305、405は、ケーブルがアクティブに駆動されていないときに受信機への信号を維持するために電圧及び電流を提供するので、バイアス回路105、205、305、405は、ケーブルに結合する雑音のために受信機が自律的に切り替わるのを防ぐ。
[45]さらに、バイアス回路はドライバが非アクティブのときに関与するにすぎないので、バイアス回路105、205、305、405は、アクティブであるドライバの性能を阻害しない。バイアス回路105、205、305については、バイアス回路及びドライバが異なる電源によって活性化されるので、これが保証される。バイアス回路405については、ドライバが動作可能であるときにバイアス回路405が電源が投入されないことを確実にするようにバイアス回路405及びドライバ102を制御するために、コントローラを使用することができる。したがって、バイアス回路105、205、305、405は、ドライバの正常な動作を妨害しないので、フェイルセーフバイアス抵抗を採用した従来のシステムに対して大きな利点をもたらす。
[46]図5は、差動通信システム100、200、300、400などの差動通信システムにフェイルセーフバイアスを提供するための方法500を示すフローチャートである。
[47]この方法は、502において開始し、第1の電源によって電圧供給される第1の電流源を使用して、第1の信号線にバイアス電流及びバイアス電圧を印加する。一実施形態では、第1の信号線にバイアス電流及びバイアス電圧を印加することは、第1の電源がオンにされたときにバイアスされる第1の高精度電圧基準からの基準電圧で第1の電流源をオンにすることをさらに含むことができる。その場合、方法は、502において、第1の電源によって電力供給される高精度電圧基準で第1の電流源を駆動することによって、バイアス電流を調整することをさらに含んでもよい。
[48]第1の電流源は、第1の信号線と第1の電源との間に接続されてもよい。他の例示的な実施形態では、バイアス電流及びバイアス電圧を印加することは、第1の電流源に論理レベル信号を提供することをさらに含む。例示的な実施形態では、論理レベル信号は、図4を参照して上述したバイアス回路コントローラ450などのコントローラによって提供される。
[49]方法は、504に進み、第1の電源によって電力供給される第2の電流源を用いて第2の信号線を電流シンクに接続する。一実施形態では、第2の信号線を接続することは、第1の電源からの電圧で第2の電流源をオンにすることをさらに含んでもよい。第2の電流源は、第2の信号線と(例えば、システムグランドなどの)電流シンクとの間に接続されてもよい。例示的な実施形態では、第2の信号線を電流シンクに接続することは、第2の電流源に論理レベル信号を提供することをさらに含む。例示的な実施形態では、論理レベル信号は、図4を参照して上述したバイアス回路コントローラ450などのコントローラによって提供される。
[50]方法は次いで506に進み、第1の信号線と第2の信号線との間のバイアス電流のための電気経路(electrical path)は、少なくとも1つのケーブルによって第1の信号線及び第2の信号線に接続された電気デバイスによって完成される。上述したように、差動信号ドライバは、第1の信号線と第2の信号線との間に接続され、第1の信号線及び第2の信号線にわたる差動信号を送信するように構成される。いくつかの実施形態では、差動信号ドライバは第2の電源に接続され、第2の電源は第1の電源が活性化されるときに非活性化され、逆もまた同様である。その場合、第1の信号線及び第2の信号線を介したバイアス電流は、第1の電源が活性化されているときにのみ印加される。これにより、(差動信号ドライバが動作していないときに発生する可能性がある)ケーブル上の雑音がバイアス信号と比較して無視できる程度になるように、外部電気デバイスにバイアス信号が提供される。
[51]上述のように、第1の電源が活性化されるときに第1の電流源は第1の電源によって電源投入され、第1の電流源に供給される電圧は高精度電圧基準によって制御することができる。その場合、第1の電源が電源投入されると、高精度電圧基準は第1の電流源をオンにする。電圧及び電流は、第2の信号線へと、電気デバイス内の終端素子(例えば、抵抗であってもよい)を通過する。電圧及び電流は、第2の電流源を介して電流シンクへと通過して、回路を完成する。
[52]他の実施形態では、さらなる電流源が耐故障性を提供するために含まれてもよい。このような実施形態では、第3の電流源が、第1の信号線と第1の電源との間に、第1の電流源と並列に接続されてもよい。また、第2の信号線は、第1の電源によって給電されて第2の電流源と並列に接続された、第4の電流源を用いて電流シンクに接続されてもよい。第1の電流源及び第3の電流源は、第1の信号線に印加されるバイアス電流及びバイアス電圧の一部を提供するように構成される。第2の電流源及び第4の電流源は、第2の信号線からの電圧及び電流の一部を受け取るように構成される。例示的な実施形態では、第3の電流源及び第4の電流源は、それぞれ第1及び第2の電流源と同様の特性を有する。
[53]いくつかの実施形態では、フェイルセーフバイアスは、差動通信システムの送信機において行われる。このような実施形態では、バイアス電流及びバイアス電圧は、差動通信システムの受信機に送られる。他の実施形態では、フェイルセーフバイアスは、差動通信システムの受信機において行われる。
例示的な実施形態
[54]例1は、差動通信システムの送信機を含み、第1の電源に接続された差動信号ドライバと、第1の信号線及び第2の信号線を含む差動線(differential line)と、第2の電源に接続されたフェイルセーフバイアス回路とを備え、フェイルセーフバイアス回路は、第2の電源と第1の信号線との間に接続された第1の電流源と、第1の電流源に直接接続され、第1の電流源によって生成された電流を駆動する基準電圧を出力する、第1の高精度電圧基準と、第2の信号線及び電流シンクに接続され、第2の電源によって供給される電圧により駆動される、第2の電流源とを含む。
例示的な実施形態
[54]例1は、差動通信システムの送信機を含み、第1の電源に接続された差動信号ドライバと、第1の信号線及び第2の信号線を含む差動線(differential line)と、第2の電源に接続されたフェイルセーフバイアス回路とを備え、フェイルセーフバイアス回路は、第2の電源と第1の信号線との間に接続された第1の電流源と、第1の電流源に直接接続され、第1の電流源によって生成された電流を駆動する基準電圧を出力する、第1の高精度電圧基準と、第2の信号線及び電流シンクに接続され、第2の電源によって供給される電圧により駆動される、第2の電流源とを含む。
[55]例2は、例1の差動通信システムを含み、フェイルセーフバイアス回路は、第2の電源と第1の信号線との間に接続され、第1の電流源と並列に第2の電源及び第1の信号線に接続される、第3の電流源と、第3の電流源に直接接続され、第3の電流源によって生成される電流を駆動する基準電圧を出力する、第2の高精度電圧基準と、第2の信号線及びシステムグランドに接続され、第2の電源によって供給される電圧によって駆動され、第2の電流源と並列に第2の電源及び第2の信号線に接続された、第4の電流源とをさらに含む。
[56]例3は、例1〜2のいずれかの差動通信システムを含み、第1の電流源及び第2の電流源は、それぞれ、電界効果トランジスタ、機械式スイッチ、機械式リレー、及び抵抗ネットワークからなる群から選択される。
[57]例4は、例1〜3の差動通信システムを含み、第1の高精度電圧基準は、ツェナーダイオード及び抵抗分割回路からなる群から選択される。
[58]例5は、例1〜4のいずれかの差動通信システムを含み、システムは、第1の電源及び第2の電源のうちの一方のみが一度に電源投入されるように構成される。
[59]例6は、バイアス回路を含み、当該回路は、第1の信号線及び第2の信号線を含む差動通信線と、電源と第1の信号線との間に接続された第1の電流源と、第1の電流源に接続され、第1の電流源によって生成される電流を駆動する基準電圧を出力する、第1の高精度電圧基準と、第2の信号線及びシステムグランドに接続された第2の電流源とを備える。
[60]例7は、例6のバイアス回路を含み、電源と第1の信号線との間に接続され、第1の電流源と並列に電源及び第1の信号線に接続された、第3の電流源と、第3の電流源に接続され、第3の電流源によって生成される電流を駆動する基準電圧を出力する、第2の高精度電圧基準と、第2の信号線及びシステムグランドに接続された第4の電流源とをさらに備え、第2の電流源及び第4の電流源は、電源によって供給される電圧によって駆動される。
[61]例8は、例7のバイアス回路を含み、第1の電流源、第2の電流源、第3の電流源及び第4の電流源は、それぞれ、電界効果トランジスタ、機械式スイッチ、機械式リレー及び抵抗ネットワークからなる群から選択される。
[62]例9は、例7のバイアス回路を含み、第1の高精度電圧基準及び第2の高精度電圧基準は、それぞれ、ツェナーダイオードを含む。
[63]例10は、例6〜9のいずれかのバイアス回路を含み、当該バイアス回路は、差動通信システムの送信機において実施される。
[64]例11は、例6〜10のいずれかのバイアス回路を含み、当該バイアス回路は、差動通信システムの受信機において実施される。
[65]例12は、例6〜11のいずれかのバイアス回路を含み、当該バイアス回路は、交差ストラップ差動通信システムの一次側及び冗長側の両方において実施される。
[66]例13は、例6〜12のいずれかのバイアス回路を含み、当該バイアス回路は、単一ストリームの差動通信システムにおいて実施される。
[67]例14は、例6〜13のバイアス回路を含み、第1の電流源及び第2の電流源を有効又は無効にする論理レベル信号を提供するように構成されたコントローラをさらに備え、第2の電流源はコントローラによって供給される電圧により駆動される。
[68]例15は、差動通信システムのためのフェイルセーフバイアスを提供する方法を含み、当該方法は、第1の電源によって電力供給される第1の電流源を使用して、第1の信号線にバイアス電流及びバイアス電圧を印加するステップと、第2の電流源を使用して、電流シンクに第2の信号線を接続するステップとを含み、第1の信号線と第2の信号線との間のバイアス電流のための電気経路は、少なくとも1つのケーブルによって第1の信号線及び第2の信号線に接続された電気デバイスによって完成される。
[69]例16は、例15の方法を含み、バイアス電流及びバイアス電圧を印加するステップは、第1の電流源を有効にするためにコントローラによって第1の論理レベル信号を提供するステップをさらに含み、電流シンクに第2の信号線を接続するステップは、第2の電流源を有効にするためにコントローラによって第2の論理レベル信号を提供することをさらに含む。
[70]例17は、例15〜16のいずれかの方法を含みバイアス電流及びバイアス電圧を第1の信号線に印加するステップは、第1の電源によって電力供給される第3の電流源を使用するステップをさらに含み、電流シンクに第2の信号線を接続するステップは、第4の電流源を使用するステップをさらに含み、第2の電流源及び第4の電流源は第1の電源によって電力供給される。
[71]例18は、例17の方法を含み、第1の電流源及び第3の電流源の両方がバイアス電流及びバイアス電圧の一部を第1の信号線に提供するように構成されるように、第1の電流源及び第3の電流源を並列に接続するステップと、第2の電流源及び第4の電流源の両方が第2の信号線からの電流及び電圧の一部を受け取るように構成されるように、第2の電流源及び第4の電流源を並列に接続するステップとをさらに含む。
[72]例19は、例15〜18のいずれかの方法を含み、高精度電圧基準を用いて第1の電流源を駆動することによってバイアス電流を調整するステップをさらに含み、高精度電圧基準は第1の電源によって電力供給される。
[73]例20は、例15〜19のいずれかの方法を含み、差動信号ドライバが、第1の信号線及び第2の信号線に接続され、第1の信号線及び第2の信号線にわたる差動信号を送るように構成され、差動信号ドライバは第2の電源に接続され、第2の電源は第1の電源が活性化されるときはいつでも非活性化される。
[74]様々な代替的な実施形態において、(例えば、バイアス回路コントローラなどの)本開示全体にわたって説明されるシステム要素、方法ステップ又は例は、1つ又は複数のコンピュータシステム、フィールドプログラマブルゲートアレイ(FPGA)、又は、それらの要素、工程又は例を実現するための、非一時的なデータストレージハードウェアデバイスに格納される、プロセッサ実行コードを含む同様のデバイス上で実施することができる。したがって、本開示の他の実施形態は、コンピュータシステムによって実施されると、当該コンピュータシステムが本明細書に記載の実施形態を実施することを可能にする、コンピュータ読み取り可能な媒体上に存在するプログラム命令を含む要素を含むことができる。本明細書で使用されるとき、「コンピュータ読み取り可能な媒体」という語は、非一時的な物理的形態を有する有形のメモリストレージデバイスを指す。このような非一時的な物理的形態は、パンチカード、磁気ディスク又はテープ、任意の光学データストレージシステム、フラッシュ読み出し専用メモリ(ROM)、不揮発性ROM、プログラマブルROM(PROM)、消去可能プログラマブルROM(E−PROM)、ランダムアクセスメモリ(RAM)、又は、物理的な有形の形態を有する、任意の他の形式の永久的、半永久的もしくは一時的なメモリストレージシステムもしくはデバイスなどであるがこれらに限定されない、コンピュータメモリデバイスを含んでもよい。プログラム命令は、コンピュータシステムのプロセッサによって実行されるコンピュータ実行可能命令、及び超高速集積回路(VHSIC)ハードウェア記述言語(VHDL)などのハードウェア記述言語を含みが、これらに限定されるものではない。
[75]特定の実施形態を例示して説明したが、同じ目的を達成するためになされる任意の構成を示された特定の実施形態の代わりに用いてもよいことが当業者により理解されよう。本願は、本発明のいかなる改変及び変更をも包含するよう意図される。したがって、本発明が特許請求の範囲及びその均等物によってのみ限定されることが明白に意図される。
Claims (3)
- バイアス回路(105、205、305、405)であって、
第1の信号線(122)及び第2の信号線(124)を含む差動通信線と、
電源(126)と前記第1の信号線(122)との間に接続された第1の電流源(106、306、406)と、
前記第1の電流源(106、306、406)に接続された第1の高精度電圧基準(110、314、414)であって、前記第1の電流源(106、306、406)によって生成される電流を駆動する基準電圧を出力する、第1の高精度電圧基準(110、314、414)と、
前記第2の信号線(124)及びシステムグランドに接続された第2の電流源(108、310、410)と
を備えるバイアス回路(105、205、305、405)。 - 前記電源(126)と前記第1の信号線(122)との間に接続された第3の電流源(206、308、408)であって、前記第1の電流源(106、306、406)と並列に、前記電源(126)及び前記第1の信号線(122)に接続される、第3の電流源(206、308、408)と、
前記第3の電流源(206、308、408)に接続された第2の高精度電圧基準(110、314、414)であって、前記第3の電流源(206、308、408)によって生成される電流を駆動する基準電圧を出力する、第2の高精度電圧基準(110、314、414)と、
前記第2の信号線(124)及びシステムグランドに接続された第4の電流源(208、312、412)であって、前記第2の電流源(108、310、410)及び前記第4の電流源(208、312、412)は前記電源(126)によって供給される電圧によって駆動される、第4の電流源(208、312、412)と
をさらに備える、請求項1に記載のバイアス回路(205、305、405)。 - 差分通信システムのためのフェイルセーフバイアスを提供する方法であって、
第1の電源(126)によって電力供給される第1の電流源(106、306、406)を使用して、バイアス電流及びバイアス電圧を第1の信号線(122)に印加するステップ(502)と、
第2の電流源(108、310、410)を使用して、第2の信号線(124)を電流シンクに接続するステップ(504)と
を含み、
前記第1の信号線(122)と前記第2の信号線(124)との間のバイアス電流のための電気経路は、少なくとも1つのケーブル(506)によって前記第1の信号線(122)及び前記第2の信号線(124)に接続された電気デバイスによって完成される、方法。
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US14/673,542 | 2015-03-30 | ||
US14/673,542 US9525418B2 (en) | 2015-03-30 | 2015-03-30 | Dynamic fail-safe biasing circuitry for fault-tolerant applications |
Publications (1)
Publication Number | Publication Date |
---|---|
JP2016192763A true JP2016192763A (ja) | 2016-11-10 |
Family
ID=55442629
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2016009616A Pending JP2016192763A (ja) | 2015-03-30 | 2016-01-21 | 耐故障性用途のための動的フェイルセーフバイアス回路 |
Country Status (3)
Country | Link |
---|---|
US (1) | US9525418B2 (ja) |
EP (1) | EP3076623A1 (ja) |
JP (1) | JP2016192763A (ja) |
Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US6188271B1 (en) * | 1998-07-13 | 2001-02-13 | Minhui Wang | Fail safe bias system for a tri-state bus |
JP2010518749A (ja) * | 2007-02-12 | 2010-05-27 | ラムバス・インコーポレーテッド | 高速低電力差動受信機RobertE.PalmerJohnW.Poulton |
US20120154028A1 (en) * | 2010-12-15 | 2012-06-21 | Electronics Telecommunications Research Institute | Bias circuit and analog integrated circuit comprising the same |
Family Cites Families (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US3582718A (en) * | 1969-04-18 | 1971-06-01 | Cutler Hammer Inc | Circuit for improving relay performance with current limiting |
JPH0611143B2 (ja) * | 1986-08-29 | 1994-02-09 | シャープ株式会社 | 通信インタフエ−ス回路 |
US6124727A (en) * | 1997-07-11 | 2000-09-26 | Adaptec, Inc. | Bias compensator for differential transmission line with voltage bias |
US6320406B1 (en) | 1999-10-04 | 2001-11-20 | Texas Instruments Incorporated | Methods and apparatus for a terminated fail-safe circuit |
US6525559B1 (en) | 2002-04-22 | 2003-02-25 | Pericom Semiconductor Corp. | Fail-safe circuit with low input impedance using active-transistor differential-line terminators |
US7245154B1 (en) | 2005-03-03 | 2007-07-17 | Lattice Semiconductor Corporation | Differential input receiver with programmable failsafe |
US7474133B1 (en) | 2006-12-05 | 2009-01-06 | National Semiconductor Corporation | Apparatus and method for high-speed serial communications |
US7477077B1 (en) | 2006-12-05 | 2009-01-13 | National Semiconductor Corporation | Apparatus and method for loss of signal detection in a receiver |
-
2015
- 2015-03-30 US US14/673,542 patent/US9525418B2/en active Active
-
2016
- 2016-01-21 JP JP2016009616A patent/JP2016192763A/ja active Pending
- 2016-01-26 EP EP16152848.4A patent/EP3076623A1/en not_active Withdrawn
Patent Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US6188271B1 (en) * | 1998-07-13 | 2001-02-13 | Minhui Wang | Fail safe bias system for a tri-state bus |
JP2010518749A (ja) * | 2007-02-12 | 2010-05-27 | ラムバス・インコーポレーテッド | 高速低電力差動受信機RobertE.PalmerJohnW.Poulton |
US20120154028A1 (en) * | 2010-12-15 | 2012-06-21 | Electronics Telecommunications Research Institute | Bias circuit and analog integrated circuit comprising the same |
Non-Patent Citations (1)
Title |
---|
"IMPLEMENTATION AND APPLICATIONS OF CURRENT SOURCES AND CURRENT RECEIVERS", APPLICATION BULLETIN 1989, JPN7019003072, March 1990 (1990-03-01), US, pages 1 - 30, ISSN: 0004258224 * |
Also Published As
Publication number | Publication date |
---|---|
US20160294389A1 (en) | 2016-10-06 |
EP3076623A1 (en) | 2016-10-05 |
US9525418B2 (en) | 2016-12-20 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
WO2017169057A1 (ja) | センサ装置 | |
EP2239645A1 (en) | Band gap reference circuit and method for operating a band gap reference circuit | |
US20150280712A1 (en) | Data output circuit of semiconductor apparatus | |
JP2008072168A (ja) | ワンワイヤ通信のモニタ回路 | |
US10224925B2 (en) | Communication node | |
JP2016192763A (ja) | 耐故障性用途のための動的フェイルセーフバイアス回路 | |
US9280162B2 (en) | Method and apparatus for minimizing within-die variations in performance parameters of a processor | |
US9356581B2 (en) | Data output circuit of a semiconductor apparatus | |
US20230208371A1 (en) | Post driver having voltage protection | |
CN114094436B (zh) | 用于对驱动电流进行处理的驱动装置及方法 | |
KR20120076400A (ko) | 전압 모드 드라이버, 전압 모드 드라이버를 이용한 비교 회로 및 그 동작 방법 | |
CN104283548A (zh) | 具有隔离反馈的单向输出级 | |
CN118176667A (zh) | 具有常导通晶体管的电源开关 | |
JP2014020796A (ja) | 電圧異常検出回路 | |
JP6952493B2 (ja) | 通信システムおよび中継装置 | |
US10649871B2 (en) | Device with low-ohmic circuit path | |
US9379725B2 (en) | Digital to analog converter | |
US9507361B2 (en) | Initialization signal generation circuits and semiconductor devices including the same | |
CN111367341B (zh) | 一种参考电压产生电路和nand芯片 | |
US20240080026A1 (en) | Semiconductor device | |
US20230004180A1 (en) | Over voltage detection and protection | |
JPS584505B2 (ja) | 論理信号伝送装置 | |
JP2009097754A (ja) | 空気調和機の通信制御装置 | |
US9742379B2 (en) | Voltage clamp | |
US8653859B2 (en) | Electronic comparison circuit |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20190115 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20190925 |
|
A02 | Decision of refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A02 Effective date: 20200428 |