JP2016181651A - 熱処理装置 - Google Patents

熱処理装置 Download PDF

Info

Publication number
JP2016181651A
JP2016181651A JP2015062284A JP2015062284A JP2016181651A JP 2016181651 A JP2016181651 A JP 2016181651A JP 2015062284 A JP2015062284 A JP 2015062284A JP 2015062284 A JP2015062284 A JP 2015062284A JP 2016181651 A JP2016181651 A JP 2016181651A
Authority
JP
Japan
Prior art keywords
heat treatment
substrate
semiconductor wafer
treatment apparatus
susceptor
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2015062284A
Other languages
English (en)
Other versions
JP6502713B2 (ja
Inventor
英昭 谷村
Hideaki TANIMURA
英昭 谷村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Screen Holdings Co Ltd
Original Assignee
Screen Holdings Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Screen Holdings Co Ltd filed Critical Screen Holdings Co Ltd
Priority to JP2015062284A priority Critical patent/JP6502713B2/ja
Publication of JP2016181651A publication Critical patent/JP2016181651A/ja
Application granted granted Critical
Publication of JP6502713B2 publication Critical patent/JP6502713B2/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Container, Conveyance, Adherence, Positioning, Of Wafer (AREA)

Abstract

【課題】光の照射による加熱時に基板の面内温度分布の均一化が図られ得る熱処理装置を提供する。
【解決手段】基板に光を照射することによって該基板を加熱する熱処理装置が、チャンバー、サセプター、加熱部、および反射部材を備えている。ここで、チャンバーは、基板を収容する。サセプターは、チャンバー内において基板が載置されて該基板を保持する。加熱部は、サセプターに保持された基板を光の照射によって加熱する。反射部材は、サセプター上に配置され、加熱部から発せられる光を反射させて基板の周縁部に照射する反射部を有する。
【選択図】図1

Description

本発明は、円板形状の半導体ウェハー等の薄板状精密電子基板(以下、単に「基板」と称する)に対してフラッシュ光を照射することによって該基板を加熱する熱処理装置に関する。
半導体デバイスの製造プロセスにおいて、不純物導入は半導体ウェハー内にpn接合を形成するための必須の工程である。現在、不純物導入は、イオン打ち込み法とその後のアニール法によってなされるのが一般的である。イオン打ち込み法は、ボロン(B)、ヒ素(As)、リン(P)と言った不純物の元素をイオン化させて高加速電圧で半導体ウェハーに衝突させて物理的に不純物注入を行う技術である。注入された不純物はアニール処理によって活性化される。この際に、アニール時間が数秒程度以上であると、打ち込まれた不純物が熱によって深く拡散し、その結果接合深さが要求よりも深くなり過ぎて良好なデバイス形成に支障が生じるおそれがある。
そこで、極めて短時間で半導体ウェハーを加熱するアニール技術として、近年フラッシュランプアニール(FLA)が注目されている。フラッシュランプアニールは、キセノンフラッシュランプ(以下、単に「フラッシュランプ」とするときにはキセノンフラッシュランプを意味する)を使用して半導体ウェハーの表面にフラッシュ光を照射することにより、不純物が注入された半導体ウェハーの表面のみを極めて短時間(数ミリ秒以下)に昇温させる熱処理技術である。
キセノンフラッシュランプの放射分光分布は紫外域から近赤外域であり、従来のハロゲンランプよりも波長が短く、シリコンの半導体ウェハーの基礎吸収帯とほぼ一致している。よって、キセノンフラッシュランプから半導体ウェハーにフラッシュ光を照射したときには、透過光が少なく半導体ウェハーを急速に昇温することが可能である。また、数ミリ秒以下の極めて短時間のフラッシュ光照射であれば、半導体ウェハーの表面近傍のみを選択的に昇温できることも判明している。このため、キセノンフラッシュランプによる極短時間の昇温であれば、不純物を深く拡散させることなく、不純物活性化のみを実行させることができる。
このようなキセノンフラッシュランプを使用した熱処理装置として、特許文献1,2には、凹部を有する石英のサセプターに保持した半導体ウェハーの表面にフラッシュランプからフラッシュ光を照射して加熱するものが開示されている。しかし、特許文献1,2に開示される装置においては、サセプターの載置面に半導体ウェハーの裏面が直接接触するように半導体ウェハーが保持されているため、フラッシュ光照射前に予備加熱を行うときにウェハー面内の温度分布が不均一になりやすい。このようなウェハー面内の温度分布の不均一化により、ウェハー面内にホットスポットおよびコールドスポットが点在し、半導体デバイスの特性の劣化および製造の歩留まりの低下等が生じることが懸念される。
これに対して、特許文献3,4には、平板状のサセプターの上面に複数のバンプ(支持ピン)を形成し、それらバンプによって点接触で支持した半導体ウェハーの表面にフラッシュ光を照射する技術が開示されている。このようにすれば、半導体ウェハーの裏面がサセプターの上面と直接には接触しないため、予備加熱段階において半導体ウェハーの面内温度分布が不均一となるのを抑制することができる。
特開2004−179510号公報 特開2004−247339号公報 特開2009−164451号公報 特開2014−120497号公報
ところで、フラッシュランプを使用した熱処理装置においては、例えば、下方からのハロゲンランプ等による光照射によって半導体ウェハーの予備加熱が行われると、熱が逃げやすい半導体ウェハーの周縁部において温度低下が生じやすい。
この問題に対して、特許文献4には、複数本の棒状のハロゲンランプの配設密度が半導体ウェハーの中央部に対向する領域よりも周縁部に対向する領域において高められることで、半導体ウェハーの周縁部により多い光量の光照射を行うことが開示されている。
しかしながら、棒状のハロゲンランプの配設密度の調整のみによって、予備加熱時における半導体ウェハーの周縁部での温度低下を抑制しつつ、半導体ウェハーの面内温度分布の均一化を図ることは容易でない。
上記問題は、フラッシュランプを使用した熱処理装置に限られず、例えば、ハロゲンランプを用いたRTP(Rapid Thermal Process)装置等を含む、光の照射によって基板を加熱する熱処理装置一般に共通する。
本発明は、上記課題に鑑みてなされたものであり、光の照射による加熱時に基板の面内温度分布の均一化が図られ得る熱処理装置を提供することを目的とする。
上記課題を解決するために、第1の態様に係る熱処理装置は、基板に光を照射することによって該基板を加熱する熱処理装置であって、前記基板を収容するチャンバーと、前記チャンバー内において前記基板が載置されて該基板を保持するサセプターと、前記サセプターに保持された前記基板を光の照射によって加熱する加熱部と、前記サセプター上に配置され、前記加熱部から発せられる光を反射させて前記基板の周縁部に照射する反射部を有する反射部材と、を備える。
第2の態様に係る熱処理装置は、第1の態様に係る熱処理装置において、前記サセプターに保持された前記基板をフラッシュ光の照射によって加熱するフラッシュ加熱部、をさらに備え、前記基板が、円板形状を有し、前記サセプターが、前記基板が載置される載置面を有するプレートと、前記プレート上のうちの前記基板の径よりも大きな内径を有する円環状の領域において連続的または断続的に突起しているガイド部と、前記プレート上のうちの前記円環状の領域よりも内側の領域上に立設され、前記基板を点接触によって支持する複数の支持ピンと、を有し、前記反射部材が、前記ガイド部上に配置されている。
第3の態様に係る熱処理装置は、第2の態様に係る熱処理装置において、前記ガイド部が、前記円環状の領域における周方向に沿って円環状に形成されており、前記ガイド部の内周面は、前記プレートから上方に向けて広くなるテーパ面とされ、前記反射部が、前記周方向に沿って円環状に配置されている。
第4の態様に係る熱処理装置は、第1の態様に係る熱処理装置において、前記サセプターに保持された前記基板をフラッシュ光の照射によって加熱するフラッシュ加熱部、をさらに備え、前記基板が、円板形状を有し、前記サセプターが、前記基板が載置される載置面を有するプレートと、前記プレート上に立設され、前記基板を点接触によって支持する複数の支持ピンと、を有し、前記反射部材が、前記プレート上のうちの前記基板の径よりも大きな内径を有する円環状の領域において連続的または断続的に配置されており、前記複数の支持ピンが、前記プレート上のうちの前記円環状の領域よりも内側の領域上に立設されている。
第5の態様に係る熱処理装置は、第4の態様に係る熱処理装置において、前記反射部材が、前記円環状の領域の内側に位置する円形領域の中心を通り且つ前記プレートに対して垂直な方向に伸びる仮想線に対向する傾斜面を有し、前記傾斜面が、前記プレートから上方に向けて前記仮想線から遠ざかる傾斜面とされている。
第6の態様に係る熱処理装置は、第5の態様に係る熱処理装置において、前記反射部材が、前記円環状の領域における周方向に沿って円環状に形成されており、前記反射部材の内周面は、前記プレートから上方に向けて広くなるテーパ面とされ、前記反射部が、前記周方向に沿って円環状に配置されている。
第7の態様に係る熱処理装置は、第1から第6の何れか1つの態様に係る熱処理装置において、前記反射部が、凹面状の表面を有している。
第1から第7の何れの態様に係る熱処理装置によっても、加熱部から発せられる光を反射して基板の周縁部に照射する反射部材がサセプター上に配置されていることで、基板の周縁部に近接するように反射部材が配置され、加熱時における基板の周縁部での温度低下が良好に抑制され得る。その結果、光の照射による加熱時に基板の面内温度分布の均一化が図られ得る。
特に、第2および第3の何れの態様に係る熱処理装置によっても、サセプターが、基板が載置されるプレートと、該プレート上において円環状に連続的または断続的に突起しているガイド部と、基板を支持するためにプレート上に立設されている複数の支持ピンとを有しており、反射部材がガイド部上に配置されることで、反射部材が基板の周縁部に近接するように容易に配置され得る。
特に、第3の態様に係る熱処理装置によれば、反射部が円環状に設けられることで、フラッシュ光の照射前における予備加熱時に基板の面内温度分布の均一化がさらに図られ得る。
特に、第4から第6の何れの態様に係る熱処理装置によっても、サセプターが、円板形状を有する基板が載置されるプレートと、基板を支持するためにプレート上に立設されている複数の支持ピンとを有しており、プレート上において円環状に連続的または断続的に反射部材が配置されていることで、反射部材が基板の周縁部に近接するように容易に配置され得る。
特に、第5および第6の何れの態様に係る熱処理装置によっても、反射部材が、上方に向けて、プレートに対して垂直な方向に伸びる仮想的な中心線から遠ざかる傾斜面を有していることで、フラッシュ光の照射時にサセプターから跳躍した基板が落下したときの衝撃を緩和するとともに、落下後の該基板の位置を修正する機能を併せ持つことで、反射部材が基板の周縁部に近接するように空間的に効率良く配置され得る。
特に、第6の態様に係る熱処理装置によれば、反射部が円環状に設けられることで、フラッシュ光の照射前の予備加熱時に基板の面内温度分布の均一化がさらに図られ得る。
特に、第7の態様に係る熱処理装置によれば、反射部が凹面状の表面を有していることで、加熱部から発せられる光を基板の周縁部に集光させることが可能となるため、光の照射による加熱時に基板の周縁部での温度低下が効率良く抑制され得る。
一実施形態に係る熱処理装置の構成を示す縦断面図である。 保持部の全体外観を示す斜視図である。 保持部のサセプターを上面から見た平面図である。 保持部の断面を模式的に示す断面図である。 ガイドリングの設置部分を拡大した図である。 反射部材の設置態様を側方から見た断面図である。 反射部材を上面から見た平面図である。 反射部材による光の反射態様を模式的に示す図である。 移載機構の平面図である。 移載機構の側面図である。 複数のハロゲンランプの配置を示す平面図である。 半導体ウェハーがサセプターに保持された状態を示す図である。 半導体ウェハーがサセプターから跳躍した状態を示す図である。 半導体ウェハーが落下して傾斜面に衝突した状態を示す図である。 落下後に半導体ウェハーが複数の支持ピンに支持された状態を示す図である。 第1変形例に係る反射部材の設置態様を側方から見た断面図である。 第1変形例に係る反射部材を上面から見た平面図である。 第1変形例に係る反射部による光の反射態様を模式的に示す図である。 第2変形例に係る反射部材の設置態様を側方から見た断面図である。 第2変形例に係る反射部による光の反射態様を模式的に示す図である。 その他の変形例に係る反射部材を上面から見た平面図である。
以下、本発明の一実施形態および各種変形例を図面に基づいて説明する。なお、図面においては同様な構成および機能を有する部分については同じ符号が付されており、下記説明では重複説明が省略される。
図1は、一実施形態に係る熱処理装置1の構成を示す縦断面図である。熱処理装置1は、基板としての半導体ウェハーWに対してフラッシュ光の照射を行うことによって該半導体ウェハーWを加熱する装置(フラッシュランプアニール装置とも言う)である。ここで、処理対象となる半導体ウェハーWは、一般に円板形状を有する。該半導体ウェハーWのサイズとしては、特に限定されるものではないが、例えば、φ300mmあるいはφ450mmのものが採用され得る。そして、熱処理装置1に搬入される上記半導体ウェハーWには不純物が注入されており、熱処理装置1による加熱処理によって注入された不純物の活性化処理が実行される。なお、図1およびそれ以降の各図においては、理解が容易となるように、必要に応じて各部の寸法や数が誇張または簡略化されて描かれている。
熱処理装置1は、半導体ウェハーWを収容するチャンバー6と、複数のフラッシュランプFLを内蔵するフラッシュ加熱部5と、複数のハロゲンランプHLを内蔵する予備加熱部としてのハロゲン加熱部4と、を備える。具体的には、チャンバー6の上側にフラッシュ加熱部5が設けられるとともに、チャンバー6の下側にハロゲン加熱部4が設けられている。また、熱処理装置1は、チャンバー6の内部に、保持部7と、反射部材9と、移載機構10と、を備える。保持部7は、半導体ウェハーWを水平姿勢で保持する部分である。反射部材9は、ハロゲン加熱部4から発せられる光を反射させて半導体ウェハーWの周縁部WE(図6および図8参照)に照射する部材である。移載機構10は、保持部7と装置外部との間で半導体ウェハーWの受け渡しを行う機構である。さらに、熱処理装置1は、ハロゲン加熱部4、フラッシュ加熱部5およびチャンバー6に設けられた各動作機構を制御して半導体ウェハーWの熱処理を実行させる制御部3を備える。
チャンバー6は、筒状のチャンバー側部61の上下の部分に石英製のチャンバー窓が装着されて構成されている。チャンバー側部61は、上下が開口された概略筒形状を有しており、該チャンバー側部61の上側開口が上側チャンバー窓63の装着によって閉塞され、該チャンバー側部61の下側開口が下側チャンバー窓64の装着によって閉塞されている。チャンバー6の天井部を構成する上側チャンバー窓63は、石英によって形成された円板形状の部材であり、フラッシュ加熱部5から出射されたフラッシュ光をチャンバー6内に透過させる石英窓として機能する。また、チャンバー6の床部を構成する下側チャンバー窓64も、石英によって形成された円板形状の部材であり、ハロゲン加熱部4からの光をチャンバー6内に透過させる石英窓として機能する。
また、チャンバー側部61の内側の壁面の上部には反射リング68が装着され、チャンバー側部61の内側の壁面の下部には反射リング69が装着されている。反射リング68,69は、ともに円環状に形成されている。上側の反射リング68は、チャンバー側部61に対して上側から嵌め込まれることによって装着される。一方、下側の反射リング69は、チャンバー側部61に対して下側から嵌め込まれて図示省略のビスで留められることによって装着される。すなわち、反射リング68,69は、ともに着脱自在にチャンバー側部61に装着されるものである。チャンバー6の内側空間、すなわち上側チャンバー窓63、下側チャンバー窓64、チャンバー側部61および反射リング68,69によって囲まれる空間が熱処理空間65として規定される。
ここでは、チャンバー側部61に反射リング68,69が装着されることによって、チャンバー6の内壁面に凹部62が形成される。すなわち、チャンバー側部61の内壁面のうちの反射リング68,69が装着されていない中央部分と、反射リング68の下端面と、反射リング69の上端面とで囲まれた凹部62が形成される。凹部62は、チャンバー6の内壁面に水平方向に沿って円環状に形成され、半導体ウェハーWを保持する保持部7を囲繞する。
チャンバー側部61および反射リング68,69は、強度と耐熱性に優れた金属材料(例えば、ステンレススチール)によって形成されている。また、反射リング68,69の内周面は電解ニッケルメッキによって鏡面とされている。
また、チャンバー側部61には、チャンバー6に対して半導体ウェハーWの搬入および搬出を行うための搬送開口部(炉口)66が形設されている。搬送開口部66は、ゲートバルブ185によって開閉可能とされている。搬送開口部66は凹部62の外周面に連通接続されている。このため、ゲートバルブ185が搬送開口部66を開放しているときには、搬送開口部66から凹部62を介した熱処理空間65への半導体ウェハーWの搬入および熱処理空間65からの凹部62を介した半導体ウェハーWの搬出を行うことができる。また、ゲートバルブ185が搬送開口部66を閉鎖するとチャンバー6内の熱処理空間65が密閉空間とされる。
また、チャンバー6の内壁上部には熱処理空間65に処理ガス(本実施形態では窒素ガス(N))を供給するガス供給孔81が形設されている。ガス供給孔81は、凹部62よりも上側の位置に形設されており、反射リング68に設けられていても良い。ガス供給孔81はチャンバー6の側壁内部に円環状に形成された緩衝空間82を介してガス供給管83に連通接続されている。ガス供給管83はガス供給源85に接続されている。また、ガス供給管83の経路の途中にはバルブ84が介挿されている。バルブ84が開放されると、ガス供給源85から緩衝空間82に窒素ガスが送給される。緩衝空間82に流入した窒素ガスは、ガス供給孔81よりも流体抵抗の小さい緩衝空間82内を拡がるように流れてガス供給孔81から熱処理空間65内へと供給される。なお、処理ガスは窒素ガスに限定されるものではなく、アルゴン(Ar)およびヘリウム(He)等の不活性ガス、または、酸素(O)、水素(H)、塩素(Cl)、塩化水素(HCl)、オゾン(O)、アンモニア(NH)等の反応性ガスであっても良い。
一方、チャンバー6の内壁下部には熱処理空間65内の気体を排気するガス排気孔86が形設されている。ガス排気孔86は、凹部62よりも下側の位置に形設されており、反射リング69に設けられていても良い。ガス排気孔86はチャンバー6の側壁内部に円環状に形成された緩衝空間87を介してガス排気管88に連通接続されている。ガス排気管88は排気部190に接続されている。また、ガス排気管88の経路の途中にはバルブ89が介挿されている。バルブ89が開放されると、熱処理空間65の気体がガス排気孔86から緩衝空間87を経てガス排気管88へと排出される。なお、ガス供給孔81およびガス排気孔86は、チャンバー6の周方向に沿って複数設けられていても良いし、スリット状のものであっても良い。また、ガス供給源85および排気部190は、熱処理装置1に設けられた機構であっても良いし、熱処理装置1が設置される工場のユーティリティであっても良い。
また、搬送開口部66の先端にも熱処理空間65内の気体を排出するガス排気管191が接続されている。ガス排気管191はバルブ192を介して排気部190に接続されている。バルブ192を開放することによって、搬送開口部66を介してチャンバー6内の気体が排気される。
図2は、保持部7の全体外観を示す斜視図である。また、図3は、保持部7のサセプター74を上面から見た平面図であり、図4は、水平面に垂直な面に沿った保持部7の断面を模式的に示す断面図である。保持部7は、基台リング71、連結部72およびサセプター74を備えて構成される。基台リング71、連結部72およびサセプター74はいずれも石英によって形成されている。すなわち、保持部7の全体が石英によって形成されている。
基台リング71は、円環形状の石英製の部材である。基台リング71は、凹部62の底面に載置されることによって、チャンバー6の壁面に支持される(図1参照)。円環形状を有する基台リング71の上面に、その周方向に沿って複数の連結部72(本実施形態では4個)が立設される。連結部72も石英の部材であり、溶接によって基台リング71に固着される。なお、基台リング71の形状は、例えば、円環形状から一部が欠落した円弧状であっても良い。
サセプター74は、チャンバー6内において該サセプター74上に載置された半導体ウェハーWを保持する。該サセプター74は、基台リング71に設けられた4個の連結部72によって支持される。サセプター74は、プレートとしての保持プレート75、ガイド部としてのガイドリング76および複数の支持ピン77を備える。保持プレート75は、石英によって形成された円形の平板状部材である。保持プレート75の直径は半導体ウェハーWの直径よりも大きい。すなわち、保持プレート75は、半導体ウェハーWよりも大きな平面サイズを有する。
保持プレート75の上面の周縁部には、ガイドリング76が設置されている。ガイドリング76は、保持プレート75上のうちの半導体ウェハーWの径よりも大きな内径を有する円環状の領域(円環状領域とも言う)Ar1において、突起している。本実施形態では、ガイドリング76は、保持プレート75上の円環状領域Ar1において、突起しており且つ周方向に沿って連続的に形成されている。換言すれば、ガイドリング76は、円環状領域Ar1における周方向に沿って円環状に形成されている。すなわち、ガイドリング76は、半導体ウェハーWの直径よりも大きな内径を有する円環形状の部材である。
ガイドリング76は、保持プレート75と同様に石英によって形成される。ガイドリング76は、保持プレート75の上面に溶着されても良いし、別途加工によって形成されたピン等によって保持プレート75に固定されても良い。あるいは、ガイドリング76は、単に保持プレート75の上面の周縁部に載置されるだけでも良い。ここで、ガイドリング76が保持プレート75に溶着されると、石英の部材の摺動によるパーティクルの発生が抑制され、ガイドリング76を載置した場合には、溶着による保持プレート75の歪みが防止され得る。
図5は、ガイドリング76の設置部分を拡大した図である。ガイドリング76は、円環状領域Ar1の内側に位置する円形領域Ar2の中心を通り且つ保持プレート75に対して垂直な方向(つまり、鉛直方向)に伸びる仮想的な線(仮想線とも言う)L0に対向する傾斜面76aを有している。該傾斜面76aは、保持プレート75から上方に向けて仮想線L0から遠ざかる傾斜面とされている。本実施形態では、ガイドリング76が円環状に形成されており、ガイドリング76の内周面は、保持プレート75から上方に向けて広くなるテーパ面とされている。そして、保持プレート75の上面のうちの傾斜面76aの先端(下端)よりも内側の領域が半導体ウェハーWを載置する載置面75aとされる。
保持プレート75の載置面75aに対するガイドリング76の傾斜面76aの勾配αは、30°以上で且つ70°以下(本実施形態では、45°)である。これにより、跳躍した半導体ウェハーWが落下して衝突したときの衝撃緩和効果、および半導体ウェハーWが落下して衝突したときの位置修正効果の双方が得られる。また、傾斜面76aの表面平均粗さ(Ra)が、例えば、1.6μm以下とされていれば、落下した半導体ウェハーWの外周端が傾斜面76aに衝突したときに、その外周端が円滑に傾斜面76aに沿って滑り、上記の位置修正効果をより確実に得ることができる。
ガイドリング76の内径(傾斜面76aの先端の径)は、半導体ウェハーWの直径よりも10mm以上で且つ40mm以下大きい。従って、保持プレート75の載置面75aの中央に半導体ウェハーWが保持されたときには、当該半導体ウェハーWの外周端から傾斜面76aの先端までの距離は、5mm以上で且つ20mm以下となる。本実施形態においては、φ300mmの半導体ウェハーWに対してガイドリング76の内径がφ320mmとされている(半導体ウェハーWの外周端から傾斜面76aの先端までの距離は、10mm)。なお、ガイドリング76の外径は、特に限定されるものではないが、例えば、保持プレート75の直径(本実施形態では、φ340mm)と同じであれば良い。
また、保持プレート75の載置面75aには、複数の支持ピン77が立設されている。複数の支持ピン77は、例えば、保持プレート75上のうちに円環状領域Ar1よりも内側の領域に立設され、半導体ウェハーWを点接触によって支持する。本実施形態においては、載置面75aの外周円(ガイドリング76の内周円)と同心円の周上に沿って60°毎に計6本の支持ピン77が立設されている。6本の支持ピン77を配置した円の径(対向する支持ピン77間の距離)は、半導体ウェハーWの径よりも小さく、本実施形態ではφ280mmである。それぞれの支持ピン77は、石英によって形成されている。複数の支持ピン77は、保持プレート75の上面に穿設された凹部に嵌着して立設されれば良い。
基台リング71に立設された4個の連結部72とサセプター74の保持プレート75の下面周縁部とが溶接によって固着される。すなわち、サセプター74と基台リング71とは連結部72によって固定的に連結されている。このような保持部7の基台リング71がチャンバー6の壁面に支持されることによって、保持部7がチャンバー6に装着される。保持部7がチャンバー6に装着された状態においては、サセプター74の保持プレート75は、水平姿勢(法線が鉛直方向と一致する姿勢)となる。チャンバー6に搬入された半導体ウェハーWは、チャンバー6に装着された保持部7のサセプター74の上に水平姿勢にて載置されて保持される。このとき、半導体ウェハーWは、保持プレート75上に立設された複数の支持ピン77によって点接触によって支持されることでサセプター74に保持される。すなわち、半導体ウェハーWは、複数の支持ピン77によって保持プレート75の載置面75aから所定の間隔を隔てて支持される。また、支持ピン77の高さよりもガイドリング76の厚さの方が大きい。従って、支持ピン77によって支持された半導体ウェハーWの水平方向における位置のずれは、ガイドリング76によって防止される。
また、図2および図3に示すように、サセプター74の保持プレート75には、上下に貫通する開口部78が形成されている。開口部78は、サセプター74に保持された半導体ウェハーWの下面から放射される放射光(赤外光)が、放射温度計120によって受光されるように設けられている。すなわち、サセプター74に保持された半導体ウェハーWの裏面から放射された光が、開口部78を介して放射温度計120によって受光され、別置のディテクタによってその半導体ウェハーWの温度が測定される。さらに、サセプター74の保持プレート75には、後述する移載機構10のリフトピン12が半導体ウェハーWの受け渡しのために、貫通する4個の貫通孔79が穿設されている。
図6は、反射部材9の設置態様を側方から見た断面図である。図7は、反射部材9を上面から見た平面図である。図8は、反射部材9による光の反射態様を模式的に示す図である。図8には、ハロゲン加熱部4から発せられる光が進む方向が細線の直線状の矢印P1で描かれている。
図6で示されるように、反射部材9は、サセプター74上に配置されており、反射部材本体部9bと反射部9mとを有している。反射部材本体部9bは、反射部材9の構造の大部分を構成している。本実施形態では、図7で示されるように、反射部材本体部9bが、円環状のガイドリング76上に配置されている。つまり、反射部材9が、サセプター74の周方向に沿って円環状に形成されている。ここでは、反射部材本体部9bが、例えば、ガイドリング76に対して接触あるいは連結されることで、ガイドリング76上に配置され得る。反射部9mは、ハロゲン加熱部4から発せられる光を反射させて半導体ウェハーWの周縁部WEに照射する部分であり、反射部材本体部9bに対して設けられている。本実施形態では、反射部9mが、サセプター74の周方向に沿って円環状に形成されている。このとき、反射部9mが、フラッシュ加熱部5からサセプター74上に配される半導体ウェハーWまで至るフラッシュ光の光路を避けるように、サセプター74上の周縁部近傍に設けられ得る。したがって、反射部材9が半導体ウェハーWの周縁部WEに近接するように容易に配置され得る。
また、反射部材本体部9bは、円環状領域Ar1の内側に位置する円形領域Ar2の中心を通り且つ保持プレート75に対して垂直な方向(つまり、鉛直方向)に伸びる仮想線L0に対向する傾斜面を有している。該傾斜面は、上方から保持プレート75に向けて仮想線L0から遠ざかる傾斜面とされている。そして、該傾斜面に反射部9mが形成されており、反射部9mが、仮想線L0に対向する傾斜面を形成する。ここで、反射部材本体部9bは、例えば、耐熱性と光透過性とを有する素材としての石英によって形成されている。反射部9mは、例えば、光を反射させる素材としての金属等で形成されている。例えば、反射部材本体部9bの少なくとも一面にニッケル等の金属が鏡面を成すように被着されることで、反射部9mが形成され得る。
また、本実施形態では、図8で示されるように、サセプター74上に載置された半導体ウェハーWがハロゲン加熱部4によって加熱される際に、ハロゲン加熱部4から発せられる光の一部が、保持プレート75およびガイドリング76を透過した後に反射部9mで反射されて、半導体ウェハーWの周縁部WEに照射される。これにより、フラッシュ光の照射前の予備的な加熱時における半導体ウェハーWの周縁部WEでの温度低下が良好に抑制され得る。その結果、フラッシュ光の照射前の予備加熱時における半導体ウェハーWの面内温度分布の均一化が図られ得る。すなわち、光の照射による加熱時に半導体ウェハーWの面内温度分布の均一化が図られ得る。
図9は、移載機構10の平面図である。また、図10は、移載機構10の側面図である。移載機構10は、2本の移載アーム11を備える。移載アーム11は、概ね円環状の凹部62に沿うような円弧形状とされている。それぞれの移載アーム11には2本のリフトピン12が立設されている。各移載アーム11は、水平移動機構13によって回動可能とされている。水平移動機構13は、一対の移載アーム11を、保持部7に対して半導体ウェハーWの移載を行う移載動作位置(図9の実線位置)と、保持部7に保持された半導体ウェハーWと平面視で重ならない退避位置(図9の二点鎖線位置)との間で水平移動させる。水平移動機構13としては、個別のモータによって各移載アーム11をそれぞれ回動させるものであっても良いし、リンク機構を用いて1個のモータによって一対の移載アーム11を連動させて回動させるものであっても良い。
また、一対の移載アーム11は、昇降機構14によって水平移動機構13とともに昇降移動される。昇降機構14が一対の移載アーム11を移載動作位置にて上昇させると、計4本のリフトピン12がサセプター74の保持プレート75に穿設された貫通孔79(図2および図3参照)を通過し、リフトピン12の上端が保持プレート75の上面から突き出る。一方、昇降機構14が一対の移載アーム11を移載動作位置にて下降させてリフトピン12を貫通孔79から抜き取り、水平移動機構13が一対の移載アーム11を開くように移動させると各移載アーム11が退避位置に移動する。一対の移載アーム11の退避位置は、保持部7の基台リング71の直上である。基台リング71は凹部62の底面に載置されているため、移載アーム11の退避位置は凹部62の内側となる。なお、移載機構10の駆動部(水平移動機構13および昇降機構14)が設けられている部位の近傍にも図示省略の排気機構が設けられており、移載機構10の駆動部周辺の雰囲気がチャンバー6の外部に排出されるように構成されている。
図1に戻り、チャンバー6の上方に設けられたフラッシュ加熱部5は、筐体51の内側に、複数本(本実施形態では30本)のフラッシュランプFLからなる光源と、その光源の上方を覆うように設けられたリフレクタ52と、を備えて構成される。そして、フラッシュ加熱部5が、サセプター74に保持された半導体ウェハーWに複数のフラッシュランプFLから発せられるフラッシュ光を照射することで、該半導体ウェハーWを加熱する。本実施形態では、フラッシュランプFLとして、キセノンフラッシュランプが採用される。また、フラッシュ加熱部5の筐体51の底部にはランプ光放射窓53が装着されている。フラッシュ加熱部5の床部を構成するランプ光放射窓53は、石英により形成された板状の石英窓である。フラッシュ加熱部5がチャンバー6の上方に設置されることにより、ランプ光放射窓53が上側チャンバー窓63と相対向することとなる。フラッシュランプFLはチャンバー6の上方からランプ光放射窓53および上側チャンバー窓63を介して熱処理空間65にフラッシュ光を照射する。
複数のフラッシュランプFLは、それぞれが長尺の円筒形状を有する棒状のランプであり、それぞれの長手方向が保持部7に保持される半導体ウェハーWの主面に沿って(つまり水平方向に沿って)互いに平行となるように平面状に配列されている。よって、フラッシュランプFLの配列によって形成される平面も水平面である。
キセノンフラッシュランプFLは、その内部にキセノンガスが封入されその両端部にコンデンサーに接続された陽極および陰極が配設された棒状のガラス管(放電管)と、該ガラス管の外周面上に付設されたトリガー電極とを備える。キセノンガスは電気的には絶縁体であることから、コンデンサーに電荷が蓄積されていたとしても通常の状態ではガラス管内に電気は流れない。しかしながら、トリガー電極に高電圧を印加して絶縁を破壊した場合には、コンデンサーに蓄えられた電気がガラス管内に瞬時に流れ、そのときのキセノンの原子あるいは分子の励起によって光が放出される。このようなキセノンフラッシュランプFLにおいては、予めコンデンサーに蓄えられていた静電エネルギーが0.1ミリ秒から100ミリ秒という極めて短い光パルスに変換されることから、ハロゲンランプHLの如き連続点灯の光源に比べて極めて強い光を照射し得るという特徴を有する。
また、リフレクタ52は、複数のフラッシュランプFLの上方にそれら全体を覆うように設けられている。リフレクタ52の基本的な機能は、複数のフラッシュランプFLから出射されたフラッシュ光を熱処理空間65の側に反射するというものである。リフレクタ52は、例えば、アルミニウム合金板によって形成されており、その表面(フラッシュランプFLに臨む側の面)には、ブラスト処理により粗面化加工が施されている。
チャンバー6の下方に設けられたハロゲン加熱部4の内部には複数本(本実施形態では40本)のハロゲンランプHLが内蔵されている。複数のハロゲンランプHLは、チャンバー6の下方から下側チャンバー窓64を介して熱処理空間65への光の照射を行う。該ハロゲン加熱部4は、サセプター74に保持された半導体ウェハーWに対する光の照射によって、半導体ウェハーWを予備的に加熱する機能を有する。図11は、複数のハロゲンランプHLの配置を示す平面図である。本実施形態では、上下2段に各20本ずつのハロゲンランプHLが配設されている。各ハロゲンランプHLは、長尺の円筒形状を有する棒状ランプである。上段、下段ともに20本のハロゲンランプHLは、それぞれの長手方向が保持部7に保持される半導体ウェハーWの主面に沿って(つまり水平方向に沿って)互いに平行となるように配列されている。よって、上段、下段ともにハロゲンランプHLの配列によって形成される平面は水平面である。
また、図11に示すように、上段、下段ともに保持部7に保持される半導体ウェハーWの中央部に対向する領域よりも周縁部WEに対向する領域におけるハロゲンランプHLの配設密度が高くなっている。すなわち、上下段ともに、ランプ配列の中央部よりも周縁部の方がハロゲンランプHLの配設ピッチが短い。このため、ハロゲン加熱部4からの光の照射による加熱時に温度低下が生じやすい半導体ウェハーWの周縁部WEにより多い光量の照射を行うことができる。
また、上段のハロゲンランプHLからなるランプ群と下段のハロゲンランプHLからなるランプ群とが格子状に交差するように配列されている。すなわち、上段の各ハロゲンランプHLの長手方向と下段の各ハロゲンランプHLの長手方向とが直交するように計40本のハロゲンランプHLが配設されている。
ハロゲンランプHLは、ガラス管内部に配設されたフィラメントに通電することでフィラメントを白熱化させて発光させるフィラメント方式の光源である。ガラス管の内部には、窒素やアルゴン等の不活性ガスにハロゲン元素(ヨウ素、臭素等)を微量導入した気体が封入されている。ハロゲン元素を導入することによって、フィラメントの折損を抑制しつつフィラメントの温度を高温に設定することが可能となる。したがって、ハロゲンランプHLは、通常の白熱電球に比べて寿命が長くかつ強い光を連続的に照射できるという特性を有する。また、ハロゲンランプHLは棒状ランプであるため長寿命であり、ハロゲンランプHLを水平方向に沿わせて配置することにより上方の半導体ウェハーWへの放射効率が優れたものとなる。
また、制御部3は、熱処理装置1に設けられた上記の種々の動作機構を制御する。制御部3のハードウェアとしての構成は一般的なコンピュータと同様である。すなわち、制御部3は、各種演算処理を行うCPU、基本プログラムを記憶する読み出し専用のメモリであるROM、各種情報を記憶する読み書き自在のメモリであるRAMおよび制御用ソフトウェアやデータ等を記憶しておく磁気ディスクを備えている。制御部3のCPUが所定の処理プログラムを実行することによって熱処理装置1における処理が進行する。
上記の構成以外にも熱処理装置1は、半導体ウェハーWの熱処理時にハロゲンランプHLおよびフラッシュランプFLから発生する熱エネルギーによるハロゲン加熱部4、フラッシュ加熱部5およびチャンバー6の過剰な温度上昇を防止するため、様々な冷却用の構造を備えている。例えば、チャンバー6の壁体には水冷管(図示省略)が設けられている。また、ハロゲン加熱部4およびフラッシュ加熱部5は、内部に気体流を形成して排熱する空冷構造とされている。また、上側チャンバー窓63とランプ光放射窓53との間隙にも空気が供給され、フラッシュ加熱部5および上側チャンバー窓63を冷却する。
次に、熱処理装置1における半導体ウェハーWの処理手順について説明する。ここで処理対象となる半導体ウェハーWは、イオン注入法により不純物(イオン)が添加された半導体基板である。その不純物の活性化が熱処理装置1によるフラッシュ光照射加熱処理(アニール)により実行される。以下に説明する熱処理装置1の処理手順は、制御部3が熱処理装置1の各動作機構を制御することにより進行する。
まず、給気のためのバルブ84が開放されるとともに、排気用のバルブ89,192が開放されてチャンバー6内に対する給排気が開始される。バルブ84が開放されると、ガス供給孔81から熱処理空間65に窒素ガスが供給される。また、バルブ89が開放されると、ガス排気孔86からチャンバー6内の気体が排気される。これにより、チャンバー6内の熱処理空間65の上部から供給された窒素ガスが下方へと流れ、熱処理空間65の下部から排気される。
また、バルブ192が開放されることによって、搬送開口部66からもチャンバー6内の気体が排気される。さらに、図示省略の排気機構によって移載機構10の駆動部周辺の雰囲気も排気される。なお、熱処理装置1における半導体ウェハーWの熱処理時には窒素ガスが熱処理空間65に継続的に供給されており、その供給量は処理工程に応じて適宜変更される。
続いて、ゲートバルブ185が開いて搬送開口部66が開放され、装置外部の搬送ロボットによって、搬送開口部66を介してイオン注入後の半導体ウェハーWがチャンバー6内の熱処理空間65に搬入される。搬送ロボットによって搬入された半導体ウェハーWは、保持部7の直上位置まで進出して停止する。そして、移載機構10の一対の移載アーム11が退避位置から移載動作位置に水平移動して上昇することにより、リフトピン12が貫通孔79を通ってサセプター74の上面から突き出て半導体ウェハーWを受け取る。このとき、リフトピン12はサセプター74の支持ピン77の上端よりも上方にまで上昇する。
半導体ウェハーWがリフトピン12に載置された後、搬送ロボットが熱処理空間65から退出し、ゲートバルブ185によって搬送開口部66が閉鎖される。そして、一対の移載アーム11が下降することにより、半導体ウェハーWは移載機構10から保持部7のサセプター74に受け渡されて水平姿勢にて下方より保持される。
図12は、半導体ウェハーWがサセプター74に保持された状態を示す図である。なお、図12から図15は、理解容易のためにガイドリング76および支持ピン77の大きさを誇張して描いた模式図である。半導体ウェハーWは、保持プレート75上に立設された複数の支持ピン77によって点接触によって支持されてサセプター74に保持される。半導体ウェハーWは、その中心が保持プレート75の載置面75aの中心軸と一致するように(つまり、載置面75aの中央に)、複数の支持ピン77によって支持される。よって、半導体ウェハーWは、複数の支持ピン77によってガイドリング76内周の傾斜面76aよりも内側において、該傾斜面76aに対して一定間隔を隔てて支持されることとなる。また、半導体ウェハーWは、パターン形成がなされて不純物が注入された表面を上面としてサセプター74に保持される。複数の支持ピン77によって支持された半導体ウェハーWの裏面(表面とは反対側の主面)と保持プレート75の載置面75aとの間には所定の間隔が形成される。サセプター74の下方にまで下降した一対の移載アーム11は水平移動機構13によって退避位置、すなわち凹部62の内側に退避する。
半導体ウェハーWが保持部7のサセプター74によって水平姿勢にて下方より保持された後、ハロゲン加熱部4の40本のハロゲンランプHLが一斉に点灯して予備加熱(アシスト加熱)が開始される。ハロゲンランプHLから出射されたハロゲン光は、石英によって形成された下側チャンバー窓64およびサセプター74を透過して半導体ウェハーWの裏面から照射される。ハロゲンランプHLからの光の照射を受けることによって半導体ウェハーWが予備加熱されて温度が上昇する。なお、移載機構10の移載アーム11は凹部62の内側に退避しているため、ハロゲンランプHLによる加熱の障害となることは無い。
ハロゲンランプHLによる予備加熱を行うときには、半導体ウェハーWの温度が放射温度計120によって測定されている。すなわち、サセプター74に保持された半導体ウェハーWの裏面から開口部78を介して放射された赤外光を放射温度計120が受光して昇温中のウェハー温度を測定する。測定された半導体ウェハーWの温度は制御部3に伝達される。制御部3は、ハロゲンランプHLからの光の照射によって昇温する半導体ウェハーWの温度が所定の予備加熱温度T1に到達したか否かを監視する。予備加熱温度T1は、半導体ウェハーWに添加された不純物が熱により拡散する恐れのない、200℃から800℃程度、好ましくは350℃から600℃程度とされる(本実施の形態では600℃)。
半導体ウェハーWの温度が予備加熱温度T1に到達した後、制御部3は半導体ウェハーWをその予備加熱温度T1に暫時維持する。具体的には、放射温度計120によって測定される半導体ウェハーWの温度が予備加熱温度T1に到達した時点にて制御部3がハロゲンランプHLの出力を制御して半導体ウェハーWの温度をほぼ予備加熱温度T1に維持している。
このようなハロゲンランプHLによる予備加熱を行うことによって、半導体ウェハーWの全体を予備加熱温度T1に均一に昇温している。ハロゲンランプHLによる予備加熱の段階においては、より放熱が生じやすい半導体ウェハーWの周縁部WEの温度が中央部よりも低下する傾向にあるが、ハロゲン加熱部4におけるハロゲンランプHLの配設密度は、半導体ウェハーWの中央部に対向する領域よりも周縁部に対向する領域の方が高くなっている。さらに、反射部材9が、反射部9mによって、ハロゲン加熱部4から発せられる光を反射させて半導体ウェハーWの周縁部WEに照射する。このため、放熱が生じやすい半導体ウェハーWの周縁部WEに照射される光量が多くなり、予備加熱段階における半導体ウェハーWの面内温度分布を均一なものとすることができる。さらに、チャンバー側部61に装着された反射リング69の内周面は鏡面とされているため、この反射リング69の内周面によって半導体ウェハーWの周縁部WEに向けて反射する光量が多くなり、予備加熱段階における半導体ウェハーWの面内温度分布をより均一なものとすることができる。
半導体ウェハーWの温度が予備加熱温度T1に到達して所定時間が経過した時点にてフラッシュ加熱部5のフラッシュランプFLが半導体ウェハーWの表面にフラッシュ光の照射を行う。このとき、フラッシュランプFLから放射されるフラッシュ光の一部は直接にチャンバー6内へと向かい、他の一部は一旦リフレクタ52により反射されてからチャンバー6内へと向かい、これらのフラッシュ光の照射により半導体ウェハーWのフラッシュ加熱が行われる。
フラッシュ加熱は、フラッシュランプFLからのフラッシュ光(閃光)照射により行われるため、半導体ウェハーWの表面温度を短時間で上昇することができる。すなわち、フラッシュランプFLから照射されるフラッシュ光は、予めコンデンサーに蓄えられていた静電エネルギーが極めて短い光パルスに変換された、照射時間が0.1ミリ秒以上で且つ100ミリ秒以下程度の極めて短く強い閃光である。そして、フラッシュランプFLからのフラッシュ光の照射によってフラッシュ加熱が施される半導体ウェハーWの表面温度は、瞬間的に1000℃以上の処理温度T2まで上昇し、半導体ウェハーWに注入された不純物が活性化された後、表面温度が急速に下降する。このように、熱処理装置1では、半導体ウェハーWの表面温度を極めて短時間で昇降することができるため、半導体ウェハーWに注入された不純物の熱による拡散を抑制しつつ不純物の活性化を行うことができる。なお、不純物の活性化に必要な時間はその熱拡散に必要な時間に比較して極めて短いため、0.1ミリ秒から100ミリ秒程度の拡散が生じない短時間であっても活性化は完了する。
ところで、このフラッシュ光の照射によって、半導体ウェハーWの表面温度は瞬間的に1000℃以上の処理温度T2にまで上昇する一方、その瞬間の裏面温度は予備加熱温度T1からさほどには上昇しない。すなわち、半導体ウェハーWの表面と裏面とに瞬間的に温度差が発生するのである。その結果、半導体ウェハーWの表面のみに急激な熱膨張が生じ、裏面はほとんど熱膨張しないために、半導体ウェハーWが表面を凸面とするように瞬間的に反る。このような表面を凸面とする瞬間的な反りが発生することによって、図13に示すように、半導体ウェハーWがサセプター74から跳躍して浮上する。
サセプター74から跳躍して浮上した半導体ウェハーWは、その直後にサセプター74に向けて落下してくる。このときに、薄板状の半導体ウェハーWは鉛直方向に沿って上方に跳躍し、そのまま鉛直方向下方に落下するとは限らず、むしろ水平方向の位置がずれて落下してくることが多い。その結果、図14に示すように、半導体ウェハーWの外周端がガイドリング76の傾斜面76aに衝突することになる。
ここで、ガイドリング76のうちの半導体ウェハーW側の面は、保持プレート75から上方に向けて広くなるようなテーパ状の傾斜面76aとされている。別の観点から言えば、ガイドリング76は、円環状領域Ar1の内側に位置する円形領域Ar2の中心を通り且つ保持プレート75に対して垂直な方向に伸びる仮想線L0に対向する傾斜面76aを有している。つまり、傾斜面76aは、保持プレート75から上方に向けて仮想線L0から遠ざかる面とされている。本実施形態では、ガイドリング76は円環状領域Ar1における周方向に沿って形成された円環形状の部材であり、傾斜面76aは円環形状のテーパ面である。
このようなガイドリング76に円板形状の半導体ウェハーWの外周端が衝突する場合、ガイドピンに点接触で衝突するよりも衝突時の接触面積が大きくなり、衝撃が緩和される。その結果、フラッシュ光の照射時における半導体ウェハーWの割れを防止することができるとともに、ガイドリング76の損傷も防止することができる。特に、図14のように、半導体ウェハーWの外周端が傾斜面76aに衝突した場合には、水平面に衝突するよりも運動エネルギーが分散されてさらに衝撃が緩和され、半導体ウェハーWの割れをより確実に防止することができる。
また、半導体ウェハーWの外周端が傾斜面76aに衝突すると、当該外周端が傾斜面76aに沿って斜め下方に滑り、半導体ウェハーWの水平方向の位置がフラッシュ光照射前の位置(載置面75aの中央)に向けて修正されることとなる。その結果、図15に示すように、落下後の半導体ウェハーWは複数の支持ピン77によって支持される。なお、本実施形態では、半導体ウェハーWの落下時におけるサセプター74に対する衝撃を緩和し、落下後の該半導体ウェハーWの位置を修正するガイドリング76が利用されて、反射部材9が半導体ウェハーWの周縁部WEに近接するように容易に配置され得る。ここで、特に、ガイドリング76が、円環状領域Ar1における周方向に沿って円環状に形成されていれば、反射部材9および反射部9mが円環状に設けられ得る。その結果、フラッシュ光の照射前の予備加熱時における半導体ウェハーWの面内温度分布の均一化がさらに図られ得る。
フラッシュ光照射によって跳躍した半導体ウェハーWが落下して複数の支持ピン77によって支持された後、所定時間経過後にハロゲンランプHLが消灯する。これにより、半導体ウェハーWが予備加熱温度T1から急速に降温する。降温中の半導体ウェハーWの温度も放射温度計120によって測定され、その測定結果は制御部3に伝達される。制御部3は、測定結果より半導体ウェハーWの温度が所定温度まで降温したか否かを監視する。そして、半導体ウェハーWの温度が所定以下にまで降温した後、移載機構10の一対の移載アーム11が再び退避位置から移載動作位置に水平移動して上昇することにより、リフトピン12がサセプター74の上面から突き出て熱処理後の半導体ウェハーWをサセプター74から受け取る。続いて、ゲートバルブ185によって閉鎖されていた搬送開口部66が開放され、リフトピン12上に載置された半導体ウェハーWが装置外部の搬送ロボットによって搬出され、熱処理装置1における半導体ウェハーWの加熱処理が完了する。
フラッシュ光照射時に跳躍して落下することにより、半導体ウェハーWの水平方向の位置がフラッシュ光照射前の位置からずれていることもあるが、図15に示す如く、半導体ウェハーWが複数の支持ピン77によって支持されている状態であれば、移載機構10のリフトピン12によって半導体ウェハーWを受け取り、それを搬送ロボットが搬出することが可能である。
以上のように、一実施形態に係る熱処理装置1では、ハロゲン加熱部4から発せられる光を反射させて半導体ウェハーWの周縁部WEに照射する反射部材9がサセプター74上に配置されている。これにより、半導体ウェハーWの周縁部WEに近接するように反射部材9が配置されて、光の照射による加熱時に半導体ウェハーWの周縁部WEでの温度低下が良好に抑制され得る。その結果、光の照射による加熱時に半導体ウェハーWの面内温度分布の均一化が図られ得る。
なお、本発明は上述の一実施形態に限定されるものではなく、本発明の要旨を逸脱しない範囲において種々の変更、改良等が可能である。
例えば、上記一実施形態の熱処理装置1では、ガイドリング76上に反射部材9が配置されていたが、これに限られない。例えば、保持プレート75上にガイドリング76が設けられる代わりに、ガイドリング76の機能と反射部材9の機能とを併せ持つ反射部材9Aが設けられた熱処理装置1Aが採用されても良い。これにより、反射部材9Aが半導体ウェハーWの周縁部WEに近接するように空間的に効率良く配置され得る。ここで、第1変形例に係る反射部材9Aの具体例を挙げて説明する。
図16は、第1変形例に係る反射部材9Aの設置態様を側方から見た断面図である。図17は、第1変形例に係る反射部材9Aを上面から見た平面図である。図18は、第1変形例に係る反射部材9Aによる光の反射態様を模式的に示す図である。図18には、ハロゲン加熱部4から発せられる光が進む方向が細線の直線状の矢印P1で描かれている。
図16で示されるように、サセプター74Aは、上記一実施形態に係るサセプター74からガイドリング76が取り除かれたものである。つまり、サセプター74Aは、プレートとしての保持プレート75および複数の支持ピン77を備える。
反射部材9Aは、保持プレート75上のうちの半導体ウェハーWの径よりも大きな内径を有する円環状領域Ar1において周方向に連続的に配置されている。つまり、サセプター74A上に配置されている。これにより、反射部材9Aが半導体ウェハーWの周縁部WEに近接するように容易に配置され得る。そして、複数の支持ピン77が、円環状領域Ar1よりも内側の保持プレート75上に立設されている。
反射部材9Aは、反射部材本体部9bAと反射部9mAとを有している。反射部材本体部9bAは、反射部材9Aの構造の大部分を構成している。本実施形態では、図16で示されるように、保持プレート75に対して垂直な方向に伸びる仮想線L0を含み且つ円環状領域Ar1の径方向に沿った面における反射部材9Aの断面は、略台形状の断面を有する。また、図17で示されるように、反射部材本体部9bAが円環状領域Ar1における周方向に沿って円環状に形成されている。ここでは、反射部材本体部9bAが、例えば、保持プレート75に対して接触あるいは連結されることで、保持プレート75上に配置される。反射部9mAは、反射部材本体部9bAに対して設けられており、ハロゲン加熱部4から発せられる光を反射させて半導体ウェハーWの周縁部WEに照射する。また、本実施形態では、図17で示されるように、反射部9mAが、サセプター74Aの周方向に沿って円環状に形成されている。ここで、反射部材本体部9bAは、例えば、耐熱性と光透過性とを有する素材としての石英によって形成されている。反射部9mAは、例えば、光を反射させる素材としての金属等で形成されている。例えば、反射部材本体部9bの少なくとも一面にニッケル等の金属が鏡面を成すように被着されることで、反射部9mAが形成され得る。
また、ここでは、反射部9mAが、フラッシュ加熱部5からサセプター74A上に配される半導体ウェハーWまで至るフラッシュ光の光路を避けるように、サセプター74A上の周縁部近傍に設けられている。また、本変形例では、反射部材本体部9bAが、円環状領域Ar1の内側に位置する円形領域Ar2の中心を通り且つ保持プレート75に対して垂直な方向に伸びる仮想線L0に対向する傾斜面(内周傾斜面とも言う)9aAを有している。該内周傾斜面9aAは、保持プレート75から上方に向けて仮想線L0から遠ざかる。つまり、本変形例では、反射部材9Aの内周面が、保持プレート75から上方に向けて広くなるテーパ面とされている。また、反射部材本体部9bAが、仮想線L0とは逆方向において傾斜面(外周傾斜面とも言う)9cAを有している。該外周傾斜面9cAに反射部9mAが形成されており、反射部9mAが、反射部材本体部9bAのうちの仮想線L0とは逆方向における外周傾斜面を形成する。
ここでは、図18で示されるように、サセプター74A上に載置された半導体ウェハーWがハロゲン加熱部4によって加熱される際に、ハロゲン加熱部4から発せられる光の一部が、保持プレート75および反射部材本体部9bAを透過した後に反射部9mAで反射されて、半導体ウェハーWの周縁部WEに向けて照射される。このとき、反射部9mAのうちの反射部材本体部9bAと接する部分において、ハロゲン加熱部4から発せられる光の一部が反射される。これにより、半導体ウェハーWの周縁部WEに近接するように反射部材9Aが配置され、フラッシュ光の照射前の予備的な加熱時における半導体ウェハーWの周縁部WEでの温度低下が良好に抑制され得る。その結果、光の照射による加熱時に半導体ウェハーWの面内温度分布の均一化が図られ得る。そして、特に反射部材9Aおよび反射部9mAが円環状領域Ar1における周方向に沿って円環状に設けられていることで、光の照射による加熱時に半導体ウェハーWの面内温度分布の均一化がさらに図られ得る。
なお、本変形例では、反射部材本体部9bAの断面の形状が、台形であったが、例えば、三角形等、その他の多角形とされても良い。
また、上記一実施形態および第1変形例では、ハロゲン加熱部4から発せられる光を反射する表面(反射表面とも言う)が平面状であった反射部9m,9mAが採用されたが、これに限られず、凹面状の表面(反射表面)を有する反射部9mBが採用されても良い。これにより、加熱時にハロゲン加熱部4から発せられる光を半導体ウェハーWの周縁部WEに向けて集光させることが可能となる。このため、光の照射による加熱時に半導体ウェハーWの周縁部WEでの温度低下が効率良く抑制され得る。ここで、第2変形例に係る反射部材9Bの具体例を挙げて説明する。
図19は、第2変形例に係る反射部材9Bの設置態様を側方から見た断面図である。図20は、第2変形例に係る反射部材9Bによる光の反射態様を模式的に示す図である。図20には、ハロゲン加熱部4から発せられる光が進む様子が細線の直線状の矢印P1で描かれている。
図19で示されるように、反射部材9Bは、上記一実施形態に係る反射部材9がベースとされて、平面状の反射表面を有する反射部9mが、凹面状の反射表面を有する反射部9mBに置換されたものである。具体的には、反射部9mBは、半導体ウェハーWの端縁部WEに対向する凹面状の反射表面を有している。ここでは、上記一実施形態に係る反射部材本体部9bがベースとされて、反射部9mが形成された平面状の面が、反射部9mBが形成された凹面状の面とされた反射部材本体部9bBが採用されることで、反射部9mBの変更が実現される。そして、図20で示されるように、サセプター74上に載置された半導体ウェハーWがハロゲン加熱部4によって加熱される際に、ハロゲン加熱部4から発せられる光の一部が、保持プレート75およびガイドリング76を透過した後に反射部9mBで反射されて、半導体ウェハーWの周縁部WEに向けて集光されつつ照射される。
このように、光の照射による加熱時にハロゲン加熱部4から発せられる光を半導体ウェハーWの周縁部WEに集光させることが可能となるため、光の照射による加熱時に半導体ウェハーWの周縁部WEでの温度低下が効率良く抑制され得る。
また、上記一実施形態および上記各変形例では、ガイドリング76、反射部材9,9A,9Bおよび反射部9m、9mA,9mBが円環状領域Ar1における周方向に沿って円環状に連続して配置されたが、これに限られない。例えば、ガイドリング76、反射部材9,9A,9Bおよび反射部9m、9mA,9mBが、円環状の領域において、円環状領域Ar1における周方向に沿って少なくとも一部が欠損した断続的な構成を有していても良い。このとき、例えば、保持プレート75上のうちの半導体ウェハーWの径よりも大きな内径を有する円環状領域Ar1において、ガイドリング76が分割されて複数の部分が断続的に突起しているガイド部が採用され得る。また、例えば、図21で示されるように、保持プレート75上のうちの半導体ウェハーWの径よりも大きな内径を有する円環状領域Ar1において、反射部材9が分割されて複数の部分が断続的に配置されている反射部材9Cが採用され得る。具体的には、円環状領域Ar1における周方向に沿って円環状に配置された反射部材9が間隙部9sによって分割されて複数の部分が断続的に配置されている反射部材9Cが形成され得る。このとき、反射部材本体部9bが分割されて複数の反射部材本体部9bCとなり、反射部9も分割されて複数の反射部9mCとなる。なお、例えば、反射部材本体部9b,9bA,9bBが複数の部分に分割されることなく、反射部材本体部9b,9bA,9bBの周方向の一部に反射部9m,9mA,9mBが形成されるようにしても良い。
また、上記一実施形態および上記第2変形例では、ガイドリング76が設けられたが、これに限られず、例えば、ガイドリング76が設けられていなくても良い。但し、ガイドリング76が設けられれば、半導体ウェハーWの落下時におけるサセプター74に対する衝撃が緩和され、落下後の該半導体ウェハーWの位置も修正され得る。
また、上記一実施形態および上記各変形例では、サセプター74,74Aが石英によって形成されていたが、これに限られず、サセプター74,74Aが窒化アルミニウム(AlN)または炭化ケイ素(SiC)等によって形成されても良い。あるいは、保持プレート75の材質とガイドリング76の材質とが異なっていても良い。例えば、石英の保持プレート75の上面に炭化ケイ素のガイドリング76が設置されても良い。
また、上記一実施形態および上記各変形例では、フラッシュ加熱部5に30本のフラッシュランプFLが備えられていたが、これに限られず、フラッシュランプFLの本数は任意の数に設定され得る。また、フラッシュランプFLはキセノンフラッシュランプに限られず、クリプトンフラッシュランプであっても良い。また、ハロゲン加熱部4のハロゲンランプHLの本数も40本に限られず、任意の数に設定され得る。
また、上記一実施形態および上記各変形例では、熱処理装置1が、フラッシュ加熱部5を有していたが、これに限られない。例えば、熱処理装置1が、フラッシュ加熱部5を有することなく、ハロゲン加熱部4を有する態様が採用されても良い。このとき、加熱部としてのハロゲン加熱部4は、例えば、半導体ウェハーWを予備的に加熱するものではなく、半導体ウェハーWを光の照射によって加熱するものとなり得る。これにより、光の照射による加熱時に半導体ウェハーWの面内温度分布の均一化が図られ得る。このような熱処理装置としては、例えば、ハロゲンランプを用いたRTP(Rapid Thermal Process)装置等が挙げられる。
また、本発明に係る熱処理装置によって処理対象となる基板は、半導体ウェハーWに限られず、液晶表示装置等のフラットパネルディスプレイに用いられるガラス基板あるいは太陽電池用の基板であっても良い。また、本発明に係る技術は、金属とシリコンとの接合、あるいはポリシリコンの結晶化等にも適用され得る。
なお、上記一実施形態および各種変形例をそれぞれ構成する全部または一部を、適宜、矛盾しない範囲で組み合わせ可能であることは、言うまでもない。
1 熱処理装置
4 ハロゲン加熱部
5 フラッシュ加熱部
6 チャンバー
7 保持部
9,9A,9B,9C 反射部材
9b,9bA,9bB,9bC 反射部材本体部
9m,9mA,9mB,9mC 反射部
74,74A サセプター
75 保持プレート
76 ガイドリング
76a 傾斜面
77 支持ピン
Ar1 円環状領域
Ar2 円形領域
L0 仮想線
W 半導体ウェハー
WE 周縁部

Claims (7)

  1. 基板に光を照射することによって該基板を加熱する熱処理装置であって、
    前記基板を収容するチャンバーと、
    前記チャンバー内において前記基板が載置されて該基板を保持するサセプターと、
    前記サセプターに保持された前記基板を光の照射によって加熱する加熱部と、
    前記サセプター上に配置され、前記加熱部から発せられる光を反射させて前記基板の周縁部に照射する反射部を有する反射部材と、
    を備えることを特徴とする熱処理装置。
  2. 請求項1に記載の熱処理装置において、
    前記サセプターに保持された前記基板をフラッシュ光の照射によって加熱するフラッシュ加熱部、をさらに備え、
    前記基板が、円板形状を有し、
    前記サセプターが、
    前記基板が載置される載置面を有するプレートと、
    前記プレート上のうちの前記基板の径よりも大きな内径を有する円環状の領域において連続的または断続的に突起しているガイド部と、
    前記プレート上のうちの前記円環状の領域よりも内側の領域上に立設され、前記基板を点接触によって支持する複数の支持ピンと、
    を有し、
    前記反射部材が、
    前記ガイド部上に配置されていることを特徴とする熱処理装置。
  3. 請求項2に記載の熱処理装置において、
    前記ガイド部が、
    前記円環状の領域における周方向に沿って円環状に形成されており、
    前記ガイド部の内周面は、前記プレートから上方に向けて広くなるテーパ面とされ、
    前記反射部が、
    前記周方向に沿って円環状に配置されていることを特徴とする熱処理装置。
  4. 請求項1に記載の熱処理装置において、
    前記サセプターに保持された前記基板をフラッシュ光の照射によって加熱するフラッシュ加熱部、をさらに備え、
    前記基板が、円板形状を有し、
    前記サセプターが、
    前記基板が載置される載置面を有するプレートと、
    前記プレート上に立設され、前記基板を点接触によって支持する複数の支持ピンと、
    を有し、
    前記反射部材が、
    前記プレート上のうちの前記基板の径よりも大きな内径を有する円環状の領域において連続的または断続的に配置されており、
    前記複数の支持ピンが、
    前記プレート上のうちの前記円環状の領域よりも内側の領域上に立設されていることを特徴とする熱処理装置。
  5. 請求項4に記載の熱処理装置において、
    前記反射部材が、
    前記円環状の領域の内側に位置する円形領域の中心を通り且つ前記プレートに対して垂直な方向に伸びる仮想線に対向する傾斜面を有し、
    前記傾斜面が、
    前記プレートから上方に向けて前記仮想線から遠ざかる傾斜面とされていることを特徴とする熱処理装置。
  6. 請求項5に記載の熱処理装置において、
    前記反射部材が、
    前記円環状の領域における周方向に沿って円環状に形成されており、
    前記反射部材の内周面は、前記プレートから上方に向けて広くなるテーパ面とされ、
    前記反射部が、
    前記周方向に沿って円環状に配置されていることを特徴とする熱処理装置。
  7. 請求項1から請求項6の何れか1つの請求項に記載の熱処理装置において、
    前記反射部が、
    凹面状の表面を有していることを特徴とする熱処理装置。
JP2015062284A 2015-03-25 2015-03-25 熱処理装置 Active JP6502713B2 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2015062284A JP6502713B2 (ja) 2015-03-25 2015-03-25 熱処理装置

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2015062284A JP6502713B2 (ja) 2015-03-25 2015-03-25 熱処理装置

Publications (2)

Publication Number Publication Date
JP2016181651A true JP2016181651A (ja) 2016-10-13
JP6502713B2 JP6502713B2 (ja) 2019-04-17

Family

ID=57131161

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2015062284A Active JP6502713B2 (ja) 2015-03-25 2015-03-25 熱処理装置

Country Status (1)

Country Link
JP (1) JP6502713B2 (ja)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08139047A (ja) * 1994-11-10 1996-05-31 New Japan Radio Co Ltd 熱処理装置
JP2001308084A (ja) * 2000-04-26 2001-11-02 Tokyo Electron Ltd 熱処理装置及び被処理体の熱処理方法
JP2009509332A (ja) * 2005-09-17 2009-03-05 マットソン テクノロジー インコーポレイテッド 向上した急速熱処理装置及び方法
JP2014120497A (ja) * 2012-12-13 2014-06-30 Dainippon Screen Mfg Co Ltd 熱処理装置

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08139047A (ja) * 1994-11-10 1996-05-31 New Japan Radio Co Ltd 熱処理装置
JP2001308084A (ja) * 2000-04-26 2001-11-02 Tokyo Electron Ltd 熱処理装置及び被処理体の熱処理方法
JP2009509332A (ja) * 2005-09-17 2009-03-05 マットソン テクノロジー インコーポレイテッド 向上した急速熱処理装置及び方法
JP2014120497A (ja) * 2012-12-13 2014-06-30 Dainippon Screen Mfg Co Ltd 熱処理装置

Also Published As

Publication number Publication date
JP6502713B2 (ja) 2019-04-17

Similar Documents

Publication Publication Date Title
JP6234674B2 (ja) 熱処理装置
JP5977038B2 (ja) 熱処理装置
JP6587955B2 (ja) 熱処理装置
JP6554328B2 (ja) 熱処理装置
JP6864564B2 (ja) 熱処理方法
JP6845730B2 (ja) 熱処理装置
JP2010225645A (ja) 熱処理装置
JP6647892B2 (ja) 熱処理用サセプタおよび熱処理装置
JP6138610B2 (ja) 熱処理装置
JP6622617B2 (ja) 熱処理装置
JP2019021828A (ja) 熱処理装置
JP5964630B2 (ja) 熱処理装置
JP6770915B2 (ja) 熱処理装置
JP7032947B2 (ja) 熱処理方法
JP6814572B2 (ja) 熱処理装置
JP2022045565A (ja) 熱処理装置
JP6486743B2 (ja) 熱処理装置、および熱処理装置の調整方法
JP6899248B2 (ja) 熱処理装置
JP6637321B2 (ja) 熱処理用サセプタおよび熱処理装置
JP6539498B2 (ja) 熱処理装置
JP2015088635A (ja) 熱処理装置および熱処理方法
JP6502713B2 (ja) 熱処理装置
JP6438326B2 (ja) 熱処理装置
JP6026124B2 (ja) 熱処理装置
JP2018133424A (ja) 熱処理装置

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20171222

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20180928

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20181009

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20181203

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20190226

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20190322

R150 Certificate of patent or registration of utility model

Ref document number: 6502713

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250